人教版小学六年级数学上册 各单元知识点整理归纳总结
(人教版)小学六年级数学上册全册各单元重要知识点梳理详解汇总
(人教版)小学六年级数学上册全册各单元重要知识点梳理详解汇总第一单元 分数乘法(一)分数乘法的意义1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512×6.表示: 6个512相加是多少.还表示:512的6倍是多少。
2.一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
(二)分数乘法的计算法则1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数.所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)解决实际问题。
1、分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
(2)找出单位“1”的量512 例如:6×512,表示:6的是多少。
的27×512.27 表示: 512 是多少。
(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。
(4)根据已知条件和问题列式解答。
2、乘法应用题有关注意概念。
(1)乘法应用题的解题思路:已知一个数、求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找.注意“的”前“比”后的规则。
当句子中的单位“1”不明显时,把原来的量看做单位“1”。
(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。
(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思.那么谁比谁多,应该是“多比少多”,“多”的是指800千克.“少”的是指750千克.即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员”等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。
人教版六年级上册数学知识点汇总
人教版六年级上册数学知识点汇总汇总一第一单元分数乘法一、分数乘法〔一〕分数乘法的意义:1、分数乘整数与整数乘法的意义一样。
都是求几个一样加数的和的简便运算。
2、分数乘分数是求一个数的几分之几是多少。
〔二〕、分数乘法的计算法那么:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
注意〔1〕分数的化简:分子、分母同时除以它们的最大公因数。
〔2〕关于分数乘法的计算:可在乘的过程中约分,也可将积的分子分母约分,提倡在计算过程中约分,这样简便。
〔3〕当带分数进展乘法计算时,要先把带分数化成假分数再进展计算。
〔三〕、规律:〔乘法中比拟大小时〕一个数〔0除外〕乘大于1的数,积大于这个数。
一个数〔0除外〕乘小于1的数〔0除外〕,积小于这个数。
一个数〔0除外〕乘1,积等于这个数。
〔四〕、分数混合运算的运算顺序和整数的运算顺序一样。
〔五〕、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a×b=b×d乘法结合律: a×b×c=a×(b×c)乘法分配律:a×(b+c)=ab+ac 或a×(b-c)=ab-ac二、分数乘法的解决问题〔单位“1”的量〔用乘法〕,求单位“1”的几分之几是多少〕1、找单位“1”:“占”、“是”、“比”的后面2、求一个数的几倍是多少;求一个数的几分之几是多少。
用乘法三、倒数1、倒数的意义:乘积是1的两个数互为倒数。
(互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
)2、求倒数的方法:〔1〕、求分数的倒数:交换分子分母的位置。
〔2〕、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
〔3〕、求带分数的倒数:把带分数化为假分数,再求倒数。
〔4〕、求小数的倒数:把小数化为分数,再求倒数。
3、1的倒数是1; 0没有倒数。
人教版小学六年级数学上册各单元知识点总结归纳整理(完整版)
人教版六年级上册知识点总结六年级上册数学知识点第一单元 位置1、什么是数对?——数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。
作用:确定一个点的位置。
经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中X 轴上的坐标表示列,y 轴上的坐标表示行。
如:数对(3,2)表示第三列,第二行。
(2)数对(X ,5)的行号不变,表示一条横线,(5,Y )的列号不变,表示一条竖线。
(有一个数不确定,不能确定一个点)( 列 , 行 )↓ ↓竖排叫列 横排叫行(从左往右看)(从下往上看) (从前往后看)2、图形左右平移行数不变;图形上下平移列数不变。
3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。
12 3 4 0行号一、确定物体位置的方法: 1、先找观测点;2、再定方向(看方向夹角的度数);3、最后确定距离(看比例尺)二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
三、位置关系的相对性:1、两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
