土力学第三章:土的渗透性和渗流
合集下载
土力学课件(3土的渗透性与渗流)详解
管内减少水量=流经试样水量
-adh=kAh/Ldt 分离变量
积分
k=2.3
aL
At2
t1 lg
h1 h2
k=
aL
A t2
t1 ln
h1 h2
3、影响渗透系数的主要因素 (1)土的粒度成分
v 土粒愈粗、大小愈均匀、形状愈圆滑,渗透系数愈大
v 细粒含量愈多,土的渗透性愈小,
(2)土的密实度 土的密实度增大,孔隙比降低,土的渗透性也减小 土愈密实渗透系数愈小
(3)土的饱和度 土的饱和度愈低,渗透系数愈小
(4)土的结构 扰动土样与击实土样,土的渗透性比同一密度 原状土样的小
(5)水的温度(水的动力粘滞系数) 水温愈高,水的动力粘滞系数愈小 土的渗透系数则愈大
k20 kT T 20
(6)土的构造
T、20分别为T℃和20℃时水的动 力粘滞系数,可查表
水平方向的h>垂直方向v
n
qx q1x q2x qnx qix i1
达西定律
qx kxiH
平均渗透系数
q1x k1 qx q2x k2
q3x k3
H1 H2 H H3
n
qix k1iH 1 k 2iH 2 k n iH n
i 1
整个土层与层面平行的渗透系数
k x
1 H
n
kiH i
i1
(2)垂直渗透系数
H
隧道开挖时,地下 水向隧道内流动
在水位差作用下,水透过土体孔隙的现象称为渗透
渗透
在水位(头)差作用下,水透过土体孔隙的现象
渗透性
土体具有被液体透过的性质
土的渗流 土的变形 土的强度
相互关联 相互影响
tlxdjjc3《土力学与地基基础》第三章土的渗透性与渗流
2009.09
土中气体的影响
当土孔隙中存在密闭气泡时,会阻塞 水的渗流,从而降低渗透性。
土力学与地基基础
2009.09
土力学与地基基础
二、层状地基的等效渗透系数 天然沉积土往往是由渗透性不同的土层所组 成。其中以与土层层面平行和垂直的简单渗流情
况最典型。 水平渗流情况: 知k为3,H地…。基…内kn,各厚层度土分的别渗为透H系1数,分H2别,为…k…1,Hkn,2,总厚度
设从稳定渗流场中任取一微分单元土体,其面积
为dxdy,如图若单位时间内在x方向流入单元体的
水量为qx,流出的水量为
qx
qx x
dx,在y方向流入
水量为qy,流出的水量为
qy
qy y
dy 。
2009.09
土力学与地基基础
假定在渗流作用下单元的体积保持不变, 水又是不可压缩的,则单位时间内流入 单元体的总水量必等于流出的总水量, 即
i h
l l 为该网格处流线的平均长度,可见l 减小则流
网网格越密。
2009.09
土力学与地基基础
4.渗透速度
各点的水力坡降已知后,渗透速度的大小可根据
达西定律求出:即v=ki,其方向为流线在该点的
切线方向。
5.渗透流量
单宽流量:q k h ss q kh 即相邻流线间的单宽流量相等。
2009.09
土力学与地基基础
第二节 渗透系数及其确定方法
(一)、渗透系数的测定和影响因素
常水头测定法
渗 透
实验室测定法
系
变水头试验法
数
的
测
定
方
实测流速法
法
现场测定法
注水法
第3章 土的渗透性和渗流
板桩墙
基坑
渗流问题 1.渗流量(降水办法) 2.渗透破坏(流砂)
透水层 不透水层
§3.1 概 述
土坝蓄水后水透
土石坝坝基坝身渗流 过坝身流向下游
防渗体
坝体 浸润线
渗流问题: 1.渗流量? 2.渗透破坏?
透水层
3.渗透力?
不透水层
§3.1 概 述 水井渗流
Q 天然水面
透水层
不透水层
渗流问题: 1.渗流量Q? 2.降水深度?
土愈密实,k值得愈小。试
• 土的密实度
验表明,对于砂土,k值对数与孔
• 土的饱和度
隙比及相对密度呈线性关系;对
• 土的结构和构造 粘性土,孔隙比对k值影响更大。
(2)水的性质
§3.2 土的渗透性
4.影响土的渗透系数主要因素
(1)土的性质
• 粒径大小及级配 • 土的密实度
• 土的饱和度 • 土的结构和构造
第3章 土的渗透性和渗流
§3.1 概
述
§3.2 土的渗透性
§3.3 土中二维渗流及流网
§3.4 渗透破坏与控制
§3.1 概 述
土是一种三相组成的多孔介质,其孔隙在空 间互相连通。如果存在水位差的作用,水就会在 土的孔隙中从能量高的点向能量低的点流动。
水等液体在土体孔隙中
流动的现象称为渗流。
土具有被水等液体透过
k1
h1 L1
k2
h2 L2
已知:L1=L2=40cm, k1= 2k2,故2△h1= △h2 ,
代入△h1+△h2 = △h=30cm得:
△h1=10cm,△h2 = 20cm
由此可知,测压管中的水面将升至右端水面以上10cm处。
基坑
渗流问题 1.渗流量(降水办法) 2.渗透破坏(流砂)
透水层 不透水层
§3.1 概 述
土坝蓄水后水透
土石坝坝基坝身渗流 过坝身流向下游
防渗体
坝体 浸润线
渗流问题: 1.渗流量? 2.渗透破坏?
透水层
3.渗透力?
不透水层
§3.1 概 述 水井渗流
Q 天然水面
透水层
不透水层
渗流问题: 1.渗流量Q? 2.降水深度?
