浅谈速度的合成与分解
速度的合成与分解公式

速度的合成与分解公式在我们的物理世界中,速度这个概念就像是一个调皮的小精灵,总是变来变去,让人捉摸不透。
而速度的合成与分解公式,就是我们抓住这个小精灵的神奇工具。
记得有一次,我在公园里散步,看到一个小男孩在玩遥控小汽车。
他操控着小汽车一会儿向前,一会儿又向左拐。
这时候,我就在想,这小汽车的实际速度到底是怎么变化的呢?其实啊,这就涉及到速度的合成与分解。
咱们先来说说速度的合成。
想象一下,你坐在一艘船上,船本身在以一定的速度向前行驶,而你又在船上朝着某个方向走。
那么从岸上的人看来,你的速度就是船的速度和你自己走的速度的合成。
比如说,船的速度是 5 米每秒,朝着正前方,而你在船上以 2 米每秒的速度朝着右前方走,与船头方向夹角是 30 度。
这时候,岸上的人看到你的速度就不是简单的 5 米每秒加上 2 米每秒,而是要通过公式来计算。
速度的合成公式是:V 合= √(Vx² + Vy²) ,其中 Vx 和 Vy 分别是速度在 x 轴和 y 轴上的分量。
就拿刚才船上的例子来说,我们先把你的速度分解到船头方向(也就是x 轴)和垂直船头方向(也就是y 轴)。
沿着船头方向,你的速度分量就是2×cos30° = √3 米每秒,垂直船头方向的速度分量就是 2×sin30° = 1 米每秒。
而船本身在 x 轴上的速度是 5米每秒,y 轴上速度是 0 米每秒。
所以合成后的速度在 x 轴上就是 5 +√3 米每秒,y 轴上是 1 米每秒。
最后合成的总速度就是√[(5 + √3)² + 1²] 米每秒。
再说说速度的分解。
还是那个小男孩的遥控小汽车,假如我们知道小汽车实际的速度和行驶方向,要弄清楚它在水平和竖直方向上的速度分量,这就得用到速度的分解了。
比如说小汽车以 10 米每秒的速度斜着跑,与水平方向夹角是 60 度,那么水平方向的速度分量就是10×cos60° = 5 米每秒,竖直方向的速度分量就是10×sin60° = 5√3 米每秒。
曲线运动之速度合成和分解

关联速度问题解析:本类题的关键,是找到物体的实际速度,然后,将物体的速度按实际作用效果加以分解。
比如下面的两个实例:把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解.再如:下图中A点的实际速度是绕转轴做圆周运动的。
它的运动可以分解为水平向右和竖直向下的两种运动。
1.如图所示,AB杆水平固定,另一细杆可绕固定轴O转动,O轴在AB杆上方h高处,两杆均被套在光滑圆环P上,当细杆绕O轴以角速度ω顺时针方向转至与竖直方向30°时,环的运动速度为___.2.如图所示,AB绕杆A点以一定的角速度ω由竖直位置开始顺时针匀速旋转,并带动套在水平杆上的光滑小环运动.则小环在水平杆上运动时速度大小的变化情况是( )A.保持不变B.一直增大C.一直减小D.先增大后减小3.如图,正方形滑块高H,它以恒定速度v0匀速向右运动,长为L的轻杆一端固定在地面上且可以自由转动,另一端连接小球搭在正方体上,当杆转动到与水平地面夹角为θ时,那么小球的速度为______4.距离河岸500m 处有一艘静止的船,船上的探照灯以1min r 的转速水平转动.若河岸看成直线,当光束与岸边成60°角时,光束沿岸边移动的速率为( )A. 52.3m sB. 69.8m sC. 666.7m sD.180m s5.如图所示,长为L 的直杆一端可绕固定轴O 无摩擦转动,另一端靠在以水平速度ν匀速向左运动、表面光滑的竖直挡板上,当直杆与竖直方向夹角为θ时,直杆端点A 的线速度为A.sin vθB. sin v θC. cos v θD. cos v θ6如图所示,长为L 的直棒一端可绕固定轴o 转动,另一端搁在升降平台上,平台以速度v 匀速上升,当棒与竖直方向的夹角为α时,棒的角速度为( )。
7.如图所示,有两条位于同一竖直平面内的水平轨道,相距为h.轨道上有两个物体A 和B,它们通过一根绕过定滑轮O 的不可伸长的轻绳相连接.物体A 在下面的轨道上以匀速率v 运动.在轨道间的绳子与轨道成30°角的瞬间,绳子BO 段的中点处有一与绳相对静止的小水滴P 与绳子分离,设绳长BO 远大于滑轮直径,求:(1)小水滴P 脱离绳子时速度的大小和方向; (2)小水滴P 离开绳子落到下面轨道所需要的时间.8.如图所示,长为L 的轻杆的下端用铰链固接在水平地面上,上端固定一个质量为m 的小球,轻杆处于竖直位置,同时与一个质量为M 的长方体刚好接触。
速度的合成与分解问题的探讨