四、相对位置:东--西;南--北;南偏东--北偏西。
第二单元 分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少? 2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)例如:53×61表示: 求53的61是多少?9 ×61表示: 求9的61是多少? A × 61表示: 求a 的61是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
人教版六年级数学上册知识点归纳与整理
所以,圆的周长(c)=直径(d)×圆周率(π) ——周长公式: C=πd 或 C=2πr
◆圆周率π是一个无限不循环小数,3.14 是近似值,π>3.14。
3、周长的变化的规律:半径扩大多少倍,直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数
相同。
如果 r1∶r2∶r3=d1∶d2∶d3=C1∶C2∶C3
4、半圆周长=圆周长一半+直径= 1 ×2πr = πr+d 2
(三)圆的面积
1、圆面积公式的推导
把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。
◆圆与拼成的长方形有如下关系:
圆的半径=长方形的宽
圆的周长的一半=长方形的长
长方形面积=长 ×宽
圆的面积=圆的周长的一半(πr)×圆的半径(r)
1 工作效率=
工作时间=1÷工作效率 合作时间 = 工作总量÷工作效率之和
工作时间
第四单元 比 1、两个数相除又叫做两个数的比。在两个数的比中,比号前面的数叫做比的前项,比号后面的 数叫做比的后项。比的前项除以后项所得的商,叫做比值。比的后项不能为 0. 例如 15 :10 = 15÷10=3/2(比值通常用分数表示,也可以用小数或整数表示) 2、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。 例: 路程÷速度=时间。 3、区分比和比值 比:表示两个数的关系,可以写成比的形式,也可以用分数表示。 比值:相当于商,是一个数,可以是整数,分数,也可以是小数。 4、比和除法、分数的联系与区别:(区别)除法是一种运算,分数是一个数,比表示两个数的 关系。 比的前项相当与除法中的被除数,分数中的分子;比的后项相当与除法中的除数,分 数中的分母;比号相当于除法中的除号,分数中的分数线;比值相当于除法的商,分数的分数
人教版六年级数学上册各单元知识点汇总
第一单元考点梳理及易错探析总结归纳一览表单元考点基本概念与性质易错探析分数乘整数及整数乘分数用分敛的分子和整数相乘的积作分子,分母不变。
易错点:单位“1”的选取容易出错。
举例探析:判断:甲数比乙数多[,则5乙敛匕甲教少1O(X)S探析:甲数比乙数多1,则S乙数;匕甲数少】°6分数乘分数分敛乘分敛,用分子相乘的积作分子、分母相乘的积作分母。
小数乘分数可以把小数化成分数,也可以把分数化成小数,再计算a分数乘法混合运算和简便计算1.分数乘法混合运算,没有括号的先算束法,后算加、减法;有括号的,先算括号里面的,再算括号外面的。
2.整数乘法的交换律、结合律和分配津,对于分数乘法也适用,解决问题1.连续求一个歇的儿分之几是多少,用连乘。
2.求比一个数多几分之几的数是多少,列式为ax(1+儿分之几)©3.求比一个数少几分之几的数是多少,列式为q x(1-几分之几)。
第二单元考点梳理总结归纳一览表单元考点基本概念与性质位置与方向1.描述物休的位丑与观浏点有关,说浏点不同,物休位置的描述洸不同,物体的位置关系具有相对性勺2.描述物体位丑的三要素:观测点、方向、距离口简单的路线图描述路线图时,要先按行走的路线确定每一个观测点,然后,以每一个观测点为参照,描述到下一个目标行走的方向和路程口-1-第三单元考点梳理及易错探析总结归纳一览表单元考点基本概念与性质倒数的认识1.乘积是1的两个数互为例数。
2.1的倒数是1,0没有倒敬。
分数除法除以一个数(0除外),等于乘这个数的倒数。
整数可以寿成分母是1的分数,分数四则混合运算分数混合运角和整数混合运算的运算顺序相同,,解决问题1.巳知一个数的几分之几是多少,求这个数。
1.方程法:(1)找出单位“1”,设未知堇为心(2)我出题中的等量关系式;(3)列方程.2.算术法:(1)我出单位“T;(2)找出题中的对应关系;(3)列出算式。
2.已知一个数以及这个数比另一个数多(少)几分之几,求另一个数,要找准单位“1”,若设另一个数为心列方程:(1±几分之几*=b或列算式:b-r(1土几分之几)〉3.求两分量:找一个未知量设心用两分量的关系列出等式即可。
人教版六年级上册数学单元知识点整理
六年六班数学知识归纳第一单元 位置1、 用数对确定点的位置,如(3,5)表示:(第三列,第五行)↓ ↓竖排叫列 横排叫行(从左往右看) (从前往后看)2、平移时用“上”、“下”、“前”、“后”、“左”、“右”来表述。
3、》 4、 图形左、右平移: 行不变 图形上、下平移: 列不变第二单元 分数乘法一、分数乘法 (一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
?例如: 98×5表示求5个98的和是多少 2、分数乘分数是求一个数的几分之几是多少。
例如:98×43表示求98的43是多少 (二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
