高考数学导数题型解题方法

合集下载

高中数学导数难题怎么解题

高中数学导数难题怎么解题

高中数学导数难题怎么解题导数是高考数学必考的内容,近年来高考加大了对以导数为载体的知识问题的考查,题型在难度、深度和广度上不断地加大、加深,从而使得导数相关知识愈发显得重要。

下面是小编为大家整理的关于高中数学导数难题解题技巧,希望对您有所帮助。

欢迎大家阅读参考学习!1.导数在判断函数的单调性、最值中的应用利用导数来求函数的最值的一般步骤是: (1)先根据求导公式对函数求出函数的导数; (2)解出令函数的导数等于 0 的自变量; (3)从导数性质得出函数的单调区间; (4)通过定义域从单调区间中求出函数最值。

2.导数在函数极值中的应用利用导数的知识来求函数极值是高中数学问题比较常见的类型。

利用导数求函数极值的一般步骤是: (1)首先根据求导法则求出函数的导数; (2)令函数的导数等于 0,从而解出导函数的零点; (3)从导函数的零点个数来分区间讨论,得到函数的单调区间; (4)根据极值点的定义来判断函数的极值点,最后再求出函数的极值。

3.导数在求参数的取值范围时的应用利用导数求函数中的某些参数的取值范围,成为近年来高考的热点。

在一般函数含参数的题中,通过运用导数来化简函数,可以更快速地求出参数的取值范围。

导数知识在函数解题中的妙用函数知识是高中数学的重点内容,其中包括极值、图像、奇偶性、单调性等方面的分析,具有代表性的题型就是极值的计算和单调性的分析,按照普通的解题过程是通过图像来分析,可是对于较难的函数来说,制作图像不仅浪费时间,而且极容易出错,而在函数解题中应用导数简直就是手到擒来。

例如:函数 f(x)=x3+3x2+9x+a,分析 f(x)的单调性。

这是高中数学中常见的三次函数,在对这道题目进行单调性分析时,很多学生根据思维定式会采用常规的手法画图去分析单调区间,但由于未知数a 的存在而遇到困难。

如果考虑用导数的相关知识解决这一问题,解:f’(x)=-3x2+6x+9,令 f’(x)>0,那么解得 x<-1 或者 x>3,也就是说函数在(- ∞ ,-1), (3,+∞)这个单调区间上单调递减,这样就能非常容易的判断函数的单调性。

高考数学导数解题技巧

高考数学导数解题技巧

高考数学导数解题技巧
在高考数学中,导数是一个常见的解题工具。

以下是一些解题技巧:
1. 使用定义法求导数:如果需要求一个函数在某个点的导数,可以使用定义法,即计算函数在该点附近的斜率。

具体步骤是计算函数在点x处的斜率极限,即Lim(h→0)[f(x+h)-f(x)]/h。

2. 使用基本导数公式:熟记一些基本导数公式可以帮助简化计算过程。

例如,常数函数的导数为0,幂函数的导数等于幂次乘以原函数的导数,指数函数的导数等于常数乘以指数。

3. 使用导数的性质:导数具有一些重要的性质,如线性性质和乘积规则。

线性性质表示导数是线性运算,即对于两个函数
f(x)和g(x),以及常数a和b,有导数[a*f(x) + b*g(x)]' = a*f'(x) + b*g'(x)。

乘积规则表示两个函数的乘积的导数等于其中一个函数的导数乘以另一个函数,再加上另一个函数的导数乘以第一个函数。

4. 使用链式法则:当一个函数由两个复合函数相乘或相除构成时,可以使用链式法则简化导数的计算。

链式法则可以表示为如果y = f(g(x)),则y' = f'(g(x)) * g'(x)。

5. 注意求导的顺序:当需要求一个复合函数的导数时,要注意求导的顺序。

通常,外函数的导数应该先求出来,再将其嵌入到内函数中求导。

以上是一些常见的高考数学导数解题技巧。

通过熟练掌握这些技巧,可以在考试中更快、更准确地解题。

高考数学导数解题技巧及方法

高考数学导数解题技巧及方法

高考数学导数解题技巧1.通过选择题和填空题,全面考查函数的基本概念,性质和图象。

2.在解答题的考查中,与函数有关的试题常常是以综合题的形式出现。

3.从数学具有高度抽象性的特点出发,没有忽视对抽象函数的考查。

4.一些省市对函数应用题的考查是与导数的应用结合起来考查的。

5.涌现了一些函数新题型。

6.函数与方程的思想的作用不仅涉及与函数有关的试题,而且对于数列,不等式,解析几何等也需要用函数与方程思想作指导。

7.多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题。

8.求极值,函数单调性,应用题,与三角函数或向量结合。

高考数学导数中档题是拿分点1.单调性问题研究函数的单调性问题是导数的一个主要应用,解决单调性、参数的范围等问题,需要解导函数不等式,这类问题常常涉及解含参数的不等式或含参数的不等式的恒成立、能成立、恰成立的求解。

由于函数的表达式常常含有参数,所以在研究函数的单调性时要注意对参数的分类讨论和函数的定义域。

2.极值问题求函数y=f(x)的极值时,要特别注意f'(x0)=0只是函数在x=x0有极值的必要条件,只有当f'(x0)=0且在_0 时,f'(x0)异号,才是函数y=f(x)有极值的充要条件,此外,当函数在x=x0处没有导数时,在 x=x0处也可能有极值,例如函数 f(x)=|x|在x=0时没有导数,但是,在x=0处,函数f(x)=|x|有极小值。

还要注意的是,函数在x=x0有极值,必须是x=x0是方程f'(x)=0的根,但不是二重根(或2k重根),此外,在确定极值点时,要注意,由f'(x)=0所求的驻点是否在函数的定义域内。

3.切线问题曲线y=f(x)在x=x0处的切线方程为y-f(x0)=f'(x0)(x-x0),切线与曲线的综合,可以出现多种变化,在解题时,要抓住切线方程的建立,切线与曲线的位置关系展开推理,发展理性思维。

高考数学导数大题技巧(精选5篇)

高考数学导数大题技巧(精选5篇)

高考数学导数大题技巧(精选5篇)高考数学导数大题技巧【篇1】1、选择题部分,高考的选择题部分题型考试的方向基本都是固定的,当你在一轮二轮复习过程中总结出题目的出题策略时,答题就变得很简单了。

比如立体几何三视图,概率计算,圆锥曲线离心率等等试题中都有一些特征,只要掌握思考的切入方法和要点,再适当训练基本就可以全面突破,但是如果不掌握核心方法,单纯做题训练就算做很多题目,突破也非常困难,学习就会进入一个死循环,对照答案可以理解,但自己遇到新的题目任然无从下手。

2、关于大题方面,基本上三角函数或解三角形、数列、立体几何和概率统计应该是考生努力把分数拿满的题目。

对于较难的原则曲线和导数两道题目基本要拿一半的分数,考生复习时可把数学大题的每一道题作为一个独立的版块章节,先总结每道大题常考的几种题型,再专项突破里面的运算方法,图形处理方法以及解题的思考突破口,只要把这些都归纳到位,那么总结的框架套路,都是可以直接秒刷的题目的高考数学导数大题技巧【篇2】1个、多项选择部分,高考选择题的方向基本是固定的,当你在二轮复习过程中总结出题策略时,答案变得很简单。

比如三维几何三视图,概率计算,试题中存在圆锥截面偏心等特点,只要掌握了入门方法和思维要点,经过适当的训练,基本可以全面突破,但是如果不掌握核心方法,单纯做练习题也算做了很多题,也很难突破,学习会进入死循环,比对答案,但是遇到新问题还是无从下手。

2个、关于大话题,基本上是三角函数或求解三角形、顺序、三维几何和概率统计应该是考生努力拿满分的科目。

比较难的原理曲线和导数,基本要一半分,考生在复习时可以将数学大题的每一题作为一个独立的section,先总结一下每个大题经常考的几类题型,然后在计算方法上特别突破,解题的图形处理方法与思维突破,把它全部放在适当的位置,然后总结框架套路,都是可以直接秒刷的话题高考数学导数大题技巧【篇3】1、函数与导数主要考查数学集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

高中数学导数大题八类题型总结

高中数学导数大题八类题型总结

导数-大题导数在大题中一般作为压轴题出现,其复杂的原因就在于对函数的综合运用:1.求导,特别是复杂函数的求导2.二次函数(求根公式的运用)3.不等式:基本不等式、均值不等式等4.基本初等函数的性质:周期函数、对数函数、三角函数、指数函数5.常用不等式的巧妙技巧:1/2<ln2<1,5/2<e<3导数大题最基本的注意点:自变量的定义域1.存在性问题2.韦达定理的运用3.隐藏零点4.已有结论的运用5.分段讨论6.分类讨论7.常见不等式的应用8.导数与三次函数的利用1. 存在性问题第(1)问有两个未知数,一般来说,双未知数问题要想办法合并成一个未知数来处理合并成一个未知数后利用不等式1.存在性问题(2)问将有且仅有一个交点分成两部分证明,分别证至多存在一个交点与必然存在交点:证明必然存在交点是单纯的找“特殊点”问题高考导数大题中的存在性问题,最后几乎都会变成零点的存在性问题要点由于只关注零点的存在性,因此就没有必要对t(x)求导讨论其单调性,直接使用零点定即可。

(2)问先对要证明的结论进行简单变形:证毕韦达定理的使用(1)问是常规的分类讨论问题隐零点设而不求,代换整体证明对称轴已经在-1右侧,保证有零点且-1处二次函数值大于0两道例题都是比较简单的含参“隐零点”问题,总之就是用零点(极值点)反过来表示参数再进行计算一些比较难的题目,一般问题就会进行一定提示,如利用(2)问提示(3)问,其难点就在于知道要利用已有结论,但无从下手第(1)问分类讨论问题,分离变量做容易导致解题过于复杂(2)问将不等式两边取对数之后思路就很清晰了(1)(2)分别证明两个不等号即可化到已知的结论上()()()()()()()()()()()()''''1101,0,1,0;1,,00,11,110f x x xx f x x f x x f x f x x x x f x f =->=∈>∈+∞<∈∈+∞==为的零点于是在上单调递增,在上单调递减是的极大值点,(3)问需要利用(2)问结论才能比较顺利的证明利用(2)中结论第(1)问是一个比较简单的存在型问题分段)高考导数大题除求导外,隐藏零点、韦达定理、极值点偏移、二,三阶导等技巧,都是附加的技巧,导数的核心,是分类讨论的考察,高考题多数绕不开分类讨论。

高中数学导数知识总结+导数七大题型答题技巧

高中数学导数知识总结+导数七大题型答题技巧

高中数学导数知识总结+导数七大题型答题技巧知识总结一. 导数概念的引入1. 导数的物理意义:瞬时速率。

一般的,函数y=f(x)在x=处的瞬时变化率是2. 导数的几何意义:曲线的切线,当点趋近于P时,直线 PT 与曲线相切。

容易知道,割线的斜率是当点趋近于 P 时,函数y=f(x)在x=处的导数就是切线PT的斜率k,即3. 导函数:当x变化时,便是x的一个函数,我们称它为f (x)的导函数. y=f(x)的导函数有时也记作,即。

二. 导数的计算基本初等函数的导数公式:导数的运算法则:复合函数求导:y=f(u)和u=g(x),则称y可以表示成为x的函数,即y=f(g(x))为一个复合函数。

三、导数在研究函数中的应用1. 函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(a,b)内(1) 如果>0,那么函数y=f(x)在这个区间单调递增;(2) 如果<0,那么函数y=f(x)在这个区间单调递减;2. 函数的极值与导数:极值反映的是函数在某一点附近的大小情况。

求函数y=f(x)的极值的方法有:(1)如果在附近的左侧>0 ,右侧<0,那么是极大值;(2)如果在附近的左侧<0 ,右侧>0,那么是极小值;3. 函数的最大(小)值与导数:求函数y=f(x)在[a,b]上的最大值与最小值的步骤:(1)求函数y=f(x)在[a,b]内的极值;(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的是最大值,最小的是最小值。

四. 推理与证明(1)合情推理与类比推理根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理。

根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理。

类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的;(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠。

高考数学专题:导数恒成立问题(含答案)

高考数学专题:导数恒成立问题(含答案)

