第章几种常见的概率分布律

合集下载

几种常见的概率分布律

几种常见的概率分布律

的概率,其值为 ϕ4
=
⎛ ⎜⎝
1 2
⎞4 ⎟⎠
=1 16

ϕ 3 (1 − ϕ ) 表示有三个显性基因和一个隐性基因组合出现的概率。其中
显形基因有三个,隐性基因一个,该项的系数表示这样的组合共有四种。
它们是RRYy,RRyY,RrYY和rRYY。这四种组合的概率均为

ϕ
3
(1

ϕ
)
=
⎛ ⎜⎝
1 2
⎞3 ⎟⎠
上式正是二项式展开式的第x+1项,因此产生理论分布中“二项分布”这一名 称。故该式称为二项分布的概率函数。
• 二项展开式,
⎡⎣ϕ +(1−ϕ)⎤⎦n =Cn0ϕ0 (1−ϕ)n +Cn1ϕ1 (1−ϕ)n−1 +"+Cnxϕx (1−ϕ)n−x +"+Cnnϕn (1−ϕ)0 = p(0) + p(1) + p(2) +"+ p( x) +"+ p(n)
⎛ ⎜⎝
1 2
⎞10 ⎟⎠
=
2−10
=
0.0009766
( ) p(1)
=
10! ⎛
1!(10 −1)!⎜⎝
1 2
⎞1 ⎟⎠
⎛ ⎜⎝
1 2
⎞9 ⎟⎠
=
10
2−10
= 0.0097656
( ) p(2) =
10! ⎛ 1 ⎞2 ⎛ 1 ⎞8
2!(10 − 2)!⎜⎝ 2 ⎟⎠ ⎜⎝ 2 ⎟⎠
= 45
2−10
(1) 二项分布图形的形状取决于P 和 n 的大小; (2) 当P = 0.5时,无论 n 的大小, 均为对称分布; (3) 当P ≠ 0.5,n 较小时为偏态分 布,n 较大时逼近正态分布。

生物统计学 几种常见的概率分布律

生物统计学 几种常见的概率分布律

非此即彼
随机试验有两种互不相容不同结果。 重要条件: 1. 每次试验两个结果(互为对立事件),每一种结果在每次 试验中都有恒定的概率; 2. 试验之间应是独立的。
P(AB)=P(A)P(B)
2.14
二项分布的概率函数
服从二项分布的随机变量的特征数
方差 当以比率表示时
偏斜度
了解
峭度
做题时请先 写公式,代 数字,出结 果,描述结 果的意义。
正态分布表的单侧临界值
上侧临界值
下侧临界值
双侧临界值
§3.5 另外几种连续型概率分布
指数分布(exponential distribution)
了解
Γ分布(gamma distribution)
了解
了解
随着p的增加, Γ分布愈来愈 接近于正态分 布。
§3.6 中心极限定理 (Central Limit Theorem) 假设被研究的随机变量X可以表 示为许多相互独立的随机变量Xi 的和。如果Xi的数量很大,而且 每一个别的Xi对于X所起的作用 又很小,则X可以被认为服从或 近似地服从正态分布。
作业
P51
3.1, 3.2(算出各表现型概率即可); 3.12, 3.18
正态分布的密度函数和分布函数 正态分布(normal distribution) 高斯分布(Gauss distribution) 正态曲线(normal curve) 连续型概率分布律 两头少,中间多,两侧对称
了解
标准正态分布
/fai/
标准正态分布的特性
ቤተ መጻሕፍቲ ባይዱ
正态分布表的使用方法
正态分布标准化
生物统计学
第三章 几种常见的概率 分布律
2010.9