@(三)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b ×a乘法结合律:( a ×b )×c = a ×( b ×c )…乘法分配律:( a + b )×c = a c + b c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。
2、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面3、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几几。
人教版六年级数学上册全册知识点汇总
爱学堂-人教版六年级数学上册全册知识点汇总第一单元分数乘法一、分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)二、分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
三、积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c=?0)。
一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
四、分数乘法混合运算:1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c五、倒数的意义(乘积为1的两个数互为倒数)1、倒数是两个数的关系,它们互相依存,不能单独存在。
人教版新课标六年级数学上册重点知识归纳
人教版新课标六年级数学上册重点知识归纳第一单元:位置1、列、行的意义:横、竖成排有规则的排列,竖排称为列,横排称为行。
列从左往右数,行从前往后数。
2、数对:两个有顺序的数组成的且表示一个确定的位置。
3、用数对表示物体位置的方法:先表示列数,再表示行数。
4、用数对确定物体位置的方法:看数对中的两个数表示的是哪一列、哪一行,确定出物体的位置。
第二单元:分数乘法分数乘整数1、分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算:2、分数乘整数计算法则:分数乘整数用分数的分子和整数相乘的积作分子,分母不变。
3、分数乘整数的简便算法就是先约分,再计算。
计算结果必须是最简分数。
4、温馨提示:计算分数乘整数时只能是整数和分子相乘的积作分子,分数的分母不能和整数相乘作分母。
分数乘分数1、分数乘分数的意义就是求一个数的几分之几是多少。
2、分数乘分数的计算方法:用分子相乘的积作分子,分母相乘的积作分母。
3、分数乘分数的简便算法是先约分,后计算,计算结果必须是最简分数。
4、(1)当一个因数大于1时,积大于另一个因数(0除外);当一个因数小于1时,积小于另一个因数(0除外);当一个因数等于1时,积等于另一个因数。
(2)用字母表示因数与积的关系:a×b=c ○1b﹥1, c﹥a(0除外);○2b=1,c=a;○3b<1,c<a(0除外)。
5、温馨提示:运用约分对分数乘分数进行简便运算时,约分后分子和分母必须不再含有公因数,计算后的结果才是最简分数。
6、温馨提示:在进行因数与积的大小比较时,要考虑因数为0时的特殊情况。
7、形如:的分数可以拆成(一)×8、温馨提示:在具体数和一个数的几分之几进行大小比较时,不要轻易下结论,要从多方面考虑,才能做出正确判断。
分数乘法的混合运算和简便运算1、分数乘加、乘减混合运算的运算顺序和整数的运算顺序相同。
没有括号的先算乘法,后算加、减法;有括号的,先算括号里面的,再算括号外面的。
人教版小学数学六年级上册知识点总结整理归纳
六年级上册数学知识点 第一单元 位置1、什么是数对?——数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。
作用:确定一个点的位置。
经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中X 轴上的坐标表示列,y 轴上的坐标表示行。
如:数对(3,2)表示第三列,第二行。
(2)数对(X ,5)的行号不变,表示一条横线,(5,Y )的列号不变,表示一条竖线。
(有一个数不确定,不能确定一个点)( 列 , 行 )↓ ↓ 竖排叫列 横排叫行 (从左往右看)(从下往上看) (从前往后看)2、图形左右平移行数不变;图形上下平移列数不变。
3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。
第二单元 分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少?2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以) 例如:53×61表示: 求53的61是多少? 9 × 61表示: 求9的61是多少?A × 61表示: 求a 的61是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)行号2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母) 注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
六年级上册数学知识点(概念)归纳与整理(人教版)
六年级数学上册知识点整理第一单元位置1、行和列的意义:竖排叫做列,横排叫做行。
2、数对可以表示物体的位置,也可以确定物体的位置。
3、数对表示位置的方法:先表示列,再表示行。
用括号把代表列和行的数字或字母括起来,再用逗号隔开。
例如:(7,9)表示第七列第九行。
4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。
