初二上册数学知识点总结归纳【五篇】
初二数学上册知识点汇总(精华15篇)
初二数学上册知识点汇总(精华15篇)初二数学上册知识点汇总1①线段有两条对称轴,是这条线段的垂直平分线和线段所在的直线。
②角有一条对称轴,是角平分线所在的直线。
③等腰三角形有一条对称轴,是顶角平分线所在的直线。
④等边三角形有三条对称轴,分别是三个顶角平分线所在的直线。
⑤矩形有两条对称轴,是相邻两边的垂直平分线。
⑥正方形有四条对称轴,是相邻两边的垂直平分线和对角线所在的直线。
⑦菱形有两条对称轴,是对角线所在的'直线。
⑧等腰梯形有一条对称轴,是两底垂直平分线。
⑨正多边形有与边数相同条的对称轴。
⑩圆有无数条对称轴,是任何一条直径所在的直线。
初二数学上册知识点汇总2①建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;②根据具体问题确定单位长度;③在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.1.平移:把一个图形整体沿某一方向移动一定的距离,图形的这种移动,叫做平移。
平移后图形的位置改变,形状、大小不变。
2.在平面直角坐标系内:如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的`新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。
3.图形平移与点的坐标变化之间的关系:(1)左、右平移:原图形上的点(x、y),向右平移a个单位(x+a,y);原图形上的点(x、y),向左平移a个单位(x-a,y);(2)上、下平移:原图形上的点(x、y),向上平移a个单位(x,y+b);原图形上的点(x、y),向下平移a个单位(x,y-b)。
初二数学上册知识点汇总31.性质:①不等式的两边都加上或减去同一个整式,不等号方向不变。
②不等式的两边都乘以或者除以一个正数,不等号方向不变。
③不等式的两边都乘以或除以同一个负数,不等号方向相反。
2.分类:①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的'最高次数是1的不等式叫一元一次不等式。
初二上册数学知识点总结
初二数学上册知识点总结第一章勾股定理1、探索勾股定理①勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b和c 分别表示直角三角形的两直角边和斜边,那么a2+b2=c22、一定是直角三角形吗①如果三角形的三边长a b c满足a2+b2=c2 ,那么这个三角形一定是直角三角形3、勾股定理的应用第二章实数1、认识无理数①有理数:总是可以用有限小数和无限循环小数表示②无理数:无限不循环小数2、平方根①算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平方根②特别地,我们规定:0的算数平方根是0③平方根:一般地,如果一个数x的平方等于a,即x2=a。
那么这个数x就叫做a的平方根,也叫做二次方根④一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根⑤正数有两个平方根,一个是a的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±⑥开平方:求一个数a的平方根的运算叫做开平方,a叫做被开方数3、立方根①立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根,也叫三次方根②每个数都有一个立方根,正数的立方根是正数;0立方根是0;负数的立方根是负数。
③开立方:求一个数a的立方根的运算叫做开立方,a叫做被开方数4、估算①估算,一般结果是相对复杂的小数,估算有精确位数5、用计算机开平方6、实数①实数:有理数和无理数的统称②实数也可以分为正实数、0、负实数③每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大7、二次根式①含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数②=(a≥0,b≥0),=(a≥0,b>0)③最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式④化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式第三章位置与坐标1、确定位置①在平面内,确定一个物体的位置一般需要两个数据2、平面直角坐标系①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。
初二数学上学期知识点总结优秀6篇
初二数学上学期知识点总结优秀6篇初二数学上册知识点篇一一.知识概念1.同底数幂的乘法法则:m,n都是正数2..幂的乘方法则:m,n都是正数3.整式的乘法(1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
(3)多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
4.平方差公式:5.完全平方公式:6.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即a≠0,m、n都是正数,且mn.在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.②任何不等于0的数的0次幂等于1,即,如,-2.50=1,则00无意义。
③任何不等于0的数的-p次幂p是正整数,等于这个数的p的次幂的倒数,即a≠0,p 是正整数,而0-1,0-3都是无意义的;当a0时,a-p的值一定是正的;当a0时,a-p的值可能是正也可能是负的,如,④运算要注意运算顺序。
7.整式的除法单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加。
8.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。
分解因式的一般方法:1.提公共因式法2.运用公式法3.十字相乘法分解因式的'步骤:1先看各项有没有公因式,若有,则先提取公因式;2再看能否使用公式法;3用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;4因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;5因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止。
初二上册数学知识点总结(通用9篇)
初二上册数学知识点总结初二上册数学知识点总结(通用9篇)总结就是对一个时期的学习、工作或其完成情况进行一次全面系统的回顾和分析的书面材料,它有助于我们寻找工作和事物发展的规律,从而掌握并运用这些规律,为此要我们写一份总结。
那么总结要注意有什么内容呢?下面是小编收集整理的初二上册数学知识点总结,仅供参考,希望能够帮助到大家。