几种常见概率分布

几种常见概率分布

• P(x=0)=0.510/(0!×1.6653)=0.6005
• P(x=1)=0.511/(1!×1.6653)=0.3063
• P(x=2)=0.512/(2!×1.6653)=0.0781
P(x=3)=0.513/(3!×1.6653)=0.0133
P(x=4)=0.514/(4!×1.6653)=0.0017
k=0Βιβλιοθήκη 项分布的性质Today: 2019/10/13
m
P(X ≤m) = Pn (k ≤m) =
C
k n
p
k
q
n
k
k=0
n
P(X ≥m) = Pn (k ≥m) = Ckn pkqn-k
k=m
P(m1 ≤X ≤m2 ) Pn (m1 ≤k ≤m2 )
m2
Cnk pk qn-k (m1 ≤m2 ) k m1
χ服从正态分布,记为χ~(µ,σ2).相应的概率分布函
数为
F(x) = 1
e x
-(x-μ) 2 2σ2
σ 2 π -∞
(二)特征 正态分布密度曲线是以χ =µ
为对称轴的单峰、对称的悬 钟形; f(x)在χ =µ处达到极大值,极 大值为 f(μ)= 1
σ 2π
f(x)是非负数,以x轴为渐进 线;
由计算可知 , 注射 A 疫苗无效的概率为 0.0352,比B疫苗无效的概率0.1671小得多。因 此,可以认为A疫苗是有效的,但不能认为B 疫苗也是有效的。
Today: 2019/10/13
(二)应用条件(三个)
n个观察单位的观察结果互相独立; 各观察单位只具有互相对立的一种结果,如
阳性或阴性,生存或死亡等,属于二项分类 资料。 已知发生某一结果(如死亡) 的概率为p,其对 立结果的概率则为1-P=q,实际中要求p 是 从大量观察中获得的比较稳定的数值。

第3章 几种常见的概率分布律

第3章 几种常见的概率分布律

服从
U
110k 2
,
110k 2

r.v.
随机变量
期望
区间(a,b)上的 均匀分布
f
(
x)
b
1
a
,
0,
a x b, 其它
ab 2
方差
区间(a,b)上 的均匀分布
f
(x)
b
1
a
,
0,
a x b, (b a)2 其它 12
(2) 指数分布 若 X 的d.f. 为
ex , x 0
(2) 二项分布 n 重Bernoulli 试验中, X 是事件A 在 n 次试 验中发生的次数 , P (A) = p ,则
Pn (k) P( X k) Cnk pk (1 p)nk , k 0,1,, n
称 X 服从参数为n, p 的二项分布,记作
X ~ B(n, p)
0–1 分布是 n = 1 的二项分布
其期望和方差都是
在某个时段内:
① 大卖场的顾客数;
应 用
② 市级医院急诊病人数; ③ 某地区拨错号的电话呼唤次数; ④ 某地区发生的交通事故的次数.
场 ⑤ 放射性物质发出的 粒子数;
合 ⑥ 一匹布上的疵点个数;
⑦ 一个容器中的细菌数;
⑧ 一本书一页中的印刷错误数;
都可以看作是源源不断出现的随机 质点流 , 若它们满足一定的条件, 则称为 Poisson 流, 在 长为 t 的时间内出现的质
Show[fn1,fn3]

0.5 0.4
大 0.3 0.2 0.1
-6
几何意义 数据意义
-5 -4 -3 -2 -1
大小与曲线陡峭程度成反比 大小与数据分散程度成正比

4. 第三章 几种常见的概率分布律

4. 第三章 几种常见的概率分布律

3.4 正态分布

两头少,中间多,两侧对称
正态分布曲线
μ
22

正态分布的密度函数和分布函数

对于平均数是μ ,标准差是σ的正态分布,其密 度函数为
1 f x e 2

x 2
2 2
, x , 0
以符号N(μ ,σ2)表示平均数为μ ,标准差为 σ的正态分布
20
结果如下:
x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
有x颗杂草的概率 p(x) = 10x/x!e10
有小于等 于x颗杂草 的概率 (累加)
有多于于等于x 颗杂草的概率 (1-上一个数 值的累计)
p(x) 0.0005 0.0023 0.0076 0.0189 0.0378 0.0631 0.0901 0.1126 0.1251 0.1251 0.1137 0.0948 0.0729 0.0521 0.0347
n p x 1 1 x 0
8
n

将x=0,1,2,3代入二项分布概率函数,可得出出 现0,1,2,3只雄性动物的概率。
P(0)= 0.0009766
P(1)= 0.0097656
P(2)= 0.0439453Biblioteka P(3)= 0.1171876
抽到3只和3只以下雄性动物的概率为:
15

于是:
15 n C (1 ) ( ) 0.01 16 n(lg15-lg16)= lg0.01 -0.02803n =-2.00000 n =71.4
n n n 0 n