如:(2,4)和(2,7)都在第2列上。
5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。
如:(3,6)和(1,6)都在第6行上。
6、物体向左、右平移,行数不变,列数减去或加上平移的各数。
物体向上、下平移,列数不变,行数减去或加上平移的各数。
第二单元分数乘法(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512,表示:6的512是多少。
2 7×512,表示:27的512是多少。
(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)、解决实际问题。
1分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
全册人教版数学六年级上册知识点总结1-8单元
第1单元分数乘法一、分数乘整数的意义及计算方法分数乘整数的意义与整数乘法的意义相同, 都是求几个相同加数的和的简便运算。
计算时用分数的分子和整数相乘的积作分子,分母不变,能约分的要先约分。
二、一个数乘分数的意义一个数乘分数的意义就是求这个数的几分之几是多少。
三、分数乘分数的计算方法分数乘分数,用分子相乘的积作分子,分母相乘的积作分母,能约分的要先约分。
四、小数乘分数的计算方法小数乘分数,可以把小数化成分数再计算,也可以把分数化成小数再计算,还可以直接将小数与分数的分母进行约分,再计算。
五、分数混合运算的运算顺序没有括号的,先算乘除法,再算加减法;有括号的,先算括号里面的,再算括号外面的。
六、整数乘法运算律推广到分数乘法整数乘法的运算律对于分数乘法同样适用。
应用乘法的运算律进行计算,可以使一些计算简便。
七、连续求一个数的几分之几是多少的实际问题解答这类实际问题的关键是弄清楚单位“1”是谁,要求的量是单位“1”的几分之几,再根据分数乘法的意义进行解答。
八、求比一个数多(或少)几分之几的数是多少的问题解题方法:①单位“1”的量±单位“1”的量×比单位“1”多(或少)的几分之几=另一个量;②单位“1”的量×(1±比单位“1”多(或少)的几分之几)=另一个量。
第2单元位置与方向(二)一、根据平面示意图确定某个点的位置在平面图上描述某个点的位置时,需要描述清楚方向和距离这两个条件。
二、在平面图上确定某个点的位置在平面图上确定某个点的位置时,先确定方向,再确定距离。
三、描述简单的路线图先按行走路线确定每一个观测点, 然后以每一个观测点为起点,再描述到下一个目标行走的方向和距离。
四、绘制简单的路线图根据描述,从起点出发,确定方向和距离,第一段以起点为观测点,后面每段都要以前一段的终点为观测点。
以谁为观测点,就以谁为中心画出“十”字方向标,然后判断下一段的方向和距离。
第3单元分数除法一、倒数的意义积是1的两个数互为倒数。
人教版六年级数学上册知识点整理归纳
人教版六年级数学上册知识点整理归纳六年级上册数学知识点第一单元位置1、什么是数对?——数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。
作用:确定一个点的位置。
经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。
如:数对(3,2)表示第三列,第二行。
(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。
(有一个数不确定,不能确定一个点)(列,行)↓↓竖排叫列横排叫行(从左往右看)(从下往上看)(从前往后看)2、图形左右平移行数不变;图形上下平移列数不变。
3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。
第二单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:×7表示: 求7个的和是多少?或表示:的7倍是多少?2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)例如:× 表示: 求的是多少?9 ×表示: 求9的是多少?A ×表示: 求a的是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
人教版六年级数学上册各单元知识点 汇总
人教版六年级数学上册各单元知识点汇总六年级数学上册各单元知识点汇总第一单元分数乘法一、分数乘法一) 分数乘法的意义:1.分数乘整数与整数乘法的意义相同,都是求几个相同加数的和的简易运算。
例如,65×5 表示求 5 个 65 的和是多少?5×65 表示求 5 个 65 的和是多少?2.一个数乘分数的意义是求一个数的几分之几是多少。
例如,4×表示求 4 的是多少。
二) 分数乘法的计算法则:1.分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2.分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3.为了计算简易,能约分的要先约分,再计算。
(尽量约分,不会约分的就不约,常考的质因数有 11×11=121;13×13=169;14×14=196;15×15=225;16×16=256;17×17=289;18×18=324;19×19=361)4.小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。
三) 乘法中比较大小的规律一个数(0 除外)乘大于 1 的数,积大于这个数。
一个数(0 除外)乘小于 1 的数(0 除外),积小于这个数。
一个数(0 除外)乘 1,积等于这个数。