初二上册数学知识点总结1(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a2—b2=(a+b)(a—b)a2+2ab+b2=(a+b)2a2—2ab+b2=(a—b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式1.平方差公式(1)式子:a2—b2=(a+b)(a—b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2和(a—b)2=a2—2ab+b2反过来,就可以得到:a2+2ab+b2 =(a+b)2a2—2ab+b2 =(a—b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2—2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
初二数学上册知识点归纳
初二数学上册知识点归纳1. 数的运算- 有理数的四则运算,包括加、减、乘、除。
- 绝对值的计算方法。
- 有理数的乘方和开方。
- 有理数大小比较的方法。
2. 代数基础- 代数式的基本概念,包括单项式、多项式、同类项等。
- 代数式的加减运算法则。
- 代数式的乘除运算法则。
- 整式的乘法公式,如平方差公式和完全平方公式。
3. 一元一次方程- 一元一次方程的概念和解法。
- 一元一次方程的应用问题,如行程问题、工程问题等。
- 一元一次方程的解的检验方法。
4. 一元一次不等式- 一元一次不等式的概念和解法。
- 一元一次不等式的解集表示方法。
- 一元一次不等式的应用问题。
5. 线段与角- 线段的性质,包括线段的和差、中点等。
- 角的概念,包括锐角、直角、钝角、平角等。
- 角度的表示方法,包括度、分、秒。
6. 三角形- 三角形的基本概念,包括三角形的边长、角度等。
- 三角形的分类,如等边三角形、等腰三角形、直角三角形等。
- 三角形的内角和定理。
- 三角形的外角定理。
7. 多边形- 多边形的基本概念,包括边数、顶点数等。
- 多边形的内角和定理。
- 多边形的外角和定理。
8. 圆- 圆的基本概念,包括圆心、半径、直径等。
- 圆的性质,如圆周角定理、圆心角定理等。
- 圆的周长和面积的计算公式。
9. 数据的收集与处理- 数据收集的方法,包括调查法、实验法等。
- 数据的整理,如制作条形图、扇形图等。
- 数据的分析,包括平均数、中位数、众数等的计算。
10. 概率初步- 概率的基本概念,包括随机事件、必然事件、不可能事件等。
- 概率的计算方法,如古典概型、几何概型等。
- 概率在实际问题中的应用。
八年级数学上册全册知识点
八年级数学上册全册知识点第一章:有理数1.1 有理数的概念有理数包括整数和分数,它们可以表示为有限小数或无限循环小数。
有理数的大小可以通过大小比较和绝对值计算。
1.2 有理数的四则运算有理数的加减乘除可以通过化简分数、通分、约分、去括号、合并同类项、移项、变形等方法来进行。
1.3 有理数的应用有理数在日常生活中广泛应用,比如表示温度、货币、距离、重量等。
第二章:代数式2.1 代数式的概念代数式是由数字、字母及其组合形成的式子,它可以表示一个数或一组数。
2.2 代数式的加减乘除代数式的加减乘除可以通过加减同类项、乘法分配律、合并同类项、化简等方法来进行。
2.3 代数式的应用代数式在数学、物理、化学等学科中有广泛应用,比如解方程、表示函数、推导公式等。
第三章:方程与不等式3.1 方程的概念方程是等式的一种特殊形式,它将未知数与已知数以某种关系相等。
3.2 解一元一次方程解一元一次方程需要运用化简、移项、变形、判断等方法。
3.3 不等式的概念和解法不等式是含有 <、>、≤、≥ 等符号的式子,解不等式需要运用加减乘除、移项、变形、取反等方法。
第四章:比例与分数4.1 比例的概念比例是指两个同类量之间的量的比值,可以用于构建等比例、等角比例、正比例等模型。
4.2 分数的基础概念分数的基础概念包括真分数、假分数、带分数、化简分数、约分等。
4.3 分数运算和分数的应用分数的加减乘除需要运用通分、化简分数、约分等方法,分数在日常生活中也有广泛应用,比如表示比例、计算面积等。
第五章:三角形5.1 三角形的定义与分类三角形是由三条线段连接形成的图形,根据边长和角度不同可以进行分类,包括等边三角形、等腰三角形、直角三角形等。
5.2 三角形的性质三角形有很多性质,包括内角和为180度、任一两边之和大于第三边等。
5.3 三角形的面积、周长计算三角形的面积可以用海伦公式、高度公式、正弦定理、余弦定理等方法计算得出,周长则可以根据边长之和计算得出。
八年级初中数学上册知识点
八年级初中数学上册知识点数学是一门需要严谨思维和灵活变通的学科,对于中学阶段的学生来说更是如此。
在八年级初中数学上册中,有许多知识点需要掌握和熟练运用。
本文将为大家全面介绍一下这些知识点。
一、代数运算代数运算,是学习数学的基础,包括加减乘除、整式的加减乘除、分式的加减乘除,以及各种级数、公式的变形消元等。
这是进行数学计算和数学推理的重要基础,也是后续学习的一项重要技能。
二、平面几何平面几何是数学中重要的一部分,其本质是研究二维图形间的性质,并通过几何方式解决问题。
八年级初中数学上册中的几何内容主要包括:1、多边形的研究,掌握多边形的各种定义、性质、构造方法和计算公式等,并能够熟练运用。
2、圆的研究,掌握圆的各种概念、性质、构造方法和计算公式等,并能够熟练运用。
3、相似形的研究,了解相似形的性质和定理,能够判断、构造相似形,并应用相似性进行计算。
三、立体几何立体几何探讨的是三维图形的特征、性质、分类和变换,也是数学中一个重要的分支。
八年级初中数学上册中的立体几何内容主要有:1、正方体和长方体的研究,了解正方体和长方体的基本概念、性质和计算方法,并能够熟练运用。
2、球的研究,了解球的基本概念、性质和计算方法,并能够熟练运用。
四、三角函数三角函数是数学中的一个重要内容,它以角度为自变量,以三角函数值为因变量。
八年级初中数学上册中的三角函数主要包括:1、弧度制和角度制的转化,了解弧度制和角度制的概念和转化方法。
2、正弦、余弦、正切函数的定义和性质,掌握三角函数的定义、性质、图像和应用。
五、统计学统计学是数学中的一门应用学科,通过收集、整理、表达数据,描述和分析各种现象。
八年级初中数学上册中的统计学主要涉及以下内容:1、数据的收集和整理,了解数据的收集和整理方法,并能够绘制各种数据图。
2、描述性统计,了解频数分布、频率分布和累积频率分布等方法,并能够计算各种统计量。
以上是八年级初中数学上册中的主要知识点,掌握基础知识和方法,培养正确的计算思维,可以更好地迎接接下来的学习挑战。
八年级上册数学知识点的总结
八年级上册数学知识点的总结初中数学就是对学生的数学知识学习、数学学习能力培养、开拓性学习思维的综合训练。
那么八年级上册数学知识点的总结该怎么写呢?下面是小编为大家整理的八年级上册数学知识点的总结,希望对大家有帮助。