土愈密实,k值得愈小。试
• 土的密实度
验表明,对于砂土,k值对数与孔
• 土的饱和度
隙比及相对密度呈线性关系;对
• 土的结构和构造 粘性土,孔隙比对k值影响更大。
(2)水的性质
§3.2 土的渗透性
4.影响土的渗透系数主要因素
(1)土的性质
• 粒径大小及级配 • 土的密实度
• 土的饱和度 • 土的结构和构造
第3章 土的渗透性和渗流
§3.1 概
述
§3.2 土的渗透性
§3.3 土中二维渗流及流网
§3.4 渗透破坏与控制
§3.1 概 述
土是一种三相组成的多孔介质,其孔隙在空 间互相连通。如果存在水位差的作用,水就会在 土的孔隙中从能量高的点向能量低的点流动。
水等液体在土体孔隙中
流动的现象称为渗流。
土具有被水等液体透过
k1
h1 L1
k2
h2 L2
已知:L1=L2=40cm, k1= 2k2,故2△h1= △h2 ,
代入△h1+△h2 = △h=30cm得:
△h1=10cm,△h2 = 20cm
由此可知,测压管中的水面将升至右端水面以上10cm处。
3 土力学(permeability)土的渗透性及渗流
各类土的渗透系数
k反映了土渗透性的强弱
砾砂、粗砂 中砂 细砂、粉砂 粉土 粉质黏土 黏土
10-3~10-4 m/s
10-4~10-5 m/s
10-5~10-6 m/s
10-6~10-8 m/s
10-8~10-9 m/s
10-9~10-12 m/s
砂、砾的透水性强,可以起到排水作用; 粘性土的透水性弱,可以起到截水的作用。 砾砂、粗砂、中砂属强透水材料,粉、细砂属中透水性材料, 粉土属弱透水材料,粉质粘土属于基本不透水材料, 粘土属于不透水材料。
不透水层
成层地基竖向等效渗透系数
Equivalent permeability determination- ertical flow in stratified soil
kV eq H H1 H 2 H 3 Hn kV kV kV kV 1 2 3 n
土石坝坝基坝身渗流
防渗斜墙及铺盖
土石坝
浸润线
渗流量
透水层
不透水层
渗透变形
板桩围护下的基坑渗流
板桩墙
渗水压力
渗流量
基坑
透水层 不透水层
渗透变形
扬压力
水井渗流
Q
天然水面
透水层
渗流量
不透水层
渠道渗流
渗流量
渗流时地下水位
原地下水位
土的渗透性及渗透规律
渗流量
渗透力与渗透变形
渗透变形 渗流滑坡
挡水建筑物 集水建筑物 引水结构物 基坑等地下施工 多雨地区边坡
依据(b) 达西定律 v = ki Kozen-Carman公式表达式
土力学-第3章土的渗透性及渗流
v k i
§3 土的渗透性及渗流
二. 土的层流渗透定律 适用条件:
层流(线性流)
§3.2土的渗透性 2. 达西定律
岩土工程中的绝大多数渗流问 题,包括砂土或一般粘土,均 属层流范围 在粗粒土孔隙中,水流形态可 能会随流速增大呈紊流状态, 渗流不再服从达西定律。 可用雷诺数Re进行判断:
• 室内试验方法1—常水头试验 法 试验装置:如图 试验条件: Δh,A,L=const 量测变量: Q,t 结果整理 Q=qt=vAt v=ki
三. 渗透试验及渗透系数
§3.2土的渗透性 1. 测定方法
h
土样
L Q
Q
i=Δh/L
QL k Ath
A
适用土类:透水性较大的砂性土
透水性较小的粘性土?
mgz
mg u w
u w
动能:
1 mv 2 2
E mgz mg u 1 mv 2 w 2
总能量:
质量 m 压力 u 流速 v 0 基准面
z
0
单位重量水流的能量:
u v2 h z w 2g
称为总水头,是水流动 的驱动力
水流动的驱动力 - 水头
16
§3 土的渗透性及渗流
§3.2土的渗透性
一.渗流基本概念
板桩墙
基坑
A B L
透水层
不透水层
渗流中的水头与水力坡降
17
§3 土的渗透性及渗流
§3.2土的渗透性
一.渗流基本概念 总水头-单位重量水体所具有的能量
u v2 h z w 2g
z:位置水 头 :压力水 u/γ
w
uA w
Δh A
uB w
第三章 土的渗透性与渗流
土类 只要渗透力足够大,可 发生在任何土中
历时 破坏过程短
后果 导致下游坡面产生局部滑动等
土体内细颗粒通过粗粒形成的 孔隙通道移动
可发生于土体内部和渗流 溢出处
一般发生在特定级配的无 粘性土或分散性粘土
破坏过程相对较长
导致结构发生塌陷或溃口
k
Q
ln(r2 / r1 )
h
2 2
h12
缺点:费用较高,耗时较长
2.影响因素
k f (土粒特性、流体特性)
粒径大小及级配 孔隙比 矿物成分 结构
饱和度(含气量) 水的动力粘滞系数
2.影响因素
(1)土粒特性的影响 粒径大小及级配:是土中孔隙直径大小的主要影响因素;因由粗颗粒形 成的大孔隙可被细颗粒充填,故土体孔隙的大小一般由细颗粒所控制。 孔隙比:是单位土体中孔隙体积的直接度量;对于砂性土,渗透系数k 一般随孔隙比e增大而增大。 矿物成分:对粘性土,影响颗粒的表面力;不同粘土矿物之间渗透系 数相差极大,其渗透性大小的次序为高岭石>伊里石>蒙脱石;塑性指 数Ip综合反映土的颗粒大小和矿物成份,常是渗透系数的参数。
1. 渗流量问题: 基坑开挖或施工围堰的渗水及排水量计算、土 坝渗水量计算、水井供水量或排水量计算等。
2. 渗透破坏问题: 土中渗流会对土颗粒施加渗透力,当渗透力过 大时就会引起土颗粒或土体的移动,产生渗透 变形,甚至渗透破坏。如滑坡、溃坝、地下水 开采引起地面下沉。