即需要72代
0 n 0 n

d 几种常见的概率分布律

d  几种常见的概率分布律

三、服从二项分布的随机变量的特征数
平均数: μ=nφ
方差: σ2=nφ(1-φ)
随着样本含量的增加,偏斜度和峭度趋 向于0,二项分布逐渐接近于正态分布。
四、二项分布应用实例
例:3.2 例:3.3 例:3.4
【例3.4】
用 棕 色 正 常 毛 (bbRR) 的 家 兔 和 黑 色 短 毛 (BBrr)兔杂交,杂种F1为黑色正常毛长的 家兔,F1雌、雄兔近亲交配,问最少需要 多少只F2代的家兔,才能以99%的概率至 少得到一只棕色短毛兔?
二、二项分布概率函数表达式:
p( y) Cny y (1)ny , y 0,1,2,, n
n=试验次数(或样本含量) y=在n次试验中事件A出现的次数 φ=事件A发生的概率(每次试验都是恒定的) 1-φ=事件A的对立事件发生的概率 p(y)=Y的概率函数=P(Y=y)
例:3.1
从雌雄各半的100只动物中做一抽样试验。第一次从这100只动 物中随机抽取一只,记下性别后放回,再做第二次抽取。共 做了10次抽样,计算抽中3只和3只以下雄性动物的概率。
(5)曲线和X坐标轴所夹的面积等于1。 (6)正态分布表查出的φ(u)的值表示随机变量
U落入区间(-∞, u)的概率。 (7)累积分布函数图形的特点是围绕点
(0, 0.5)对称。 (8)正态分布的偏斜度γ1=0 ,峭度γ2=0。
5. 一些重要值
68.27%
68.27%
95.00%
95.00%
99.00%
解: n=10 y=3,2,1,0 φ=1/2 p( y) Cny y (1)ny
p(3) 10! ( 1 )3 ( 1 )7 120 (210 ) 0.1171876 3!(10 3)! 2 2

生物统计学答案第三章

生物统计学答案第三章

第三章 几种常见的概率分布律3.1 有4对相互独立的等位基因自由组合,问有3个显性基因和5个隐性基因的组合有多少种?每种的概率是多少?这一类型总的概率是多少?答:代入二项分布概率函数,这里φ=1/2。

()75218.02565621562121!5!3!83835==⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=p结论:共有56种,每种的概率为0.003 906 25(1/256 ),这一类型总的概率为 0.21875。

3.2 5对相互独立的等位基因间自由组合,表型共有多少种?它们的比如何? 答:(1)543223455414143541431041431041435434143⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛+表型共有1+5+10+10+5+1 = 32种。

(2)()()()()()()6976000.0024114165014.00241354143589087.002419104143107263.0024127104143105395.00241815414353237.0024124343554322345541322314==⎪⎭⎫⎝⎛==⨯=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==⨯=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==⨯=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==⨯=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛===⎪⎭⎫⎝⎛=隐隐显隐显隐显隐显显P P P P P P 它们的比为:243∶81(×5)∶27(×10)∶9(×10)∶3(×5)∶1 。

3.3 在辐射育种实验中,已知经过处理的单株至少发生一个有利突变的概率是φ,群体中至少出现一株有利突变单株的概率为P a ,问为了至少得到一株有利突变的单株,群体n 应多大?答: 已知φ为单株至少发生一个有利突变的概率,则1―φ为单株不发生一个有利突变的概率为:()()()()()φφφ--=-=--=-1lg 1lg 1lg 1lg 11a a an P n P n P3.4 根据以往的经验,用一般的方法治疗某疾病,其死亡率为40%,治愈率为60%。

