第21章《二次根式》单元测试

合集下载

九年级数学(上册)《第二十一章二次根式》单元检测题 (含答案)

九年级数学(上册)《第二十一章二次根式》单元检测题 (含答案)

九年级数学第二十一章二次根式检测题(本检测题满分:100分,时间:90分钟)班级:姓名: 成绩:一、选择题(每小题2分,共26分)1.下列二次根式中,的取值范围是3x ≥的是( )2.要使式子 有意义,则x 的取值范围是( )A .x >0B .x ≥-2C .x ≥2D .x ≤23.下列二次根式中,是最简二次根式的是( )A.xy 2B.2abC.214.12a =-,则( )A .<12B.≤12C.>12 D. ≥125.下列二次根式,不能与12合并的是( ) A.48 B.18 C.311 D.75-6. 能够合并,那么a 的值为( )A. 2B. 3C. 4D. 57.下列各式计算正确的是( ) A. B. C. D.8.下列运算正确的是( )A.235=-B.312914== D.()52522-=-9.n 的最小值是( ) A.4 B.5 C.6 D.213.二、填空题(每小题3分,共30分)10.化简:=320,0)x y >>=.11. 比较大小:103;. 12.已知:一个正数的两个平方根分别是22-a 和4-a ,则a 的值是.13.计算:________;.14.已知a 、b 为两个连续的整数,且a b <<,则a b +=.15.直角三角形的两条直角边长分别为、,则这个直角三角形的斜边长为________,面积为________.16.若实数y x ,2(0y -=,则xy 的值为.17.已知实数x ,y 满足|x -4|+ =0,则以x ,y 的值为两边长的等腰三角形的周长是.18.已知a b 、为有理数,m n 、分别表示5的整数部分和小数部分,且21amn bn +=,则2a b +=.三、解答题(共44分)19.(6分)计算:(1(2);(3)|-6|-–; (4)-20.(6分)先化简,后求值:((6)a a a a ---,其中12a =+.21.(6分)已知22x y ==+(1)222x xy y ++;(2)22x y -.22.(7分)一个三角形的三边长分别为54(1)求它的周长(要求结果化简);(2)请你给出一个适当的x 的值,使它的周长为整数,并求出此时三角形周长的值.23.(7分)阅读下面问题:12)12)(12()12(1121-=-+-⨯=+; ();23)23)(23(231231-=-+-⨯=+ ()25)25)(25(251251-=-+-⨯=+. 试求:(1)671+的值;(2)n n ++11(n 为正整数)的值.(3⋅⋅⋅+的值.。

人教版八年级数学下册《第二十一章二次根式》单元检测卷及答案

人教版八年级数学下册《第二十一章二次根式》单元检测卷及答案

人教版八年级数学下册《第二十一章二次根式》单元检测卷及答案学校:___________班级:___________姓名:___________考号:___________一、选择题(每题3分,共30分)1.下列各式中,是二次根式的是().A. √−4B. √a2+1C. √a−1D. √a2.若√x−3在实数范围内有意义,则x的取值范围是().A. x≥3B. x>3C. x<3D. x≤33.化简√8的结果是().A. 2√2B. 3√2C. 4√2D. √24.若a>0,则√a2等于().A. aB. −aC. ±aD. a25.下列运算中,结果正确的是().A. √2+√3=√5B. 2√3−√3=2C. √2×√3=√6D. √8÷√2=46.若x=√5−1,则x2+2x+3的值为().A. 5B. 6C. 7D. 87.下列各式中,与√2是同类二次根式的是().A. √3B. √4C. √8D. √128.若a>0,b>0,则√ab等于().A. a√bB. b√aC. √a×√bD. √a÷√b9.化简√(3−π)2的结果是().A. 3−πB. π−3C. 3+πD. −3−π10.若x=2+√3,y=2−√3则xy的值为().A. 1B. 2C. 3D. 4二、填空题(每题3分,共15分)11.√16的平方根是______.12.当x______时,√x+2有意义.13.若√a+√b=3,√a−√b=1则a+b=______.14.化简√27÷√3的结果是______.15.若x=√3+1,则x2−2x+2=______.三、解答题(共55分)16.(9分)计算:√12−√3+√4817.(9分)化简:√(x−2)2(x<2)18.(9分)已知a=√3+√2,b=√3−√2求a2+b2+2ab的值.19.(11分)已知y=√x−2+√2−x+3,求x+y的值.20.(12分)若a、b为实数,且√1+a+√2(b−1)=0,求a2+b2的值.参考答案一、选择题1. B. 解析:二次根式要求被开方数大于等于0,A中−4<0,D中a可能小于0,所以B是正确答案.2. A. 解析:要使√x−3有意义,需满足x−3≥0,解得x≥3.3. A. 解析:√8=√(22×2)=2√2.4. A. 解析:当a>0时√a2=√(a×a)=a.5. C. 解析:√2与√3不是同类二次根式,不能直接相加或相减√8÷√2=√(8÷2)=√4=2,所以C正确.6. C. 解析:x2+2x+3=(√5−1)2+2(√5−1)+3=5−2√5+1+2√5−2+3=77. C. 解析:同类二次根式需满足被开方数相同√8=2√2,与√2是同类二次根式.8. C. 解析:√ab=√a×√b(a>0b>0)9. A. 解析:当3−π<0时√(3−π)2=|3−π|=3−π.10.A. 解析:xy=(2+√3)(2−√3)=4−3=1二、填空题11.±2. 解析:√16=4,4的平方根是±2.12.x≥−2. 解析:x+2≥0,解得x≥−2.13.解析:(√a+√b)2=9,(√a−√b)2=1两式相减得4√ab=8,ab= 2,a+b=9−2=5.14解析:√27÷√3=√(27÷3)=√9=3.15解析:x2−2x+2=(√3+1)2−2(√3+1)+2=3+2√3+1−2√3−2+2= 4三、解答题16解:原式=2√3−√3+4√3=5√3.17解:当x<2时x−2<0,√(x−2)2=|x−2|=2−x.18解:a2+b2+2ab=(a+b)2,a+b=√3+√2+√3−√2=2√3所以原式=(2√3)2=12.19解:由题意知x−2≥0且2−x≥0,解得x=2,代入y得y= 3,x+y=5.20解:由题意知1+a=0且b−1=0,解得a=−1,b=1,a2+b2= 1+1=2.。

第二十一章 二次根式复习及单元测试

第二十一章  二次根式复习及单元测试

第二十一章 二次根式复习(2):二次根式加减时,可以先得二次根式化为最简二次根式,再将被开方数相同的二次根式进行合并。

1. 下列根式中,与3是同类二次根式的是( ) A. 24 B. 12 C.32 D. 18 2. 下面说法正确的是( )A. 被开方数相同的二次根式一定是同类二次根式B. 8与80是同类二次根式C. 2与150不是同类二次根式 D. 同类二次根式是根指数为2的根式 3. 与3a b 不是同类二次根式的是( ) A. 2ab B. b a C. 1ab D. 3b a 4. 下列根式中,是最简二次根式的是( ) A. 0.2b B. 1212a b - C. 22x y - D. 25ab5. 若12x ,则224421x x x x -++++化简的结果是( )A. 21x -B. 21x -+C. 3D. -3 6. 若2182102x x x x++=,则x 的值等于( ) A. 4 B. 2± C. 2 D. 4±7. 若3的整数部分为x ,小数部分为y ,则3x y -的值是( ) A. 333- B. 3 C. 1 D. 38. 下列式子中正确的是( ) A. 527+= B. 22a b a b -=- C. ()a x b x a b x -=- D. 6834322+=+=+ 9. 在8,12,18,20中,与2是同类二次根式的是 。

10.若最简二次根式125a a ++与34b a +是同类二次根式,则____,____a b ==。

11. 一个三角形的三边长分别为8,12,18cm cm cm ,则它的周长是 cm 。

12. 若最简二次根式23412a +与22613a -是同类二次根式,则 ______a =。

13. 已知32,32x y =+=-,则33_________x y xy +=。

14. 已知33x =,则21________x x -+=。

第21章 二次根式单元测试(含答案)

第21章 二次根式单元测试(含答案)