1、设函数f(x)=13x3-a2x2+bx+c,曲线y=f(x)在点(0,f(0))处的切线方程为y=1.(1)求b,c的值;(2)若a>0,求函数f(x)的单调区间;(3)设函数g(x)=f(x)+2x,且g(x)在区间(-2,-1)内存在单调递减区间,求实数a的取值范围.2、已知函数f(x)=e x-ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x2<c e x.3、设函数f(x)=a e x ln x+b e x-1x,曲线y=f(x)在点(1,f(1))处的切线方程为y=e(x-1)+2.(1)求a,b;(2)证明:f(x)>1.4、已知函数f(x)=ax2-(a+2)x+ln x,其中a∈R.(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当a>0时,若f(x)在区间[1,e]上的最小值为-2,求a的取值范围;(3)若∀x1,x2∈(0,+∞),且x1<x2,f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范围.5、若不等式2x ln x≥-x2+ax-3对x∈(0,+∞)恒成立,则实数a的取值范围是( ) A.(-∞,0) B.(-∞,4] C.(0,+∞) D.[4,+∞)答案: B 2x ln x≥-x2+ax-3,则a≤2ln x+x+3x.设h(x)=2ln x+x+3x(x>0),则h′(x)=(x+3)(x-1)x2.当x∈(0,1)时,h′(x)<0,函数h(x)单调递减;当x∈(1,+∞)时,h′(x)>0,函数h(x)单调递增,所以h(x)min=h(1)=4.所以a≤h(x)min=4.故a的取值范围是(-∞,4].6、已知函数f(x)=12x2-a ln x(a∈R).(1)若函数f(x)的图象在x=2处的切线方程为y=x+b,求a,b的值;(2)若函数f(x)在(1,+∞)上为增函数,求a的取值范围.7、已知函数f (x )=a ln x -ax -3(a ∈R ).(1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎢⎡⎦⎥⎤f ′(x )+m 2在区间(t ,3)内总不是单调函数,求m 的取值范围.8、已知a ∈R ,函数f (x )=4x 3-2ax +a .(1)求f (x )的单调区间;(2)证明:当0≤x ≤1时,f (x )+|2-a |>0.9、已知函数f (x )=e x +e -x ,其中e 是自然对数的底数.(1)证明:f (x )是R 上的偶函数;(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围; (3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.答案:1、解:(1)f ′(x )=x 2-ax +b , 由题意得⎩⎨⎧f (0)=1,f ′(0)=0,即⎩⎨⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0), 当x ∈(-∞,0)时,f ′(x )>0; 当x ∈(0,a )时,f ′(x )<0; 当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ). (3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1),使不等式g ′(x )=x 2-ax +2<0成立, 即x ∈(-2,-1)时, a <⎝ ⎛⎭⎪⎫x +2x max =-22即可,所以满足要求的a 的取值范围是(-∞,-22).2、【解析】 (1)由f (x )=e x -ax ,得f ′(x )=e x -a .又f ′(0)=1-a =-1,得a =2. 所以f (x )=e x -2x ,f ′(x )=e x -2. 令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减; 当x >ln 2时,f ′(x )>0,f (x )单调递增.所以当x =ln 2时,f (x )取得极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4,f (x )无极大值. (2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x , 由(1)得g ′(x )=f (x )≥f (ln 2)>0,故g (x )在R 上单调递增.又g (0)=1>0, 因此,当x >0时,g (x )>g (0)>0,即x 2<e x . (3)证明:方法一:①若c ≥1,则e x ≤c e x . 又由(2)知,当x >0时,x 2<e x . 所以当x >0时,x 2<c e x .取x 0=0,当x ∈(x 0,+∞)时,恒有x 2<c e x .②若0<c <1,令k =1c >1,要使不等式x 2<c e x 成立,只要e x >kx 2成立. 而要使e x >kx 2成立,则只要x >ln(kx 2),只要x >2ln x +ln k 成立. 令h (x )=x -2ln x -ln k ,则h ′(x )=1-2x =x -2x .所以当x >2时,h ′(x )>0,h (x )在(2,+∞)内单调递增. 取x 0=16k >16,所以h (x )在(x 0,+∞)内单调递增, 又h (x 0)=16k -2ln(16k )-ln k =8(k -ln 2)+3(k -ln k )+5k ,易知k >ln k ,k >ln 2,5k >0,所以h (x 0)>0. 即存在x 0=16c ,当x ∈(x 0,+∞)时,恒有x 2<c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x . 方法二:对任意给定的正数c ,取x 0=4c, 由(2)知,当x >0时,e x >x 2, 所以e x=e x 2·e x 2>⎝ ⎛⎭⎪⎫x 22⎝ ⎛⎭⎪⎫x 22,当x >x 0时,e x>⎝ ⎛⎭⎪⎫x 22⎝ ⎛⎭⎪⎫x 22>4c ⎝ ⎛⎭⎪⎫x 22=1c x 2,因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x . 方法三:首先证明当x ∈(0,+∞)时,恒有13x 3<e x . 证明如下:令h (x )=13x 3-e x ,则h ′(x )=x 2-e x . 由(2)知,当x >0时,x 2<e x ,从而h ′(x )<0,h (x )在(0,+∞)内单调递减, 所以h (x )<h (0)=-1<0,即13x 3<e x.取x 0=3c ,当x >x 0时,有1c x 2<13x 3<e x .因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x .3、解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=a e x ln x +a x ·e x -b x 2e x -1+b xe x -1.由题意可得f (1)=2,f ′(1)=e. 故a =1,b =2.(2)证明:由(1)知,f (x )=e x ln x +2x e x -1,从而f (x )>1等价于x ln x >x e -x -2e .设函数g (x )=x ln x ,则g ′(x )=1+ln x .所以当x ∈⎝ ⎛⎭⎪⎫0,1e 时,g ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,g ′(x )>0.故g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增,从而g (x )在(0,+∞)上的最小值为g ⎝ ⎛⎭⎪⎫1e =-1e .设函数h (x )=x e -x -2e , 即h ′(x )=e -x (1-x ).所以当x ∈(0,1)时,h ′(x )>0;当x ∈(1,+∞)时,h ′(x )<0,故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而h (x )在(0,+∞)的最大值为h (1)=-1e .综上,当x >0时,g (x )>h (x ), 即f (x )>1.4、解:(1)当a =1时,f (x )=x 2-3x +ln x (x >0),f ′(x )=2x -3+1x =2x 2-3x +1x,则f (1)=-2,f (1)=0.所以切线方程是y =-2.(2)函数f (x )=ax 2-(a +2)x +ln x 的定义域是(0,+∞).当a >0时,f ′(x )=2ax -(a +2)+1x =2ax 2-(a +2)x +1x =(2x -1)(ax -1)x(x >0).令f ′(x )=0,得x =12或x =1a .①当0<1a ≤1,即a ≥1时,f (x )在[1,e]上单调递增,所以f (x )在[1,e]上的最小值是f (1)=-2;②当1<1a <e ,即1e <a <1时,f (x )在⎣⎢⎡⎦⎥⎤1,1a 上单调递减,在⎣⎢⎡⎦⎥⎤1a ,e 上单调递增,所以f (x )在[1,e]上的最小值是f ⎝ ⎛⎭⎪⎫1a <f (1)=-2,不合题意,故1e <a <1舍去;③当1a ≥e ,即0<a ≤1e 时,f (x )在[1,e]上单调递减,所以f (x )在[1,e]上的最小值是f (e)<f (1)=-2,不合题意,故0<a ≤1e 舍去.综上所述,a 的取值范围为[1,+∞).(3)设g (x )=f (x )+2x ,则g (x )=f (x )+2x =ax 2-ax +ln x ,只要g (x )在(0,+∞)上单调递增,即g ′(x )≥0在(0,+∞)上恒成立即可.而g ′(x )=2ax -a +1x =2ax 2-ax +1x(x >0).①当a =0时,g ′(x )=1x >0,此时g (x )在(0,+∞)上单调递增;②当a ≠0时,因为x >0,依题意知,只要2ax 2-ax +1≥0在(0,+∞)上恒成立.记h (x )=2ax 2-ax +1,则抛物线过定点(0,1),对称轴x =14.故必须⎩⎨⎧a >0,Δ=a 2-8a ≤0,即0<a ≤8. 综上可得,a 的取值范围为[0,8].6、解:(1)因为f ′(x )=x -ax(x >0),且f (x )在x =2处的切线方程为y =x +b , 所以⎩⎪⎨⎪⎧2-a ln 2=2+b ,2-a 2=1,解得a =2,b =-2ln 2.(2)若函数f (x )在(1,+∞)上为增函数,则f ′(x )=x -ax ≥0在(1,+∞)上恒成立,即a ≤x 2在(1,+∞)上恒成立.所以a ≤1.7、解:(1)f ′(x )=a (1-x )x(x >0),当a >0时,f (x )的单调增区间为(0,1),减区间为[1,+∞); 当a <0时,f (x )的单调增区间为[1,+∞),减区间为(0,1); 当a =0时,f (x )不是单调函数. (2)由(1)得f ′(2)=-a2=1,即a =-2, ∴f (x )=-2ln x +2x -3, ∴g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x ,∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t ,3)内总不是单调函数, 即g ′(x )=0在区间(t ,3)内有变号零点. 由于g ′(0)=-2, ∴⎩⎨⎧g ′(t )<0,g ′(3)>0.当g ′(t )<0时,即3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9; 由g ′(3)>0,得m >-373. 所以-373<m <-9.8、解:(1)由题意得f ′(x )=12x 2-2a .当a ≤0时,f ′(x )≥0恒成立,此时f (x )的单调递增区间为(-∞,+∞). 当a >0时,f ′(x ) =12⎝⎛⎭⎪⎫x -a 6⎝ ⎛⎭⎪⎫x +a 6, 此时函数f (x )的单调递增区间为⎝⎛⎦⎥⎤-∞,-a 6和⎣⎢⎡⎭⎪⎫a 6,+∞, 单调递减区间为⎣⎢⎡⎦⎥⎤-a 6,a 6. (2)证明:由于0≤x ≤1,故当a ≤2时,f (x )+|a -2|=4x 3-2ax +2≥4x 3-4x +2.当a >2时,f (x )+|a -2| =4x 3+2a (1-x )-2≥4x 3+4(1-x )-2=4x 3-4x +2. 设g (x )=2x 3-2x +1,0≤x ≤1,则 g ′(x )=6x 2-2=6⎝⎛⎪⎫x -3 ⎛⎪⎫x +3.于是所以g (x )min =g ⎝ ⎛⎭⎪⎫33=1-439>0.所以当0≤x ≤1时,2x 3-2x +1>0. 故f (x )+|a -2|≥4x 3-4x +2>0.9、解:(1)证明:因为对任意x ∈R ,都有f (-x )=e -x +e-(-x )=e -x +e x =f (x ),所以f (x )是R 上的偶函数.(2)由条件知m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立.令t =e x (x >0),则t >1, 所以m ≤-t -1t 2-t +1=-1t -1+1t -1+1对任意t >1成立. 因为t -1+1t -1+1≥2(t -1)·1t -1+1=3,所以-1t -1+1t -1+1≥-13,当且仅当t =2,即x =ln 2时等号成立.因此实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-13.(3)令函数g (x )=e x +1e x -a (-x 3+3x ),则g ′(x )=e x -1e x +3a (x 2-1).当x ≥1时,e x -1e x >0,x 2-1≥0,又a >0,故g ′(x )>0,所以g (x )是[1,+∞)上的单调增函数,因此g (x )在[1,+∞)上的最小值是g (1)=e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+3x 0)<0成立,当且仅当最小值g (1)<0,故e +e-1-2a <0,即a >e +e -12.令函数h (x )=x -(e -1)ln x -1,则h ′(x )=1-e -1x .令h ′(x )=0,得x =e -1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时,h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立. ①当a ∈⎝ ⎛⎭⎪⎫e +e -12,e ⊆(1,e)时,h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝ ⎛⎭⎪⎫e +e -12,e时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a -1>a e -1.。

高考数学秘籍18法导数应用的题型与方法试题

高考数学秘籍18法导数应用的题型与方法试题

智才艺州攀枝花市创界学校高考数学秘籍18法导数应用的题型与方法一、专题综述导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:〔1〕刻画函数〔比初等方法准确细微〕;〔2〕同几何中切线联络〔导数方法可用于研究平面曲线的切线〕;〔3〕应用问题〔初等方法往往技巧性要求较高,而导数方法显得简便〕等关于n 次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或者函数图象的混合问题是一种重要类型,也是高考中考察综合才能的一个方向,应引起注意。

二、知识整合 1.导数概念的理解.2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值.复合函数的求导法那么是微积分中的重点与难点内容。