概率论与数理统计第四章_几种重要的分布

概率论与数理统计第四章_几种重要的分布
用贝努公式计算ξ的分布律下
ξ
0
1
2
3
4
p 0.0016 0.0256 0.1536 0.4096 0.4096
4.2超几何分布(了解)
主要内容: (一)了解超几何分布的概念 (二)了解超几何分布的期望和方差
4.2超几何分布
例1 某班有学生20名,其中有5名女同学,今从 班上任选4名学生去参观展览,被选到的女同学数ξ
k1 (k 1)!(n k)!
n
(k 11)n! pk (1 p)nk
k1 (k 1)!(n k)!
n
(k 1)n!
n
pk (1 p)nk
n!
pk (1 p)nk
k1 (k 1)!(n k)!
k1 (k 1)!(n k)!
n
n!
n
pk (1 p)nk
n!
pk (1 p)nk
k2 (k 2)!(n k)!
解 可以取0,1,2,3这4个值。
P(
=k)=
C3k
C4k 17
C420
(k=0,1,2,3,)
列成概率分布如下
ξ
0
1
2
3
p 0.4912 0.4211 0.0842 0.0035
定义42 设N个元素分为两类,有N1个属于第一类, N2个属于第二类(N1+N2=N)。从中按不重复抽 样取n个,令ξ表示这n个中第一(或二)类元素的个数,
k1 (k 1)!(n k)!
n2
n1
n(n 1)Cnl 2 pl2 (1 p)n2l nCnj1 p j1(1 p)n1 j
l0
j0
n2
n(n 1)Cnl 2 pl2 (1 p)n2l l0

第三章 常见的概率分布率

第三章 常见的概率分布率
1头感染。设各头家畜没有相互传染疾病的 可能,问:应该如何评价这两种疫苗?
(--)二项分布的生物学应用:
1.预测后代分离比及基因组合。 例1、4对独立基因自由组合,后代3个显性 基因5个隐性基因概率?
2 推断所需群体和样本大小
例1、小麦自然变异概率φ=0.0045 (1)调查100株,获两株或两株以上变异株
例4
豌豆红花纯合基因AA,白花纯合基 因aa,杂交后F2后代 红花:白花 =3:1 , 每次随机观察4株。共观 察100次,则红花0株,1株,2株, 3株,4株的次数各多少?
例5
设在家畜中感染某种疾病的概率为20%,
现有两种疫苗,用疫苗A 注射了15头家畜 后无一感染,用疫苗B 注射 15头家畜后有
第三章 几种常见的概率分布律
3.1 二项分布-----离散型概率分布 率(binomial distribution) 例1、某射击手命中概率0.9,连续 射四次,恰好命中0、1、2、3、4 的概率。
3.1.1二项分布的概率函数
如果在一次试验中某事件发生的概率为φ, 那么在n次实验中(独立重复试验)恰好发 生x次的概率。
σ/√n –平均数的标准误差 (standard error of mean )
μ x = μ ,σ x =σ2/n
例1
小麦株高服从正态分布μ =110cm, σ=10cm.
现随机抽一株 问 (1)x>112cm的概率? (2)抽取n=36的样本,则样本的平均数株 高X>112cm的概率? (3)抽取n=100的样本, X>112cm的概率
拐点落在 -处
拐点落在 一个处
以平均数和标准差不同的正态分布系列曲线
正态分布
68-95-99.7规则

概率论中几种常用的重要的分布

概率论中几种常用的重要的分布

概率论中几种常用的重要的分布摘要:本文主要探讨了概率论中的几种常用分布,的来源和他们中间的关系。

其在实际中的应用。

关键词1 一维随机变量分布随机变量的分布是概率论的主要内容之一,一维随机变量部分要介绍六中常用分布,即( 0 -1) 分布、二项分布、泊松分布、均匀分布、指数分布和正态分布. 下面我们将对这六种分布逐一地进行讨论.随机事件是按试验结果而定出现与否的事件。

它是一种“定性”类型的概念。

为了进一步研究有关随机试验的问题,还需引进一种“定量”类型的概念,即,根据试验结果而定取什么值(实值或向量值)的变数。

称这种变数为随机变数。

本章内将讨论取实值的这种变数—— 一维随机变数。

定义1.1 设X 为一个随机变数,令()([(,)])([]),()F x P X x P X x x =∈-∞=-∞+∞.这样规定的函数()F x 的定义域是整个实轴、函数值在区间[0,1]上。