速度的合成与分解问题的探讨摘要研究复杂的运动常常用到速度的合成与分解。
物体的速度的合成与分解,跟物体所受力的合成与分解是不同的两回事。
解决物体的速度的合成与分解问题,关键在于弄清分速度与合速度。
关键词分速度合速度合成分解研究物体的运动常常用到速度的合成与分解,尤其是较为复杂的运动。
解决速度的合成与分解问题,关键在于辨清分速度与合速度。
有些问题分速度与合速度容易辨清,有些问题,分速度与速度不容易辨清,须在深入细致分析后才能确定分速度和合速度。
例如图1所示为自动切割玻璃装置的示意图,让长玻璃板材在水平面上沿x轴以速度v1匀速运动,玻璃刀相对于玻璃垂直侧边切割,对玻璃的相对速度为v2,方向沿y轴向。
这样切割下来的玻璃成矩形。
那么玻璃刀对水平面的运动方向跟y轴夹角多大?容易判断一个分速度是刀对玻璃的相对速度v刀对玻=v2;另一个分速度是玻璃对水平面的速度v玻对面=v1,它们的合速度即刀对水平面的运动速度v刀对面=v,如图1所示。
由此即可确定玻璃刀对水平面的运动方向与y轴夹角α为α=arctan这个例子中两个分运动都是匀速直线运动,两个分速度大小、方向都不变,合速度的大小、方向也一定,合运动也是匀速运动,问题较简单。
如果分运动至少有一个是变速运动,问题就较为复杂,如平抛运动就是最为典型的例子。
物体沿水平方向抛出,水平方向的分运动是匀速直线运动;竖直方向物体受重力作用,竖直方向分运动是自由落体运动。
由于竖直分速度随时间不断增大,两个分速度的合速度在不断增大并改变着方向,合运动就是速度大小和方向都变化的抛物线运动。
上述两例的速度的合成与分解问题,我们容易确定分速度和合速度,问题都较为简单。
但有些问题,分速度与速度就不容易辨清。
例如图2所示,细绳系着小船绕过高处的定滑轮以速度v1牵引,小船沿水面运动的速度v与绳子牵引速度v1的定量关系。
不少学生会根据绳子对小船的牵引拉力是使小船克服阻力改变运动来考虑问题。
在求解小船运动的加速度时,常将绳子对小船的拉力F分解成水平分力Fx和竖直分力Fy,如图3所示。
速度的合成与分解

速度的合成与分解速度的合成与分解是运动学中一个重要的概念,指的是将一个物体的速度分解成多个分量,或者将多个分量合成为一个物体的速度。
这个概念在物理学、工程学以及其他领域中都有广泛的应用和实际意义。
1. 合成速度合成速度是指将两个或多个速度矢量相加,得到一个新的合成速度矢量的过程。
合成速度可以用三角形法则或平行四边形法则来计算。
三角形法则是指将速度矢量按照相对位置相连,形成一个闭合的三角形,然后从起点到终点的直线就是合成速度的矢量。
平行四边形法则是指将速度矢量按照相对位置相连,形成一个平行四边形,然后从起点到终点的对角线就是合成速度的矢量。
2. 分解速度分解速度是指将一个速度矢量分解为两个或多个互相垂直的分量的过程。
常见的分解方式有水平分解和竖直分解。
水平分解是指将速度矢量分解为水平方向上的分量和竖直方向上的分量。
竖直分解是指将速度矢量分解为竖直方向上的分量和水平方向上的分量。
分解速度可以帮助我们更好地理解和描述物体在空间中的运动轨迹和速度变化。
3. 应用案例速度的合成与分解在实际应用中有着广泛的运用。
比如,飞机的空速和地速就是通过速度的合成和分解得到的。
飞行器在空中的速度是由飞行器的空速和风速合成得到的,而地速则是通过合成速度与风向的夹角和风速得到的。
另外,在动力学中,速度的合成和分解也经常用于解决复杂的问题,如斜面上物体的运动和投射物的运动等。
4. 总结速度的合成与分解是物理学中的一个基本概念,它能够帮助我们更好地理解和描述物体的运动特性。
合成速度是将多个速度矢量相加得到一个新的速度矢量,而分解速度则是将一个速度矢量分解为多个互相垂直的分量。
速度的合成与分解在实际应用中有着广泛的应用,如飞机的速度计算和动力学问题的求解等。
掌握速度的合成与分解的方法和技巧对于理解物体的运动轨迹和速度变化具有重要的意义。
衔接课9速度的合成与分解