第二十一章 二次根式单元测试题一、填空题:(每题2分,共24分)1.函数1-=x xy 的自变量x 的取值范围是______.2.当x ______________时,x x -+-31有意义.3.若a <0,则b a 2化简为______.4.若3<x <4,则=-++-|4|962x x x ______.5.1112-=-⋅+x x x 成立的条件是______.6.若实数x 、y 、z 满足0412||22=+-+++-z z z y y x ,则x +y +z =______. 7.长方形的面积为30,若宽为5,则长为______.8.当x =______时,319++x 的值最小,最小值是______.9.若代数式22)3()1(a a -+-的值是常数2,则a 的取值范围是______.10.观察下列各式:,,514513,413412,312311 =+=+=+请将猜想到的规律用含自然数n (n ≥1)的代数式表示出来是______.11.观察下列分母有理化的计算:,4545134341,23231,12121-=+-=+-=+-=+……,从计算结果中找出规律,并利用这一规律计算:1)+= ______. 12.已知正数a 和b ,有下列结论: (1)若a =1,b =1,则1≤ab ;(2)若25,21==b a ,则23≤ab ; (3)若a =2,b =3,则25≤ab ; (4)若a =1,b =5,则3≤ab .根据以上几个命题所提供的信息,请猜想:若a =6,b =7,则ab ≤______.二、选择题:(每题2分,共24分)13.已知xy >0,化简二次根式2x y x -的正确结果为( )(A)y (B)y - (C)y - (D)y --14.若a <0,则||2a a -的值是( )(A)0 (B)-2a(C)2a (D)2a 或-2a 15.下列二次根式中,最简二次根式为( ) (A)x 9 (B)32-x (C)x y x - (D)b a 2316.已知x 、y 为实数,且0)2(312=-+-y x ,则x -y 的值为( )(A)3 (B)-3 (C)1 (D)-117.若最简二次根式b 5与b 23+是同类二次根式,则-b 的值是( )(A)0 (B)1 (C)-1 (D)31 18.下列各式:211,121,27,其中与3是同类二次根式的个数为( ) (A)0个 (B)1个(C)2个 (D)3个 19.当1<x <3时,化简22)3()1(++-x x 的结果正确的是( )(A)4 (B)2x +2(C)-2x -2 (D)-4 20.不改变根式的大小,把aa --11)1(根号外的因式移入根号内,正确的是( ) (A)a -1 (B)1-a (C)1--a (D)a --1 21.已知m ≠n ,按下列(A)(B)(C)(D)的推理步骤,最后推出的结论是m =n .其中出错的推理步骤是( )(A)∵(m -n )2=(n -m )2 (B )∴22)()(m n n m -=-(C)∴m -n =n -m (D)∴m =n22.如果a ≠0且a 、b 互为相反数,则在下列各组数中不是互为相反数的一组是( ) (A)3a 与3b (B)2a 与2b (C)3a 与3b (D)a +1与b -123.小华和小明计算XXX)(442a a a +-+时,得出两种不同的答案.小华正确审题,得到的答案是“2a -2”,小明忽略了算式后面括号中的条件,得到的结果是“2”,请你判断,括号中的条件是( )(A)a <2 (B)a ≥2 (C)a ≤2 (D)a ≠224.已知点A (3,1),B (0,0),C (3,0),AE 平分∠BAC ,交BC 于点E ,则直线AE对应的函数表达式是( )(A)332-=x y (B)y =x -2 (C)13-=x y (D)23-=x y三、解答题:(第25题每小题4分,第26-29题每题4分,第30、31题每题6分)25.计算: (1);21448)21(2+++ (2);836212739x x x ⨯+-(3));32)(32()32)(347(2-++-+(4);211)223(23822+--+⨯-(5);166193232x x x x x x +- (6)).0)](4327121(3[222≥--b a b ab ab a26.若,03|9|22=--++m m n m 求3m +6n 的立方根.27.已知7979--=--x x x x 且x 为偶数,求132)1(22--++x x x x 的值.28.试求)364()36(3xy yx y xy y x y x+-+的值,其中23=x ,27=y .29.已知正方形纸片的面积是32cm 2,如果将这个正方形做成一个圆柱,请问这个圆柱底面的半径是多少?(精确到0.1,π取3.14)30.已知:223,223-=+=b a ,求:ab 3+a 3b 的值.31.观察下列各式及其验证过程:⋅+=+=833833;322322验证: ;3221222122)12(232)12(2322232322222233+=-+=-+-=+-=+-== ⋅+=-+=-+-=+-=+-==8331333133)13(383)13(3833383833222233 (1)按照上述两个等式及其验证过程的基本思路,猜想一个类似的结果并验证;(2)针对上述各式反映的规律,写出用n (n 为正整数,且n ≥2)表示的等式并给出证明.参考答案1.x ≥0且x ≠1 2.1≤x ≤3 3.b a - 4.1 5.x ≥1 6.07.6 8.3,91- 9.1≤a ≤3 10.21)1(21++=++n n n n (n 为自然数且n ≥1) 11.2008 12.4169 13.D 14.B 15.B 16.D 17.C 18.C 19.B 20.D 21.C 22.B 23.B 24.D 25.(1)34242++ (2)x 319(3)2 (4)-11 (5)x x x -27 (6)a ab 325 26.3 27.113 28.229- 29.0.9cm 30.85 31.(1)=+-==+=1544415415441544154433 15441444144)14(4154)14(42222+=-+=-+-=+- (2)=-12n n n 11)1(1111222232322-+=-+-=-+-=-=--+n n n n n n n n n n n n n n n n n n n (n 为正整数,且n ≥2)。