课本中先通过实例,引出复合函数的求导法那么,接下来对法那么进展了证明。

3.要能正确求导,必须做到以下两点:〔1〕纯熟掌握各根本初等函数的求导公式以及和、差、积、商的求导法那么,复合函数的求导法那么。

〔2〕对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。

4.求复合函数的导数,一般按以下三个步骤进展:(1〕适中选定中间变量,正确分解复合关系;〔2〕分步求导〔弄清每一步求导是哪个变量对哪个变量求导〕;〔3〕把中间变量代回原自变量〔一般是x 〕的函数。

也就是说,首先,选定中间变量,分解复合关系,说明函数关系y=f(μ),μ=f(x);然后将函数对中间变量求导)'(μy ,中间变量对自变量求导)'(x μ;最后求x y ''μμ⋅,并将中间变量代回为自变量的函数。

整个过程可简记为分解——求导——回代。

纯熟以后,可以略中间过程。

假设遇多重复合,可以相应地屡次用中间变量。

三、例题分析例1.⎩⎨⎧>+≤==11)(2x b ax x x x f y 在1=x 处可导,那么=a =b 思路:⎩⎨⎧>+≤==11)(2x bax x x x f y 在1=x 处可导,必连续1)(lim 1=-→x f x b a x f x +=+→)(lim 11)1(=f ∴1=+b a2lim 0=∆∆-→∆x y x a xy x =∆∆+→∆0lim ∴2=a 1-=b例2.f(x)在x=a 处可导,且f ′(a)=b ,求以下极限:〔1〕hh a f h a f h 2)()3(lim 0--+→∆;〔2〕h a f h a f h )()(lim 20-+→∆分析:在导数定义中,增量△x 的形式是多种多样,但不管△x 选择哪种形式,△y 也必须选择相对应的形式。

数学高考导数解题技巧

数学高考导数解题技巧

数学高考导数解题技巧数学导数解题方法及策略一、专题综述导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等伟德国际次多项式的.导数问题属于较难类型。

2.伟德国际函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

二、知识整合1.导数概念的理解。

2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。

复合函数的求导法则是微积分中的重点与难点内容。

课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。

3.要能正确求导,必须做到以下两点:(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。

(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。

高考数学导数大题技巧(1)求函数中某参数的值或给定参数的值求导数或切线一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若f(x)在x=k时取得极值,试求所给函数中参数的值;或者是f(x)在(a,f(a))处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。

虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。

这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是:先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令x=k,f(x)的.导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。