八年级上册数学知识点的总结篇一八年级数学(上)应知应会的知识点因式分解1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.3.公因式的确定:系数的最大公约数?相同因式的最低次幂.注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.4.因式分解的公式:(1)平方差公式: a2-b2=(a+ b)(a- b);(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.5.因式分解的注意事项:(1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;(4)因式分解的最后结果要求每一个因式的首项符号为正;(5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式.6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q,有“ x2+px+q是完全平方式? ”.分式1.分式:一般地,用A、B表示两个整式,A÷B就可以表示为的形式,如果B中含有字母,式子叫做分式.2.有理式:整式与分式统称有理式;即 .3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义.4.分式的基本性质与应用:(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;即(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.7.分式的乘除法法则: .8.分式的乘方: .9.负整指数计算法则:(1)公式:a0=1(a≠0), a-n= (a≠0);(2)正整指数的运算法则都可用于负整指数计算;(3)公式:, ;(4)公式: (-1)-2=1, (-1)-3=-1.10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.11.最简公分母的确定:系数的最小公倍数?相同因式的最高次幂.12.同分母与异分母的分式加减法法则: .13.含有字母系数的一元一次方程:在方程ax+b=0(a≠0)中,x是未知数,a和b是用字母表示的已知数,对x来说,字母a是x的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数.14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可可能是原方程的增根.18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序.数的开方1.平方根的定义:若x2=a,那么x叫a的平方根,(即a的平方根是x);注意:(1)a叫x的平方数,(2)已知x求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算.2.平方根的性质:(1)正数的平方根是一对相反数;(2)0的平方根还是0;(3)负数没有平方根.3.平方根的表示方法:a的平方根表示为和 .注意:可以看作是一个数,也可以认为是一个数开二次方的运算.4.算术平方根:正数a的正的平方根叫a的算术平方根,表示为 .注意:0的算术平方根还是0.5.三个重要非负数:a2≥0 ,|a|≥0 ,≥0 .注意:非负数之和为0,说明它们都是0.6.两个重要公式:(1) ; (a≥0)(2) .7.立方根的定义:若x3=a,那么x叫a的立方根,(即a的立方根是x).注意:(1)a叫x的立方数;(2)a的立方根表示为 ;即把a开三次方.8.立方根的性质:(1)正数的立方根是一个正数;(2)0的立方根还是0;(3)负数的立方根是一个负数.9.立方根的特性: .10.无理数:无限不循环小数叫做无理数.注意:?和开方开不尽的数是无理数.11.实数:有理数和无理数统称实数.12.实数的分类:(1) (2) .13.数轴的性质:数轴上的点与实数一一对应.14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆: .八年级上册数学知识点的总结篇二三角形几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)1.三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(如图) 几何表达式举例:(1) ∵AD平分∠BAC∴∠BAD=∠CAD(2) ∵∠BAD=∠CAD∴AD是角平分线2.三角形的中线定义:在三角形中,连结一个顶点和它的对边的中点的线段叫做三角形的中线.(如图)几何表达式举例:(1) ∵AD是三角形的中线∴ BD = CD(2) ∵ BD = CD∴AD是三角形的中线3.三角形的高线定义:从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线.(如图)几何表达式举例:(1) ∵AD是ΔABC的高∴∠ADB=90°(2) ∵∠ADB=90°∴AD是ΔABC的高※4.三角形的三边关系定理:三角形的两边之和大于第三边,三角形的两边之差小于第三边.(如图)几何表达式举例:(1) ∵AB+BC>AC∴……………(2) ∵ AB-BC∴……………5.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形. (如图)几何表达式举例:(1) ∵ΔABC是等腰三角形∴ AB = AC(2) ∵AB = AC∴ΔABC是等腰三角形6.等边三角形的定义:有三条边相等的三角形叫做等边三角形. (如图)几何表达式举例:(1)∵ΔABC是等边三角形∴AB=BC=AC(2) ∵AB=BC=AC∴ΔABC是等边三角形7.三角形的内角和定理及推论:(1)三角形的内角和180°;(如图)(2)直角三角形的两个锐角互余;(如图)(3)三角形的一个外角等于和它不相邻的两个内角的和;(如图) ※(4)三角形的一个外角大于任何一个和它不相邻的内角. (1) (2) (3)(4) 几何表达式举例:(1) ∵∠A+∠B+∠C=180°∴…………………(2) ∵∠C=90°∴∠A+∠B=90°(3) ∵∠ACD=∠A+∠B∴…………………(4) ∵∠ACD >∠A∴…………………8.直角三角形的定义:有一个角是直角的三角形叫直角三角形.(如图)几何表达式举例:(1) ∵∠C=90°∴ΔABC是直角三角形(2) ∵ΔABC是直角三角形∴∠C=90°9.等腰直角三角形的定义:两条直角边相等的直角三角形叫等腰直角三角形.(如图)几何表达式举例:(1) ∵∠C=90° CA=CB∴ΔABC是等腰直角三角形(2) ∵ΔABC是等腰直角三角形∴∠C=90° CA=CB10.全等三角形的性质:(1)全等三角形的对应边相等;(如图)(2)全等三角形的对应角相等.(如图)几何表达式举例:(1) ∵ΔABC≌ΔEFG∴ AB = EF ………(2) ∵ΔABC≌ΔEFG∴∠A=∠E ………11.全等三角形的判定:“SAS”“ASA”“八年级上册数学知识点的总结S”“SSS”“HL”. (如图)(1)(2)(3) 几何表达式举例:(1) ∵ AB = EF∵ ∠B=∠F又∵ BC = FG∴ΔABC≌ΔEFG(2) ………………(3)在RtΔABC和RtΔEFG中∵ AB=EF又∵ AC = EG∴RtΔABC≌RtΔEFG12.角平分线的性质定理及逆定理:(1)在角平分线上的点到角的两边距离相等;(如图)(2)到角的两边距离相等的点在角平分线上.(如图)几何表达式举例:(1)∵OC平分∠AOB又∵CD⊥OA CE⊥OB∴ CD = CE(2) ∵CD⊥OA CE⊥OB又∵CD = CE∴OC是角平分线13.