第二十一章 二次根式训练题

第二十一章  二次根式训练题

第二十一章 二次根式训练题21.1 二次根式一、选择题1.下列各式:15,12-b ,22b a +,1202-m ,144-中,二次根式的个数是( ) A. 4个B. 3个C. 2个D. 1个 2.如果x 25-是二次根式,那么x 应满足的条件是( ) A. x ≤2.5B. x ≥2.5C. x <2.5D. x >2.5 3.()2310-等于( ) A. 30B. -300C. 300D. -304.下列各式中,一定能成立的是( )A.()()225.25.2=- B.()22a a =C.1122-=+-x x x D.3392+•-=-x x x5.下列各式中,正确的是( ) A. a a =2 B. a a ±=2C. a a =2D. 22a a =6.计算()()222112a a -+-的结果是( )A. 24-aB. 0C. a 42-D. 24-a 或a 42-7.把a a 1-的a 移入根号内,得到( )A.aB. a -C. a -D. a --8.若0<a <1则414122-⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛-a a a a ,结果为( ) A. a 2B. a 2-C. a 2D. a 2-9.实数a ,b 在数轴上对应位置如图,化简2a b a --的结果是( )A. -bB. bC. 2a -bD. b -2a 10.若2442=+--a a a ,则实数a 的取值范围是( ) A. a >2B. a <2C. a ≥2D. a ≤2二、填空题11.若11-+-x x 有意义,则x .12.已知522+-+-=x x y ,则=x y .13.()26= ,()26-= ,26= ,由此得出式子()22a a =成立的条件是 .14.当x = 时,19+x 取值最小,这个最小值为 . 15.已知011=-++b a ,那么20062006b a += .16.当-1<a <3时,()()=-++2231a a .17.x x x -=+-636122成立的条件是 .18.若a ,b ,c 为三角形三边,且满足012135=-+-+-c b a ,则△ABC 是 三角形.19.当a <-1时,=+--++2244121a a a a . 20.在实数范围内因式分解:=-44x . 三、解答题21.如果a a a --=++1122,求a 的取值范围.22.如果-3<x <5,求96251022++++-x x x x 的值.23.求231294a a a a -+-+--+的值.24.已知x ,y 满足022132=+-+--y x y x ,求y x 542-的平方根.25.设x ,y 为实数,满足y <2144+-+-x x ,化简11--y y.26.已知:1-=a ,3=b . 求22222221⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛-+ab b a ab b a 的值.27.若x <35-. 求证:12253094942922=++-+-x x x x28.已知:实数a 满足0332=++a a a . 化简:1212+++-a a a .29.已知a 、b 、c 为△ABC 三边. 化简()()()()2222b ac c a b c b a c b a --+--+--+++.30.a 、b 为实数,且b <3133+-+-a a . 化简:13442--+-b b b .21.2 二次根式的乘除一、选择题1.化简4125等于( )A.4125 B. 2101±C. 25D. 101212.下列计算错误的是( ) A.542516=B.3836427= C.232924=D. 556517-=-3.计算227818⨯÷得( )A. 649B.66 C. 618D. 6344.若a <0,b <0,下列命题错误的是( ) A. ab 的算术平方根是ab B. b a ab •=C.b a ab •=D.b a ab -•-=5.下列等式成立的是( ) A. b a b a +=+22 B. ab a b a --=-C.ba b a =D.ab b a -=-226.下列式中计算错误的是( )A.2065946.292223.1983.181x x x x x ==••=⨯B. 70514707014141457014570==⨯⨯⨯=C. y x xy y x y x y x xy 22221111-=⎪⎪⎭⎫ ⎝⎛-=- D. ()()()()()()n m n m n m n m n m n m n m n m n m 222-=--+-=-+-7.化简:()xy y x --1得( ) A. y x - B. x y -C. y x --D. x y --8.331++x x 分母有理化,得( )A. 131+xB. 3331+xC. 1+xD. 33-x9.当3323+-=+x x x x 时,x 取值范围是( ) A. x ≤0B. x ≤-3C. x ≥-3D. -3≤x ≤010.当092=-+-y x ,则()=+1x y ( ) A. 33B. 33±C. 33-D. 23二、填空题11.二次根式x 12,a 35,y x 315,24x x +中,最简二次根式是 .12.=⨯1219 ,()()=-⨯-94 ,222425-= .13.12= ,714⨯= .14.化简=⨯83332 ,=-1973 .15.已知一个长方体的长a =6,宽b =15,高c =35,那么这个长方体的体积是 . 16.化简=⨯33832ab b a .17.下列二次根式:①21、②224041-、③28x -、④()1122 x x x +-、⑤5x 、⑥38、⑦22259y x +、⑧()()()b a b a b a +-2中最简二次根式有 (填序号). 18.若根式()y x b a --+86为最简二次根式时,x = ,y = . 19.若3<a <4,化简()()=--2243a a .20.计算=33155 ,=÷4.0324 ,=÷4312122 .三、解答题21.计算下列是中式.(1)⎪⎭⎫ ⎝⎛-••102132531(2)n m n m n m 3233•••(3)1012655÷(4)32643a a ÷22.比较下列各组中两个数的大小. (1)112-和53-(2)7232和32723.已知5=+y x ,3=xy ,求代数式yx x y +的值.24.已知实数a 满足a a a =-+-19931992,求21992-a 的值.25.已知长方形的长是π140(cm ),宽是π35(cm ),求与长方形面积相等的圆的半径.26.已知⎩⎨⎧=+=++13053y x y x 化简:x y -23.27.已知:x =1,先化简再求值334312x x xx +-.28.已知:1011+=+a a . 求221a a +及a a 1-的值.29.已知:3121122+-+-=x x y . 求yx y y x x -++的值.30.设()1123-+++=+++c b a c b a . 求222c b a ++的值.21.3 二次根式的加减一、选择题1.下列计算正确的是( ) A. 2222=+ B. 743=+ C.752863=+D.942188+=+ 2.计算47548213123-+的结果是( )A. 2B. 0C. -3D. 33.计算)93()34(3ab a b a b a a b a b +-+的结果是( )A.abB. 7abC. 0D. 13ab4.若103-=a ,则代数式262--a a 的值为( ) A. 0B. 1C. -1D. 105.若2=a ,则a a a a -+的值是( )A. 223+B. 223-C. 223+-D. 223--6.=--994411( ) A. 114B. 114-C. 0D. 112-7.计算:⎪⎪⎭⎫⎝⎛+-⎪⎪⎭⎫ ⎝⎛+y x y y x x xy x y x 42933(其中y >0)结果等于( )A. xy 2-B. 0C. xy xyD. xy 38.下列各组中是同类二次根式是( ) A. a a 和32aB. x x 3和xx 42 C.x 2和43xD. 33a 和a 39.已知:1018222=++a a a a ,则a=( )A. 4B. 2±C. 2D. 4±10.把()4222311xy y x x y y x -++--化简的结果是( ) A. x y -34B. y x --32 C . x y -32D. x y --32二、填空题11.二次根式加减时,可以先将二次根式化成 ,再将被开方数 的二次根式合并.12.=+212 ,=+5424 ,=-813953 .13.计算:=-32x xy ;=-21a a a .14.设三角形的三边长分别为a ,b ,c ,周长是l ,已知40=a cm ,160=c cm ,109=l cm ,那么b = . 15.计算:()()=-÷⎥⎦⎤⎢⎣⎡-+303220062736 . 16.计算:=⋅+-x x x 836212739 .17.若最简二次根式14432+a 与1622-a 是同类二次根式,则a 的值是 . 18.下列二次根式①5.0,②81,③18,④243,⑤5527y x ,⑥545,⑦3281,⑧y x 26,⑨y x 3,⑩22242y xy x ++中是同类二次根式的是 .(填序号)19.计算:=---31312231 .20.223+=a ,223-=b ,则=+22ab b a . 三、解答题 21.化简并求值:()()3323472++++x x ,其中32-=x .22.当321+=m 时,求m m m m m m m -+---+-22212121的值.23.已知34+=a ,34-=b ,求代数式ba b aba a +--的值.24.已知5152522=-+-x x ,求221525x x ---的值.25.已知()()0212=-+-x x ,求x x x x x x x x 3643122+-+÷⎪⎭⎫ ⎝⎛----的值.26.化简或计算(1)21431375518132+-+-(2)xy xy y x y x y x xy 123--+(3)()()()()y x y x y x y x 22+---+27.先化简再求值⎪⎪⎭⎫ ⎝⎛--+÷⎪⎪⎭⎫ ⎝⎛-++x x x x x x x x 1111,其中22=x .28.当91,4==y x 时,求31441y y x y x x ---的值.29.求证:⎪⎩⎪⎨⎧-=+=3232y x 是方程组⎪⎩⎪⎨⎧+=-+=+35223362y x y x 的解.30.最简根式()y x y x --221与()183216+++y x x 能是同类二次根式吗?若能是求x 、y 值;若不能,说明理由.第二十一章 单元测试(一)一、选择题(每题3分,共30分) 1.下列等式中成立的是( ) A. ()32323-=⨯- B. y x y x +=+22 C.532=+D.2332=•x x2.已知a 为实数,下列四个命题中错误的是( ) A. 若1-=aa ,则a <0 B. 若a ≠1,则111-=--a aC. 若aa 112-=-,则a >0D. 若a ≥-2,则12++a a 有意义3.下列各式中,最简二次根式为( ) A. 72B.324 C.ba D. 32b a4.下式中不是二次根式的为( ) A.12+b B. a (a <0) C. 0 D.()2b a -5.当a =1时,计算a a a 7251012-+-得( ) A. 11 B. -11 C. 3D. -36.下列各组中互为有理化因式的是( ) A. x -2和2+xB. 32+x 和x 23-C.y x +与y x --D.x 与32x7.代数式⎪⎪⎭⎫⎝⎛+-⎪⎪⎭⎫ ⎝⎛+ab a b a b a a b a b 93243的值一定是( )A. 正数B. 负数C. 0D. 18.a 12的同类二次根式为( ) A.ab3 B. a 54C. a271-D.248a9.若x <2,化简()()2232x x -+-的正确结论是( )A. -1B. 1C. 52-xD. x 25-10.()()200620052323-+值为( )A. 0B. 23-C. 32-D. 无法确定二、填空题(每题3分,共30分)11.若式子121++-x x 在实数范围内有意义,则x 的取值范围是 ;xx x x --=--4343成立的条件是 . 12.计算:=+123 .13.23-的相反数与12-的倒数的和是 . 14.若a ,b ,c 表示三角形的三边,则()2c b a --= .15.()0332=-++b a ,则=-+11a b .16.=⎪⎭⎫ ⎝⎛+•--20063232 .17.625-的算术平方根是 . 18.化简=--yx y x ,当0<a <1时,=-+2122a a .19.分母有理化:=-2346,251+-的倒数是 . 20.()()=-+-2223323223.三、解答题21.计算(每题2分,共8分) (1)()7512231-(2)61312322÷⎥⎥⎦⎤⎢⎢⎣⎡++⎪⎪⎭⎫ ⎝⎛-(3)()()121923121999---⨯-+- (4)261321121824--⨯÷-22.已知等腰三角形的顶角为120°,底边长为64cm ,求这个等腰三角形的面积.(3分)23.已知:,2323,2323-+=+-=y x 求22y x x y +的值.24.化简求值.ba b b a b ab b b a a b b a -÷⎪⎪⎭⎫ ⎝⎛+--++1,其中,53-=a ,53+=b .(3分)25.已知()2234-=x ,()2322-=y ,求(1)x+y 的值;(2)()27+-y x 的值.(4分)26.已知37+=x ,37-=x . 求233++xy y x 的值.27.解方程:()x x 3123=+.(4分)28.化简:(4分)()⎪⎪⎭⎫ ⎝⎛---b a a b a b a a b b a 22329.某船在点O 处测得小岛上的电视塔A 在北偏西60°的方向上,船向西航行20海里到达B 处,测得电视塔在船的西北方向,问向西航行多少海里船离电视塔最近?(5分)30.如图,公路MN 和公路PQ 在点P 处交汇,且∠QPN=30°,点A 处有一所中学,AP=160m. 假设拖拉机行驶时,周围100m 内会受到噪声影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到噪声影响?请说明理由. 如果受影响,已知拖拉机的速度为18km/h ,那么学校受影响的时间为多少秒?(5分)第二十一章 单元测试(二)一、选择题(每题3分,共30分)1.以下判断正确的是( )A. 无限小数是无理数B. 平方是3的数是3C. 1的平方根和立方根相等D. 27-无平方根 2.若a <-3,则()212a +-=( )A. a -1B. 1-aC. a +3D. a --3 3.651+与65-的关系是( )A. 互为相反数B. 互为倒数C. 互为有理化因式D. 相等4.把aa 1--根号外因式移到根号内,则原式=( ) A. a B. a - C. a -- D. a -5.计算:()()()2623535+-+-的值为( ) A. 7- B. 327-- C. 347-- D. 346--6.已知35-=+y x ,35+=xy ,则x+y 的值等于( )A. 2B. 5C. 1528-D. 52321528--- 7.若()x x -=-222,则x 是( ) A. x <2B. x >2C. x ≤2D. x ≥2 8.已知-1<x <2()()=--+2223x x ( ) A. 5 B. -5 C. 12--xD. 12+x 9.矩形面积为24,一边长23+,则另一边长是( ) A. ()3224+ B. ()2324- C. ()23724+ D. ()23724- 10.已知x 、y 是正数,且有()()x y y x y x-=-3,则=x y ( ) A. 9 B. 91 C. 1 D. 1或9二、填空题(每小题3分,共30分)11.当x 时,x x 2112-++有意义.12.若最简根式()2334++a b a 和452++b a 是同类根式,则a = ,b = .13.当a <-2时,化简()=++-122a a .14.若a a =2,则a . 若a a -=2,则a . 若a a =2,则a .15.比较大小:①23-,②22+,③52-53-.16.当x = 时,xx -1有意义.17.若25-=x ,25+=x ,则=+÷⎪⎪⎭⎫ ⎝⎛-xy y x y x x y . 18.使式子122---a a 有意义的a 取值范围是 .19.当a >2b >0时,=+-a b ab b a 32244 .20. ()()()=+-+÷++a b b a b ab a 2 .三、解答题21.计算(每小题2分,共6分)(1)⎪⎪⎭⎫⎝⎛----5431813225.024(2)ab b a ab b 3123235÷⎪⎭⎫ ⎝⎛-(a >0,b >0)(3)132121231+-+++22.化简求值(每小题3分,共6分)(1)已知2352+=x . 求⎪⎪⎭⎫⎝⎛-++÷⎪⎪⎭⎫ ⎝⎛-++x x x x x x x x 1111的值.(2)已知23-=x ,求4434234--++x x x x 的值.23.已知321+=a ,求aa a a a a a -+-+-+-22212121的值.(4分)24.设x a -=8,43+=x b ,2+=x b .(6分)(1)当x 取何实数时,a 、b 、c 均有意义.(2)当a 、b 、c 为直角△ABC 三边,求x 值.25.化简:424242422222-++--++--+-++n n n n n n n n (n >2).(4分)26.已知:32+=-b a ,32-=-c b . 求bc ac ab c b a ---++222的值.(4分)27.已知a a 1=,5=b ,求1025102522222222-+-++a b b a a b b a 的值.(4分)28.已知代数式333--+-x x x ,(1)试确定x 的值;(2)利用(1)的结果求32637522++-x x 的值.(6分)。