注意:①导函数一定不能求错,否则不只第一问会挂,整个题目会一并挂掉。

高考数学导数压轴大题7大题型梳理归纳

高考数学导数压轴大题7大题型梳理归纳

导数压轴大题7个题型梳理归纳题型一:含参分类讨论 类型一:主导函数为一次型例1:已知函数()ln f x ax a x =--,且()0f x ≥.求a 的值 解:()1ax f x x-'=.当0a ≤时,()0f x '<,即()f x 在()0,+∞上单调递减,所以当01x ∀>时,()()010f x f <=,与()0f x ≥恒成立矛盾.当0a >时,因为10x a <<时()0f x '<,当1x a>时()0f x '>,所以()min 1f x f a ⎛⎫= ⎪⎝⎭,又因为()1ln10f a a =--=,所以11a =,解得1a =类型二:主导函数为二次型例2: 已知函数()()320f x x kx x k =-+<.讨论()f x 在[],k k -上的单调性. 解:()f x 的定义域为R ,()()23210f x x kx k '=-+<,其开口向上,对称轴3k x =,且过()0,1,故03kk k <<<-,明显不能分解因式,得2412k ∆=-.(1)当24120k ∆=-≤时,即0k ≤<时,()0f x '≥,所以()f x 在[],k k -上单调递增;(2)当24120k ∆=->时,即k <令()23210f x x kx '=-+=,解得:12x x ==,因为()()210,010f k k f ''=+>=>,所以两根均在[],0k 上.因此,结合()f x '图像可得:()f x 在,,33k k k k ⎡⎡⎤+-⎢⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦上单调递增,在⎢⎥⎣⎦上单调递减.类型三:主导函数为超越型例3:已知函数()cos xf x e x x =-.求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最值. 解:定义域0,2π⎡⎤⎢⎥⎣⎦,()()cos sin 1x f x e x x '=--,令()()cos sin 1xh x e x x =--,则()()cos sin sin cos 2sin .xx h x e x x x x e x '=---=-当0,2x π⎡⎤∈⎢⎥⎣⎦,可得()0h x '≤,即()h x 在0,2π⎡⎤⎢⎥⎣⎦递减,可得()()()000h x h f '≤==,则()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦递减,所以()()()max01,.22f x f f x f ππ⎛⎫====- ⎪⎝⎭类型四:复杂含参分类讨论例4:已知函数()()33f x x x a a R =+-∈.若()f x 在[]1,1-上的最大值和最小值分别记为()(),M a m a ,求()()M a m a -.解:()33333,333,x x a x a f x x x a x x a x a ⎧+-≥⎪=+-=⎨-+<⎪⎩,()2233,33,x x af x x x a⎧+≥⎪'=⎨-<⎪⎩ ①当1a ≤-时,有x a ≥,故()333f x x x a =+-,所以()f x 在()1,1-上是增函数,()()()()143,143M a f a m a f a ==-=-=--,故()()8M a m a -=.②当11a -<<时,若()()3,1,33x a f x x x a ∈=+-,在(),1a 上是增函数;若()1,x a ∈-,()333f x x x a =-+,在()1,a -上是减函数,()()(){}()()3max 1,1,M a f f m a f a a =-==,由于()()1162f f a --=-+因此当113a -<≤时,()()334M a m a a a -=--+;当113a <<时,()()332M a m a a a -=-++.③当1a ≥时,有x a ≤,故()333f x x x a =-+,此时()f x 在()1,1-上是减函数,因此()()()()123,123M a f a m a f a =-=+==-+,故()()4M a m a -=.题型二:利用参变分离法解决的恒成立问题类型一:参变分离后分母跨0例5:已知函数()()()242,22xf x x xg x e x =++=+,若2x ≥-时,()()f x kg x ≤,求k 的取值范围.解:由题意()24221xx x ke x ++≤+,对于任意的2x ≥-恒成立.当1x =-,上式恒成立,故k R ∈;当1x >-,上式化为()24221x x x k e x ++≥+,令()()()2421,21x x x h x x e x ++=>-+ ()()()22+221x xxe x h x e x -'=+,所以()h x 在0x =处取得最大值,()01k h ≥= 当21x -≤<-时,上式化为()24221x x x k e x ++≤+,()h x 单调递增,故()h x 在2x =-处取得最小值,()22k h e ≤-=.综上,k 的取值范围为21,e ⎡⎤⎣⎦.类型二:参变分离后需多次求导例6:已知函数()()()()212ln ,f x a x x a R =---∈对任意的()10,,02x f x ⎛⎫∈> ⎪⎝⎭恒成立,求a 的最小值.解:即对12ln 0,,221xx a x ⎛⎫∈>-⎪-⎝⎭恒成立. 令()2ln 12,0,12x l x x x ⎛⎫=-∈ ⎪-⎝⎭,则()()()()222212ln 2ln 211x x x x x l x x x --+-'=-=-- 再令()()()222121122ln 2,0,,02x m x x x m x x x x x --⎛⎫'=+-∈=-+=< ⎪⎝⎭()m x 在10,2⎛⎫ ⎪⎝⎭上为减函数,于是()122ln 202m x m ⎛⎫>=->⎪⎝⎭,从而,()0l x '>,于是()l x 在10,2⎛⎫ ⎪⎝⎭上为增函数,()124ln 22l x l ⎛⎫<=- ⎪⎝⎭,故要2ln 21xa x >--恒成立,只要[)24ln 2,a ∈-+∞,即a 的最小值24ln 2-. 变式1:已知函数()()1ln ,0x f x x a R a ax -=+∈≠,()()()11x g x b x xe b R x=---∈(1)讨论()f x 的单调性;(2)当1a =时,若关于x 的不等式()()2f x g x +≤-恒成立,求b 取值范围.类型三:参变分离后零点设而不求例7:已知函数()ln f x x x x =+,若k Z ∈,且()1f x k x <-对于任意1x >恒成立,求k 的最大值.解:恒成立不等式()minln ln ,111f x x x x x x x k k x x x ++⎛⎫<=< ⎪---⎝⎭,令()ln 1x x x g x x +=-,则()()2ln 21x x g x x --'=-,考虑分子()ln 2,h x x x =-- ()110h x x'=->,()h x 在()1,+∞单调递增.()()31ln 30,42ln 20h h =-<=->由零点存在定理,()3,4b ∃∈,使得()0h b =.所以()1,x b ∈,()()00h x g x '<⇒<,同理()(),,0x b g x '∈+∞>,所以()g x 在 ()1,b 单调递减,在(),b +∞单调递增.()()min ln 1b b bg x g b b +==-,因为()0h b =即ln 20ln 2b b b b --=⇒=-,()()()23,4,1b b b g b b b +-==∈-所以,k b <得max 3k =变式1:(理)已知函数().x ln x eaxx f x +-=(2)当0>x 时,()e x f -≤,求a 的取值范围.题型三:无法参变分离的恒成立问题类型一:切线法例8:若[)20,,10x x e ax x ∈+∞---≥,求a 的取值范围.类型二:赋值法例9:已知实数0a ≠,设函数()ln 1,0f x a x x x =++>.(1)当34a =-时,求函数()f x 的单调区间; (2)对于任意21,e ⎡⎫+∞⎪⎢⎣⎭均有()2x f x a ≤,求a 的取值范围. 解析:(1)当34a =-时,3()ln 1,04f x x x x =-++>. 3(12)(21()42141x x f 'x x x x x++=-=++ 所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得0a <≤当04a <≤时,()2f x a≤等价于22ln 0x a a --≥.令1t a=,则t ≥.设()22ln ,g t t x t =≥,则()2ln g t g x ≥=.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤则()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-=.故所以,()(1)0p x p ≥= .因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,1()1g t g x ⎛+= ⎝.令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭.由(i )得11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭.所以,()<0q x . 因此1()10g t g x ⎛+=>⎝.由(i )(ii )得对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2x f x a.综上所述,所求a 的取值范围是⎛ ⎝⎦题型四:零点问题类型一:利用单调性与零点存在定理讨论零点个数 例10:已知函数()()31+ln .4f x x axg x x =+=-,(2)用{}min ,m n 表示,m n 中最小值,设函数()()(){}()min ,0h x f x g x x =>讨论()h x 零点个数.解:(2)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =<≤,∴()h x 在(1,)+∞无零点.当x =1时,若54a -≥,则5(1)04f a =+≥,(1)min{(1),(1)}(1)0h fg g ===, 故x =1是()h x 的零点;若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h f g f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在(0,1)的零点个数. (ⅰ)若3a -≤或0a ≥,则2()3f x x a '=+在(0,1)无零点,故()f x 在(0,1)单调,而1(0)4f =,5(1)4f a =+,所以当3a -≤时,()f x 在(0,1)有一个零点; 当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x 在(01)单调递增,故当x ()f x 取的最小值,最小值为f 14.①若f >0,即34-<a <0,()f x 在(0,1)无零点.②若f =0,即34a =-,则()f x 在(0,1)有唯一零点;③若f <0,即334a -<<-,由于1(0)4f =,5(1)4f a =+, 所以当5344a -<<-时,()f x 在(0,1)有两个零点; 当534a -<≤-时,()f x 在(0,1)有一个零点.综上,当34a >-或54a <-时,()h x 由一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点.类型二:±∞方向上的函数值分析例11:已知函数()()22.x xf x ae a e x =+--若()f x 有两个零点,求a 取值范围.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点. (ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+.①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln 1n a ⎛⎫>+⎪⎝⎭,则()()000032ln 10n nf n e ae n f a ⎛⎫⎛⎫>-->+> ⎪ ⎪⎝⎭⎝⎭, 因此()f x 在(ln ,)a -+∞有一个零点.综上,a 的取值范围为(0,1).总结:若()01,ln 0a f a <<-<,要证明()f x 有两个零点,结合零点存在定理,分别在a 的左右两侧,这两个点的函数值()f x 都大于0,这时候需要我们对函数进行适当地放缩,化简,以便取值.先分析当x →-∞,2,x x ae ae 虽然为正,但是对式子影响不大,因此可以大胆的舍掉,得出()2xf x x e >--,显然我们对于右侧这个式子观察,就容易得出一个足够小的x (如1x =-),使得式子大于0了.再分析当x →+∞,我们可以把x ae 这个虽然是正数,但贡献比较小的项舍掉来简化运算,得到()()2xxf x eaex >--,显然当x 足够大,就可以使()2x ae -大于任何正数.那么把它放缩成多少才可以使得x e 的倍数大于x 呢?由常用的不等式1x e x x ≥+>,因此只需要使得21x ae ->即3ln x a >(如3ln 1x a=+)就可以了.题型五:极值点偏移类型一:标准极值点偏移例13:已知函数()()()221x f x x e a x =-+-有两个零点1,2x x ,证明12 2.x x +<解: 不妨设12x x <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,又()f x 在(,1)-∞上单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<.由于222222(2)(1)x f x x e a x --=-+-, 而22222()(2)(1)0xf x x e a x =-+-=,所以222222(2)(2)x x f x x ex e --=---.设2()(2)xx g x xex e -=---,则2'()(1)()x x g x x e e -=--.所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <. 从而22()(2)0g x f x =-<,故122x x +<.类型二:推广极值点偏移例14:已知()()()12ln ,f x x x f x f x ==,求证121x x +<. 解:我们可以发现12,x x 不一定恒在12x =两侧,因此需要分类讨论: (1)若12102x x <<<,则1211122x x +<+=,该不等式显然成立; (2)若121012x x <<<<,令()()()()()1ln 1ln 1g x f x f x x x x x =--=---102x <<,故()()()()12ln ln 12,01x g x x x g x x x -'''=+-+=>-,()g x '在10,2⎛⎫ ⎪⎝⎭上单调递增,当0x →时,()1;22ln 202g x g ⎛⎫''→-∞=-> ⎪⎝⎭.010,2x ⎛⎫∃∈ ⎪⎝⎭使()00g x '=即()g x 在()00,x 上单调递减,在01,2x ⎛⎫ ⎪⎝⎭上单调递增,又0x →时,()0g x →,且102g ⎛⎫=⎪⎝⎭,故()0g x <,即()()1f x f x <-对10,2x ⎛⎫∈ ⎪⎝⎭成立,得证.题型六:双变量问题类型一:齐次划转单变量例15:已知函数()()1ln 1a x f x x x -=-+()2a ≤.设,m n R +∈,且m n ≠,求证ln ln 2m n m nm n -+<-. 解:设m n >,证明原不等式成立等价于证明()2ln m n mm n n-<+成立,即证明21ln 1m m n m n n⎛⎫- ⎪⎝⎭<+成立.令m t n =,1t >,即证()()21ln 01t g t t t -=->+.由(1)得,()g t 在()0,+∞上单调递增,故()()10g t g >=,得证.变式1:对数函数()x f 过定点⎪⎭⎫ ⎝⎛21,e P ,函数()()()为常数m ,n x f m n x g '-=,()()的导函数为其中x f x f '.(1)讨论()x g 的单调性;(2)若对于()+∞∈∀,x 0有()m n x g -≤恒成立,且()()n x x g x h -+=2在()2121x x x ,x x ≠=处的导数相等,求证:()()22721ln x h x h ->+.解:(2)因为()1g n m =-,而()0,x ∀∈+∞有()()1g x n m g ≤-=恒成立,知()g x 当1x =时有最大值()1g ,有(1)知必有1m =.∴()()()11ln ,22ln ,g x n x h x g x x n x x x x=--=+-=-- 依题意设()()211122221120,1120k x x h x h x k k x x ⎧-+-=⎪⎪''==⎨⎪-+-=⎪⎩∴12111x x +=121212+=4x x x x x x ⇒≥>∴()()()()121212*********+ln ln 21ln h x h x x x x x x x x x x x ⎛⎫+=-+-+=-- ⎪⎝⎭令()124,21ln t x x t t t ϕ=>=--,()()1204t t tϕ'=->> ∴()t ϕ在4t >单调递增,∴()()472ln 2t ϕϕ>=-类型二:构造相同表达式转变单变量例16:已知,m n 是正整数,且1m n <<,证明()()11.nmm n +>+解:两边同时取对数,证明不等式成立等价于证明()()ln 1ln 1n m m n +>+,即证明()()ln 1ln 1m n m n ++>,构造函数()()ln 1x f x x+=,()()2ln 11xx x f x x -++'=,令()()ln 11x g x x x =-++,()()()22110111x g x x x x -'=-=<+++,故()()00g x g <=,故()0f x '<,结合1,m n <<知()()f m f n >类型三:方程消元转单变量例17:已知()ln xf x x=与()g x ax b =+,两交点的横坐标分别为1,2x x ,12x x ≠,求证:()()12122x x g x x ++>解:依题意11211112222222ln ln ln ln x ax b x x ax bx x x ax bx ax b x ⎧=+⎪⎧=+⎪⎪⇒⎨⎨=+⎪⎪⎩=+⎪⎩,相减得: ()()()12121212ln ln x x a x x x x b x x -=+-+-,化简得()()121212lnx x a x x b x x ++=-,()()()()()()112121121212121122221ln ln 1x x x x x x x x g x x x x a x x b x x x x x x ++++=+++==⎡⎤⎣⎦-- 设12x x >,令121x t x =>,()()()12122112ln 2ln 011t t x x g x x t t t t -+++>⇔>⇔->-+ 再求导分析单调性即可.变式1:已知函数()1++=ax x ln x f 有两个零点21x ,x .()10a -<<(2)记()x f 的极值点为0x ,求证:()0212x ef x x >+.变式2:设函数()()3211232xf x ex kx kx =--+. 若()f x 存在三个极值点123,,x x x ,且123x x x <<,求k 范围,证明1322x x x +>.变式3:已知函数()122ln 21x ef x a x x x-⎛⎫=++-- ⎪⎝⎭在定义域()0,2内有两个极值点.(1)求实数a 的取值范围;(2)设12,x x 是()f x 两个极值点,求证12ln ln ln 0x x a ++>.类型四:利用韦达定理转单变量例18:已知()()21ln 02f x x x a x a =-+>,若()f x 存在两极值点1,2x x , 求证:()()1232ln 24f x f x --+>.解:()21,a x x af x x x x-+'=-+=由韦达定理12121,x x x x a +==1140,4a a ∆=->< ()()()()()212121212121+2ln 2f x f x x x x x x x a x x ⎡⎤=+--++⎣⎦ ()11121ln ln 22a a a a a a =--+=--令()()11ln ,0,ln 024g a a a a a g a a '=--<<=<,()g a 在10,4⎛⎫⎪⎝⎭上单调递减,故()132ln 244g a g --⎛⎫>=⎪⎝⎭. 变式1:已知函数().R a ,x ax x ln x f ∈-+=22(2)若n ,m 是函数()x f 的两个极值点,且n m <,求证:.mn 1>方法二:变式2:已知函数()213ln 222f x x ax x =+-+()0a ≥. (1)讨论函数()f x 的极值点个数;(2)若()f x 有两个极值点12,x x ,证明()()110f x f x +<.题型六:不等式问题类型一:直接构造函数解决不等式问题例19:当()0,1x ∈时,证明:()()221ln 1x x x ++<.解:令()()()221ln 1f x x x x =++-,则()00f =,而()()()()2ln 1ln 12,00f x x x x f ''=+++-=,当()0,1x ∈时,有()ln 1x x +<,故()()()ln 12222ln 10111x f x x x x x x+''=+-=+-<⎡⎤⎣⎦+++, ()f x '在()0,1上递减,即()()00f x f ''<=,从而()f x 在()0,1递减,()()00f x f ≤=,原不等式得证.变式1:已知函数()()()R a ex x ln x a x f ∈+-=1.(1)求函数()x f 在点1=x 处的切线方程;(2)若不等式()0≤-x e x f 对任意的[)+∞∈,x 1恒成立,求实数a 的取值范围解:(2)令()()()()1ln 1,x xg x f x e a x x ex e x =-=-+->()1ln 1xg x a x e e x ⎛⎫'=+-+- ⎪⎝⎭, ①若0a ≤,则()g x '在[)1,+∞上单调递减,又()10g '=.即()0g x '≤恒成立,所以()g x 在[)1,+∞上单调递减,又()10g =,所以()0g x ≤恒成立.②0a >,令()()1ln 1,x h x g x a x e e x ⎛⎫'==+-+- ⎪⎝⎭所以()211xh x a e x x ⎛⎫'=+-⎪⎝⎭,易知211x x +与x -e 在[)1,+∞上单调递减,所以()h x '在[)1,+∞上单调递减,()12h a e '=-. 当20a e -≤,即02ea <≤时,()0h x '≤在[)1,+∞上恒成立,则()h x 在[)1,+∞上单调递减,即()g x '在[)1,+∞上单调递减,又()10g '=,()0g x '≤恒成立,()g x 在[)1,+∞上单调递减,又()10g =,()0g x ≤恒成立.当20a e ->时,即2ea >时,()01,x ∃∈+∞使()00h x '=,所以()h x 在()01,x 上单调递增,此时()()10h x h >=,所以()0g x '>所以()g x 在()01,x 递增,得()()10g x g >=,不符合题意. 综上,实数a 的取值范围是2e a ≤. 变式2:(文)已知函数()()()().R a ,x a x g ,x ln x x f ∈-=+=11(1)求直线()x g y =与曲线()x f y =相切时,切点T 的坐标. (2)当()10,x ∈时,()()x f x g >恒成立,求a 的取值范围.解:(1)设切点坐标为()00x y ,,()1ln 1f x x x'=++,则()()000001ln 11ln 1x a x x x a x ⎧++=⎪⎨⎪+=-⎩,∴00012ln 0x x x -+=.令()12ln h x x x x=-+,∴()22210x x h x x -+'=-≤,∴()h x 在()0+∞,上单调递减, ∴()0h x =最多有一根.又∵()10h =,∴01x =,此时00y =,T 的坐标为(1,0).(2)当()0 1x ∈,时,()()g x f x >恒成立,等价于()1ln 01a x x x --<+对()0 1x ∈,恒成立. 令()()1ln 1a x h x x x -=-+,则()()()()2222111211x a x ah x x x x x +-+'=-=++,()10h =. ①当2a ≤,()1x ∈0,时,()22211210x a x x x +-+≥-+>, ∴()0h x '>,()h x 在()0 1x ∈,上单调递增,因此()0h x <. ②当2a >时,令()0h x '=得1211x a x a =-=-由21x >与121x x =得,101x <<.∴当()1 1x x ∈,时,()0h x '<,()h x 单调递减, ∴当()1 1x x ∈,时,()()10h x h >=,不符合题意; 综上所述得,a 的取值范围是(] 2-∞,.变式3:(文)已知函数().x x x ln x f 12---=(2)若存在实数m ,对于任意()∞+∈0x ,不等式()()()0212≤+-+x x m x f 恒成立,求实数m 的最小整数值.解:(2)法一:参变分离+二次局部求导+虚设零点变式4:(理)已知函数()()()R a x a eae x f xx∈-++=-22.(1)讨论()x f 的单调性;(2)当0≥x 时,()(),x cos a x f 2+≥求实数a 的取值范围.变式5:已知()1ln ,mf x x m x m R x-=+-∈. (1)当202e m <≤时,证明()21x e x xf x m >-+-.类型二:利用min max f g >证明不等式问题例20:设函数()1ln x xbe f x ae x x-=+曲线()y f x =在点()()1,1f 的切线方程为()12y e x =-+.(1)求,a b 值; (2)证明:()1f x >【解析】(1)函数()f x 的定义域为(0,)+∞,112()ln xx x x a b b f x ae x e e e x x x--=+-+. 由题意可得(1)2f =,(1)f e '=.1, 2.a b ==故(2)由(1)知12()ln xx f x e x e x -=+,从而()1f x >等价于2ln x x x xe e->-. 设函数()1g x x nx =,则'()1g x nx =.所以当1(0,)x e ∈时,()0g x '<;当1(,)x e ∈+∞时,()0g x '>.故()g x 在1(0,)e 单调递减,在1(,)e+∞单调递增,从而()g x 在(0,)+∞的最小值为11()g e e=-. 设函数2()xh x xee-=-,则'()(1)x h x e x -=-. 所以当(0,1)x ∈时()0h x '>;当(1,)x ∈+∞时,()0h x '<故()h x 在(0,1)单调递增, 在(1,)+∞单调递减,从而()h x 在(0,)+∞的最大值为1(1)h e=-.变式1. 已知函数()x ln a bx x f +=2的图像在点()()11f ,处的切线斜率为2+a .(1)讨论()x f 的单调性; (2)当20e a ≤<时,证明:()222-+<x e xx x f 解:(2)要证()222x f x x e x -<+,需证明22ln 2x a x e x x-<.令()ln 02a x e g x a x ⎛⎫=<≤ ⎪⎝⎭,则()()21ln a x g x x -'=, 当()0g x '>时,得0x e <<;当()0,g x '<得x e >. 所以()()max ag x g e e==. 令()()2220x e h x x x -=>,则()()2322x e x h x x--'=. 当()0h x '>时,得2x >;当()0h x '<时,得02x <<. 所以()()min 122h x h ==.因为02e a <≤,所以()max 12a g x e ==. 又2e ≠,所以22ln 2x a x e x x-<,即()222x f x x e x -<+得证.变式2:(理)已知函数()().ax ln axx f -=(1)求()x f 的极值;(2)若()012≤+-++m x e mx x ln e x x ,求正实数m 的取值范围.变式3:已知()1ln ,mf x x m x m R x-=+-∈. (2)当202e m <≤时,证明()21x e x xf x m >-+-.类型三:利用赋值法不等式问题例21:已知函数()2x xf x e e x -=--.(1)讨论()f x 的单调性;(2)设()()()24g x f x bf x =-,当0x >,()0g x >,求b 的最大值. (3)估计ln 2(精确小数点后三位).解:因为()()()()()2224484xx x x g x f x bf x e e b e e b x --=-=---+-所以()()()()()2222422222xx x x x x x xg x ee b e e b e e e e b ----⎡⎤'=+-++-=+-+-+⎣⎦①当2b ≤时,()0,g x '≥等号仅当0x =时成立,所以()g x 在R 上单调递增,而()00g =,所以对于任意()0,0x g x >>.②当2b >,若x 满足222x x e e b -<+<-,即(20ln 12x b b b <<-+-时,()0g x '<,而()00g =,因此当(20ln 12x b b b <≤--时,()0g x <,综上最大为2.(3)由(2)知,(()3221ln 22g b =-+-,当2b =时,(36ln 20,ln 20.69282g =->>>;当14b =+时,(ln 1b -+=(()32ln 202g =--<,18ln 20.69328+<<,所以近似值为0.693类型四:利用放缩法构造中间不等式例22:若0x >,证明:()ln 1.1x x xx e +>- 解:转化成整式()()2ln 11xx e x +->.令()()()2ln 11xf x x e x =+--,则()()1ln 121x xe f x e x x x -'=++-+()()()21ln 1211x x x e x e f x e x x x +''=+++-++.由()+1ln 11x x e x x x ≥+≥+,, 得()()()()3222112120,11x x x x f x x x x +++''≥++-=>++()()00,f x f ''≥=故()()00f x f ≥=,得证.变式1:(2020河南鹤壁市高三期末)已知函数()21xf x e kx =--,()()()2ln 1g x k x x k R =+-∈.(2)若不等式()()0f x g x +≥对任意0x ≥恒成立,求实数k 范围.变式2:(2020年河南六市联考)已知函数()()2ln 1sin 1f x x x =+++,()1ln g x ax b x =-- 证明:当1,x >-()()2sin 22xf x x x e<++类型五:与数列相关的不等式例23:设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求m 的最小值.解:(2)由(1)知当(1,)x ∈+∞时,1ln 0x x -->令112n x =+得11ln(1)22n n +<,从而 221111111ln(1)ln(1)ln(1)112222222n n n ++++⋅⋅⋅++<++⋅⋅⋅+=-<故2111(1)(1)(1)222n e ++⋅⋅⋅+<而23111(1)(1)(1)2222+++>,所以m 的最小值为3.变式1:(理)已知函数()()()021>+-+=a ax xx ln x f .(1)若不等式()0≥x f 对于任意的0≥x 恒成立,求实数a 的取值范围;(2)证明:().N n ln ln ln ln n n n *-∈⎪⎭⎫⎝⎛->⎪⎪⎭⎫ ⎝⎛-++⋅⋅⋅+++1212121279353变式1:(2020河南开封二模)已知函数()1xf x e x =--.(1)证明()0f x >;(2)设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 求m 的最小值.类型六:与切、割线相关的不等式例24:已知函数()()2901xf x a ax =>+ (1)求()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值;(2)若直线2y x a =-+为曲线()y f x =的切线,求实数的值;(3)当2a =时,设12141,,22x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,且121414x x x +⋅⋅⋅+=,若不等式()()()1214f x f x f x λ+⋅⋅⋅+≤恒成立,求实数λ的最小值.解:证明()29412xf x x x=≤-++,即32281040x x x -+-+≥, 令()3228104F x x x x =-+-+,()261610F x x x '=-+-,所以()F x在1,12⎛⎫⎪⎝⎭,5,23⎛⎫ ⎪⎝⎭递减,在51,3⎛⎫ ⎪⎝⎭递增.而()50,203F F ⎛⎫>> ⎪⎝⎭,表明不等式()29412xf x x x =≤-++成立.所以()()()12141244+442n f x f x f x x x x ++⋅⋅⋅+≤-+-+⋅⋅⋅-+=, 等号在全部为1时成立,所以λ最小值为42。