3. 渗流控制问题: 当渗流量或渗透变形不满足设计要求时,要研 究如何采取工程措施进行渗流控制。
量测变量: h2,V,T 试验结果
Δh=h1-h2
Q
断面平均流速 v Q A
水力坡降
历时 破坏过程短
后果 导致下游坡面产生局部滑动等
土体内细颗粒通过粗粒形成的 孔隙通道移动
可发生于土体内部和渗流 溢出处
一般发生在特定级配的无 粘性土或分散性粘土
破坏过程相对较长
导致结构发生塌陷或溃口
k
Q
ln(r2 / r1 )
h
2 2
h12
缺点:费用较高,耗时较长
2.影响因素
k f (土粒特性、流体特性)
粒径大小及级配 孔隙比 矿物成分 结构
饱和度(含气量) 水的动力粘滞系数
2.影响因素
(1)土粒特性的影响 粒径大小及级配:是土中孔隙直径大小的主要影响因素;因由粗颗粒形 成的大孔隙可被细颗粒充填,故土体孔隙的大小一般由细颗粒所控制。 孔隙比:是单位土体中孔隙体积的直接度量;对于砂性土,渗透系数k 一般随孔隙比e增大而增大。 矿物成分:对粘性土,影响颗粒的表面力;不同粘土矿物之间渗透系 数相差极大,其渗透性大小的次序为高岭石>伊里石>蒙脱石;塑性指 数Ip综合反映土的颗粒大小和矿物成份,常是渗透系数的参数。
1. 渗流量问题: 基坑开挖或施工围堰的渗水及排水量计算、土 坝渗水量计算、水井供水量或排水量计算等。
2. 渗透破坏问题: 土中渗流会对土颗粒施加渗透力,当渗透力过 大时就会引起土颗粒或土体的移动,产生渗透 变形,甚至渗透破坏。如滑坡、溃坝、地下水 开采引起地面下沉。
3. 渗流控制问题: 当渗流量或渗透变形不满足设计要求时,要研 究如何采取工程措施进行渗流控制。
量测变量: h2,V,T 试验结果
Δh=h1-h2
Q
断面平均流速 v Q A
水力坡降
土力学 第三章渗流
hm
vHm km
h vH kz
h hm H Hm
vm
km
hm Hm
vH
kz
vHm km
v
H
kz Hm
km
1
kz
Hm H
1 km
z k1 k2 k3
承压水
Δh x
H1 H2 H H3
§3.2土的渗透性与渗透规律--层状地基的等效渗透系数
3.算例
H1 1.0m, H2 1.0m, H3 1.0m,
§3.2土的渗透性与渗透规律--渗透系数的测定
• 室内试验方法2—变水头试验法 ▪试验条件: Δh变化,A,L=const
▪试验装置:如图
▪量测变量: Δh ,t
h1
Q 土样 L A
t=t1
t=t2
h2 水头 测管 开关
a
§3.2土的渗透性与渗透规律--渗透系数的测定
• 室内试验方法2—变水头试验法
(vz
v z z
dz )dx
dqe dq o
vx vz 0 x z
z
vz
vz z
dz
vx
vx
vx x
dx
vz
x
§3.3平面渗流与流网 --平面渗流的基本方程及求解
▪ 连续性条件 vx vz 0
x z
▪ 达西定律
vx
kx
h x
;
vz
kz
h z
▪ 假定 kx=kz
描述渗流场内部的测管水头 的分布,是平面稳定渗流的 基本方程式之一
§3.2土的渗透性与渗透规律--渗透系数的测定
• 室内试验方法1—常水头试验 法▪试验装置:如图
▪试验条件: Δh,A,L=const ▪量测变量: V,t
第3章:土的渗透性及渗流
• 基本概念
渗透---土中水从土中孔隙中透过的现象称为渗透 渗透---土中水从土中孔隙中透过的现象称为渗透。 土中水从土中孔隙中透过的现象称为渗透。 渗透性---土体具有被水透过的性质称为渗透性 土体具有被水透过的性质称为渗透性; 渗透性---土体具有被水透过的性质称为渗透性; 渗流---水在土孔隙中的流动问题称为渗流 水在土孔隙中的流动问题称为渗流。 渗流---水在土孔隙中的流动问题称为渗流。 渗透与渗流的基本问题: 渗透与渗流的基本问题: (1)渗流量问题 (2)渗透破坏问题 (3)渗流控制问题
适用:中砂、细砂、粉砂等,粗砂、砾石、卵石等粗颗粒不适用
• 公式应用的假定
• 按照达西定律求出的渗透速度是一种假想的平均流速 , 它假定水在土中的渗透是通过土体截面来进行的。 它假定水在土中的渗透是通过土体截面来进行的。实际 上 ,水在土体中的实际流速要比用达西定律求出的流速 要大得多, 要大得多,如均质砂土的孔隙率为 n,则他们之间的关系 为
3.3 渗透破坏与控制 水在土中渗透时,由于水具有一定的流速, 水在土中渗透时,由于水具有一定的流速, 必然受到土颗粒的阻力作用。 必然受到土颗粒的阻力作用。根据作用力 与反作用力的原理, 与反作用力的原理,水流必然也对土颗粒 有一个大小相等,方向相反的作用力。 有一个大小相等,方向相反的作用力。 • 渗透力---渗流作用在单位体积土体中土颗 渗透力---渗流作用在单位体积土体中土颗 粒上的作用 作用力 粒上的作用力(kN/m3),作用方向与水流 方向一致。 方向一致。
• 层状地基的等效渗透系数 大多数天然沉积土层是由渗透系数不同的层土所组 宏观上具有非均质性。 成,宏观上具有非均质性。
厚度等效
层状土层
渗透系数等效
单一土层
土力学土的渗透性和渗流
水平方向的h>垂直方向v
整理课件
4、渗透系数k的经验确定方法 ➢ 洁净不含细粒土的松砂 k=1.0-1.5(d10)2 ➢ 较密实、击实砂土
k=0.35(d15)2
➢ 黏性土 k=C3(en/1+e)
整理课件
5、成层土的等效渗透系数