线段垂直平分线的定义:垂直于一条线段且平分这条线段的直线,叫做这条线段的垂直平分线.(如图)几何表达式举例:(1) ∵EF垂直平分AB∴EF⊥AB OA=OB(2) ∵EF⊥AB OA=OB∴EF是AB的垂直平分线14.线段垂直平分线的性质定理及逆定理:(1)线段垂直平分线上的点和这条线段的两个端点的距离相等;(如图)(2)和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.(如图)几何表达式举例:(1) ∵MN是线段AB的垂直平分线∴ PA = PB(2) ∵PA = PB∴点P在线段AB的垂直平分线上15.等腰三角形的性质定理及推论:(1)等腰三角形的两个底角相等;(即等边对等角)(如图)(2)等腰三角形的“顶角平分线、底边中线、底边上的高”三线合一;(如图)(3)等边三角形的各角都相等,并且都是60°.(如图)(1) (2) (3) 几何表达式举例:(1) ∵AB = AC∴∠B=∠C(2) ∵AB = AC又∵∠BAD=∠CAD∴BD = CDAD⊥BC………………(3) ∵ΔABC是等边三角形∴∠A=∠B=∠C =60°16.等腰三角形的判定定理及推论:(1)如果一个三角形有两个角都相等,那么这两个角所对边也相等;(即等角对等边)(如图)(2)三个角都相等的三角形是等边三角形;(如图)(3)有一个角等于60°的等腰三角形是等边三角形;(如图)(4)在直角三角形中,如果有一个角等于30°,那么它所对的直角边是斜边的一半.(如图)(1) (2)(3) (4) 几何表达式举例:(1) ∵∠B=∠C∴ AB = AC(2) ∵∠A=∠B=∠C∴ΔABC是等边三角形(3) ∵∠A=60°又∵AB = AC∴ΔABC是等边三角形(4) ∵∠C=90°∠B=30°∴AC = AB17.关于轴对称的定理(1)关于某条直线对称的两个图形是全等形;(如图)(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线.(如图)几何表达式举例:(1) ∵ΔABC、ΔEGF关于MN轴对称∴ΔABC≌ΔEGF(2) ∵ΔABC、ΔEGF关于MN轴对称∴OA=OE MN⊥AE18.勾股定理及逆定理:(1)直角三角形的两直角边a、b的平方和等于斜边c的平方,即a2+b2=c2;(如图)(2)如果三角形的三边长有下面关系: a2+b2=c2,那么这个三角形是直角三角形.(如图)几何表达式举例:(1) ∵ΔABC是直角三角形∴a2+b2=c2(2) ∵a2+b2=c2∴ΔABC是直角三角形19.RtΔ斜边中线定理及逆定理:(1)直角三角形中,斜边上的中线是斜边的一半;(如图)(2)如果三角形一边上的中线是这边的一半,那么这个三角形是直角三角形.(如图)几何表达式举例:(1) ∵ΔABC是直角三角形∵D是AB的中点∴CD = AB(2) ∵CD=AD=BD∴ΔABC是直角三角形几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题) 一基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.二常识:1.三角形中,第三边长的判断:另两边之差<第三边<另两边之和.2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段.3.如图,三角形中,有一个重要的面积等式,即:若CD⊥AB,BE⊥CA,则CD?AB=BE?CA.4.三角形能否成立的条件是:最长边<另两边之和.5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和.6.分别含30°、45°、60°的直角三角形是特殊的直角三角形.7.如图,双垂图形中,有两个重要的性质,即:(1) AC?CB=CD?AB ; (2)∠1=∠B ,∠2=∠A .8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边.10.等边三角形是特殊的等腰三角形.11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明.12.符合“八年级上册数学知识点的总结A”“SSA”条件的三角形不能判定全等.13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.15.会用尺规完成“SAS”、“ASA”、“八年级上册数学知识点的总结S”、“SSS”、“HL”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图.※18.几何重要图形和辅助线:(1)选取和作辅助线的原则:① 构造特殊图形,使可用的定理增加;② 一举多得;③ 聚合题目中的分散条件,转移线段,转移角;④ 作辅助线必须符合几何基本作图.(2)已知角平分线.(若BD是角平分线)① 在BA上截取BE=BC构造全等,转移线段和角;② 过D点作DE‖BC交AB于E,构造等腰三角形 .(3)已知三角形中线(若AD是BC的中线)① 过D点作DE‖AC交AB于E,构造中位线 ;② 延长AD到E,使DE=AD连结CE构造全等,转移线段和角;③ ∵AD是中线∴SΔABD= SΔADC(等底等高的三角形等面积)(4) 已知等腰三角形ABC中,AB=AC① 作等腰三角形ABC底边的中线AD(顶角的平分线或底边的高)构造全等三角形;② 作等腰三角形ABC一边的平行线DE,构造新的等腰三角形.(5)其它① 作等边三角形ABC一边的平行线DE,构造新的等边三角形;② 作CE‖AB,转移角;③ 延长BD与AC交于E,不规则图形转化为规则图形;④ 多边形转化为三角形;⑤ 延长BC到D,使CD=BC,连结AD,直角三角形转化为等腰三角形;⑥ 若a‖b,AC,BC是角平分线,则∠C=90°.。
八年级上册数学知识点归纳总结
八年级上册数学知识点归纳总结一、有理数1. 有理数的概念有理数是可以表示为两个整数之比的数,包括正整数、负整数、零、分数(正分数和负分数)。
2. 有理数的运算(1)加法和减法:同号相加减,异号相加减取相反数后加(2)乘法:同号得正,异号得负(3)除法:分子取商的符号,分母取绝对值后再除3. 有理数的比较在数轴上比较大小,可以通过绝对值和符号来确定大小关系4. 有理数的应用有理数在实际生活中的运用,如温度、扩大、缩小等二、代数1. 代数的基本概念(1)代数式:由运算符号和字母组成的表达式(2)项:代数式中的最小单位(3)系数:含有变量的项的常数因子(4)幂:同一个数的多次相乘2. 一元一次方程如ax+b=0(a≠0),其中a、b为已知数,x为未知数3. 一元一次不等式如ax+b>0(a≠0),其中a、b为已知数,x为未知数4. 代数式的加减法整理同类项后进行加减5. 代数式的乘法分配律、结合律、交换律的运用6. 代数式的因式分解三、平方根和立方根1. 平方数和平方根平方数是某个数的平方,平方根是某个数的算术平方根2. 平方根的求法开平方、开方运算3. 立方数和立方根立方数是某个数的立方,立方根是某个数的算术立方根4. 立方根的求法开立方、立方根的运算5. 有理数的平方与立方有理数的平方是对其绝对值的平方,有理数的立方是对其绝对值的立方四、多边形1. 