九年级数学第21章二次根式单元测试题及答案

九年级数学第21章二次根式单元测试题及答案

二次根式单元检测题姓名: 班级: 得分:(本检测题满分:100分;时间:120分钟)一、选择题(每小题2分;共24分)1.(·若3x -在实数范围内有意义;则x 的取值范围是( )A.3x <B.3x ≤C.3x >D.3x ≥ 2.在下列二次根式中;x 的取值范围是x ≥3的是( )A.3x -B.62x +C.26x -D.13x - 3.如果2(21)12a a -=-;那么( )A.a <12 B.a ≤12 C.a >12 D.a ≥124.下列二次根式;不能与12合并的是( )A.48B.18C.113D.75-5. 如果最简二次根式38a -与172a -能够合并;那么a 的值为( ) A.2 B.3 C.46.(2011·四川凉山中考)已知25523y x x =-+--; 则2xy 的值为( )A.15-B.15C.152-D.152的是( )A.83236-=B.5352105=C.432286⨯=D.422222÷=2111x x x -⋅+=-成立的条件是( )A.1x >B.1x <-C.1x ≥D.1x -≤ 9.下列运算正确的是( )A.532-=B.114293= C.822-= D.()22525-=-24n 是整数;则正整数n 的最小值是( ) A.4 B.5 11.(·)如果代数式43x -有意义;那么x 的取值范围是( ) A.3x ≠ B.3x < C.3x > D.3x ≥ 12.(·湖南永州中考)下列说法正确的是( )A.ab a b =⋅B.32(0)a a a a -⋅=≠21x ->的解集为1x > 0x >时;反比例函数ky x=的函数值y 随自变量x 取值的增大而减小 二、填空题(每小题3分;共18分)23= ;2318(0,0)x y x y >> =_________. 14.比较大小:10 3;22π.15.(1123=________;(2)(·计算1482.a ,b 为两个连续的整数;且28a b ;则a b += .y x ,满足22(3)0x y -+-=;则xy 的值为 .18.(2011·四川凉山中考)已知,a b 为有理数;,m n 分别表示57-的整数部分和小数部 分; 且21amn bn +=;则2a b += . 三、解答题(共58分)19.(8分)计算:(1)127123-+; (2)1(4875)13-⨯ .20.(8分)(·四川巴中中考)先化简;再求值:2221121,1(1)(1)x x x x x x x ++⎛⎫-⋅ ⎪++--⎝⎭其中2x =.21.(8分)先化简;再求值:(3)(3)(6)a a a a +---;其中1122a =+.22.(8分)已知23,23x y =-=+;求下列代数式的值:(1)222x xy y ++ ;(2)22x y -.23.(10分)一个三角形的三边长分别为54(1)求它的周长(要求结果化简);(2)请你给出一个适当的x值;使它的周长为整数;并求出此时三角形周长的值.24.(8分)已知,a b为等腰三角形的两条边长;且,a b满足4b=;求此三角形的周长.25.(8分)阅读下面问题:1==;==2=.(1的值;(2+⋅⋅⋅+参考答案1.D 解析:由二次根式有意义的条件知30,x -≥即x ≥3.2.C 解析:对于选项A ;有30x -≥;即3x ≤;对于选项B ;有 620x +≥;即3x -≥; 对于选项C ;有260x -≥;即3x ≥;对于选项D ;有103x >-;即3x >.故选C. 3.B12a -;知120a -≥;即12a ≤.4.B=;-;.5.D是 同类二次根式;所以38172a a -=-;解得5a =. 6.A 解析:由题意;知250x -≥;520x -≥;所以52x =;3y =-;所以215xy =-. 7.C解析:因为;所以选项A不正确;因为式;不能合并;所以选项B 不正确;选项C正确;因为2;所以选项D 不 正确.8.C 解析:由题意;知210,10,10,x x x ⎧-⎪+⎨⎪-⎩≥≥≥所以1x ≥.9.C10.C=n 的最小值为6. 11.C 解析:由题意可知30x ->;即3x >.12.B 解析:对于选项A0,0)a b ≥≥;对于选项C ;解21x ->;得1x <; 对于选项D ;未指明k 的取值情况.3; 因为0,0x y >>3=14.>;< 解析:因为109>3>.因为2π>9;28=;所以2π8>;即π.15.(1解析:(1=(2)0=.16.11 知5,6a b ==;所以11a b +=.17.解析:由题意知20,0x y -=;所以2,x y ==;所以xy =.解析:因为23;所以52;小数部分是3所以2,3m n ==所以2(6(31a b -+=;即(6(161a b -+-=.整理;得6163)1a b a b +-+=.因为a ;b 为有理数;所以6161a b +=;30a b +=; 所以 1.5a =;0.5b =-;所以2 2.5a b +=.19.解:(1=.(2)2=- .20.解:原式=1(1)x x +当x 时;10x +>1,x =+故原式=1(1)1(1)44x x x x x x +⋅==+.21.解:((6)a a a a --223663a a a a =--+=-.当12a =12=+163332⎛=-=+= ⎝⎭22.解:(1)222222()(2(2416x xy y x y ⎡⎤++=+=+==⎣⎦.(2)22()()(2224(x y x y x y -=+-=-=⨯-=-23.解:(1)周长54==(2)当20x =时;周长25==.(答案不唯一;只要符合题意即可) 24.解:由题意可得30,260,a a -⎧⎨-⎩≥≥即,,a a ⎧⎨⎩≤3≥3所以3a =;4b =4=.当腰长为3时;三角形的三边长分别为3;3;4;周长为10; 当腰长为4时;三角形的三边长分别为4;4;3;周长为11.25.解:(1=(2=(3+⋅⋅⋅+1)(99=++++-+11109=--+=.26.解:(1)223,2a m n b mn =+= (2)21;12;3;2(答案不唯一) (3)由题意得223,42.a m n mn ⎧=+⎨=⎩因为42mn =且,m n 为正整数;所以2,1m n ==或1,2m n ==. 所以222317a =+⨯=或2213213a =+⨯=.。