(1)与层面平行的渗流的情况(水平渗透系数)
q1x k1
H1
qx q2x
kx
1 H
n
ki Hi
i1
整理课件
(2)垂直渗透系数
根据水流连续定理,通过整个 土层的渗流量等于通过各土层
k1
qy H1
q1y
k2
H2 H
k3
q2y H3
q3y
总水头损失等于各
的渗流量
qyq1yq2y qny
各土层的相应的水力坡降为i1、 i2、…、in,总的水力坡降为i
kyiA k1 i1A k2i2A kninA
2.管涌——在渗流作用下,土中的细小颗粒在粗颗粒形成的孔隙 中移动,随着土孔隙不断扩大,发生移动并被带出的现象, 渗透 速度不断增加,较粗的颗粒也相继被水流带走,最终导致土体内 形成贯通的渗流管道,造成土体塌陷。
土体在渗透水流作用下,细小颗粒被带出,孔隙逐渐增大,形成 能穿越地基的细管状渗流通道,掏空地基或坝体,使其变形或失 稳。管涌既可以发生在土体内部,也可以发生在渗流出口处,发 展一般有个时间过程,是一种整理渐课件进性的破坏
第3章 土的渗透性和渗流
整理课件
整理课件
土的渗透性及渗流
土的渗透性与土的强度、变形特性一起,是土力 学中的几个重要课题
土的渗透性研究的三个主要方面问题及其与工程 的关系
研究土的渗透性规律及其与工程的关系具有重要 意义,土的渗透性是反映土的孔隙性规律基本内 容之一
河海大学土力学3-第三章.ppt
水 2.0 力 坡 降 1.5 1.0 0.5 0 0 0.5 1.0 1.5 2.0 2.5 流速 (m/h) 达西定律 适用范围
v d 10 Re
Re<5时层流 Re >200时紊流 200> Re >5时为过渡区
达西定律的适用范围
§3.2 土的渗流性与渗透规律
两种特例
在纯砾以上的很粗的粗粒土如堆 石体中,在水力坡降较大时,达 西定律不再适用,此时:
• 结构
水的性质
在宏观构造上,天然沉积层状 粘性土层,扁平状粘土颗粒常 呈水平排列,常使得k水平﹥k垂直 在微观结构上,当孔隙比相同 时,凝聚结构将比分散结构具 有更大的透水性
渗透系数的影响因素
§3.2性质 • 粒径大小及级配 • 孔隙比 • 矿物成分
§3.2 土的渗流性与渗透规律
已知条件 : h h
vi v
i
H
H
i
h z v kz k1 k2 k3 H1
x
达西定律: vi = ki (Δhi / Hi )
v = kz (Δh / H )
等效条件:
hi vH kz v iH ki
i
H2
H3
H
h
vH kz
渗流中的水头与水力坡降
§3.2 土的渗流性与渗透规律
总水头:单位重量水体所具有的能量
h z
u w
v
2
2g
位置水头Z:水体的位置势能(任选基准面)
压力水头u/w:水体的压力势能(u孔隙水压力) 流速水头V2/(2g):水体的动能(对渗流多处于层流≈0)
渗流的总水头: h
水的性质
岭石>伊里石>蒙脱石 ;当粘土 中含有可交换的钠离子越多时, 其渗透性将越低 塑性指数Ip综合反映土的颗粒大 小和矿物成份,常是渗透系数的 参数
v d 10 Re
Re<5时层流 Re >200时紊流 200> Re >5时为过渡区
达西定律的适用范围
§3.2 土的渗流性与渗透规律
两种特例
在纯砾以上的很粗的粗粒土如堆 石体中,在水力坡降较大时,达 西定律不再适用,此时:
• 结构
水的性质
在宏观构造上,天然沉积层状 粘性土层,扁平状粘土颗粒常 呈水平排列,常使得k水平﹥k垂直 在微观结构上,当孔隙比相同 时,凝聚结构将比分散结构具 有更大的透水性
渗透系数的影响因素
§3.2性质 • 粒径大小及级配 • 孔隙比 • 矿物成分
§3.2 土的渗流性与渗透规律
已知条件 : h h
vi v
i
H
H
i
h z v kz k1 k2 k3 H1
x
达西定律: vi = ki (Δhi / Hi )
v = kz (Δh / H )
等效条件:
hi vH kz v iH ki
i
H2
H3
H
h
vH kz
渗流中的水头与水力坡降
§3.2 土的渗流性与渗透规律
总水头:单位重量水体所具有的能量
h z
u w
v
2
2g
位置水头Z:水体的位置势能(任选基准面)
压力水头u/w:水体的压力势能(u孔隙水压力) 流速水头V2/(2g):水体的动能(对渗流多处于层流≈0)
渗流的总水头: h
水的性质
岭石>伊里石>蒙脱石 ;当粘土 中含有可交换的钠离子越多时, 其渗透性将越低 塑性指数Ip综合反映土的颗粒大 小和矿物成份,常是渗透系数的 参数
土力学-土渗透和渗流
土 样 内 对 水 流 的 阻 力 : J ' = j ' L A = - J
(3)渗透力的计算 考虑下图的平衡条件得:
w h w A L A w j'L A w h 1 A
j' w(h1hwL)
L
w
h L
wi
j j' wi
由上式可知:渗透力是一种体积力(而不是面 力),其量纲与rw相同 渗透力的大小和水力梯度成正比,其方向与渗流 方向一致。 (4)临界水力梯度
Bernoulli’s Equation
z位能水头;u静水压力;w水重度;h-总水头
不 计 流 速 的 影 响 : h z u w
hA HAZA
HA uA /w
hB HBZB
HB uB /w
hhA hB
水力梯度i:
单位长度总水头 的变化
i h L
二、达西渗流定律:
1856年法国学者Darcy根据试验结果建立下式
v ki
v—渗流速度(宏观平均值)
k—渗透系数 q v A