它是一个普通的函数。

成这个函数为随机函数X 的分布函数。

有的随机函数X 可能取的值只有有限多个或可数多个。

更确切地说:存在着有限多个值或可数多个值12,,...,a a 使得12([{,,...}])1P X a a ∈=称这样的随机变数为离散型随机变数。

称它的分布为离散型分布。

【例1】下列诸随机变数都是离散型随机变数。

(1)X 可能取的值只有一个,确切地说,存在着一个常数a ,使([])1P X a ==。

称这种随机变数的分布为退化分布。

一个退化分布可以用一个常数a 来确定。

(2)X 可能取的值只有两个。

确切地说,存在着两个常数a ,b ,使([{,}])1P X a b ∈=.称这种随机变数的分布为两点分布。

如果([])P X b p ==,那么,([])1P X a p ===-。

因此,一个两点分布可以用两个不同的常数,a b 及一个在区间(0,1)内的值p 来确定。

特殊地,当,a b 依次为0,1时,称这两点分布为零-壹分布。

概率分布律

概率分布律

概率分布律
概率分布律是概率论中的重要概念之一,指的是随机变量取值的分布规律。

在统计学、物理学、工程学等领域中,概率分布律也被广泛应用。

本文将介绍常见的概率分布律,并分析其特点和应用。

1. 二项分布律
二项分布律是指在n次独立重复试验中,成功事件发生的次数服从的分布律。

其中,每次试验中成功事件发生的概率为p,失败事件发生的概率为q=1-p。

二项分布律在实际应用中非常广泛,例如模拟股票涨跌、判断产品合格率等。

2. 泊松分布律
泊松分布律是指在一定时间或空间内,某事件发生的次数服从的分布律。

例如,在一定时间内电话呼叫次数、车辆通过次数等。

泊松分布律具有简单、实用的特点,在实际应用中得到广泛使用。

3. 正态分布律
正态分布律又称高斯分布律,是指随机变量服从正态分布的分布律。

正态分布律具有对称性、可重复性、中心极限定理等特点,可以用于描述很多自然现象,例如身高、体重、考试成绩等。

4. 均匀分布律
均匀分布律是指随机变量服从均匀分布的分布律。

均匀分布律具有等可能性、无记忆性等特点,在实际应用中广泛用于随机抽样、随机游走等。

5. 指数分布律
指数分布律是指随机变量服从指数分布的分布律。

指数分布律具有无记忆性、反指数增长等特点,可以用于描述等待时间、寿命等。

以上是常见的概率分布律,每种分布律都有其独特的特点和应用场景。

在实际应用中,需要根据具体问题选择合适的概率分布律,以准确地描述随机变量的分布规律。

同时,在使用概率分布律时,也需要注意分布律的参数选择、数据的采集方法等问题,以保证分析结果的准确性。

几种常见的概率分布率-(1)分解

几种常见的概率分布率-(1)分解
➢ 曲线与横坐标轴所夹的图形面积为1; ➢ 累积分布函数曲线从-∞到0平稳上升,围绕点(0,0.5)对称;
➢ 标准正态分布的偏斜度γ1和峭度γ2均为零。
以下一些特征值很重要:
-3 -2 -1
1 23
68.27%
95.45%
99.73%
P(-1≤u<1)=0.6826 P(-2≤u<2)=0.9545 P(-3≤u<3)=0.9973
4.822),求:
(1)X<161cm的概率; (2)X>164cm的概率; (3)152<X<162的概率。
x-
=
161 - 156.2 4.82
=
1.00
x
=
164 - 156.2 4.82
=
1.62
x
=
152 - 156.2 4.82
=
-0.87
x
=
162 - 156.2 4.82
=
1.20
四、 正态分布的单侧分位数和双侧分位数
x
[(1-
-1
p) ]p - p(n-x)
(当n→∞时,系数的极限为1,且nφ =μ)Βιβλιοθήκη x!= x e-x!
1
-1
e = lim (1 z) z,lim (1 - p) p = e
z0
p0
二、 服从泊松分布的随机变量的特征数
➢ 平均数:μ=λ ➢ 方差: σ2 = λ
➢ 偏斜度: 1=
1

峭度:
标轴从-∞到u所夹的面积,该曲线下的面积即表示随机 变量U 落入区间(-∞,u)的概率;
➢ 标准正态分布查表常用的几个关系式:
• P(0<U <u1)=F(u1)-0.5 • P(U >u1)=F(-u1)=1-F(u1) • P(∣U∣>u1)=2F(-u1) • P(∣U∣<u1)=1- 2F(-u1) • P(u1<U <u2)=F(u2)-F(u1)