第21章 二次根式单元测试题(一)及答案

第21章 二次根式单元测试题(一)及答案

第21章二次根式单元测试之杨若古兰创作一、选择题(每小题2分,共20分)1.以下式子必定是二次根式的是() 2.若,则()A. B. C. D.A.b>3 B.b<3 C.b≥3 D.b≤33.上面计算准确的是()A. B. C. D.4.若x<0,则的结果是() 5.以下二次根式中属于最简二次根式的是()A.0 B.—2 C.0或—2 D.2 A. B.C.D.6.已知,则的值为()7.化简的结果为()A.B.C. D.A. B. C. D.8.小明的功课本上有以下四题:①;②;③;④.做错的题是()A.① B.② C.③ D.④9.若最简二次根式的被开方数不异,则a的值为()A. B. C.a=1 D.a= —110.计算2-6+的结果是()A.3-2B.5-C.5- D.2二、填空题(每小题2分,共20分)11.①;②.12.二次根式成心义的条件是.13.若m<0,则=.14.,.15.成立的条件是.16.比较大小:.17.计算=.18.的关系是.19.若,则的值为.20.化简的结果是.三、解答题(第21~22小题各12分,第23小题16分,共40分)21.求使以下各式成心义的字母的取值范围:(1)(2)(3)(4)22.化简:(1)(2)(3)(4)23.计算:(1)(2)(3)(4)四、综合题(每小题5分,共20分)24.若代数式成心义,则x的取值范围是什么?25.若x,y是实数,且,求的值. 26.浏览上面成绩:;.试求:(1)的值;(2)的值;(3)(n为正整数)的值.参考答案一、选择题1.C 2.D 3.B 4.D 5.A 6.A 7.D 8.C 9.C 10.A 二、填空题11.①0.3 ② 12.x≥0且x≠9 13.—m 14.x≥1 15.> 16. 18 17. 18.相等 19.1 20.三、解答题21.(1)(2)(3)全体实数(4)22.解:(1)原式=;(2)原式=;(3)原式=;(4)原式=.23.解:(1)原式=49×;(2);(3)原式=;(4)原式=;24.解:由题意可知:解得,.25.解:∵x—1≥0, 1—x≥0,∴x=1,∴y<.∴=.26.(1)=;(2)=;(3)=.。

二次根式单元测试题及参考答案

二次根式单元测试题及参考答案

新华师大版九年级上册数学第21章 二次根式单元测试卷姓名____________ 时间: 90分钟 满分:120分 总分____________ 一、选择题(每小题3分,共30分)1. 若二次根式15-x 有意义,则x 的取值范围是 【 】(A )51>x (B )x ≥51(C )x ≤51 (D )51<x2. 化简()221-的结果是 【 】(A )12- (B )21- (C )()12-±(D )()21-±3. 下列二次根式中是最简二次根式的是 【 】 (A )32(B )2 (C )9 (D )12 4. 下列运算正确的是 【 】 (A )x x x 32=+ (B )3223=- (C )3232=+ (D )25188=+5. 下列二次根式中能与32合并的是 【 】 (A )8 (B )31(C )18 (D )9 6. 等式1313+-=+-x x x x 成立的x 的取值范围在数轴上可表示为 【 】 A. B. C. D.7. 已知a 为整数,且53<<a ,则a 等于 【 】 (A )1 (B )2 (C )3 (D )48. 计算()5452-515-÷⎪⎪⎭⎫⎝⎛的结果为 【 】(A )5 (B )5- (C )7 (D )7-9. 已知21,21-=+=n m ,则代数式mn n m 322-+的值为 【 】 (A )9 (B )3± (C )5 (D )3 10. 已知0>xy ,则化简二次根式2x yx -的结果是 【 】 (A )y (B )y - (C )y -(D )y --二、填空题(每小题3分,共15分)11. 计算:=--124_________. 12. 化简:()=--7177_________.13. 菱形的两条对角线的长分别为()1210+cm 和()3210-cm,则该菱形的面积为_________cm 2.14. 12与最简二次根式15+a 是同类二次根式,则=a _________.15. 对于任意的正数n m ,定义运算※为:m ※⎪⎩⎪⎨⎧<+≥-=nm n m nm n m n ,,,计算(3※2)⨯(8※12)的结果为_________.三、解答题(共75分)16. 计算:(每小题4分,共8分)(1)()1212362-⎪⎭⎫⎝⎛--+⨯-;(2)()()()2217373---+.17. 先化简,再求值:(每小题8分,共16分)(1)44212122+--÷⎪⎭⎫⎝⎛--+x x x x x x ,其中3=x ;(2)11112-÷⎪⎭⎫⎝⎛-+x x x ,其中12+=x .18.(10分)(1)要使x 21-在实数范围内有意义,求x 的取值范围; (2)已知实数y x ,满足条件:()211221-+-+-=x x x y ,求()100y x +的值.19.(10分)在二次根式b ax +中,当1=x 时,其值为2;当6=x 时,其值为3. (1)求使该二次根式有意义的x 的取值范围; (2)当15=x 时,求该二次根式的值.20.(10分)一个三角形的三边长分别为xx x x 5445,2021,55. (1)求它的周长;(2)请你给一个适当的x 值,使它的周长为整数,并求出此时三角形的周长.21.(10分)已知c b a ,,满足()023582=-+-+-c b a . (1)求c b a ,,的值;(2)以c b a ,,为边能否构成三角形?若能,求出该三角形的周长;若不能,请说明理由.22.(11分)规律探究: 观察下列各式:()()()()()().;34434343431;23323232321;12212121211 -=-+-=+-=-+-=+-=-+-=+(1)请利用上面的规律直接写出100991+的结果;(2)请用含n (n 为正整数)的代数式表示上述规律,并证明;(3)计算:()20171201720161431321211+⨯⎪⎭⎫⎝⎛++++++++ .新华师大版九年级上册数学摸底试卷(一)第21章 二次根式单元测试卷C 卷参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共15分)11.2312. 7 13. 44 14. 2 15. 2 三、解答题(共75分)16. 计算:(每小题4分,共8分)(1)()1212362-⎪⎭⎫⎝⎛--+⨯-;解:原式23212--+-=33332-=--=(2)()()()2217373---+. 解:原式()222179+---=1222232-=+-=17. 先化简,再求值:(每小题8分,共16分)(1)44212122+--÷⎪⎭⎫⎝⎛--+x x x x x x ,其中3=x ;解:44212122+--÷⎪⎭⎫⎝⎛--+x x x x x x()()xx x x x x x x x x 3223222212=-⋅-=--÷-+-+=当3=x 时原式333=.(2)11112-÷⎪⎭⎫⎝⎛-+x x x ,其中12+=x .解:11112-÷⎪⎭⎫⎝⎛-+x x x ()()()()x x x x x x x xx x 11111111-+⋅+-=-+÷+--=()xx -=--=11当12+=x 时原式2121-=--=.18.(10分)(1)要使x 21-在实数范围内有意义,求x 的取值范围; (2)已知实数y x ,满足条件:()211221-+-+-=x x x y ,求()100y x +的值.解:(1)由二次根式有意义的条件可知:x 21-≥0解之得:x ≤21; ……………………………………3分 (2)∵x 21-≥0,12-x ≥0∴x ≤21,x ≥21 ∴21=x……………………………………6分∴21211210022=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-++=y……………………………………8分 ∴()112121100100100==⎪⎭⎫⎝⎛+=+y x .……………………………………10分 19.(10分)在二次根式b ax +中,当1=x 时,其值为2;当6=x 时,其值为3. (1)求使该二次根式有意义的x 的取值范围;(2)当15=x 时,求该二次根式的值.解:(1)由题意可得:⎪⎩⎪⎨⎧=+=+362b a b a ∴⎩⎨⎧=+=+964b a b a ……………………………………4分解之得:⎩⎨⎧==31b a……………………………………6分 ∴该二次根式为3+x 由二次根式有意义的条件可知:3+x ≥0 解之得:x ≥3-;……………………………………8分 (2)当15=x 时23183153==+=+x .……………………………………10分 20.(10分)一个三角形的三边长分别为xx x x 5445,2021,55. (1)求它的周长;(2)请你给一个适当的x 值,使它的周长为整数,并求出此时三角形的周长. 解:xx x x C 5445202155++=∆ x x x 52155++=x 525=; ……………………………………7分 (2)答案不唯一.……………………………………10分 21.(10分)已知c b a ,,满足()023582=-+-+-c b a .(1)求c b a ,,的值;(2)以c b a ,,为边能否构成三角形?若能,求出该三角形的周长;若不能,请说明理由. 解:(1)∵()023582=-+-+-c b a()28-a ≥0,5-b ≥0,23-c ≥0∴023,05,08=-=-=-c b a ∴23,5,228====c b a ; ……………………………………7分 (2)能.……………………………8分52523522+=++=∆C .……………………………………10分 22.(11分) 解:(1)11310-;……………………………………2分 (2)n n n n -+=++111……………………………………4分证明:()()nn nn n n n n -+++-+=++11111 nn n n nn -+=-+-+=111……………………………………7分 (3) 2016.(过程略)……………………………………11分。