q—单位时间流过截面A的水量(平均流量) A—垂直于渗流方向土的截面面积
Q—总流量(通过确定面积A) t —渗流时间
Q qt
渗透系数k的确定方法
实
验
方
法
室内试验方法定水头试验-适用于中.粗砂
变 水 头 试 验 - 适 用 于 粘 土 . 细 粒 土
2、土骨架与孔隙水分开考虑(见图3.8等号右端)
(1)土骨架反力 土 粒 有 效 重 量 :
w’=r’·L·A 向下的总渗透力:
J=j·L·A 滤网向上的支承力:
P
(2)孔隙水的受力 ● 孔隙水重量+土
(3)渗透力的计算 考虑下图的平衡条件得:
w h w A L A w j'L A w h 1 A
j' w(h1hwL)
L
w
h L
wi
j j' wi
由上式可知:渗透力是一种体积力(而不是面 力),其量纲与rw相同 渗透力的大小和水力梯度成正比,其方向与渗流 方向一致。 (4)临界水力梯度
Bernoulli’s Equation
z位能水头;u静水压力;w水重度;h-总水头
不 计 流 速 的 影 响 : h z u w
hA HAZA
HA uA /w
hB HBZB
HB uB /w
hhA hB
水力梯度i:
单位长度总水头 的变化
i h L
二、达西渗流定律:
1856年法国学者Darcy根据试验结果建立下式
v ki
v—渗流速度(宏观平均值)
k—渗透系数 q v A
q—单位时间流过截面A的水量(平均流量) A—垂直于渗流方向土的截面面积
Q—总流量(通过确定面积A) t —渗流时间
Q qt
渗透系数k的确定方法
实
验
方
法
室内试验方法定水头试验-适用于中.粗砂
变 水 头 试 验 - 适 用 于 粘 土 . 细 粒 土
2、土骨架与孔隙水分开考虑(见图3.8等号右端)
(1)土骨架反力 土 粒 有 效 重 量 :
w’=r’·L·A 向下的总渗透力:
J=j·L·A 滤网向上的支承力:
P
(2)孔隙水的受力 ● 孔隙水重量+土
土力学-第三章土的渗透性及渗流
aL
At2
t1 lg
h1 h2
-adh=kAh/Ldt
分离变量 积分
k=
aL
At2
t1 ln
h1 h2
天津城市建设学院土木系岩土教研系数
常用的有现场井孔抽水试验或井孔注水试验。 对于均质粗粒土层,现场测出的k值比室内试验得出的值要准确
第3章 土的渗透性及渗流
3.1 概述 3.2 土的渗透性 3.3 土中二维渗流及流网(了解) 3.4 渗透破坏与控制
土力学
天津城市建设学院土木系岩土教研室
第3章 土的渗透性及渗流
3.1 概述 3.2 土的渗透性 3.3 土中二维渗流及流网(了解) 3.4 渗透破坏与控制
土力学
天津城市建设学院土木系岩土教研室
渗流作用于单位土体的力
j
J AL
whA
AL
i
w
说明:渗透力j是渗流对单位土体的作用力,是一种体积力,其大 小与水力坡降成正比,作用方向与渗流方向一致,单位为kN/m3
天津城市建设学院土木系岩土教研室
3.4.2 流砂或流土现象
土力学
渗透力的存在,将使土体内部受力发生变化,这种变化对 土体稳定性有显著的影响
(3)土的饱和度
土中封闭气体阻塞渗流通道,使土的渗透系数降低。封闭气体含量愈多, 土的渗透性愈小。
(4)土的结构
细粒土在天然状态下具有复杂的结构,一旦扰动,原有的过水通道的形态、 大小及其分布都改变,k值就不同。扰动与击实土样的k值比原始的要小
(5)水的温度
粘滞系数随水温发生明显的变化。水温愈高,水的粘滞系数愈小,土的渗 透系数则愈大。
h v2 p z
第三章 土的渗透性及渗流
h i L
vi
第2节 达西定律
2. 达西定律 渗透定律
k: 反映土的透水性能的比例系数,称为渗透系数
物理意义:水力坡降i=1时的渗流速度 单位:mm/s, cm/s, m/s, m/day
vi
在层流状态的渗流中,渗透速度v与水力坡降i 的一次方成正比,并与土的性质有关。 注意: V:假想渗流速度,土体试样全断面的平均渗流速度
V h Q kiA k A t l
V /t Vl k Ai Aht
第2节 达西定律
例题2.1 在图2.2所示的常水头渗透试验(h=45cm,l=25cm) 中,若土试样的断面积是120cm2,渗透系数是 2.5×10-2cm/sec,求10s内土的透水量。 解: 已知 A=120cm2,k =2.5×10-2cm/sec,t =10sec, h=45cm,l=25cm 根据常水头渗透试验透水量公式,得10sec内土的透 水量为:
②致密的粘土
v
i>i0, v=k(i - i0 )
o i0 i
第2节 达西定律
三. 渗透系数的测定 测定土的渗透系数的方法有:
常水头试验法
室内试验测定方法
变水头试验法
井孔抽水试验 井孔注水试验
野外试验测定方法
第2节 达西定律
1.常水头渗透试验
该试验适用于渗透性大的粗颗粒土。试验装置如图所示,圆 柱体试料断面积为A,长度为l,保持水头差h不变,测定经过 一定时间t的透水量是V,渗透系数k可根据式导出如下:
第三章 土的渗透性及渗流
§3.1 地下水引发的工程问题 §3.2 达西定律 §3.3 流网理论简介 §3.4 流土、管涌及其防治
1. 水是土的一个组成成分,在地下工程中举足轻重。
第三章 土的渗透性与渗流