多边形的基本认识多边形是由同一个平面上的若干条线段组成的闭合图形2. 多边形的内角和外角n边形的内角和等于180°×(n-2)n边形的外角和等于360°3. 正多边形边相等,角相等的多边形4. 不规则多边形五、相似1. 相似的概念对于两个图形,如果它们的形状相似(其中一图放大或缩小),则它们称之为相似的2. 相似三角形对于两个三角形,如果它们的对应角相等,则它们为相似三角形3. 相似三角形的性质相似三角形的性质包括对应边成比例、对应角相等、相似三角形的高线比例等六、函数1. 函数的概念对应关系中,一个自变量对应一个因变量的关系2. 函数的表示方法函数的图像、函数的解析式、函数的映射表示等3. 函数的性质奇函数、偶函数、周期函数、增减性与极值、奇偶性及周期性的判断等4. 函数的应用在实际问题中,函数的运用,如一元一次函数、二次函数等七、同比例1. 比例的概念两个量之间的相等关系2. 比例的性质比例中的乘除、比例式的变形3. 等比例四个数成等比的性质4. 倒数的概念两个数之积为1时,这两个数称为倒数5. 倒比例四个数成倒比的性质八、图形的旋转1. 图形的旋转图形绕定点旋转的变换2. 旋转的性质旋转变换后的图形3. 图形的对称图形相对于一条直线、一个点的对称4. 图形的变换平移、旋转、翻转的组合变换以上就是八年级上册数学知识点的归纳总结,希望能帮助到大家对这些知识点的理解和掌握。
初二数学上学期知识点总结(10篇)
初二数学上学期知识点总结(10篇)在平平淡淡的学习中,大家较不陌生的就是知识点吧!知识点有时候特指教科书上或考试的知识。
掌握知识点有助于大家更好的学习。
问学必有师,讲习必有友,以下是可爱的小编为家人们收集整理的初二数学上学期知识点总结(较新10篇),欢迎参考阅读,希望可以帮助到有需要的朋友。
初二数学上学期知识点总结篇一分式的加减法1、分式与分数类似,也可以通分。
根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
2、分式的加减法:分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减。
(1)同分母的分式相加减,分母不变,把分子相加减;上述法则用式子表示是:(2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;上述法则用式子表示是:3、概念内涵:通分的关键是确定较简分母,其方法如下:较简公分母的系数,取各分母系数的较小公倍数;较简公分母的字母,取各分母所有字母的次幂的积,如果分母是多项式,则首先对多项式进行因式分解。
初二数学上册知识点篇二多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
多项式与多项式相乘时要注意以下几点:①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;②多项式相乘的结果应注意合并同类项;③对含有同一个字母的`一次项系数是1的两个一次二项式相乘,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。
对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到初二数学上册知识点篇三平均数基本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数基本算法:①求出总数量以及总份数,利用基本公式①进行计算。
八年级上册数学知识点归纳
八年级上册数学知识点归纳一、实数1. 有理数和无理数的概念- 有理数:可以表示为两个整数的比的数- 无理数:不能表示为两个整数的比的数,如√2、π2. 实数的运算- 加法、减法、乘法、除法- 乘方、开方- 绝对值的概念和运算- 实数的性质和比较大小二、代数表达式1. 单项式和多项式- 单项式的定义和度量- 多项式的定义、次数和系数2. 代数式的加减运算- 合并同类项- 去括号法则3. 代数式的乘法运算- 单项式乘单项式- 单项式乘多项式- 多项式乘多项式4. 代数式的因式分解- 提公因式法- 公式法(如平方差公式、完全平方公式)三、方程与不等式1. 一元一次方程- 方程的建立和解法- 方程的解的检验2. 一元一次不等式- 不等式的概念和性质- 不等式的解法- 不等式的解集表示3. 二元一次方程组- 代入法解方程组- 消元法解方程组- 方程组的解的情况分析四、几何1. 平行线与角- 平行线的判定和性质- 同位角、内错角、同旁内角- 角的分类(锐角、直角、钝角、平角、周角)2. 三角形- 三角形的基本性质- 三角形的内角和外角性质- 等腰三角形和等边三角形的性质- 三角形的中线、高线、角平分线3. 四边形- 四边形的定义和分类- 矩形、菱形、正方形的性质- 平行四边形的性质4. 圆的基本性质- 圆的定义和圆心、半径- 弦、直径、弧、半圆- 圆周角和圆心角的关系- 切线的概念和性质五、统计与概率1. 统计- 数据的收集和整理- 频数和频率的概念- 统计图表的绘制(如条形图、饼图)2. 概率- 随机事件的概念- 概率的计算方法- 等可能事件的概率六、应用题- 利用所学知识解决实际问题- 培养数学建模和逻辑推理能力请注意,以上内容是根据一般八年级上册数学教材的常见知识点进行归纳,具体的教学大纲和知识点可能会根据不同地区和版本的教材有所差异。
教师和学生应参考具体的教材和教学大纲来确定学习重点。
八年级上册数学知识点小结
八年级上册数学知识点小结作为中学数学的一个关键阶段,八年级上册是中学数学体系中的重要一环。
本文分析了八年级上册数学的重点知识点,希望能够为同学们提供一份参考资料,更好地掌握这些知识点。
一、代数表达式代数表达式在中学数学中占有重要的地位。
它既是数学语言中的一种表达形式,又是数学运算中的必要步骤。
在八年级上册中,代数表达式主要包括基本概念、乘法公式与因式分解等方面的知识点。
学生需要熟练掌握各种类型的代数表达式的读写和求解方法,为后续计算打下基础。
二、方程与不等式方程和不等式是八年级上册中的一个重点内容。
本章主要讲授如何建立和解决一元一次方程、一元二次方程和一元一次不等式、一元二次不等式等问题。
在学习过程中,学生需要熟练掌握各种解法和技巧,比如列方程法、因式分解法、配方法等。
通过实例演练和练习题的加强,提高学生对方程和不等式的理解和解决能力。
三、平面几何平面几何是中学数学中重要的部分。
在八年级上册中,平面直角坐标系、平面图形的性质以及空间几何的相关内容都是需要掌握的知识点。
学生需要了解和掌握图形的名称、性质和用途,能够构造并解决关于平面图形的各种问题。
四、统计与概率统计与概率是数学中的一组重要概念,它们贯穿于中学数学各个领域。
在八年级上册中,学生将学习概率的基本概念、事件的概率、多阶段实验以及正态分布等内容。
此外,还需要用数学方法描述和解决各种统计问题,掌握数据的收集、整理、分析和解释方法。
五、数学实践数学实践是数学教育中的一项重要内容。
它既可以提高学生的数学思维能力,又可以促进学生对数学的兴趣和理解。
在八年级上册中,数学实践包括数学模型、数学研究、数学竞赛等方面。
通过实践让学生了解数学的应用场景,培养学生的思维能力和创新精神。
八年级上册数学知识点小结涵盖了数学的基础知识和重点内容,针对性强,希望能够帮助同学们更好地掌握数学知识,提升数学水平。