数学高考备考复杂函数的求导技巧

数学高考备考复杂函数的求导技巧

数学高考备考复杂函数的求导技巧复杂函数是数学高考备考中一个重要的考点,求导是解题的基础技巧之一。

本文将介绍一些求解复杂函数导数的技巧,帮助备考学生更好地应对数学高考。

一、基本方法求解复杂函数的导数时,常使用以下基本方法:1. 基本求导法则:熟练掌握常见函数的导数,如幂函数、指数函数、对数函数、三角函数等。

根据基本求导法则,可以快速求解复杂函数的导数。

2. 链式法则:若函数由两个复合函数构成,可利用链式法则求导。

链式法则的公式为:若 y=f(u),且 u=g(x),则 y=f(g(x)) 的导数为 dy/dx = f'(u)·g'(x)。

利用链式法则,可以逐步求解复杂函数的导数。

3. 对数导数法则:对于含有对数函数的复杂函数,可利用对数导数法则求导。

对数导数法则的公式为:若 y=log_a(u),则 y'=(1/u)·u'。

通过对数导数法则,可以将复杂函数化简为相对简单的表达式。

二、常见技巧在求解复杂函数导数时,还可以应用以下常见技巧:1. 加减法的求导:对于复杂函数中的加减法运算,可根据求导法则,将其拆分为多个简单函数的求导之和或之差。

2. 乘法的求导:对于复杂函数中的乘法运算,可利用乘法法则求导。

乘法法则的公式为:若 y=u·v,则 y'=u'·v+u·v'。

根据乘法法则,可以将复杂函数的导数化简为简单函数的求导。

3. 除法的求导:对于复杂函数中的除法运算,可应用除法法则求导。

除法法则的公式为:若 y=u/v,则 y'=(u'·v-u·v')/v^2。

通过除法法则,可以将复杂函数的导数转化为简单函数的导数。

4. 极限的求导:当复杂函数中存在极限运算时,可利用极限的性质求导。

如极限运算中的乘除法,可先求极限,再对求得的极限函数求导。

三、实例分析为了更好地理解求解复杂函数导数的技巧,以下给出两个实例分析:实例一:求解函数 y=(2x^3+3x^2+4x+5)·e^x 的导数。

高考压轴题:导数题型及解题方法总结很全

高考压轴题:导数题型及解题方法总结很全

高考压轴题:导数题型及解题方法(自己总结供参考)一.切线问题题型1 求曲线)(x f y =在0x x =处的切线方程。

方法:)(0x f '为在0x x =处的切线的斜率。

题型2 过点),(b a 的直线与曲线)(x f y =的相切问题。

方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。

注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。

例 已知函数f (x )=x 3﹣3x .(1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169=--y x )(2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、(提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。

将问题转化为关于m x ,0的方程有三个不同实数根问题。

(答案:m 的范围是()2,3--)题型3 求两个曲线)(x f y =、)(x g y =的公切线。

方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。

()(,22x f x );建立21,x x 的等式关系,12112)()(y y x f x x -='-,12212)()(y y x f x x -='-;求出21,x x ,进而求出切线方程。

解决问题的方法是设切点,用导数求斜率,建立等式关系。

例 求曲线2x y =与曲线x e y ln 2=的公切线方程。

(答案02=--e y x e )二.单调性问题题型1 求函数的单调区间。

求含参函数的单调区间的关键是确定分类标准。

分类的方法有:(1)在求极值点的过程中,未知数的系数与0的关系不定而引起的分类;(2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与0的关系不定);(3) 在求极值点的过程中,极值点的大小关系不定而引起的分类;(4) 在求极值点的过程中,极值点与区间的关系不定而引起分类等。

(完整版)高中数学高考导数题型分析及解题方法

(完整版)高中数学高考导数题型分析及解题方法

生命是永恒不断的创造,因为在它内部蕴含着过剩的精力,它不断流溢,越出时间和空间的界限,它不停地追求,以形形色色的自我表现的形式表现出来。

--泰戈尔导数题型分析及解题方法一、考试内容导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。

二、热点题型分析题型一:利用导数研究函数的极值、最值。

1.32()32f x x x =-+在区间[]1,1-上的最大值是 2 2.已知函数2)()(2=-==x c x x x f y 在处有极大值,则常数c = 6 ;3.函数331x x y -+=有极小值 -1 ,极大值 3题型二:利用导数几何意义求切线方程1.曲线34y x x =-在点()1,3--处的切线方程是 2y x =- 2.若曲线x x x f -=4)(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为 (1,0)3.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 430x y --=4.求下列直线的方程:(1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2x y =过点P(3,5)的切线;解:(1)123|y k 23 1)1,1(1x /2/23===∴+=∴++=-=-上,在曲线点-x x y x x y P Θ所以切线方程为0211=+-+=-y x x y 即, (2)显然点P (3,5)不在曲线上,所以可设切点为),(00y x A ,则200x y =①又函数的导数为x y 2/=,所以过),(00y x A 点的切线的斜率为/2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有352000--=x y x ②,由①②联立方程组得,⎩⎨⎧⎩⎨⎧====255 110000y x y x 或,即切点为(1,1)时,切线斜率为;2201==x k ;当切点为(5,25)时,切线斜率为10202==x k ;所以所求的切线有两条,方程分别为2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即,或题型三:利用导数研究函数的单调性,极值、最值1.已知函数))1(,1()(,)(23f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1 (Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式;(Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值; (Ⅲ)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围解:(1)由.23)(,)(223b ax x x f c bx ax x x f ++='+++=求导数得过))1(,1()(f P x f y 上点=的切线方程为:).1)(23()1(),1)(1()1(-++=+++--'=-x b a c b a y x f f y 即而过.13)]1(,1[)(+==x y f P x f y 的切线方程为上故⎩⎨⎧-=-=+⎩⎨⎧-=-=++3023323c a b a c a b a 即∵124,0)2(,2)(-=+-∴=-'-==b a f x x f y 故时有极值在 ③由①②③得 a=2,b=-4,c=5 ∴.542)(23+-+=x x x x f(2)).2)(23(443)(2+-=-+='x x x x x f 当;0)(,322;0)(,23<'<≤->'-<≤-x f x x f x 时当时13)2()(.0)(,132=-=∴>'≤<f x f x f x 极大时当 又)(,4)1(x f f ∴=在[-3,1]上最大值是13。