四) 分数混合运算的运算顺序和整数的运算顺序相同。
整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a×b = b×a乘法结合律:(a×b)×c = a×(b×c)乘法分配律:(a+b)×c = ac + bc二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)1.画线段图:1) 两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。
新人教版六年级上册数学知识点分类汇总
新人教版六年级上册数学知识点分类汇总第一单元 分数乘法(一)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(二)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数, 积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1, 积等于这个数。
(三)、分数混合运算的运算顺序和整数的运算顺序相同。
(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律: ( a + b )×c = a c + b c a c + b c = ( a + b )×c常见乘法计算(敏感数字) :25×4=100 125×8=1000加法交换律简算例子 加法结合律简算例子 乘法交换律简算例子 乘法结合律简算例子0.875+23 +18 23 +14 +0.8 0.4×33×52 23×0.375×163=78 +23 +18 =23 +14 +45 =25 ×33×52 =23×38 ×163=78 +18 +23 =23 +(14 +45 ) =25 ×25 ×33 =23 ×(38 ×163) =1+23 =23+1 =1×3 =23×2 含加法交换律与结合律 含乘法交换律与结合律 数字换减法式 数字换加法式0.875+23 +18 +13 0.375×297 ×163 ×729 35×536 101×910=78 +23 +18 +13 =38 ×297 ×163 ×729 = (36-1) ×536 = (100+1) ×910=78 +18 + 23 +13 =38 ×163 ×297 ×729 =36×536 -1×536 =100×910 +1×910= (78 +18 )+ (23 +13 ) = (38 ×163 )×(297 ×729 ) =5-536 =1+910=1+1 =2×1乘法分配律提取式 乘法分配律提取式 乘法分配律(添项) 乘法分配律(添项)101×0.9-910 ×1 95.5÷1.6-15.5÷1.6 101×0.9-910 52×58 +29×58-0.625 =101×910 -910 ×1 =(95.5-15.5)÷1.6 =101×910 -910 =52×58 +29×58 -58=101×910 -1×910 =80÷1.6 =101×910 -1×910 =52×58 +29×58 -1×58=(101-1) ×910 =800÷16 =(101-1) ×910 =(52+29-1)×58=100×910 =100×910 =80×58减法的性质简算例子 减法的性质简算例子 减法的性质简算例子 数字换乘法式18-58 -0.375 134 -716 -0.75 1225 -(716+0.4) 0.56×125 =18-58 -38 =134 -716 -34 =1225 -(716 +25) =0.7×0.8×125 =18-(58 +38 ) =134 -34 -716 =1225 -25 -716=0.7×(0.8×125) =18-1 =1-716 =12-716=0.7×100 除法的性质简算例子 除法的性质简算例子 除法的性质简算例子 数字换乘法式3200÷2.5÷0.4 2700÷2.5÷2.7 5900÷(2.5×5.9) 33333×33333=3200÷(2.5×0.4) =2700÷2.7÷2.5 =5900÷5.9÷2.5 =11111×3×33333=3200÷1 =1000÷2.5 =1000÷2.5 =11111×99999同级运算中,第一个数不能动,后面的数可以带着符号搬家 =11111×(100000-1)123 +716 -23 250÷0.8×0.4 123 -716 +1329×0.25÷0.29 =123 -23 +716 =250×0.4÷0.8 =123 +13 -716=29÷0.29×0.25 =1+716 =100÷0.8 =2-716=100×0.25 二、分数乘法的解决问题(如果单位1是已知的, 要求它的几分之几,就用乘法)1、找单位“1”: 在分率句中分率的前面; 或 “占”、“是”、“比”的后面2、求一个数的几倍: 一个数×几倍;求一个数的几分之几是多少: 一个数×几分之几 。
六年级上册数学知识点(概念)归纳与整理(人教版)
六年级数学上册知识点整理第一单元位置1、行和列的意义:竖排叫做列,横排叫做行。
2、数对可以表示物体的位置,也可以确定物体的位置。
3、数对表示位置的方法:先表示列,再表示行。
用括号把代表列和行的数字或字母括起来,再用逗号隔开。
例如:〔7,9〕表示第七列第九行。
4、两个数对,前一个数一样,说明它们所表示物体位置在同一列上。
如:〔2,4〕和〔2,7〕都在第2列上。
5、两个数对,后一个数一样,说明它们所表示物体位置在同一行上。
如:〔3,6〕和〔1,6〕都在第6行上。
6、物体向左、右平移,行数不变,列数减去或加上平移的各数。