同时,学生需要坚持多做练习,加强对知识点的实践理解和运用。
八上数学总复习各章知识点总结及整理
八上数学总复习各章知识点总结及整理.doc八年级上册数学总复习各章知识点总结及整理引言随着学期的结束,对八年级上册数学知识点进行全面的复习和整理是十分必要的。
这不仅有助于学生巩固已学知识,还能帮助他们为即将到来的考试做好准备。
以下是对八年级上册数学各章节知识点的详细总结及整理。
第一章:实数1.1 实数的概念理解实数的分类:有理数和无理数。
掌握实数的性质和运算规则。
1.2 算术平方根学习如何计算一个数的算术平方根。
理解平方根的性质。
1.3 平方根掌握平方根的概念和计算方法。
了解平方根与算术平方根的区别。
第二章:代数基础2.1 代数式理解代数式的定义和基本运算。
学习合并同类项的方法。
2.2 一元一次方程掌握一元一次方程的解法。
学习方程的应用问题。
2.3 因式分解学习因式分解的基本方法:提公因式法和公式法。
理解因式分解在解方程中的应用。
第三章:几何初步3.1 线段、角学习线段的性质和角的概念。
掌握角度的分类和计算。
3.2 相交线与平行线理解相交线的性质。
学习平行线的判定和性质。
3.3 三角形掌握三角形的基本性质。
学习三角形的分类和内角和定理。
第四章:函数4.1 函数的概念理解函数的定义和表示方法。
学习函数的三种表示形式:解析式、列表和图形。
4.2 一次函数掌握一次函数的性质和图象。
学习一次函数的解析式和应用问题。
4.3 反比例函数理解反比例函数的概念和性质。
掌握反比例函数的图象和解析式。
第五章:统计与概率5.1 数据的收集与处理学习数据收集的方法和数据的整理。
掌握数据的描述性统计指标。
5.2 概率初步理解概率的基本概念。
学习概率的计算方法。
复习策略系统复习:按照章节顺序,系统地复习每个知识点。
重点强化:针对重点和难点进行强化训练。
习题练习:通过大量的习题练习,巩固知识点。
错题回顾:对错题进行总结和回顾,避免重复错误。
模拟测试:定期进行模拟测试,检验复习效果。
结语通过对八年级上册数学各章知识点的总结及整理,学生可以更加清晰地掌握每个章节的核心内容,为期末考试和未来的学习打下坚实的基础。
八年级上册数学总结知识点
八年级上册数学总结知识点八年级上册数学知识点总结一、实数1. 有理数和无理数的概念- 有理数:整数和分数统称为有理数,包括正数、负数和零。
- 无理数:无限不循环小数,如√2、π等。
2. 实数的运算- 加法:同号相加,异号相减,取绝对值大的数的符号。
- 减法:实数减法可以转化为加法,即a - b = a + (-b)。
- 乘法:正数乘以正数得正数,负数乘以负数得正数,正数乘以负数得负数。
- 除法:除以一个数等于乘以这个数的倒数。
- 乘方:求一个数的幂,如a^n表示a的n次方。
3. 算术平方根和平方根- 算术平方根:一个数的平方根中最大的正数。
- 平方根:一个数的平方根有两个,一个正数和一个负数。
4. 实数的性质和比较大小- 正实数大于0,负实数小于0。
- 两个负实数,绝对值大的反而小。
二、代数表达式1. 单项式- 单项式是由数字和字母的乘积组成的,如3x^2。
2. 多项式- 多项式是由若干个单项式通过加减法组成的,如2x^2 + 3x - 5。
3. 同类项- 同类项是指次数相同且字母相同的项,如2x^2和-5x^2是同类项。
4. 合并同类项- 将同类项的系数相加或相减,字母和次数不变。
5. 代数式的加减运算- 去括号法则:括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“-”号,去掉“-”号和括号,括号里的各项都变号。
三、方程与不等式1. 一元一次方程- 形如ax + b = 0的方程,其中a和b是已知数,x是未知数。
2. 二元一次方程- 形如ax + by + c = 0的方程,其中a、b和c是已知数,x和y是未知数。
3. 解一元一次方程- 通过移项、合并同类项、系数化为1等步骤求解。
4. 不等式- 用符号“>”、“<”、“≤”、“≥”连接的式子。
5. 不等式的解集- 不等式的解集是满足不等式的一切数值的集合。
6. 解一元一次不等式- 通过移项、合并同类项等步骤求解,注意在不等式两边同时乘以或除以同一个负数时,不等号的方向要改变。
人教版初二数学上册知识点汇总
人教版初二数学上册知识点汇总(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式1.平方差公式(1)式子: a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am +an)+(bm+ bn)=a(m+ n)+b(m +n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am +an)+(bm+ bn)=a(m+ n)+b(m+ n)=(m +n)×(a +b).(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:① 列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
八年级上册数学知识点总结(热门14篇)
八年级上册数学知识点总结第1篇一、函数:一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
二、自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。
三、函数的三种表示法及其优缺点(1)关系式(解析)法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。
(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图象法用图象表示函数关系的方法叫做图象法。
四、由函数关系式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
五、正比例函数和一次函数1、正比例函数和一次函数的概念一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。
特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。
2、一次函数的图像:所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。
第七章知识点1、二元一次方程含有两个未知数,并且所含未知数的项的次数都是1的'整式方程叫做二元一次方程。
2、二元一次方程的解适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
3、二元一次方程组含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
4、二元一次方程组的解二元一次方程组中各个方程的。
公共解,叫做这个二元一次方程组的解。
初二上册数学复习经典总结(精选5篇)
初二上册数学复习经典总结(精选5篇)初二上册数学复习经典总结(精选5篇)复习资料及笔记要整理好,便于快速查阅和回顾。
充分理解概念,避免死记硬背,加强知识的内化,为应变做好准备。