管涌破坏土体局部范围的颗粒同时发生移动只发生在水流渗出的表层只要渗透力足够大可发生在任何土中破坏过程短导致下游坡面产生局部滑动等现象位置历时后果土体内细颗粒通过粗粒形成的孔隙通道移动可发生于土体内部和渗流溢出处一般发生在特定级配的无粘性土或分散性粘土破坏过程相对较长导致结构发生塌陷或溃口形成条件土体处于稳定状态土体发生流土破坏土体处于临界状态经验判断
考核知识点
1.水力梯度(出现渗流的决定因素) 2.达西定律(定义、表达式、适用条件) 3.渗透系数(定义、单位、测定方法) 4.影响渗透性的因素
2013---1 单选
6.衡量土的渗透性大小的指标是() A.相对密度 B 水力梯度 C 土的有效粒径 D 渗透系数
2013---1 判断题
QA
h L
Q 断面平均流速 v A
水力坡降
vi
i h L
2. 达西定律
渗透定律
在层流状态的渗流中,渗透速度v与水力坡降i 的一次方成正比,并与土的性质有关。
vi
v ki
k: 反映土的透水性能的比例系数,称为渗透系数 物理意义:水力坡降i=1时的渗流速度 单位:mm/s, cm/s, m/s, m/day 注意: V:假想渗流速度,土体试样全断面的平均渗流速度 Vs:实际平均渗流速度,孔隙断面的平均渗流速度
临界水力坡降
icr = γ’ /γw
(G s 1) w 1 e
icr
ds 1 1 e
d
s
11 n
三、渗透变形(渗透破坏)
土工建筑物及地基由于渗流作用而出现的变形或破坏 基本类型
流土 管涌 形成条件 防治措施
1. 流土
在向上的渗透作用下,表层局部土 体颗粒同时发生悬浮移动的现象。
考核知识点
1.水力梯度(出现渗流的决定因素) 2.达西定律(定义、表达式、适用条件) 3.渗透系数(定义、单位、测定方法) 4.影响渗透性的因素
2013---1 单选
6.衡量土的渗透性大小的指标是() A.相对密度 B 水力梯度 C 土的有效粒径 D 渗透系数
2013---1 判断题
QA
h L
Q 断面平均流速 v A
水力坡降
vi
i h L
2. 达西定律
渗透定律
在层流状态的渗流中,渗透速度v与水力坡降i 的一次方成正比,并与土的性质有关。
vi
v ki
k: 反映土的透水性能的比例系数,称为渗透系数 物理意义:水力坡降i=1时的渗流速度 单位:mm/s, cm/s, m/s, m/day 注意: V:假想渗流速度,土体试样全断面的平均渗流速度 Vs:实际平均渗流速度,孔隙断面的平均渗流速度
临界水力坡降
icr = γ’ /γw
(G s 1) w 1 e
icr
ds 1 1 e
d
s
11 n
三、渗透变形(渗透破坏)
土工建筑物及地基由于渗流作用而出现的变形或破坏 基本类型
流土 管涌 形成条件 防治措施
1. 流土
在向上的渗透作用下,表层局部土 体颗粒同时发生悬浮移动的现象。
土力学3章土的渗透性及渗流
经验判断:
[ i ] : 允许坡降 Fs: 安全系数1.5~2.0
3. 防治措施
防渗斜墙及铺盖
土石坝 浸润线
不透水层
透水层
防治流土
减小i :上游延长渗径; 下游减小水压
增大[i]:下游增加透水盖重
防治管涌 改善几何条件:设反滤层等 改善水力条件:减小渗透坡降
历时 破坏过程短
土体内细颗粒通过粗粒形成 的孔隙通道移动
可发生于土体内部和渗流 溢出处
一般发生在特定级配的 无粘性土或分散性粘土
破坏过程相对较长
后果 导致下游坡面产生局部滑动等 导致结构发生塌陷或溃口
2.形成条件 流土
i < icr : i > icr : i = icr :
土体处于稳定状态 土体发生流土破坏 土体处于临界状态
dq e vxdz vzdx
dq o
(vx
vx x
dx)dz
(vz
vz z
dz )dx
dq e dq o
vx vz 0 x z
达西定律
z
vz
vz z
dz
vx
vx
vx x
dx
vz
x
假定 k x k z
h vx k x x ;
h vz k z z
坝体
渗流
粘性土k1<<k2 砂性土k2
原因: W J 0
i icr
icr
ds 1 1 e
(d
s
1)(1 n) — —和土的密实程度有关
流土与管涌的比较
流土
管涌
土力学第3章.土的渗透性与渗流
3.3.2 不同土渗透系数的范围
不同类的土之间的渗透系数相差极大,一般的范围见表3-2。 应记住:粘土,k ≤ 10-6cm/s;粉土,10-6 < k ≤ 10-4cm/s;砂,
10-3 < k ≤ 10-1cm/s。 卡萨格兰德(CasagrandeБайду номын сангаас1939)建议的渗透系数的三个重要
界限值为 1.0、10-4 和 10-9cm/s,在工程应用中很有意义。一般认为: 1.0cm/s是土中渗流的层流和紊流的界限;10-4cm/s 是排水良好与排 水不良之界限,也是对应于发生管涌的敏感范围;10-9 cm/s大体上 是土的渗透系数的下限。
2. 颗粒的尺寸及级配:渗流通道(即土中孔隙通道)越细,
对水流的阻力就越大,而土中孔隙通道的粗细与颗粒的尺寸和级配
有关,特别是与其中较细的颗粒的尺寸有关。故颗粒越大,则孔隙
通道越大, k 也越大。
对于均匀砂土,当有效粒径 d10 = 0.103mm 时,Hazen (1911)建议了
以下经验公式: 系数。
试验中,量水管水位、水力坡降、流 速和流量都是随时间变化的函数。 根据达西定律,在任意时刻 t 的单 位面积流量:
q v ki k h L
图3-6 变水头渗透试验原理图
计算公式推导
在 dt 时段中从管中流出试样的水量: 在 dt 时段中从管中流入试样的水量:
V1
k
h L
Adt
V2 a dh
图3-4渗流流速与水力坡降的两种非 线性关系
对于硬粘土,为简化,以直线的延长线与横坐标的交点 i0 作为起始梯度
v k2 i i0
(a) 卵石中渗流 (b) 硬粘土中渗流
3.3 土的渗透系数
土力学 第3章 土的渗透性与渗流
(课本第42-43页)
假如: 总应力为σ,截面面积为A
有效应力为σs 土颗粒接触面积之和为As 孔隙水压力为uw 孔隙水截面面积之和为Aw 孔隙气压力为ua 气体截面面积之和为Aa
则:
u ' u ' u 'u u ' u
a
a
A s As uw Aw ua Aa
总 固 液 气
(课本第41页) 基坑降水和预防流砂发生的措施
1、井点降水:在基坑 周边打抽水井,把地 下水位降低到基坑下 0.5~1.0m。
注意:抽水泵不能停 电,否则水位恢复, 基坑浸水、地下室浮 起。
基坑
透水层 不透水层
基坑降水井点计算将在《基础工程》中学习
(课本第41页) 基坑降水和预防流砂发生的措施
h 渗透速度:v k L ki
或
渗流量为: q vA kiA
q——单位渗流量,cm3/s; v——渗透速度,cm/s; k——渗透系数,cm/s; i——水头梯度(△h/L) ; A——过水面积,cm2。 v——渗透速度是假想的平均渗流速度,不是地下水的实际流速,是土体 断面包括了土颗粒所占的面积的平均渗透速度,但水仅仅通过土体中的 孔隙流动。
2、设置地下连续墙或 钢板桩:在基坑周边 施工地下连续墙或打 钢板桩,隔断地下水,
基坑
同时在基坑内设置集 中井,把地下水位降 低到基坑下0.5~1.0m。
不透水层
透水层
流砂导致工程破坏示例 (课本第41-42页)
(a)基坑因流砂破坏;(b)河堤外覆盖层流砂涌出;(c)流 砂涌向基坑引起房屋不均匀沉降
渗流:指土中水在重力作用下穿过土中孔隙流动的现象。
渗透性:指土具有被水透过的性质。 引起工程 问题 渗漏问题——水库大坝、河流堤岸等水量损 失,甚至造成溃坝、决堤。 渗透稳定问题——引起土体应力、强度、变形 等变化,出现流砂、管涌问题, 造成滑坡、基坑或挡土墙失稳。
土力学 第3章 土的渗流
三、在稳定渗流作用作用下发生由上向下的渗流情况。此时在 土层表面b-b上的孔隙水应力与静水情况相同,仍等于γwh1,面aa平面上的孔隙水应力将因水头损失而减小,其值为
第三章 土的渗透性
a-a平面上的总应力仍保持不变,等于
于是,根据有效应力原理,a-a平面上的有效应力为
地下水按埋藏条件可分上层滞水、潜水、承压水3类。 上层滞水:存在于地面以下 局部隔水层上面的积水。分 布范围有限,是季节性或临 时性的水源。 潜水:埋藏在地面以下第一 个连续稳定的隔水层以上, 具有自由水面的地下水。潜 水的水面标高称为地下水位。 潜水水位往往低于上层滞水。 承压水:充满在两个稳定的 隔水层问的承受一定静水压 力的地下水。承压水上下都有 隔水层存在,它的埋藏区与补 给区不一致。 因此,承压水的动态变化, 受局部气候的影响不明显。
5
3-2
土的渗透性
一、达西渗透定律 由于土体中的孔隙一般非常微小,水在土体中流动时的粘滞阻力很大 、流速缓慢,因此,其流动状态大多属于层流,即相邻2个水分子运 动的轨迹相互平行而不混流。 著名的达西(Darcy)渗透定律:
渗透速度:
h v k ki L
或 渗流量为:
q vA kiA
qx q1x q2 x qnx qix
i 1
n
整个土层与层面平行的平均渗流系数为:
kx
1 H
k H
i 1 i
n
i
第三章 土的渗透性
如图3-6 (b) 所示与层面垂直的渗流情况。通过整个土层的总 渗流量qy应为各土层渗流量之总和,即
qy q1y q2 y qny
第三章 土的渗透性
a-a平面上的总应力仍保持不变,等于
于是,根据有效应力原理,a-a平面上的有效应力为
地下水按埋藏条件可分上层滞水、潜水、承压水3类。 上层滞水:存在于地面以下 局部隔水层上面的积水。分 布范围有限,是季节性或临 时性的水源。 潜水:埋藏在地面以下第一 个连续稳定的隔水层以上, 具有自由水面的地下水。潜 水的水面标高称为地下水位。 潜水水位往往低于上层滞水。 承压水:充满在两个稳定的 隔水层问的承受一定静水压 力的地下水。承压水上下都有 隔水层存在,它的埋藏区与补 给区不一致。 因此,承压水的动态变化, 受局部气候的影响不明显。
5
3-2
土的渗透性
一、达西渗透定律 由于土体中的孔隙一般非常微小,水在土体中流动时的粘滞阻力很大 、流速缓慢,因此,其流动状态大多属于层流,即相邻2个水分子运 动的轨迹相互平行而不混流。 著名的达西(Darcy)渗透定律:
渗透速度:
h v k ki L
或 渗流量为:
q vA kiA
qx q1x q2 x qnx qix
i 1
n
整个土层与层面平行的平均渗流系数为:
kx
1 H
k H
i 1 i
n
i
第三章 土的渗透性
如图3-6 (b) 所示与层面垂直的渗流情况。通过整个土层的总 渗流量qy应为各土层渗流量之总和,即
qy q1y q2 y qny
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
vA v q vA vs Av vs nA n
孔隙率n ,则Av nA