第21章 二次根式单元测试题(一)及答案

第21章 二次根式单元测试题(一)及答案

第21章 二次根式单元测试(时间90分钟,满分100分)一、选择题(每小题2分,共20分) 1.下列式子一定是二次根式的是( )A .2--xB .xC .22+xD .22-x 2.若b b -=-3)3(2,则( )A .b>3B .b<3C .b ≥3D .b ≤3 3.下面计算正确的是( )A.3333+=B.2733÷=C.235= D.2(2)2-=-4.若x<0,则xx x 2-的结果是( )A .0B .—2C .0或—2D .2 5.下列二次根式中属于最简二次根式的是( ) A .14 B .48 C .baD .44+a 6. 已知25523y x x =-+--,则2xy 的值为( )A .15-B .15C .152-D . 1527.小明的作业本上有以下四题:①24416a a =; ②a a a 25105=⨯; ③a aa a a =∙=112;④a a a =-23。

做错的题是( )A .①B .②C .③D .④ 8.化简6151+的结果为( )A .3011 B .33030 C .30330 D .1130 9.若最简二次根式a a 241-+与的被开方数相同,则a 的值为( ) A .43-=a B .34=a C .a=1 D .a= —110. 计算221-631+8的结果是( ) A .32-23 B .5-2C .5-3D .22二、填空题(每小题2分,共20分)11.①=-2)3.0( ;②=-2)52( 。

12.二次根式31-x 有意义的条件是 。

13.若m<0,则332||m m m ++= 。

14.1112-=-∙+x x x 成立的条件是 。

15.比较大小:32 π。

16.=∙y xy 82 ,=∙2712 。

17.计算3393aa a a-+= 。

18.23231+-与的关系是 。

19.若35-=x ,则562++x x 的值为 。

第21章 二次根式数学九年级上册-单元测试卷-华师大版(含答案)

第21章 二次根式数学九年级上册-单元测试卷-华师大版(含答案)

第21章二次根式数学九年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、下列各式是最简二次根式的是A. B. C. D.2、若式子在实数范围内有意义,则x的取值范围是()A.x>3B.x≥3C.x>﹣3D.x≥﹣33、估计的值在下列哪两个整数之间()A.6和7之间B.7和8之间C.8和9之间D.9和10之间4、已知为实数,且,则的值为()A.3B.C.1D.5、规定用符号[x]表示一个数的整数部分,例如[9.54]=9,[ ]=1,则[ ]的值为()A.5B.6C.7D.86、二次根式中,字母a的取值范围是()A.a<1B.a≤1C.a≥1D.a>17、下列式子中正确的是()A. B. C.D.8、下列各式中,运算正确的是()A.(x 4)3=x 7B.a 8÷a 4=a 2C.D.9、若式子有意义,则x的取值范围是()A.x≥1B.x≤1C.x≥-1D.x≤-110、下列计算不正确的是( )A. B. C. D.11、下列运算正确的是()A. ×=B. 一3=一2C. + =D.3—2 =12、函数中,自变量的取值范围是()A. B. C. D.13、使二次根式有意义的字母x的取值范围是()A.x≥3B.x>3C.x≥-3D.x>-314、下列各式运算正确是()A. B. C. D.15、下列计算结果正确的是()A. + =B. =a﹣bC. ﹣=﹣&nbsp;D. = +2二、填空题(共10题,共计30分)16、=________.17、化简:(+2)(﹣2)=________.18、函数中自变量x的取值范围是________.19、如果a、b两个实数满足a= + +2,则a b的值是________.20、要使式子有意义,则a的取值范围是________.21、计算的结果是________.22、计算:﹣=________.23、计算( -2)( +2)的结果是________.24、要使代数式有意义,则x的取值范围是________ .25、要使式子有意义,则x的取值范围是________.三、解答题(共5题,共计25分)26、已知x=2+ ,求代数式(7﹣4 )x2+(2﹣)x﹣的值.27、计算:+﹣2sin60°+|tan60°﹣2|28、计算(1)(﹣4)﹣(3﹣2);(2)(﹣)2+2×3;(3)5•(﹣4)(a≥0,b≥0).29、已知,求的值.30、设,求2x+4y的值.参考答案一、单选题(共15题,共计45分)1、A2、D3、D4、D5、B6、C7、C8、D9、C10、A11、D13、C14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。