下面就让小编给大家带来初二上册数学复习经典总结,希望大家喜欢!初二上册数学复习经典总结篇1一、在平面内,确定物体的位置一般需要两个数据。
二、平面直角坐标系及有关概念1、平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。
它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。
3、点的坐标的概念对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有,分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。
平面内点的与有序实数对是一一对应的。
4、不同位置的点的坐标的特征(1)、各象限内点的坐标的特征点P(x,y)在第一象限:x0点P(x,y)在第二象限:x0点P(x,y)在第三象限:x0点P(x,y)在第四象限:x0(2)、坐标轴上的点的特征点P(x,y)在x轴上,y=0 ,x为任意实数点P(x,y)在y轴上,x=0 ,y为任意实数点P(x,y)既在x轴上,又在y轴上,x,y同时为零,即点P坐标为(0,0)即原点(3)、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线(直线y=x)上,x与y相等点P(x,y)在第二、四象限夹角平分线上,x与y互为相反数(4)、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。
八年级上册数学知识总结
八年级上册数学知识总结全文共四篇示例,供读者参考第一篇示例:八年级上册数学知识总结八年级上册数学是初中数学中的重要一环,掌握好这个阶段的知识对于学生接下来学习数学具有至关重要的意义。
在这个阶段,学生将接触到更多抽象的概念和方法,需要建立更为严密的逻辑思维能力。
下面我们来总结一下八年级上册数学的重要知识点。
一、代数与方程在代数与方程这部分的学习中,学生将学习到多项式的基本概念和运算规则,包括多项式的加、减、乘、除、化简等。
同时还会学习到因式分解、解一元一次方程和解一元二次方程的方法。
这些知识点是代数运算的基础,对于学生后续学习代数和解方程都具有重要意义。
二、函数与图像在函数与图像这部分的学习中,学生将会学习到函数的基本概念,包括定义域、值域、奇偶性、图像和性质等。
同时还会学习到一次函数、二次函数、绝对值函数等基本函数的性质和图像。
学生需要掌握函数的基本性质,能够通过函数的图像来分析函数的性质和变化规律。
三、几何在几何这部分的学习中,学生将会学习到平面图形和立体图形的性质和计算方法。
包括平行线和平行四边形的性质、三角形的性质、四边形的性质、正多边形的性质等。
同时还会学习到几何变换,包括平移、旋转、翻转等。
学生需要通过几何知识来解决实际问题,提高解决问题的能力。
四、统计与概率在统计与概率这部分的学习中,学生将会学习到统计数据的收集、整理、呈现和分析方法,包括频数表、频率表、直方图、折线图等。
同时还会学习到概率的基本概念和计算方法,包括事件的概率、互斥事件和独立事件等。
学生需要通过统计与概率知识来解决实际问题,提高数据分析和推理能力。
八年级上册数学知识是初中数学的重要阶段,是学生建立扎实数学基础的关键时期。
学生需要通过不断地学习和练习,掌握各类数学知识,提高数学运算和解决问题的能力。
希望学生能够在八年级上册数学学习中取得优异的成绩,为后续学习打下坚实的基础。
【以上内容仅供参考】。
第二篇示例:八年级上册数学知识总结八年级是学生数学学习的一个重要阶段,上册的数学知识内容涵盖了很多重要的概念和方法。
初二数学上册知识点总结
初二数学上册知识点总结全文共四篇示例,供读者参考第一篇示例:初二数学上册知识点总结初二数学是初中数学学科体系中的一个重要环节,是承上启下的阶段,学生在这一阶段将接触到一系列基础概念和方法,为以后学习更加深入的数学知识打下坚实的基础。
本文将就初二数学上册的知识点进行总结,希望对学生们的学习有所帮助。
一、代数1. 二次根式初二数学上册中,二次根式的概念是一个重要的代数知识点。
学生需要掌握二次根式的定义和性质,了解它们在数轴上的位置和大小关系,同时能够进行简单的四则运算和化简。
2. 整式的加减法与乘除法在初二数学上册中,学生需要学会整式的加减法和乘除法。
通过这一部分的学习,可以帮助学生提升综合计算能力,培养逻辑思维和分析问题的能力。
3. 一元一次方程一元一次方程是初二数学上册中一个重要的应用题型,学生需要学会如何解一元一次方程及其实际应用,如解决实际问题和建立数学模型等。
4. 四则混合运算四则混合运算是初二数学中的基础知识点,学生需要掌握加减乘除的规则和运算步骤,在解题过程中能够合理运用这些知识,解决复杂的计算问题。
二、几何1. 直角三角形初二数学上册中,直角三角形是一个重要的几何概念,学生需要了解直角三角形的定义和性质,掌握勾股定理和相关知识,能够解决各种关于直角三角形的应用题。
2. 平行线与角平行线与角是初二数学几何中的重点内容,学生需要掌握平行线的性质和判定条件,了解平行线与角的关系,能够熟练运用平行线与角的相关知识解决实际问题。
3. 长方形、平行四边形和三角形初二数学上册还涉及到长方形、平行四边形和三角形等几何图形的相关知识,学生需要了解这些图形的性质和特点,能够计算其周长、面积和相关问题,培养综合分析和解决问题的能力。
4. 截面图初二数学上册中,截面图是一个重要的视觉思维题型,学生需要通过截面图来研究几何体的形状和属性,能够准确描述截面图和计算相关问题,培养学生的几何思维能力和空间想象力。
三、概率与统计1. 概率在初二数学上册中,学生需要学会计算事件的概率,理解概率的基本概念和性质,掌握简单事件和复合事件的概率计算方法,培养学生的数理逻辑思维和概率计算能力。
八年级上册数学知识点归纳(5篇)
八年级上册数学知识点归纳(5
篇)
新学期已经开始,同学们即将进入紧张的学习生活。
以下是白话文编写的八年级上册数学知识点总结(5篇精选),希望能给你一些参考和帮助。
八年级上册数学知识点篇一
1、二元一次方程
①二元一次方程、含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。
②二元一次方程的解、适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
2、二元一次方程组
①含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
②二元一次方程组的解二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。
③二元一次方程组的解法代入(消元)法、加减(消元)法
④一次函数与二元一次方程(组)的关系:
一次函数与二元一次方程的关系:直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx- y+b=0的解
线性函数与二元线性方程组的关系:二元线性方程组的解可以看作是两个线性函数之和的像的交集。
当函数图象有交点时,说明相应的二元一次方程组有解;
当函数图像(直线)平行,即没有交点时,说明对应的二元线性方程组无解。
数学初二上册知识点篇二
乘法和除法,因式分解和三角形的分数,全等三角形,轴对称和代数表达式。
(1)三角形:是初中数学的基础,中考命题中的重点。