物体向上、下平移,列数不变,行数减去或加上平移的各数。
第二单元分数乘法〔一〕、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义一样,就是求几个一样加数和得简便运算。
例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。
2、一个数〔小数、分数、整数〕乘分数:一个数乘分数的意义与整数乘法的意义不一样,是表示这个数的几分之几是多少。
例如:6×512,表示:6的512是多少。
2 7×512,表示:27的512是多少。
〔二〕、分数乘法的计算法那么:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进展乘法计算时,要先把带分数化成假分数再进展计算。
〔三〕、分数大小的比拟:1、一个数〔0除外〕乘以一个真分数,所得的积小于它本身。
一个数〔0除外〕乘以一个假分数,所得的积等于或大于它本身。
一个数〔0除外〕乘以一个带分数,所得的积大于它本身。
2、假如几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
〔四〕、解决实际问题。
1分数应用题一般解题步行骤。
〔1〕找出含有分率的关键句。
人教版六年级上册数学知识点归纳总结
人教版六年级上册数学知识点归纳总结目录第一单元负数。
2第二单元百分数二。
4第三单元圆柱和圆锥。
6第四单元比例。
12第五单元数学广角-鸽巢问题。
17第一单元负数1、负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的13.42/5……是远远不够的。
所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负。
2、负数:小于零的数叫负数(不包括零),数轴上左边的数叫做负数。
若一个数小于零,则称它是一个负数。
负数有无数个,其中包括负整数、负分数和负小数。
负数的写法:数字前面加负号“-”号,不可以省略。
例如:-2,-5.33,-45,-2/5.正数:大于零的数叫正数(不包括零),数轴上右边的数叫做正数。
若一个数大于零,则称它是一个正数。
正数有无数个,其中包括正整数、正分数和正小数。
正数的写法:数字前面可以加正号“+”号,也可以省略不写。
例如:+2,5.33,+45,2/5.4、零是正数和负数的分界限。
负数都小于零,正数都大于零。
负数都比正数小,正数都比负数大。
5、数轴:6、比较两数的大小:①利用数轴:负数<<正数或左边<右边。
②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。
负数之间比较大小,数字大的反而小,数字小的反而大。
例如:1/3>1/6,-1/3<-1/6.第二单元百分数二一)、折扣和成数折扣是指商品现价与原价的比值,通常以百分数或分数表示。
例如,八折意味着商品现价是原价的80%,六折五则是65%。
解决打折问题的关键在于将折数转化为百分数或分数,并按照求比一个数多(少)百分之几(几分之几)的数的方法进行计算。
成数是指十分之几或百分之几十,例如一成相当于10%,八成五则是85%。
解决成数问题的关键在于将成数转化为百分数或分数,并按照求比一个数多(少)百分之几(几分之几)的数的方法进行计算。
税率是指应纳税额与各种收入的比率,纳税是根据国家税法规定,按照一定比率缴纳一部分收入给国家。
人教版小学六年级数学上册知识点归纳总结
人教版小学六年级数学上册知识点归纳总结第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b<1时,c<a(b≠0)。
< p="">一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可使一些计算简便。
人教版小学六年级数学上册知识点归纳总结
人教版小学六年级数学上册知识点归纳总结第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b<1时,c<a(b≠0)。
< p="">一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可使一些计算简便。
新人教版六年级数学上册各单元知识点归纳
新人教版六年级数学上册各单元知识点归纳第一单元:整数1. 整数的概念整数是正整数、零、负整数的总称。
用于表示具有相反意义的数,其绝对值较大的数是正数,较小的数是负数。
2. 整数的比较整数的大小关系可通过数轴、绝对值、直接比较等形式进行判断。
3. 整数的加法和减法整数之间的加法和减法运算规则与非负整数相同,注意正数加负数和负数减正数的特殊情况。
4. 整数的乘法和除法整数之间的乘法和除法运算规则可通过实际问题、计算器等途径进行理解与计算。
第二单元:有理数1. 有理数的概念有理数包括整数和分数,是指可以表达为两个整数的比例的数。
2. 有理数的分类有理数可以分为正有理数、负有理数和零,需要注意有理数的绝对值和大小关系。
3. 有理数的加法和减法有理数的加法和减法运算规则与整数相似,需要注意同号和异号数的相加与相减。
4. 有理数的乘法和除法有理数的乘法和除法运算规则与整数相似,需要注意同号和异号数的相乘与相除。
第三单元:分数1. 分数的概念分数是指整数除以非零整数所得的数,由分子和分母两部分组成。
2. 分数的化简分数可通过约分化简,使分子和分母的最大公约数为1,从而得到最简分数。
3. 分数之间的关系分数可以通过比较分子和分母的大小关系进行大小比较。
4. 分数的加法和减法分数的加法和减法需要找到公共分母,并将分数转化为通分后再进行运算。