船对水的速度v1 d 上游 水流速度v2
下游
例、 一艘小船在宽度为d的河中横渡到对岸,已知水流速度是v2, 小船在静水中的速度是v1,求: ①小船如何行驶,能以最短时间过河?最短时间是多少? ②小船如何行驶,能以最短路径过河?最短路径是多少? 过河的实际路径长为:
船对水的速度v1
d 上游 水流速度v2
用核心素养理念引领物理学习·点拨提优
速度的合成与分解
运动的合成与分解指的是对运动的位移、速度、加速度等矢 量的合成和分解,遵循平行四边形法则。
正交分解法
把各个矢量向互相垂直的坐标轴投影,先在各轴上进行代 数运算之后,再进行矢量运算,
数学知识的准备 一、直角三角形 1、锐角∠A的三角函数(按右图Rt△ABC填空) 2、填表 ∠A的正弦:sinA = , ∠A的余弦:cosA = , ∠A的正切:tanA = , ∠A的余切:cotA = 3、0-90°之间的特殊角的各三角函数值: 高中物理计算中经常用到
船对水的速度v1 上游
d
下游
水流速度v2
当v1<v2时,Smin=dv2/v1, α =arccos v1/v2
。
2.基本规律(如下图)
化曲为直
(1)位移关系
(2)速度关系
. 平抛运动的其它公式:
2h 平抛物体运动时间由高度决定 • 运动时间: t g 2h 水平位移由高度和初 • 落地水平位移: x v0t v0 g 速度共同决定
v0 ?
S
l
x/2
x x
tan 2 tan
α 2θ
y tanα
tan y
y
v0
l
vy
速度关联类问题求解速度的合成与分解

2.合运动与分运动同时开始、进行、同时结束,即:同时性.3.合运动是由各分运动共同产生的总运动效果,合运动与各分运动总的运动效果可以相互替代,即:等效性.二、处理速度分解的思路1.选取适宜的连结点〔该点必须能明显地表达出参与了某个分运动〕.2.确定该点合速度方向〔通常以物体的实际速度为合速度〕且速度方向始终不变.3.确定该点合速度〔实际速度〕的实际运动效果从而依据平行四边形定那么确定分速度方向.4.作出速度分解的示意图,寻找速度关系.●歼灭难点训练一、选择题1.〔★★★〕如图5-8所示,物体A置于水平面上,A前固定一滑轮B,高台上有一定滑轮D,一根轻绳一端固定在C点,再绕过B、D.BC段水平,当以速度v0拉绳子自由端时,A沿水平面前进,求:当跨过B的两段绳子夹角为α时A的运动速度v.2.〔★★★★★〕如图5-9所示,均匀直杆上连着两个小球A、B,不计一切摩擦.当杆滑到如图位置时,B球水平速度为v B,加速度为a B,杆与竖直夹角为α,求此时A球速度和加速度大小.图5-9 图5—103.〔★★★★〕一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m1连接,另一端和套在竖直光滑杆上的物体m2连接.定滑轮到杆的距离为m.物体m2由静止从AB连线为水平位置开始下滑1 m时,m1、m2恰受力平衡如图5-10所示.试求:〔1〕m2在下滑过程中的最大速度.〔2〕m2沿竖直杆能够向下滑动的最大距离.4.〔★★★★〕如图5-11所示,S为一点光源,M为一平面镜,光屏与平面镜平行放置.SO是垂直照射在M上的光线,SO=L,假设M以角速度ω绕O点逆时针匀速转动,那么转过30°角时,光点S′在屏上移动的瞬时速度v为多大?5.〔★★★★★〕一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图5-12所示.绳的P端拴在车后的挂钩上,Q端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升时,车加速向左运动,沿水平方向从A经B驶向C.设A到B的距离也为H,车过B点时的速度为v B.求在车由A移到B的过程中,绳Q端的拉力对物体做的功.6.〔★★★★★〕如图5-13所示,斜劈B的倾角为30°,劈尖顶着竖直墙壁静止于水平地面上,现将一个质量与斜劈质量相同、半径为r的球A放在墙面与斜劈之间,并从图示位置由静止释放,不计一切摩擦,求此后运动中〔1〕斜劈的最大速度.〔2〕球触地后弹起的最大高度。
第02讲 速度的合成与分解