中考试题分值约为18-24分,以填空,选择,解答题,也会出现一些证明题目。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二上册数学知识点总结归纳【五篇】
【导语:】这篇关于初二上册数学知识点总结归纳【五篇】的文章,是特地为大家整理的,希望对大家有所帮助!
第十一章全等三角形
一.知识框架
二.知识概念
1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。
2.全等三角形的性质:全等三角形的对应角相等、对应边相等。
3.三角形全等的判定公理及推论有:
(1)“边角边”简称“SAS”
(2)“角边角”简称“ASA”
(3)“边边边”简称“SSS”
(4)“角角边”简称“AAS”
(5)斜边和直角边相等的两直角三角形(HL)。
4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。
5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).
在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。
通过直观的理解和比较发现全等三角形的奥妙之处。
在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。
第十二章轴对称
一.知识框架
二.知识概念
1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(2)角平分线上的点到角两边距离相等。
(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。
(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(5)轴对称图形上对应线段相等、对应角相等。
3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)
4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
5.等腰三角形的判定:等角对等边。
6.等边三角形角的特点:三个内角相等,等于60°,
7.等边三角形的判定:三个角都相等的三角形是等腰三角形。
有一个角是60°的等腰三角形是等边三角形
有两个角是60°的三角形是等边三角形。
8.直角三角形中,30°角所对的直角边等于斜边的一半。
9.直角三角形斜边上的中线等于斜边的一半。
本章内容要求学生在建立在轴对称概念的基础上,能够对生活中的图形进行分析鉴赏,亲身经历数学美,正确理解等腰三角形、等边三角形等的性质和判定,并利用这些性质来解决一些数学问题。
第十三章实数
一.知识框架
二.知识概念
1.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作。
0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。
2.平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。
3.正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。
4.正数的立方根是正数;0的立方根是0;负数的立方根是负数。
5.数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0
实数部分主要要求学生了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。
重点是实数的意义和实数的分类;实数的运算法则及运算律。
第十四章一次函数
一.知识框架
二.知识概念
1.一次函数:若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。
特别地,当b=0时,称y是x的正比例函数。
2.正比例函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。
3.正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第
一、三象限,y随x的增大而增大,当k0时,y随x的增大而增大;当k 4.已知两点坐标求函数解析式:待定系数法
一次函数是初中学生学习函数的开始,也是今后学习其它函数知识的基石。
在学习本章内容时,教师应该多从实际问题出发,引出变量,从具体到抽象的认识事物。
培养学生良好的变化与对应意识,体会数形结合的思想。
在教学过程中,应更加侧重于理解和运用,在解决实际问题的同时,让学习体会到数学的实用价值和乐趣。
第十五章整式的乘除与分解因式
一.知识概念
1.同底数幂的乘法法则:(m,n都是正数)
2..幂的乘方法则:(m,n都是正数)
3.整式的乘法
(1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所
得的积相加。
(3).多项式与多项式相乘
多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
4.平方差公式:
5.完全平方公式:
6.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n都是正数,且m>n).
在应用时需要注意以下几点:
①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.
②任何不等于0的数的0次幂等于1,即,如,(-2.50=1),则00无意义.
③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即(a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的;当a④运算要注意运算顺序.
7.整式的除法
单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;
多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.
8.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.
分解因式的一般方法:1.提公共因式法2.运用公式法3.十字相乘法
分解因式的步骤:(1)先看各项有没有公因式,若有,则先提取公因式;
(2)再看能否使用公式法;
(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;
(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;
(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.
整式的乘除与分解因式这章内容知识点较多,表面看来零碎的概念和性质也较多,但实际上是密不可分的整体。
在学习本章内容时,应多准备些小组合作与交流活动,培养学生推理能力、计算能力。
在做题中体验数学法则、公式的简洁美、和谐美,提高做题效率。