第四单元:小数1. 小数的概念小数是指除不尽的分数,可表示为有限小数或循环小数。
2. 小数的读法和写法小数的读法和写法要熟练掌握,包括整数部分、小数点、小数位数等。
3. 小数之间的关系小数的大小关系可通过比较小数位数、小数点后面的数字大小进行判断。
4. 小数的加法和减法小数的加法和减法运算规则与整数相同,需要注意小数位数对齐和进位借位的特点。
第五单元:相反数和绝对值1. 相反数的概念相反数是指绝对值相等、符号相反的两个数。
2. 相反数的性质相反数的加法和减法运算满足特定性质,即相反数相加等于零。
最全面人教版数学六年级上册知识点归纳总结
最全面人教版数学六年级上册知识点归纳总结人教版数学六年级上册知识点是学生在初中数学学习过程中的基本知识,需要学生认真掌握和理解。
下面是数学六年级上册知识点的详细归纳总结。
第一章分类整数知识点1.1 整数和自然数自然数:1, 2, 3, 4, 5,…….(不包括0)整数:…….-2, -1, 0, 1, 2, ……(自然数和负整数)知识点1.2 整数的相加法则同号两数相加,绝对值相加,符号不变;异号两数相加,绝对值相减,结果的符号与绝对值较大的数的符号相同。
知识点1.3 整数减法整数减法可以转化为加法,即a - b = a + (-b)知识点1.4 绝对值数轴上数a的绝对值,表示为|a|,表示a到0的距离。
知识点1.5 整数的大小比较两个整数比较大小,可以先比较绝对值,再根据符号确定大小。
知识点1.6 整数的拓展绝对值可以是小数或分数,小数或分数的绝对值用绝对值符号表示。
第二章十进制小数知识点2.1 小数的意义小数是指有小数点的数,小数点是整数位和小数位的分界线。
知识点2.2 小数的读法从小数点左起第一位到最后一位依次读出,小数点可以读作“点”.知识点2.3 小数的比较比较小数大小,可以先确定小数点后的整数大小,然后比较小数点后的小数位。
知识点2.4 小数的相加法则小数相加,先让小数点对齐,然后按位相加,最后把小数点写在和的下方。
知识点2.5 小数的减法法则小数相减,先让小数点对齐,然后按位相减,最后把小数点写在答案的下方。
知识点2.6 小数的乘法法则小数相乘,先把小数前的数乘起来,再把总位数相加,最后把小数点放到乘积中位数的位置。
知识点2.7 小数的除法法则小数相除,先把被除数和除数放大到整数,再按整数的除法法则计算,最后把小数点放在商中位数的位置。
第三章平面图形知识点3.1 分类平面图形可以分为点、线、面,其中面又可分为三角形、四边形等。
知识点3.2 三角形三角形是由三条边和三个角组成的图形,可以根据边长和角度分类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级上册数学知识点第一单元 位置1、什么是数对?——数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。
作用:确定一个点的位置。
经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。
如:数对(3,2)表示第三列,第二行。
(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。
(有一个数不确定,不能确定一个点)1123456234列号行号( 列 , 行 )↓ ↓竖排叫列 横排叫行(从左往右看)(从下往上看)(从前往后看)2、图形左右平移行数不变;图形上下平移列数不变。
3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。
第二单元 分数乘法1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:×7表示: 求7个的和是多少? 或表示:的7倍是多少?2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)例如:×表示: 求的是多少?9 × 表示: 求9的是多少?A × 表示: 求a的是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a.一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a (b≠0).一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a .注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
附:形如的分数可折成()×1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。
单独一个数不能称为倒数。
(必须说清谁是谁的倒数)2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。
例如:a×b=1则a、b互为倒数。
3、求倒数的方法:①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
4、1的倒数是它本身,因为1×1=10没有倒数,因为任何数乘0积都是0,且0不能作分母。
5、任意数a(a≠0),它的倒数为;非零整数a的倒数为;分数的倒数是。
6、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
假分数的倒数小于或等于1。
带分数的倒数小于1。
(六)分数乘法应用题 ——用分数乘法解决问题1、求一个数的几分之几是多少?(用乘法)“1”× = ?例如:求25的是多少? 列式:25×=15甲数的等于乙数,已知甲数是25,求乙数是多少? 列式:25×=15注:已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。