【例3.2】 某土样采用南 55型渗透仪在实验室进 行渗透系数试验,试验高度为2.0cm ,面积30cm 2 , 3 40 cm 160 cm 试样水头 ,渗透水量为 24h 共 ,求该土样 的渗透系数? h 40cm 0 i 【解】水力梯度 L 2cm 20
静水 A zB
0 基准面
测管水头:测管水面到基准面的垂 zA 直距离,等于位置水头和压力水头 0 之和,表示单位重量液体的总势能 在静止液体中各点的测管水头相等
2)水力坡降 水在任意一点的总水头:单位重量水体所具有的能量
v2 h z w 2g uw
uA w
渗流的速度很小,忽略 hA 不计,则总水头:
u w
zA
0
L
B
h2 0
zB
基准面
测管水头
A点总水头: B点总水头: 水头差:
uA h1 z A w
水力坡降:
i h L
u h2 zB B w
h h1 h 2
【例3.1】渗流试验装置如图 a a b b c c 3.2,试求: (1)土样中 、 和 3个截面的压力水头和总水头; (2)截面a a 至 , 至 及 至 c c的水头损失; c c a a b b b b (3)水在土样中渗流的水力梯度。
1856 年达西(Darcy)在研究城 市供水问题时进行的渗流试验 达西定律:在层流状态的渗 流中,渗透速度 v 与水力坡降 i 的一次方成正比,并与土的 性质有关 渗透系数 k: 反映土的透水性 能的比例系数,其物理意义 为水力坡降 i = 1 时的渗流速 度 , 单 位 : cm/s, m/s, m/day 渗透速度 v :土体试样全断面 的平均渗流速度,也称假想
hab 30cm 11.25cm 18.75cm hbc 11.25cm 5cm 6.25cm
hwb 11.25cm 5cm 6.25cm aa b b
hab 或 hbc 水在土样中渗流的水力梯度 i 可由hac , 及相应的流程求得:
hac 25 i 1.25 15 5 20
Q 160cm 3 5 v 6 . 2 10 cm / s 渗透速度 2 At 30cm 24 60 60s
h z
A zA L
基准面
w
uw
B
在单位流程中水头损失的多少表征水在土中渗流 的推动力大小,可以用水力坡降来表示:
i h L
总水头-单位重量水体所具有的能量
u v2 h z w 2g
z:位置水头 u/γw:压力水头
h1
uA w
Δh A
uB w
V2/(2g):流速水头≈0
总水头: h z
第3章土的渗透性和渗流
主要内容
§3.1 §3.2 §3.3 §3.4
土的渗透性与达西定律 层状土的等效渗透系数 二维渗流及应用 渗透力与渗透破坏
概
述
碎散性 多孔介质 三相体系 能量差
孔隙流体流动
土是一种碎散的多孔介质, 其孔隙在空间互相连通。当 饱和土中的两点存在能量差
渗流
时,水就在土的孔隙中从能
hac 30cm 5cm 25cm
截面b b的总水头 hb 、位置水头 zb 和压力水头 hwb 分别为:
hb hc zb 5cm
5 5 hac 5cm 25cm 11.25cm 15 5 20
从截面 至 的水头损失hab 及截面b b至 c c 的的水头损失 hbc 分别为:
Q
h1
L
A
透水石
Q
达西渗透试验
h2
二、达西定律
1)渗透试验和达西定律在层流状态的渗流中,渗透 速度v与水力坡降i的一次方成正比,并与土的性质 有关。 q Q h A v ki q k kAi A t L
(k—土的渗透系数,其物理意 义表示单位水力坡降时的渗流 速度,cm/s或m/d。) V:假想渗流速度,土体试样全断面的平均渗流速度 Vs:实际平均渗流速度,孔隙断面的平均渗流速度
水在饱和土体中渗流时,其平均流速为:
Q v nAt
(n—土体的孔隙率)
2)水力坡降
位置水头:到基准面的竖直距离, 代表单位重量的液体从基准面算起 所具有的位置势能
u 0 p a B
u A 压力水头:水压力所能引起的自由 w 水面的升高,表示单位重量液体所
uB w
具有的压力势能
量高的点向能量低的点流动 水、气等在土体孔隙中流动的现象 土具有被水、气等液体透过的性质 渗透特性 强度特性 变形特性 非饱和土的渗透性 饱和土的渗透石坝坝基坝身渗流
石坝 浸润线
渗流量
透水层
渗透变形
不透水层
土的渗透性及渗透规律 二维渗流及流网
渗流量 水头梯度 渗透压力 渗透变形
渗透力与渗透变形
渗流滑坡
土坡稳定分析
板桩围护下的基坑渗流 板桩墙 基坑 渗透压力 渗流量
透水层 不透水层 Q
天然水面
渗透变形
渗流时地下水位
透水层 不透水层 水井渗流
原地下水位
渠道、河流渗流
§3.1 土的渗透性与达西定律
一.土的渗透性 二.达西定律 能量方程 渗流速度的规律 渗透特性
三.渗透系数的测定及影响因素
[解]取截面 c c为基准面,则截面a a和 c c 的 位置水头z a和 zc 、压力水头 h wa 和 h wc 及总水头 ha 和 hc 分别为:
z a 15cm 5cm 20cm hwa 10cm ha 20cm 10cm 30cm zc 0 hwc 5cm hc 0cm 5cm 5cm 从截面 a a 至 c c 的水头损失hac 为:
一、土的渗透性
A
基坑
L
透水层 不透水层
B
渗流为水体的流动,应满 足液体流动的三大基本方 程:连续性方程、能量方 程、动量方程
1)渗流速度
水在饱和土体中渗流时,在垂直于渗流方向 取一个土体截面,该截面称为过水截面。 在时间t内渗流通过过水截面(其面积为A)的渗 流量为Q,则渗流速度为:
v Q At