第4章 几种常见的概率分布

第4章 几种常见的概率分布

6. 正态分布的单双侧临界值
面积为,已知 上侧临界值 P(U> u )= α ,下侧临界值 P (U <- u )= α (附表 3 上侧临界值)
若将一定曲线下面积α,平分到两侧尾区,则每侧曲线下面积为α/2,
即 P(
U U 2
)=
α,
U 这时的
U
2
称为α的双侧临界值。
面积为,已知
u 称为的上侧临界值。 附表3 (256页)给出了u的值。
N(0,1)
x=0 时,φ(x) 达到最大值
(1) 关于点(0,0.5)对称,该点也
是它的拐点
(2)x 取值离原点越远,φ (x) 值越小 (2) 曲线以 y = 0 和 y = 1 为渐近线;
(3)关于 y 轴对称,即φ(x)= φ (- x)
(3) Ф(1.960)-Ф(-1.960) = 0.95
种变量有它各自的概率而组成一个分布。这个分布就叫做二项概率分布,或简称二项分布
(binomial distribution) 由此得到计算二项分布任何一项概率的通式为:p(x) =Cnx φ
x(1- φ)n-x
二项分布是一种离散型随机变量的概率分布
性质
n
Cnx x (1 )nx 1
x0
m
一指定时间范围内或在指定的面积或体积内某一事件出现的个体数的分布 泊松分布是一种离散型随机变量的概率分布
实例 调查某种猪场闭锁育种群仔猪畸形数,共记录 200 窝, 畸形仔猪数的分布情况如下表所
示。试判断畸形仔猪数是否服从泊松分布。 畸形仔猪数统计分布
解:根据泊松分布的平均数与方差相等这一特征,若畸形仔猪数服从泊松分布,则由观察数 据计算的平均数和方差就近于相等。样本均数和方差 S2 计算结果如下:

第5章 常用概率分布2

第5章 常用概率分布2

正态分布的参数
1
2
3
图9 标准差相同、均数不同的正态分布曲线
正态分布的参数
σ1 σ2 σ3 σ1<σ2<σ3
图10 均数相同、标准差不同的正态分布曲线
正态分布
二、正态概率密度曲线下的面积规律

正态曲线下面积总和为1;
正态曲线关于均数对称;对称的区域内面积相等; 对任意正态曲线,按标准差为单位,对应的面积相 等;

计算z值:
z1 x1


( 1.96 )

1.96
z2


x2


( 1.96 )

1.96
0.025 1.96
查附表1:确定概率 结论:95%
0.025 -1.96
正态分布
例 已知X服从均数为 、标准差 为的正态分布, 1 .96 试估计:(1)X取值在区间 上的概率; (2)X 取值在区间 上的概率。 2.58
记为N(0,1)。 标准正态分布是一条曲线。

标准正态分布曲线下的面积
μ±1范围内的面积为68.27% μ±1.96范围内的面积为95%
μ±2.58范围内的面积占99%
图12 正态曲线下的面积分布示意
标准正态分布曲线下的面积的计算
求z值,用z值查表,得到所求区间面积占总面
积的比例。 曲线下对称于0的区间,面积相等。 曲线下总面积为100%或1。

计算z值:
Z 130 123 .02 1.46 4.79

查附表1:确定概率
0.0721 0.0721 1.46

结论:7.21%
-1.46

几种常见概率分布

几种常见概率分布
正整数;p是连续参数,取值为0与1之间的任何数
值。
二项分布具有概率分布的一切性质,即:

( k=0,1,2,…,n) P(X = k) = P n (k) ≥0
n 二项分布的概率之和等于 1n ,即: k k n-k
∑C p q
n k =0
= (q +p) = 1
二项分布的性质

k n k P (X ≤m) = Pn (k ≤m) = C k p q n k =0 n m
μ = np σ = npq
当试验结果以事件A发生的频率k/n表示时,
μp = p
p 也称率的标准误。
σ p = (pq) /n
四、二项分布的概率计算及其应用条件
(一)概率计算 直接利用二项概率公式 [例6] 有一批种蛋,其孵化率为0.85,今在该批 种蛋中任选6枚进行孵化,试给出孵化出小鸡的