高中数学高考导数题型分析

高中数学高考导数题型分析

高中数学高考导数题型分析在高中数学的高考试卷中,导数是一个非常重要的考点。

导数是微积分的基础概念之一,也是高考数学中的难点和重点之一。

下面我将分析一些常见的导数题型。

1. 导数定义题型:导数的定义是导数题中最基础的一种题型。

通常是给出一个函数,然后要求求出其导数。

这种题型主要考察对导数定义的理解和应用能力。

解题关键是根据导数的定义进行计算,并简化结果。

例如,给出一个函数f(x)=3x^2+2x,求其导数。

根据导数定义,导数f'(x) = lim(h->0) ((f(x+h)-f(x))/h),将函数f(x)代入公式进行计算,得到f'(x)=6x+2。

2. 导函数的运算题型:这种题型要求对复合函数、反函数、商函数等进行导数运算。

解题关键是根据导数的运算法则,运用链式法则、反函数导数法则、商函数导数法则等进行计算。

例如,已知函数y=ln(3x+1),求y'。

通过链式法则,可以将这个复合函数分解成两个部分,即g(x)=3x+1和h(x)=ln(x),然后分别求其导数,再代入求得最终解。

计算过程如下:g'(x)=3,h'(x)=1/x,y'=(3x+1)*(1/x)=3+1/x。

3. 导数应用题型:这种题型主要考察对导数的应用能力。

常见的导数应用题有极值问题、最优化问题、曲线的凹凸性问题等。

解题关键是根据问题给出的条件,建立数学模型,然后运用导数的性质和规律进行求解。

例如,有一长方形花坛,其中一边靠墙,另外三条边都用煤炭筛挡住,设底边向量为x,求长方形的最大面积。

首先设长方形的宽为y,由花坛的几何关系得到,x+2y=100,即y=50-0.5x。

然后建立目标函数A=x*y,即A=x(50-0.5x),求导得到A'=50-x,令导数为0,可以解得x=25。

将x=25代入目标函数A,得到最大面积为A(25)=25*(50-0.5*25)=625。

高考中函数与导数问题的热点题型

高考中函数与导数问题的热点题型

题型1
题型2
题型3

题型 3 利用导数研究不等式的有关问题 例 3 (2023·全国甲卷)已知 f(x)=ax-csoins3xx,x∈0,π2. (1)若 a=8,讨论 f(x)的单调性; (2)若 f(x)<sin2x 恒成立,求 a 的取值范围.
题型1
题型2
题型3

(1)f′(x)

a

cosxcos3x+3sinxcos2xsinx cos6x
题型1
题型2
题型3

当 b≥0 时,e2>4,4a<2,f(2)=e2-4a+b>0, 而函数 f(x)在区间(0,+∞)上单调递增,故函数 f(x)在区间(0,+∞) 上有一个零点. 当 b<0 时,令 H(x)=ex-x-1,则 H′(x)=ex-1, 当 x∈(-∞,0)时,H′(x)<0,H(x)单调递减, 当 x∈(0,+∞)时,H′(x)>0,H(x)单调递增, 注意到 H(0)=0,故 H(x)≥0 恒成立, 从而有 ex≥x+1,
题型1
题型2
题型3
解 (1)当 a=-2 时,f(x)=ln x-2x-1x,f(x)的定义域为(0,+∞), 所以 f′(x)=1x-2+x12=-2x2x+2 x+1=(2x+1)x(2 -x+1). 令 f′(x)>0,解得 0<x<1,令 f′(x)<0,解得 x>1, 所以 f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
当 a>12时, 若 x∈(-∞,0),则 f′(x)>0,f(x)单调递增,
若 x∈(0,ln (2a)),则 f′(x)<0,f(x)单调递减,

导数的极值与最值题型总结(解析版)--2024高考数学常考题型精华版

导数的极值与最值题型总结(解析版)--2024高考数学常考题型精华版

第6讲导数的极值与最值题型总结【考点分析】考点一:函数的驻点若()00='x f ,我们把0x 叫做函数的驻点.考点二:函数的极值点与极值①极大值点与极大值:函数()f x 在点0x 附近有定义,如果对0x 附近的所有点都有0()()f x f x <,则称0()f x 是函数的一个极大值,记作0()y f x =极大值,其中0x 叫做函数的极大值点②极小值点与极小值:函数()f x 在点0x 附近有定义,如果对0x 附近的所有点都有0()()f x f x >,则称0()f x 是函数的一个极小值,记作0()y f x =极小值,其中0x 叫做函数的极小值点考点三:求可导函数()f x 极值的步骤①先确定函数()f x 的定义域;②求导数()f x ';③求方程()0f x '=的根;④检验()f x '在方程()0f x '=的根的左右两侧的符号,如果在根的左侧附近为正,在右侧附近为负,那么函数()y f x =在这个根处取得极大值;如果在根的左侧附近为负,在右侧附近为正,那么函数()y f x =在这个根处取得极小值.注意:可导函数()x f 在0x x =满足0()0f x '=是()x f 在0x 取得极值的必要不充分条件,如3()f x x =,(0)0f '=,但00x =不是极值点.考点四:函数的最值一个连续函数在闭区间[]b a ,上一定有最值,最值要么在极值点处取得,要么在断点处取得。