9年级数学上册(人教版)单元检测—21章《二次根式》水平测试题

9年级数学上册(人教版)单元检测—21章《二次根式》水平测试题

第二十一章二次根式全真测试一、填空题:每小题3分,共24分.10a =,则a 的取值范围是 .2.当x 时,2x -中x 的取值范围是 .30)b a <<得 .40=的值为 .5.则a b +的值为 .6.计算:200620072)2)_____=.7m =,则代数式22006m -的值是 .8111111===,……,由此可得_______=.二、选择题:每小题3分,共24分.9x 的取值范围是( ) A.3x ≥ B.4x >C.3x ≥且4x ≠ D.4x ≥10 )A.0a ≤ B.0a ≥ C.0a < D.0a >11=成立,则x 的取值范围为( ) A.2x ≥B.3x ≤ C.23x ≤≤ D.23x <<12==x y +的值为( )A.2 B.5 C.8-D.8-13.下列运算正确的是( )A.2(33233-+=-⨯=B.2a b =-C.222(339123-=-=-=-D.22(1)1a a =-=--=14.设4a ,小数部分为b ,则1a b-的值为( )A.12-C.12+D.15.实数a b c ,,在数轴上的对应点的位置如图所示,下列式子中正确的有( ) ①0b c +>②a b a c +>+③bc ac >④ab ac > A.1个 B.2个 C.3个 D.4个 162,则a 的取值范围是( )A.4a ≥ B.2a ≤ C.24a ≤≤D.2a =或4a = 三、解答题:共52分.17.计算:每小题3分,共15分.(11); (2a b ÷-; (33)x <<. 18.(本小题8分)先化简,再求值:22222212a b a b a b ab ab ⎛⎫-+÷+ ⎪-⎝⎭,其中53a b ==-.19.(本小题8分)已知:1122x y ==,,求22x xy y -+和x y y x+的值.20.(本小题10分)观察下列各个二次根式的变形过程:1===;====== ……请回答下列问题:(1(2)根据你发现的规律,请计算: (1+….21.(本小题11分)已知M N==.甲、乙两个同学在18y =的条件下分别计算了M 和N 的值.甲说M 的值比N 大,乙说N 的值比M 大.请你判断他们谁的结论是正确的,并说明理由.参考答案一、填空题:每小题3分,共24分.1.0a ≤ 2.2>;0x ≤且2x ≠- 3.22(b a - 4.5 5.262 7.2007 8.111111111二、选择题:每小题3分,共24分.9.B 10.A 11.C 12.D 13.D 14.A 15.C 16.C三、解答题:共52分.17.(每小题3分,共15分)(1)(2)b a b -;(3)3. 18.(本小题8分)原式2a b =+;1. 19.(本小题8分)72;8.20.(本小题10分)解:(1=(2)2006.21.(本小题11分)解:乙的结论正确.理由:由18y =,可得818x y ==,.因此2M=====,N===.M N∴<,即N的值比M大.试题使用说明各位使用者:本试题均是经过精心收集整理,目标是为广大中小学教师或家长在教学或孩子教育上提供方便!附:如何养成良好的数学学习习惯“习惯是所有伟人的奴仆,也是所有失败者的帮凶.伟人之所以伟大,得益于习惯的鼎力相助,失败者之所以失败,习惯的罪责同样不可推卸.”由此可知,良好的数学学习习惯是提高数学成绩的制胜法宝.良好的数学学习习惯有哪些呢?初中数学应该从课堂学习、课外作业和测试检查等方面养成良好的学习习惯.一、课堂学习的习惯课堂学习是学习活动的主要阵地.课堂学习习惯主要表现为:会笔记、会比较、会质疑、会分析、会合作.1.会笔记上课做笔记并不是简单地将老师的板书进行抄写,而是将学到的知识点、一些类型题的解题一般规律和技巧、常见的错误等进行整理.做笔记实际是对数学内容的浓缩提炼.要经常翻阅笔记,加强理解,巩固记忆.另外,做笔记还能使你的注意力集中,学习效率更高.2.会比较在学习基础知识(如概念、定义、法则、定理等)时,要运用对比、类比、举反例等思维方式,理解它们的内涵和外延,将类似的、易混淆的基础知识加以区分.如找出“同类项”和“同类二次根式”,“正比例函数”和“一次函数”,“轴对称图形”和“中心对称图形”,“平方根”和“立方根”,“半径”和“直径”,等概念的异同点,达到合理运用的目的.3.会质疑“学者要会疑”,要善于发现和寻找自己的思维误区,向老师或同学提问.积极提问是课堂学习中获得知识的重要途径,同时也要敢于向老师同学的观点、做法质疑,锻炼自己的批判性思维.学习中哪怕有一点点的问题,也要大胆提问,不能留下知识上的“死角”,否则问题就会积少成多,为后续学习设置障碍.4.会分析一是要认真审题:先弄清楚题目给出的条件和要解答的问题,把一些已知条件填在图形上,并将一些关键词做好标记,达到显露已知条件,同时又挖掘隐含条件的目的.如做几何体时,将已知的相等的角、线段、面积及已知的角、线段、位置关系等在图形中做好标记,避免忘记.再如做应用题时,象“不超过”“不足”等字眼,就暗示着存在不等量关系.只有弄清楚已知条件和所要解答的问题才能有目的、有方向地解题;二是要认真思索:依据题目中题设和结论,寻找它们的内在联系,由题设探求结论,即“由因求果”,或从结论入手,根据问题的条件找到解决问题的方法,即“由果索因”,或将两种方法结合起来,需找解题方法.要注意“一题多解”、“一题多变”、“一图多用”、“一法多题”等,拓展思路,训练自己的求异思维.5.会合作英国著名剧作家萧伯纳曾经说过“你给我一个苹果,我给你一个苹果,我们每人只有一个苹果;你给我一个思想,我给你一个思想,我们每人就有两个思想了”,这足以说明合作、交流的学习方式的重要性.我们主要的学习方式是自主学习,在独立思考的基础上,要适时地和同桌交流意见.在小组学习期间,要积极发表自己的观点和见解,倾听他人的发言,并作出合理的评判,以锻炼自己的表达能力和鉴别能力.二、课外作业的习惯课外作业是数学学习活动的一个组成部分,它包括:复习、作业等.1.复习及时复习当天学过的数学知识,弄清新学的内容、重点内容及难于理解和掌握的内容.首先凭大脑的追忆,想不起来再阅读课本及笔记.在最短的时间内进行复习,对知识的理解和运用的效果才能最好,相隔时间长了去复习,其效果不明显,“学而时习之”就是这个道理.同时,要坚持每天、每周、每单元、每学期进行复习,使复习层层递进、环环紧扣,这样才能在正确理解知识的基础上,熟练地运用知识.2.作业会学习的同学都是当天作业当天完成,先复习,后做作业.一定要独立完成,决不能依赖别人.书写一定要整洁,逻辑一定要条理.对作业要自我检查,及时改正存在的错误,三、测试、检查的习惯1.认真总结测试、检查前,可以借助于笔记,把某一阶段的知识加以系统化、深化,弥补知识的缺陷,进一步掌握所学知识.2.认真反思测试、检查后,通过回顾反思,查清知识缺陷和薄弱环节,寻找失误的原因,改进学习方法,明确努力方向,使以后的测试、检查取得成功.良好的学习习惯是提高我们学习成绩的决定因素,但必须持之以恒.。

第21章 二次根式 华东师大版九年级数学上册单元测试卷(含答案)

第21章 二次根式 华东师大版九年级数学上册单元测试卷(含答案)