P (X ≥m) = Pn (k ≥m) =
k =m
k k n -k C np q

P(m1 ≤ X ≤m2 ) Pn (m1 ≤k ≤m2 )
k m1 k k n-k C n p q (m1 ≤m2 ) m2
三、二项分布的平均数与标准差
统计学证明,服从二项分布B(n,p)的随机变量之 平均数μ 、标准差σ与参数n、p有如下关系: 当试验结果以事件A发生次数k表示时
0 .5 P( x k ) e 0 .5 k!
k
x
(k=0,1,2…)
计算结果如表4—5所示。
表4—5 细菌数的波松分布
可见细菌数的频率分布与λ=0.5的波松分布是相
当吻合的 , 进一步说明用波松分布描述单位容积(
或面积)中细菌数的分布是适宜的。

生物统计学:几种常见的概率分布律

生物统计学:几种常见的概率分布律

头仔猪中白色的为x头,则x为服从二项分布B(10,0.75)
的随机变量。于是窝产10头仔猪中有7头是白色的概率
为:
10! P ( x 7) C 0.75 0.25 0.75 7 0.253 0.2503 7!3!
7 10 7 3
【例3.2】 设在家畜中感染某种疾病的概率为20%,现有两 种疫苗,用疫苗A 注射了15头家畜后无一感染,用疫苗B 注射 15头家畜后有1头感染。设各头家畜没有相互传染疾病的可能, 问:应该如何评价这两种疫苗? 假设疫苗A完全无效,那么注射后的家畜感染的概率仍为20 %,则15 头家畜中染病头数x=0的概率为
1-p=q,则称这一串重复的独立试验为n重贝努利试验,
简称贝努利试验(Bernoulli trials)。
在生物学研究中,我们经常碰到的一类离 散型随机变量,如孵n枚种蛋的出雏数、n头病 畜治疗后的治愈数、n 尾鱼苗的成活数等,可用 贝努利试验来概括。 在n重贝努利试验中,事件 A 可能发生0,1, 2,…,n次,现在我们来求事件A恰好发生 k(0≤k≤n)次的概率Pn(k)。
四、二项分布的平均数与标准差 统计学证明,服从二项分布B(n,p)的随机变 量之平均数μ、标准差σ与参数n、p有如下关系: 当试验结果以事件A发生次数k表示时
μ=np
(3-5)
(3-6)
npq
【例3.4】求【例3.3】平均死亡猪数及死 亡数的标准差。
以p=0.2,n=5代入 (3-5)和(3-6) 式得: 平均死亡猪数 μ=5×0.20=1.0(头) 标准差
一、波松分布的意义
若随机变量x(x=k)只取零和正整数值0,1, 2,…,且其概率分布为
k , k=0,1,…… (3-10) P( x k ) e k!
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3
4
12 36 0.218750 7.000000
4
12
48 192 0.273437 8.749984
5
6
30 150 0.218750 7.000000
6
5
30 180 0.109375 3.500000
7
2
14 98 0.031250 1.000000
8
0
0 0 0.003906 0.124992
总数
14.04.2020
N=32
139 665 0.999999 31.99968
.
16
3.1.3 二项分布应用实例
样本平均数、总体平均数;样本方差、总体方
差如下:
x
fx
139
4.343750
N 32
n
8
1 2
4.000000
2
fx2
fx
665 1392
s2
N
32 1.974798
在Cumulative后填入0(或FALSE),表示计算成功次
14.04.2020 数恰好等于指定数值的. 概率;填入1(或TRUE)表 14
3.1.3 二项分布应用实例
例1 以杂合基因型Wvwv的小鼠为父本,隐性纯合 子小鼠wvwv为母本杂交(wv波浪毛,Wv直毛), 后代两种基因型的数目应各占一半。实验只选8只 的,多于8只和少于8只的都淘汰。利用下面的公式 或者Excel 可以计算直毛后代出现的概率:
第2步:在Excel表格界面中,直接点击“f(x)”(插入函数)命 令
第3步:在复选框“函数分类”中点击“统计”选项,在 “函数名”
中点击“BINOMDIST”选项,然后确定
第4步:在Number_s后填入试验成功次数(本例为3)
在Trials后填入总试验次数(本例为10)
在Probability_s后填入试验的成功概率(本例为0.5)
在一次抽样中抽到的结果为:mmmfffffff,它的概 率为