求函数最值的步骤为:①求()y f x =在[]b a ,内的极值(极大值或极小值);②将()y f x =的各极值与()a f 和()b f 比较,其中最大的一个为最大值,最小的一个为最小值.【题型目录】题型一:求函数的极值与极值点题型二:根据极值、极值点求参数的值题型三:根据极值、极值点求参数的范围题型四:利用导数求函数的最值(不含参)题型五:根据最值求参数题型六:根据最值求参数范围【典例例题】题型一:求函数的极值与极值点【方法总结】利用导数求函数极值的步骤如下:(1)求函数()f x 的定义域;(2)求导;(3)解方程()00f x '=,当()00f x '=;(4)列表,分析函数的单调性,求极值:①如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值;【例1】(2022石泉县石泉中学)函数()2x x f x e=的极小值为()A .0B .1eC .2D .24e 【答案】A【解析】由()2x xf x e=,得()()()2222x xxx x x xe x e f x e e ---'==,当02x <<时,()0f x '>,()f x 单调递增;当0x <或2x >时,()0f x '<,()f x 单调递减;所以当0x =时,函数()2x x f x e=取得极小值,极小值为()000f e ==.故选:A.【例2】(2021·河南新乡市)已知函数()ln f x x ax =-的图象在1x =处的切线方程为0x y b ++=,则()f x 的极大值为()A .ln 21--B .ln 21-+C .1-D .1【答案】A【解析】因为()ln f x x ax =-,所以1()f x a x'=-,又因为函数()f x 在图象在1x =处的切线方程为0x y b ++=,所以(1)1f a b =-=--,(1)11f a ='-=-,解得2a =,1b =.由112()2x f x x x-'=-=,102x <<,()0f x '>,12x >,()0f x '<,知()f x 在12x =处取得极大值,11ln 1ln 2122f ⎛⎫=-=-- ⎪⎝⎭.故选:A.【例3】若函数2()x f x e ax a =--在R 上有小于0的极值点,则实数a 的取值范围是()A .(1,0)-B .(0,1)C .(,1)-∞-D .(1,)+∞【答案】B【解析】由()2()x xf x e ax a f x e a'=--⇒=-因为2()x f x e ax a =--在R 上有小于0的极值点,所以()0xf x e a ='-=有小于0的根,由x y e =的图像如图:可知()0xf x e a ='-=有小于0的根需要01a <<,所以选择B【例4】(2022·江西师大附中三模(理))已知函数()sin ,()e xxf x xg x =-为()f x 的导函数.(1)判断函数()g x 在区间π0,2⎛⎫ ⎪⎝⎭上是否存在极值,若存在,请判断是极大值还是极小值;若不存在,说明理由;【答案】(1)存在;极小值【分析】(1)转化为判断导函数是否存在变号零点,对()g x '求导后,判断()g x '的单调性,结合零点存在性定理可得结果;【解析】(1)由()sin ex x f x x =-,可得2e e 1()cos cos (e )e x x x x x xg x x x --=-=-,则2e (1)e 2π()sin sin ,0,(e )e 2x x x x x x g x x x x ----⎛⎫'=+=+∈ ⎪⎝⎭,令2()sin e x x h x x -=+,其中π0,2x ⎛⎫∈ ⎪⎝⎭,可得2e (2)e 3()cos cos 0(e )e x x x x x x h x x x ---'=+=+>,所以()h x 在π0,2⎛⎫⎪⎝⎭上单调递增,即()g x '在π0,2⎛⎫⎪⎝⎭上单调递增,因为π2π2π2(0)20,102eg g -⎛⎫''=-<=+> ⎪⎝⎭,所以存在0π0,2x ⎛⎫∈ ⎪⎝⎭,使得()00g x '=,当()00,x x ∈时,()0,()g x g x '<单调递减;当0,2x x π⎛⎫∈ ⎪⎝⎭时,()0,()g x g x '>单调递增,所以当0x x =时,函数()g x 取得极小值.【例5】(2022·江苏苏州·模拟预测)函数()sin cos f x x x x =--.(1)求函数()f x 在(),2ππ-上的极值;【答案】(1)极大值,12π-;极小值,1-;【分析】(1)由题可得()14f x x π⎛⎫'=- ⎪⎝⎭,进而可得;【解析】(1)∵()sin cos f x x x x =--,∴()1cos sin 1cos 4f x x x x π⎛⎫=-+=+' ⎪⎝⎭,,2x ππ⎛⎫∈- ⎪⎝⎭,由()0f x '=,可得2x π=-,或0x =,∴,2x ππ⎛⎫∈-- ⎝⎭,()()0,f x f x '>单调递增,,02x π⎛⎫∈- ⎪⎝⎭,()()0,f x f x '<单调递减,0,2x π⎛⎫∈ ⎪⎝⎭,()()0,f x f x '>单调递增,∴2x π=-时,函数()f x 有极大值(122f ππ-=-,0x =时,函数()f x 有极小值(0)1f =-;【题型专练】1.已知e 为自然对数的底数,设函数()x xe x f =,则A .1是()x f 的极小值点B .﹣1是()x f 的极小值点C .1是()x f 的极大值点D .﹣1是()x f 的极大值点【答案】B 【解析】【详解】试题分析:,当时,,当时,,当时,,所以当时,函数取得极小值,是函数的极小值点,故选B.考点:导数与极值2.(2022福建省福建师大附中高二期末多选)定义在R 的函数()f x ,已知()000x x ≠是它的极大值点,则以下结论正确的是()A .0x -是()f x -的一个极大值点B .0x -是()f x -的一个极小值点C .0x 是()f x -的一个极大值点D .0x -是()f x --的一个极小值点【答案】AD【解析】()000x x ≠是()f x 的极大值点,就是存在正数m ,使得在00(,)x m x -上,()0f x '>,在00(,)x x m +上,()0f x '<.设()()g x f x =-,()()g x f x ''=--,当00x x x m -<<-+时,00x m x x -<-<,()0f x '->,()0g x '<,同理00x m x x --<<-时,()0g x '>,∴0x -是()f x -的一个极大值点,从而0x -是()f x --的一个极小值点,0x 是()f x -的一个极小值点.不能判定0x -是不是()f x -的极值点.故选:AD.3.(2022江西高三期中(文))已知函数()ln f x a x ax =+,2()2g x x x =+,其中a R ∈.(1)求函数()()()h x f x g x =+的极值;(2)若()g x 的图像在()()11,A x g x ,()()()2212,0B x g x xx <<处的切线互相垂直,求21x x -的最小值.【答案】(1)答案见解析;(2)1.【解析】(1)函数2()ln (2)h x a x x a x =+++的定义或为(0,)+∞,2(1)2()2(2)a x x a h x x a x x⎛⎫++ ⎪⎝⎭'=+++=,若0a ≥,()0h x '>恒成立,此时()h x 在(0,)+∞上单调递增,无极值;若0a <时,()0h x '=,解得2a x =-,当02ax <<-时,()0h x '<,()h x 单调递减;当2ax >-时,()0h x '>,()h x 单调递增.∴当2a x =-时,()h x 有极小值2ln 224a a ah a a ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝⎭,无极大值.(2)()22g x x '=+,则()()1222221x x ++=-,其中,120x x <<,1222022x x ∴+<<+,且()121141x x =--+,210x -<<,()212211141x x x x ∴-=++≥+,当且仅当21(1,0)2x =-∈-时取等号,∴当212x =-,132x =-时,21x x -取最小值1.题型二:根据极值、极值点求参数的值【方法总结】解含参数的极值问题要注意:①()00f x '=是0x 为函数极值点的必要不充分条件,故而要注意检验;②若函数()y f x =在区间(,)a b 内有极值,那么()y f x =在(,)a b 内绝不是单调函数,即在某区间上的单调函数没有极值.【例1】(2022全国课时练习)若函数()2()1xf x x ax e =--的极小值点是1x =,则()f x 的极大值为()A .e -B .22e -C .25e -D .2-【答案】C【解析】由题意,函数()2()1x f x x ax e =--,可得2()(2)1x f x e x a x a '⎡⎤=+---⎣⎦,所以(1)(22)0f a e '=-=,解得1a =,故()2()1x f x x x e =--,可得()())1(2xf x ex x '=+-,则()f x 在(,2)-∞-上单调递增,在()2,1-上单调递减,在(1,)+∞上单调递增,所以()f x 的极大值为2(2)5f e --=.故选:C.【例2】(2021·全国课时练习)若函数2()()f x x x a =-在2x =处取得极小值,则a=__________.【答案】2【解析】由2322()()2f x x x a x ax a x ==--+可得22()34f x x ax a '=-+,因为函数2()()f x x x a =-在2x =处取得极小值,所以2(2)1280f a a '=-+=,解得2a =或6a =,若2a =,则2()384(2)(32)f x x x x x '=-+=--,当2,3x ⎛⎫∈-∞ ⎪⎝⎭时,()0f x '>,则()f x 单调递增;当2,23x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,则()f x 单调递减;当()2,x ∈+∞时,()0f x '>,则()f x 单调递增;所以函数()f x 在2x =处取得极小值,符合题意;当6a =时,2()324363(2)(6)f x x x x x '=-+=--,当(),2x ∈-∞时,()0f x '>,则()f x 单调递增;当()2,6x ∈时,()0f x '<,则()f x 单调递减;当()6,x ∈+∞时,()0f x '>,则()f x 单调递增;所以函数在2x =处取得极大值,不符合题意;综上:2a =.故答案为:2.【例3】(2022·江苏南通·模拟预测)已知函数()()()e xf x x a x b =--在x a =处取极小值,且()f x 的极大值为4,则b =()A .-1B .2C .-3D .4【答案】B 【解析】【分析】对()f x 求导,由函数()()()e xf x x a x b =--在x a =处取极小值,所以()0f a ¢=,所以a b =,()()2e xf x x a ∴=-,对()f x 求导,求单调区间及极大值,由()f x 的极大值为4,列方程得解.【详解】解:()()()e xf x x a x b =--()2e x x ax bx ab =--+,所以()()()22e e x x f x x a b x ax bx ab '=--+--+()2e 2x x a b x ab a b ⎡⎤=+--+--⎣⎦因为函数()()()e xf x x a x b =--在x a =处取极小值,所以()()()2e 2e 0a af a a a b a ab a b a b '⎡⎤=+--+--=-=⎣⎦,所以a b =,()()2e x f x x a ∴=-,()()()()22e 222=e 2x x f x x a x a a x ax a '⎡⎤=+-+----⎡⎤⎣⎦⎣⎦,令()0f x '=,得=x a 或=2x a -,当()2x a ∈-∞-,时,()0f x '>,所以()f x 在()2a -∞-,单调递增,当()2x a a ∈-,时,()0f x '<,所以()f x 在()2a a -,单调递增,当()x a ∈∞,+时,()0f x '>,所以()f x 在()a ∞+,单调递增,所以()f x 在=2x a -处有极大值为()22e ==44a f a --,解得=2a ,所以=2b .故选:B 【题型专练】1.设函数()23ln 2f x x ax x =+-,若1x =是函数()f x 是极大值点,则函数()f x 的极小值为________【答案】ln 22-【解析】函数()2313ln '()222f x x ax x f x ax x =+-⇒=+-1x =是函数()f x 是极大值点则131'(1)20124f a a =+-=⇒=()213113ln '()04222f x x x x f x x x =+-⇒=+-=1x =或2x =当2x =时()f x 的极小值为ln 22-故答案为:ln 22-2.(2023全国高三专题练习)已知函数()ln 1xf x ae x =--,设1=x 是()f x 的极值点,则a =___,()f x 的单调增区间为___.【答案】1e()1,+∞【解析】由题意可得:()1xf x ae x'=-1x = 是()f x 的极值点()110f ae ∴=-='1a e⇒=即()1ln 1x f x ex -=--()11x f x e x-⇒-'=令()0f x '>,可得1x >()f x ∴的单调递增区间为()1,+∞3.(2023河南省实验中学高二月考)函数1sin sin 33y a x x =+在3x π=处有极值,则a 的值为()A .6-B .6C .2-D .2【答案】D【解析】cos cos3,y a x x +'=由3|0x y π=='得,cos cos 0,2,3a a ππ+==选D.点睛:函数()f x 在点3x π=处由极值,则必有()0,3f π'=但要注意()0,3f π'=3x π=不一定是()f x 的极值点.题型三:根据极值、极值点求参数的范围【例1】(2022·四川绵阳·二模(文))若2x =是函数()()2224ln f x x a x a x =+--的极大值点,则实数a 的取值范围是()A .(),2-∞-B .()2,-+∞C .()2,+∞D .()2,2-【答案】A 【解析】【分析】求出()f x ',分0a ≥,2a <-,20a -<<,2a =-分别讨论出函数的单调区间,从而可得其极值情况,从而得出答案.【详解】()()()()()22224224222x a x a x x a a f x x a x x x+---+'=+--==,()0x >若0a ≥时,当2x >时,()0f x '>;当02x <<时,()0f x '<;则()f x 在()0,2上单调递减;在()2,+∞上单调递增.所以当2x =时,()f x 取得极小值,与条件不符合,故满足题意.当2a <-时,由()0f x '>可得02x <<或x a >-;由()0f x '<可得2x a <<-所以在()0,2上单调递增;在()2,a -上单调递减,在(),a -+∞上单调递增.所以当2x =时,()f x 取得极大值,满足条件.当20a -<<时,由()0f x '>可得0x a <<-或2x >;由()0f x '<可得2a x -<<所以在()0,a -上单调递增;在(),2a -上单调递减,在()2,+∞上单调递增.所以当2x =时,()f x 取得极小值,不满足条件.当2a =-时,()0f x '≥在()0,∞+上恒成立,即()f x 在()0,∞+上单调递增.此时()f x 无极值.综上所述:2a <-满足条件故选:A【例2】(2022·河南·高三阶段练习(文))若函数()()22e xx a f x x =++⋅在R 上无极值,则实数a 的取值范围()A .()2,2-B .(-C .⎡-⎣D .[]22-,【答案】D 【解析】【分析】求()()222e x x a f x x a ⎡⎤++++⋅⎣⎦'=,由分析可得()2220y x a x a =++++≥恒成立,利用0∆≤即可求得实数a 的取值范围.【详解】由()()22e xx a f x x =++⋅可得()()()()222e 2e 22e x x xx a x ax x a x f a x ⎡⎤=+⋅+++⋅=++++⋅⎣⎦',e 0x >恒成立,()222y x a x a =++++为开口向上的抛物线,若函数()()22e xx a f x x =++⋅在R 上无极值,则()2220y x a x a =++++≥恒成立,所以()()22420a a ∆=+-+≤,解得:22a -≤≤,所以实数a 的取值范围为[]22-,,故选:D.【例3】(2022·全国·高三专题练习)函数()(ln )xe f x a x x x=--在(0,1)内有极值,则实数a 的取值范围是()A .(,)e -∞B .(0,)eC .(,)e +∞D .[),e +∞【答案】C 【解析】【分析】由可导函数在开区间内有极值的充要条件即可作答.【详解】由()(ln )x e f x a x x x=--得,21111()()(1)(1)()x x e f x e a a x x x x x '=---=--,因函数()(ln )x e f x a x x x=--在(0,1)内有极值,则(0,1)x ∈时,()0xef x a x '=⇔=有解,即在(0,1)x ∈时,函数()xe g x x=与直线y=a 有公共点,而1()(10x e g x x x'=-<,即()g x 在(0,1)上单调递减,(0,1),()(1)x g x g e ∀∈>=,则a e >,显然在x e a x =零点左右两侧()'f x 异号,所以实数a 的取值范围是(,)e +∞.故选:C 【点睛】结论点睛:可导函数y =f(x)在点x0处取得极值的充要条件是f′(x0)=0,且在x0左侧与右侧f′(x)的符号不同.【例4】(2022·陕西·西北工业大学附属中学模拟预测(理))已知函数()()24143e xf x ax a x a ⎡⎤=-+++⎣⎦,若2x =是()f x 的极小值点,则实数a 的取值范围是()A .2,3⎛⎤-∞ ⎥⎝⎦B .1,2⎛⎫+∞ ⎪⎝⎭C .(),0-∞D .()1,-+∞【答案】B 【解析】【分析】根据导函数的正负,对a 分类讨论,判断极值点,即可求解.【详解】由()()24143e xf x ax a x a ⎡⎤=-+++⎣⎦得()()()12e x f x ax x '=--,令()()()()()12e 0120x f x ax x ax x '=-->⇒-->,若0a <,则()()11202ax x x a -->⇒<<,此时在12x a <<单调递增,在12,x x a><单调递减,这与2x =是()f x 的极小值点矛盾,故舍去.若0a =,可知2x =是()f x 的极大值点,故不符合题意.若102a >>,()()11202,ax x x x a -->⇒<>,此时()f x 在12,x x a <>单调递增,在12x a<<单调递减,可知2x =是()f x 的极大值点,故不符合题意.当12a >,,()()11202,ax x x x a -->⇒><,此时()f x 在12,x x a ><单调递增,在12x a>>单调递减,可知2x =是()f x 的极小值点,符合题意.若12a =,()f x 在定义域内单调递增,无极值,不符合题意,舍去.综上可知:12a >故选:B【例5】(2022·吉林长春·模拟预测(文))已知函数()sin f x ax x =+,()0,πx ∈.(1)当1a =时,过()0,1做函数()f x 的切线,求切线方程;(2)若函数()f x 存在极值,求极值的取值范围.【答案】(1)1y x =+,(2)()0,π【解析】【分析】(1)设切点,再根据导数的几何意义求解即可;(2)求导分析导函数为0时的情况,设极值点为0x 得到0cos a x =-,代入极值再构造函数()cos sin h x x x x =-+,求导分析单调性与取值范围即可(1)由题,当1a =时,()sin f x x x =+,()1cos f x x '=+,设切点为()000,sin x x x +,则()001cos f x x '=+,故切线方程为()()0000sin 1cos y x x x x x --=+-,又切线过()0,1,故()00001sin 1cos x x x x --=-+,即000sin cos 10x x x --=,设()sin cos 1g x x x x =--,()0,πx ∈,则()sin 0g x x x '=>,故()g x 为增函数.又sin cos 102222g ππππ⎛⎫=--= ⎪⎝⎭,故000sin cos 10x x x --=有唯一解02=x π,故切点为,122ππ⎛⎫+ ⎪⎝⎭,斜率为1,故切线方程为122y x ππ⎛⎫-+=- ⎪⎝⎭,即1y x =+;(2)因为()cos f x a x '=+,()0,πx ∈为减函数,故若函数()f x 存在极值,则()0f x ¢=在区间()0,πx ∈上有唯一零点设为0x ,则0cos 0a x +=,即0cos a x =-,故极值()000000sin cos sin f x ax x x x x =+=-+,设()cos sin h x x x x =-+,()0,πx ∈,则()sin 0h x x x '=>,故()h x 为增函数,故()()()0h h x h π<<,故()0h x π<<,即()()00,f x π∈,故极值的取值范围()0,π【点睛】本题主要考查了过点的切线问题,同时也考查了利用导数研究函数的极值问题,需要根据题意设极值点,得到极值点满足的关系,再代入极值构造函数分析,属于难题【例6】(2022·天津·耀华中学二模)已知函数()ln (0)xae f x x x a x=+->.(1)若1a =,求函数()f x 的单调区间;(2)若()f x 存在两个极小值点12,x x ,求实数a 的取值范围.【答案】(1)递减区间为(0,1),递增区间为(1,)+∞,(2)1(0,)e【解析】【分析】(1)当1a =时,求得2(1)(e )()x x x f x x '--=,令()e xm x x =-,利用导数求得()0m x >,进而求得函数的单调区间;(2)求得2(1)(())x x xx a e ef x x -'=-,令()e x x u x =,结合单调性得到()e 1u x ≤,进而得到10e ex x <≤,分1e a ≥和10ea <<,两种情况分类讨论,结合单调性与极值点的概念,即可求解.(1)解:当1a =时,函数e ()ln xf x x x x =+-,可得221(1)(1)()()1x x e e f x x x x x x x -'+--=-=,令,())(0,x m x e x x -∈=+∞,可得()e 10x m x '=->,所以函数()m x 单调递增,因为()(0)1m x m >=,所以()0m x >,当(0,1)x ∈时,()0f x ¢<,()f x 单调递减;当(1,)x ∈+∞时,()0f x ¢>,()f x 单调递增,即函数()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞.(2)解:由函数()ln ,(0,)xae f x x x x x =+-∈+∞,可得22(()(1)())1(),0x x xe ae x x ef x x x x x a x --'==->-,令()e xx u x =,可得()1e x u x x='-,所以函数()u x 在(0,1)上单调递增,在(1,)+∞上单调递减,所以()e1u x ≤,当0x >时,可得e 1x >,所以10e ex x <≤,①当1ea ≥时,0e x xa -≥,此时当(0,1)x ∈时,()0f x ¢<,()f x 单调递减;当(1,)x ∈+∞时,()0f x ¢>,()f x 单调递增,所以函数()f x 的极小值为()1e 1f a =-,无极大值;②当10e a <<时,()()0e e e1,1a a a u a a u a =<==>,又由()u x 在(),1a 上单调递增,所以()f x ¢在(),1a 上有唯一的零点1x ,且11e x xa =,因为当e x >时,令()2ln g x x x =-,可得()2210x g x x x-'=-=<,又因为()0e e 2g =-<,所以()0g x <,即2ln x x <,所以112ln a a<,所以2212ln 11ln2ln 1(ln )1aa a u a a a ea==⋅<,e 1(1)u a =>,因为()u x 在(1,)+∞上单调递减,所以()f x ¢在21(0,ln )a 上有唯一的零点2x ,且22e x x a =,所以当1(0,)x x ∈时,()0f x ¢<,()f x 单调递减;当1(,1)x x ∈时,()0f x ¢>,()f x 单调递增;当2(1,)∈x x 时,()0f x ¢<,()f x 单调递减;当2(,)x x ∈+∞时,()0f x ¢>,()f x 单调递增,所以函数()f x 有两个极小值点,故实数a 的取值范围为1(0,)e.【题型专练】1.(2022贵州遵义·高三)若函数321()53f x x ax x =-+-无极值点则实数a 的取值范围是()A .(1,1)-B .[1,1]-C .(,1)(1,)-∞-+∞ D .(,1][1,)-∞-+∞ 【答案】B 【解析】321()53f x x ax x =-+- ,2()21f x x ax '∴=-+,由函数321()53f x x ax x =-+-无极值点知,()0f x '=至多1个实数根,2(2)40a ∴∆=--≤,解得11a -≤≤,实数a 的取值范围是[1,1]-,故选:B2.(2022湖南湘潭·高三月考(理))已知函数2()e 2x f x ax ax =-+有两个极值点,则a 的取值范围是()A .(,)e +∞B .,2e ⎛⎫+∞ ⎪⎝⎭C .()2,e +∞D .2,2e ⎛⎫+∞ ⎪⎝⎭【答案】D 【解析】因为2()e 2x f x ax ax =-+有两个极值点,所以()0f x '=有两个不同实数根,所以220x e ax a -+=有两个不同实数根,所以()21xe a x =-有两个不同实数根,显然0a ≠,所以112x x a e -=有两个不同实数根,记()1xx g x e -=,()2x x g x e -'=,当(),2x ∈-∞时()0g x '>,当()2,x ∈+∞时()0g x '<,所以()g x 在(),2-∞上单调递增,在()2,+∞上单调递减,所以()()2max 12g x g e==,又因为(],1x ∈-∞时,()0g x ≤;当()0,2x ∈时,()210,g x e ⎛⎫∈ ⎪⎝⎭;当[)2,x ∈+∞时,()210,g x e ⎛⎤∈ ⎥⎝⎦,所以当112x x a e-=有两个不同实数根时2110,2a e ⎛⎫∈ ⎪⎝⎭,所以22a e >,所以22e a >,故选:D.3.若函数2()2ln f x x x a x =-+有两个不同的极值点,则实数a 的取值范围是()A .12a >B .102a -<<C .12a <D .102a <<【答案】D 【解析】【分析】求出函数的导数,由导函数有两个零点可得实数a 的取值范围.【详解】∵2()2ln f x x x a x =-+有两个不同的极值点,∴222()2202a x x af x x x-+'=-+==在(0,)+∞有2个不同的零点,∴2220x x a -+=在(0,)+∞有2个不同的零点,∴Δ4800a a =->⎧⎨>⎩,解得102a <<.故选:D.4.(2020·辽宁高三月考)已知函数()22ln f x ax x x =-+有两个不同的极值点1x ,2x ,则a 的取值范围___________;且不等式()()1212f x f x x x t +<++恒成立,则实数t 的取值范围___________.【答案】10,2⎛⎫⎪⎝⎭[)5,-+∞【解析】2221()(0)ax x f x x x'-+=>,因为函数()22ln f x ax x x =-+有两个不同的极值点12,x x ,所以方程22210ax x -+=有两个不相等的正实数根,于是有:121248010102a x x a x x a ⎧⎪∆=->⎪⎪+=>⎨⎪⎪=>⎪⎩,解得102a <<.()()221112221212122ln 2ln f x f x x x x ax x x ax x x x +--+--++=--()()212121212()23ln a x x x x x x x x ⎡⎤=+--++⎣⎦21ln 2a a=---,设21()1ln 2,02h a a a a ⎛⎫=---<< ⎪⎝⎭,22()0a h a a'-=>,故()h a 在102a <<上单调递增,故1()52h a h ⎛⎫<=-⎪⎝⎭,所以5t ≥-.因此t 的取值范围是[)5,-+∞故答案为:10,2⎛⎫ ⎪⎝⎭;[)5,-+∞5.(2022·江苏南通·高二期末)若x =a 是函数2()()(1)f x x a x =--的极大值点,则a 的取值范围是()A .1a <B .1a ≤C .1a >D .1a ≥【答案】A 【解析】【分析】求导后,得导函数的零点2,3a a +,比较两数的大小,分别判断在x a =两侧的导数符号,确定函数单调性,从而确定是否在x a =处取到极大值,即可求得a 的范围.【详解】解:2()()(1)f x x a x =--,Rx ∈()()(32)f x x a x a '∴=---令()()(32)0f x x a x a '=---=,得:2,3a x a x +==当23a a +<,即1a <此时()f x 在区间(,)a -∞单调递增,2(,)3a a +上单调递减,2(,)3a ++∞上单调递增,符合x =a 是函数()f x 的极大值点,反之,当23a a +>,即1a >,此时()f x 在区间2(,3a +-∞单调递增,2(,)3a a +上单调递减,(,)a +∞上单调递增,x =a 是函数()f x 的极小值点,不符合题意;当23a a +=,即1a =,()0f x '≥恒成立,函数()f x 在R x ∈上单调递增,无极值点.综上得:1a <.故选:A.6.(2020·江苏盐城·高三期中)若函数()21ln 2f x x b x ax =++在()1,2上存在两个极值点,则()39b a b ++的取值范围是_______.【答案】814,16⎛⎫⎪⎝⎭【解析】因为()()21ln 02f x x b x ax x =++>,所以()2b x ax bf x x a x x++'=++=,设()2g x x ax b =++,因为函数()f x 在()1,2上存在两个极值点,所以()f x '在()1,2上存在两个零点,所以()g x 在()1,2上存在两个零点,设为12,x x 且12x x ≠,所以根据韦达定理有:1212x x ax x b+=-⎧⎨⋅=⎩,故()23939b a b b ab b++=++()()21212121239x x x x x x x x =⋅-⋅++⋅()()22112233x x x x =--,因为()11,2x ∈,所以221113993,2244x x x ⎛⎫⎡⎫-=--∈-- ⎪⎪⎢⎝⎭⎣⎭,222223993,2244x x x ⎛⎫⎡⎫-=--∈-- ⎪⎪⎢⎝⎭⎣⎭,由于12x x ≠,所以()()22112281334,16x x x x ⎛⎫--∈⎪⎝⎭.故答案为:814,16⎛⎫⎪⎝⎭.7.(2018年北京高考题)设函数()()23132e xf x ax a x a ⎡⎤=-+++⎣⎦。

