小学奥数知识点汇总
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数知识点汇总(附解题思路)
2016-11-27
很多人都认为难题就是奥数,其实这种看法很片面,不可否认,奥数确实很难,但是奥数的知识基准点和思维考点都是来源于基础数学和日常生活实践数学。绝大部分小学的数学或奥数再难无非也就是下面21个基础知识点的的拓展和应用,下面来介绍下:
知识点一:归一问题
【含义】在解题时先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
【数量关系】
总量÷份数=单一量
单一量×所占份数=所求几份的数量
或总量A÷(总量B÷份数B)=份数A
【解题思路】先求出单一量,以单一量为标准,求出所要求的数量。
【例】买5支铅笔需要元钱,买同样的铅笔16支,需要多少钱
解:先求出一支铅笔多少钱——÷5=(元)
再求买16支铅笔需要多少钱——×16=(元)
综合算式:÷5×16=×16=(元)
知识点二:归总问题
【含义】解题时先找出“总数量”,再根据已知条件解决问题的题型。所谓“总数量”可以指货物总价、几天的工作量、几亩地的总产量、几小时的总路程等。
【数量关系】
1份数量×份数=总量
总量÷一份数量=份数
【解题思路】先求出总数量,再解决问题。
【例】服装厂原来做一套衣服用布米,改进剪裁方法后,每套衣服用布米。问原来做791套衣服的布,现在可以做多少套衣服
解:先求这批布总共多少米——×791=(米)
再求现在可以做多少套——÷=904(套)
综合算式:×791÷=904(套)
知识点三:和差问题
【含义】已知两个数量的和与差,求这两个数量各是多少。
【数量关系】
大数=(和+差)÷2
小数=(和-差)÷2
【解题思路】简单题目直接套用上述公式,复杂题目变通后再套用公式。
【例】甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人
解:直接套用公式——
甲班人数=(98+6)÷2=52(人)
乙班人数=(98-6)÷2=46(人)
知识点四:和倍问题
【含义】已知两个数的和及“大数是小数的几倍(或小数是大数的几分之几)”,求这两个数各是多少。
【数量关系】
总和÷(倍数+1)=较小数
总和-较小数=较大数
或较小数×倍数=较大数
【解题思路】简单题目直接套用上述公式,复杂题目变通后再套用公式。
【例】果园里有杏树和桃树共248棵,桃树是杏树的3倍,求杏树和桃树各有多少棵
解:先求杏树有多少棵——248÷(3+1)=62(棵)
再求桃树有多少棵——62×3=186(棵)
知识点五:差倍问题
【含义】已知两个数的差及“大数是小数的几倍(或小数是大数的几分之几)”,求这两个数各是多少。
【数量关系】
两个数的差÷(倍数-1)=较小数
较小数×倍数=较大数
【解题思路】简单题目直接套用上述公式,复杂题目变通后再套用公式。
【例】果园里桃树的棵数是杏树的3倍,而且桃树比杏树度124棵,求杏树和桃树各有多少棵
解:先求杏树有多少棵——124÷(3-1)=62(棵)
再求桃树有多少棵——62×3=186(棵)
知识点六:倍比问题
【含义】有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出倍数,再用倍比方法算出要求的数。
【数量关系】
总量A÷数量A=倍数
数量B×倍数=总量B
【解题思路】先求出倍数,再利用倍比关系求解。
【例】100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少
解:先求倍数,
3700千克是100千克的多少倍——3700÷100=37(倍)
再求可以榨油多少千克——40×37=1480(千克)
综合算式:40×(3700÷100)=1480(千克)
知识点七:相遇问题
【含义】两个运动的物体同时由两地出发相向而行,在途中相遇的问题。
【数量关系】
相遇时间=总路程÷(甲速+乙速)
总路程=(甲速+乙速)×相遇时间
【解题思路】简单题目直接套用上述公式,复杂题目变通后再套用公式。
【例】南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,问经过几小时两船相遇
解:直接套用公式392÷(28+21)=8(小时)
知识点八:追及问题
【含义】两个运动物体在不同地点同时出发(或者在同一地点不同时出发,或者在不同地点不同时出发)作相向运动。在后面的行进速度快,在前面的行进速度慢,在一定时间内,后者追上了前者的问题。
【数量关系】
追及时间=追及路程÷(快速-慢速)
追及路程=(快速-慢速)×追及时间
【解题思路】简单题目直接套用上述公式,复杂题目变通后再套用公式。
【例】好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马
解:先求劣马先走了多少千米——75×12=900(千米)
再求好马几天能追上——900÷(120-75)=20(天)
综合算式:75×12÷(120-75)=900÷45=20(天)
知识点九:植树问题
【含义】按相等的距离,在距离、棵距、棵数这三个量之间,已知其中两个量,求第三个量的问题。
【数量关系】
线性植树棵数=距离÷棵距+1
环形植树棵数=距离÷棵距
方形植树棵数=距离÷棵距-4
三角形植树棵数=距离÷棵距-3
面积植树棵数=面积÷(棵距×行距)
【解题思路】先弄清是哪种植树问题,再套用公式。
【例】一条河堤136米,每隔2米栽一棵柳树,头尾都栽,一共要栽多少棵柳树
解:直接套用“线性植树”公式——
136÷2+1=68+1=69(棵)
知识点十:年龄问题
【含义】已知一个人的年龄,根据已知条件求另一个人的年龄。