2、( 什么)是(什么 )的。
( )= ( “1” ) ×例1: 已知甲数是乙数的,乙数是25,求甲数是多少?甲数= 乙数 × 即25×=15注:(1)“是”“的”字中间的量“乙数”是的单位“1”的量,即是把乙数看作单位“1”,把乙数平均分成5份,甲数是其中的3份。
(2)“是”“占”“比”这三个字都相当于“=”号,“的”字相当于“×”。
(3)单位“1”的量×分率=分率对应的量例2:甲数比乙数多(少),乙数是25,求甲数是多少?甲数=乙数 ± 乙数× 即25±25×=25×(1±)=40(或10)3、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
4、什么是速度?——速度是单位时间内行驶的路程。
速度=路程÷时间 时间=路程÷速度 路程=速度×时间——单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。
5、求甲比乙多(少)几分之几?多:(甲-乙)÷乙 ==少:(乙-甲)÷乙第三单元 分数除法一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
1、被除数÷除数=被除数×除数的倒数。
例÷3=×= 3÷=3×=52、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c<a (a≠0)②除以小于1的数,商大于被除数:a÷b=c 当b<1时,c>a (a≠0b≠0)③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a三、分数除法混合运算1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序:①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。
加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
注:(a±b)÷c=a÷c±b÷c四、比:两个数相除也叫两个数的比1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
注:连比如:3:4:5读作:3比4比52、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20==12÷20==0.6 12∶20读作:12比20比值后项前项后项比号前项注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
4、化简比:化简之后结果还是一个比,不是一个数。
(1)、 用比的前项和后项同时除以它们的最大公约数。
(2)、 两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
也可以求出比值再写成比的形式。
(3)、 两个小数的比,向右移动小数点的位置,也是先化成整数比。
5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
6、比和除法、分数的区别:被除除号除数(不商不变性除法是一种除法数(÷)能为0)质运算分数分子分数线(——)分母(不能为0)分数的基本性质分数是一个数比前项比号(∶)后项(不能为0)比的基本性质比表示两个数的关系附:商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
五、分数除法和比的应用1、已知单位“1”的量用乘法。
例:甲是乙的,乙是25,求甲是多少?即:甲=乙×(15×=9)2、未知单位“1”的量用除法。
例: 甲是乙的,甲是15,求乙是多少?即:甲=乙×(15÷=25)(建议列方程答)3、分数应用题基本数量关系(把分数看成比)(1)甲是乙的几分之几?甲=乙×几分之几 (例:甲是15的,求甲是多少?15×=9)乙=甲÷几分之几 (例:9是乙的,求乙是多少?9÷=15)几分之几=甲÷乙 (例:9是15的几分之几?9÷15=)(“是”字相当“÷”号,乙是单位“1”)(2)甲比乙多(少)几分之几?A 差÷乙=(“比”字后面的量是单位“1”的量)(例:9比15少几分之几?(15-9)÷15===)B 多几分之几是:–1(例: 15比9少几分之几?15÷9=-1=–1=)C 少几分之几是:1–(例:9比15少几分之几?1-9÷15=1–=1–=)D 甲=乙±差=乙±乙×=乙±乙×=乙(1±)(例:甲比15少,求甲是多少?15–15×=15×(1–)=9(多是“+”少是“–”)E 乙=甲÷(1± )(例:9比乙少,求乙是多少?9÷(1-)=9 ÷=15)(多是“+”少是“–”)(例:15比乙多,求乙是多少?15÷(1+)=15 ÷=9)(多是“+”少是“–”)4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。
例如:已知甲乙的和是56,甲、乙的比3∶5,求甲、乙分别是多少?方法一:56÷(3+5)=7 甲:3×7=21 乙:5×7=35方法二:甲:56×=21 乙:56×=35例如:已知甲是21,甲、乙的比3∶5,求乙是多少?方法一:21÷3=7 乙:5×7=35方法二:甲乙的和:21÷=56 乙:56×=35方法三:甲÷乙= 乙=甲÷=21÷=355、画线段图:(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。