P(mmmfffffff ) = 3(1 )7
抽到3雄7雌的数目相当于从10个元素中抽出3个元
素的组合数 C
3 10
,因此抽到3只雄性动物的概率为:
p3C130317
14.04.2020
.
9
3.1.1 二项分布的概率函数
对于任意n和x有以下通式:
x = 在n次试验中事件A出现的次数
= 事件A发生的概率(每次试验都是恒定的)
A 1- = 事件 发生的概率
p(x) = “X的概率函数”=P(X=x)
F(x) = P(X≤x) = p ( x i )
xi x
14.04.2020
.
8
3.1.1 二项分布的概率函数
上例中:n = 10,x = 3, = 0.5,求p(3) 和F(3)。
第三章 几种常见的概率分布律
14.04.2020
.
1
学习目标
1、了解离散型随机变量的概率分布 2、了解连续型随机变量的概率分布 3、学会用统计表和Excel计算分布的概率
14.04.2020
.
2
生物学中常见的离散性概率分布
1、二项分布 2、泊松分布
生物学中常见的连续性概率分布
3、正态分布
14.04.2020
.
11
3.1.1 二项分布的概率函数
将x=0,1,2,3,代入二项分布概率函数,可以得出:出现0、1、
2和3只雄性动物的概率( n = 10; x =0,1,2, 3; = 0.5)
p(x)C n x x(1)nx
P(0)= 0.0009766 P(1)= 0.0097656 P(2)= 0.0439453 P(3)= 0.1171876 抽到3只和3只以下雄性动物的概率为: F(3)=P(X≤3)=P(0)+P(1)+P(2)+P(3)=
例3.1:从雌雄各半的100只动物中抽样,抽 样共进行10次,问其中包括3只雄性动物的概 率是多少?包括3只及3只以下的概率是多少? 即求P(X=3)和P(X≤3)=F(x)。
该例符合二项分布的条件。
14.04.2020
.
7
3.1.1 二项分布的概率函数
先了解以下一组符号:
n = 试验次数
p(x)C n x x(1)nx
结果列在下表中:
14.04.2020
.
15
3.1.3 二项分布应用实例
直毛后代数 观测频数
(x)
(f)
fx fx2
p(x)
Np(x)
0
0
0 0 0.003906 0.124992
1
1
1 1 0.031250 1.000000
2
2
4 8 0.109375 3.500000
0.1718751
14.04.2020
.
12
3.1.2 服从二项分布的随机变量的特征数
总体平均数:μ=n 以比率表示时: μ= 总体方差:σ2=n (1 )
以比率表示时:
2 1
n
14.04.2020
.
13
二项分布 (用Excel计算概率)
第1步:进入Excel表格界面,将鼠标停留在某一空白单元格
P(x)Cnxx(1)nx,
x0,1,2,L,n
其中
C
x n
n! x !(n x) !14.04.2020. Nhomakorabea10
3.1.1 二项分布的概率函数
上式称为二项分布的概率函数。该式是牛顿 二项式展开后的第x + 1项,因而产生“二项
分布”这一名称。因为 +(1- )=1,所以
n
px1n1
x0
14.04.2020
当每次独立的从二项总体抽取n个个体,这n个 个体:“此”事件出现的次数X可能有0、1、 2、….n,共有n+1种,这n+1种可能性有它各自的概率, 组成一个分布,此分布叫二项概率分布或简称二项分 布。二项分布是一种离散型分布。
14.04.2020
.
5
3.1.1 二项分布的概率函数
二项分布满足下列条件:
一次试验只有两个可能结果,即“成功”和 “失败”
“成功”是指我们感兴趣的某种特征
一次试验“成功”的概率为 ,失败的概率 为1 ,且概率对每次试验都是相同的
试验是相互独立的,并可以重复进行n次
在n次试验中,“成功”的次数对应一个离
散型随机变量X
14.04.2020
.
6
3.1.1 二项分布的概率函数
.
3
3.1 二项分布
3.1.1 二项分布的概率函数 3.1.2 服从二项分布的随机变
量的特征数 3.1.3 二项分布应用实例
14.04.2020
.
4
3.1.1 二项分布的概率函数
在独立重复试验中,总体的某个性状每一次试验 只有非此即彼两个可能结果(生男、生女;药物有效 或者无效),这种非此即彼事件所构成的总体叫二项 总体,也叫0,1总体。
相关文档
最新文档