完整版)导数的综合大题及其分类

完整版)导数的综合大题及其分类

完整版)导数的综合大题及其分类.导数在高考中是一个经常出现的热点,考题难度比较大,多数情况下作为压轴题出现。

命题的主要热点包括利用导数研究函数的单调性、极值、最值,不等式,方程的根以及恒成立问题等。

这些题目体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用。

题型一:利用导数研究函数的单调性、极值与最值这类题目的难点在于分类讨论,包括函数单调性和极值、最值综合问题。

1.单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,将函数定义域分段,在各段上讨论导数的符号。

如果不能确定导数等于零的点的相对位置,还需要对导数等于零的点的位置关系进行讨论。

2.极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点。

3.最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的。

在极值和区间端点函数值中最大的为最大值,最小的为最小值。

例题:已知函数f(x)=x-,g(x)=alnx(a∈R)。

x1.当a≥-2时,求F(x)=f(x)-g(x)的单调区间;2.设h(x)=f(x)+g(x),且h(x)有两个极值点为x1,x2,其中h(x1)=h(x2),求a的值。

审题程序]1.在定义域内,依据F′(x)=0的情况对F′(x)的符号进行讨论;2.整合讨论结果,确定单调区间;3.建立x1、x2及a间的关系及取值范围;4.通过代换转化为关于x1(或x2)的函数,求出最小值。

规范解答]1.由题意得F(x)=x-x/(x2-ax+1)-alnx,其定义域为(0,+∞)。

则F′(x)=(x2-ax+1)-x(2ax-2)/(x2-ax+1)2.令m(x)=x2-ax+1,则Δ=a2-4.①当-2≤a≤2时,Δ≤0,从而F′(x)≥0,所以F(x)的单调递增区间为(0,+∞);②当a>2时,Δ>0,设F′(x)=0的两根为x1=(a+√(a2-4))/2,x2=(a-√(a2-4))/2,求h(x1)-h(x2)的最小值。

高考数学导数题的几种解题方法

高考数学导数题的几种解题方法

例题 (2014 年全国Ⅰ卷,理 21) 设函数

曲线
在点 (1,f (1)) 处的切线为 y= e(x-1)+2
(I) 求 a, b;( Ⅱ ) 证明:
.
( 放缩成二次函数 ) ( 放缩成类反比例函数 )
二、指数放缩 ( 放缩成一次函数 ) ( 放缩成类反比例函数 ) ( 放缩成二次函数 ) 三、指对放缩
∴ ψ(x) 在 [0,+∞ ) 上单调递增, ∴ x > 0 时,ψ(x) > ψ(0) = 0. 令 x = b - a,即得 (*) 式,结论得证.
58
高考数学导数试题解题研究——以 2013-2016 年新课标全国卷为例,云南师范大学 2017 作者简介:宋傲寒 (2000.12) 女 , 民族:汉族 , 籍贯:山东省 莒南县 , 学校:山东省淄博第十一中学。
例题 ( 全国卷 ) 已知函数
,曲线 y=f(x) 在点
(1,f(1)) 处的切线方程为 x+2y-3=0, ( Ⅰ ) 求 a、b 的值;
( Ⅱ ) 如果当 x > 0,且 x ≠ 1 时, 取值范围。
解析 ( Ⅰ ) 略解得 a=1 b=1 ( Ⅱ )( 洛必达法则 )
,求 k 的那么比较 Nhomakorabea与
的大小
(3) 设 a < b,比较

的大小,并说明
57
神州教育
理由.
解析 2013 陕西理数第 21 题第三问 即可使用浮出主元法的
方法进行运算
(1)f(x) 的反函数为 g(x)=lnx.
设直线 y=kx+1 与 g(x)=lnx 的图像在 P(x0,y0) 处相切,则有
y0=kx0+1=lnx0,k=g'(x0)= ,解得 x0=e2,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高考数学导数题型解题方法
专题综述
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

在高中阶段对于导数的学习,主要是以下几个方面:
1.导数的常规问题:
(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

知识整合
1.导数概念的理解。

2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值
与最小值。

课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。

为什么?还是没有彻底“记死”的缘故。

要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。

可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学
生个人搜集,每天往笔记本上抄写,教师定期检查等等。

这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。

这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。

复合函数的求导法则是微积分中的重点与难点内容。

课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。

“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。

其中“师傅”更早则意指春秋时国君的老师。

《说文解字》中有注曰:“师教人以道者之称也”。

“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。

“老师”的原意并非由“老”而形容“师”。

“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。

“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。

慢慢“老师”之说也不再有年龄的限制,老少皆可适用。

只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。

今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。

3.要能正确求导,必须做到以下两点:
观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。

随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。

我提供的观察对象,注意形象逼真,色彩鲜明,
大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。

看得清才能说得正确。

在观察过程中指导。

我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。

有的孩子说“乌云跑得飞快。

”我加以肯定说“这是乌云滚滚。

”当幼儿看到闪电时,我告诉他“这叫电光闪闪。

”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。

”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。

雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。

”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。

我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。

如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀―样,给大树开刀治病。

通过联想,幼儿能够生动形象地描述观察对象。

(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。

(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。

相关文档
最新文档