第21章二次根式单元测试卷一.选择题(共10小题,满分30分)1.是整数,正整数n的最小值是( )A.0B.2C.3D.42.下列式子中一定是二次根式的是( )A.B.C.D.3.在实数范围内,要使代数式有意义,则x的取值范围是( )A.x≥2B.x>2C.x≠2D.x<24.如果ab>0,a+b<0,那么下面各式:①•=1;②=;③÷=﹣b,其中正确的是( )A.①②B.①③C.②③D.①②③5.若的整数部分为x,小数部分为y,则(2x+)y的值是( )A.B.3C.D.﹣36.下列各式中,是最简二次根式的是( )A.B.C.D.7.若是整数,则正整数n的最小值是( )A.4B.5C.6D.78.下列式子一定是二次根式的是( )A.B.C.D.9.下列计算正确的是( )A.=±4B.±=3C.D.=﹣3 10.若=2﹣x成立,则x的取值范围是( )A.x≤2B.x≥2C.0≤x≤2D.任意实数二.填空题(共10小题,满分30分)11.化简:= .12.若是整数,则最小正整数n的值为 .13.二次根式有意义的条件是 .14.计算的结果是 .15.已知n为正整数,是整数,则n的最小值是 .16.当x=﹣2时,则二次根式的值为 .17.计算:×= .18.已知实数a、b满足+|6﹣b|=0,则的值为 .19.在、、、、中,最简二次根式是 .20.已知a=3+,b=3﹣,则a2b+ab2= .三.解答题(共6小题,满分90分)21.计算:3•÷(﹣)22.已知二次根式.(1)求x的取值范围;(2)求当x=﹣2时,二次根式的值;(3)若二次根式的值为零,求x的值.23.(1)若y=+4,求xy的平方根.(2)实数x,y使+y2+4y+4=0成立,求的值.24.已知等式=成立,化简|x﹣6|+的值.25.阅读材料,回答问题:观察下列各式=1+﹣=1;;.请你根据以上三个等式提供的信息解答下列问题:(1)猜想:= = ;(2)归纳:根据你的观察、猜想,写出一个用n(n为正整数)表示的等式: ;(3)应用:用上述规律计算.26.当a取什么值时,代数式取值最小?并求出这个最小值.参考答案与试题解析一.选择题(共10小题,满分30分)1.解:∵是整数,∴正整数n的最小值为2,故选:B.2.解:A、当x<0时,不是二次根式,故本选项错误;B、一定是二次根式,故本选项正确;C、当x=0时,不是二次根式,故本选项错误;D、当b<0时,不是二次根式,故本选项错误;故选:B.3.解:要使代数式有意义,则x﹣2≥0,解得:x≥2,故选:A.4.解:∵ab>0,a+b<0,∴a<0,b<0,∴①•=1,正确;②=,错误;③÷=﹣b,正确,故选:B.5.解:∵9<13<16∴3<<4,∴的整数部分x=2,则小数部分是:6﹣﹣2=4﹣,∴y=4﹣,则(2x+)y=(4+)(4﹣)=16﹣13=3.故选:B.6.解:A、=,故此选项不符合题意;B、=2,故此选项不符合题意;C、是最简二次根式,故此选项符合题意;D、=,故此选项不符合题意;故选:C.7.解:∵=2是整数,∴正整数n的最小值是:7.故选:D.8.解:A、,﹣x+2有可能小于0,故不一定是二次根式;B、,x有可能小于0,故不一定是二次根式;C、,x2+1一定大于0,故一定是二次根式,故此选项正确;D、,x2﹣2有可能小于0,故不一定是二次根式;故选:C.9.解:A选项,=4,故该选项错误,不符合题意;B选项,±=±3,故该选项错误,不符合题意;C选项,()2=a(a≥0),故该选项正确,符合题意;D选项,根据=|a|得原式=3,故该选项错误,不符合题意.故选:C.10.解:∵=|x﹣2|=2﹣x,∴x﹣2≤0,∴x≤2,故选:A.二.填空题(共10小题,满分30分)11.解:原式==2.故答案是:2.12.解:∵是整数,∴最小正整数n的值是:5.故答案为:5.13.解:二次根式有意义的条件是:x﹣1≥0,解得:x≥1.故答案为:x≥1.14.解:法一、=|﹣2|=2;法二、==2.故答案为:2.15.解:∵189=32×21,∴=3,∴要使是整数,n的最小正整数为21.故填:21.16.解:原式===4,故答案为:417.解:×=;故答案为:.18.解:∵+|6﹣b|=0,又∵≥0,|6﹣b|≥0,∴a﹣3=0,6﹣b=0.∴a=3,b=6.∴==2.故答案为:19.解:、是最简二次根式,故答案为:、.20.解:∵a=3+,b=3﹣,∴a2b+ab2=ab(a+b)=(3+2)(3﹣2)(3+2+3﹣2)=6;故答案为:6.三.解答题(共6小题,满分90分)21.解:原式=3××(﹣)=﹣2=﹣.22.解:(1)根据题意,得:3﹣x≥0,解得x≤6;(2)当x=﹣2时,===2;(3)∵二次根式的值为零,∴3﹣x=0,解得x=6.23.解:由题意得,解得:x=3,把x=3代入已知等式得:y=4,所以,xy=3×4=12,故xy的平方根是±=.(2)∵+y2+4y+4=0,∴+(y+2)2=0.∴由非负数的性质可知,x﹣3=0,y+2=0.解得x=3,y=﹣2.∴===.24.解:由题意得,,∴3<x≤5,∴|x﹣6|+=6﹣x+x﹣2=4.25.解:(1)根据题意可得:=1+=1;故答案为:1+﹣,1;(2)根据题意可得:=1+﹣=1+;故答案为:=1+﹣=1+;(3)=1+1﹣+1+﹣+1+﹣+•••+1+=10﹣=9.26.解:∵≥0,∴当a=﹣时,有最小值,是0.则+1的最小值是1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第21章《二次根式》单元测试
第一卷(共48分)
第一卷的答案请填写在第二卷的答题纸上!
一、选择题(每小题4分,共32分)
1. 若a a -
=-1)1(2
,则a 的取值范围是( )
A.1>a
B.1≥a
C. 1<a
D. 1≤a 2. 已知n 12是整数,则满足条件的最小正整数为( ) A. 2 B.3 C.4 D. 5 3. 下列代数式是二次根式的有( )个
1x 2x ,2x ,14.3,m 2,3
2,4223+-+--π
A. 2
B.3
C. 4
D. 5
4. 如果a 是任意实数,下列各式中一定有意义的是( ) A.
a B.
2a
1
C. 3
a - D. 2a -
5. 下列根式中,是最简二次根式的有( ) ①3a 5;②22b a -;③15;④
2
a
;⑤a 12;⑥2a
A. ②③⑤
B. ②③⑥
C. ②③④⑥
D. ①③⑤⑥
6. 已知01-b 2a =++,那么2007
)b a (+的值为( )
A. ﹣1
B. 1
C. 20073
D. 2007
3-
7. 下面说法正确的是( )
A. 被开方数相同的二次根式一定是同类二次根式
B. 8与80是同类二次根式
C.
2与
50
1
不是同类二次根式 D. 根指数为2的根式是同类二次根式 8. 已知
a
a
1a a
12
-=-,则a 的取值范围是( ) A. 0a ≤ B. 0a < C. 1a 0≤< D. 0a >
学校 班级 姓名 学号 装 订 线 内 不 准 答 题 ………………………………装………………………………………订 ……………………………………线……………………………………………
二、填空题(每小题4分,共16分)
9. 当a________时,2a 3-有意义;当x________时,
3
x 1-有意义
10. 当x =________时,二次根式1x +取最小值,这个最小值为________ 11. 比较大小:75-________56- 12. 等式)()y x (y x 2
++=-中的括号内应填入________________
第二卷(共52分)
9. ____________;____________ 10. ____________;____________;11. ________________ 12. _____________
三、解答题
13. (4分)计算: 14. (4分)计算:
18123823
2
-+-+ 25
152323112
125-+-;
15. (4分)计算: 16. (4分)计算:
)2738
1
4
483(122--⨯ 2)152()347()347(---+
17. (4分)计算: 18. (4分)计算:
32
238128a a a
a a +- )3()2
3
(5
235
x
y y x xy
÷-

19. (4分)计算: 20. (4分)计算:
3
211
322
11++
--
+
0)13(81
21-+-+
21. (5分)已知y ,x 为实数,且y 3<,化简16y 8y 3-y 2+--
22. (5分)一个直角三角形两条直角边分别是(3,(3cm cm ,求这个三角形的面积和斜边长
23. (5分)已知x =,y =11x y +的值
装 订 线 内 不 准 答 题 ………………………………订 ……………………………………线……………………………………………
24. (5分) 如果记()1x y f x x =
=+
,并且f
表示当x =y
的值,即12
f ==;
)
f
表示当x =y
的值,即f =
f
表示当x =
时y
的值,即f ==
; (1) 填空:
f
表示当x =y
的值,即f =

f
表示当x =y
的值,即f ==;
(2)
求f f f f f f f +++++++ 的值
选做题(每小题10分,共20分)
1.(10分)已知ABC ∆的三边a 、b 、c 满足224210212
--+=--++b a c b a ,
试判断ABC ∆的形状.
2.(10分) 同学们,我们以前学过完全平方公式()2
22
2a ab b a b ±+=±,你一定熟
练掌握了吧!现在,我们又学习了二次根式,那么所有的非负数(正数和0)都可以看作是
一个数的平方,如2
2
3,5=
=,你知道3-
)2
2
2
1211213=-+=-=-
反之,)2
3211--=.
∴)2
31-=.
1.
求:(1
(2
(3
(4,则m 、n 与a 、b 的关系是什么?并说明理由.
答案
第二卷(共52分)
9. ___3
≥_____;__3x >_____; 10. ____-1________;___0_________;
11. ___>____; 12. __4xy -____.
三、
13.
14.0;15.36-;
16.20;
;18.2
15
x - 19. -2;20.
;21.-1;
72;23.24.(1
;(2)
99.5
选做题1.等边三角形;(提示:配方())
2
2
5120a -+
=)
; 2.(11;(21;(31;(4),
.
a m n
b mn =+⎧⎨
=⎩。

相关文档
最新文档