第2讲速度的合成与分解【知识点金】知识点一:力的分解与合成1.力的图示:2.平行四边形定则:3.矢量三角形:4.正交分解法:知识点二:速度的分解与合成【例题详解】力的分解例一:物体重为G,斜面的倾角为30°,请求出箱子对斜面的压力。
【变式训练】1.物体重为G,杆与墙壁的夹角是30°,请求出杆对绳子的支持力。
2.绳子的拉力为20N,绳子与地面的夹角为60°,小车做匀速直线运动,请求出地面对小车的摩擦力。
【例题详解】速度的分解例二:θ角为30°,人拉绳的速度为v o,求物体水平方向上的速度。
【变式训练】1.一根绕过定滑轮的长绳吊起一重物B,如图所示,设汽车和重物的速度的大小分别为v A、v B,则()A. v A =v BB. v A >v BC. v A <v BD. 重物B 的速度逐渐增大【例题详解】力与速度分解的应用 例三:如图所示,小船从码头A 出发渡河,船头始终垂直河岸.若河宽为d ,v 船恒定不变,河水的流速与到河岸的垂直距离x 成正比,即水速u=kx (x ≤2d ,k 为常量).渡河过程中小船沿岸向下游移动了距离s 并最终到达对岸码头B ,则( ) A .V 船为4s kd 2 B .v 船为2s kd 2 C .渡河时间t 为kd s 2 D .渡河时间t 为kds 4例四:河宽以d 表示,船的划行速度以v 1表示,水流的速度设为v2,求(1)渡河的最短时间;(2)最小位移。
解:(1)最短时间:船头指向正对岸时,渡河所用时间为最短。
最短时间为:1v d t =; (2)最小位移 分为两种情况:①当v 1>v2时,且满足12cos v v =θ,渡河位移最小为d ; ②当v 1<v2时,最小位移为d v v d s ⋅==12cos θ。
【变式训练】1.如图所示,在竖直平面内用轻质细线悬挂一个小球,将小球 拉至A 点,使细线处于拉直状态,由静止开始释放小球,不计摩擦,小球可在A 、B 两点间来回摆动.当小球摆到B 点时,细线恰好断开,则小球将( )A .沿BE 方向运动B .沿BD 方向运动C .沿BC 方向运动D .在B 点保持静止2.如图,两根细绳的一端与质量为2千克的小球A 相连,它们的另一端分别固定在竖直墙面上B 、C 点两点,若对小球施加一个方向与水平成θ=60°的拉力F ,使得细绳都能伸直,此时,AC 恰好水平,与AB 的夹角也为θ=60°。
也谈速度的合成与分解

笔者曾尝试让学生求解此题, 结果竟出奇
般地雷同, 是: vM = 以图示如图 2.
v21 + v22 + 2v1 v2 cos , 并配
在讲评此题求解结果时, 教师可以这样引 导学生: 同学们, 牛顿第三定律中的作用力和反 作用力能求它们的合力吗?显然不能, 因为作用 力与反作用力是分别作用在两个物体上的两个
力, 它们根本就不存在什么合力. 如果有人硬要 按照求二共点力合力的方法求作用力与反作用
力的合力的话, 那便是大错而特错的了. 此题也 类似, 只不过是求 M 点移动的合速度罢了. 须
知, 速度 v1、v2 分别是细棒 AB、CD 各自移动的 速度, 它们是没有合速度而言的. 不错, 表面看 来, 交点 M 的确是同在 AB、CD 棒上, 但仔细分 析, 却不难看出: M 点只是 AB、CD 二棒的一个 交点, 可视为空间的一个质点, 该质点只是和二 棒的交点重合而已! 实际上, 交点 M 也是同时 参与两个分运动, 有两个分速度: 一 个是点 M
∃ 25∃
沿 AB 棒移动的分速度 v2, 另一个是沿 CD 棒移 动的分速度 v1, 而 v1、v2 的合速度才是M 交点的
真正的移动速度 vM . 那么, 如何求分速度 v1、v2 呢?
先求 v1: 若 CD 棒 不动, 如图 3所示, 对
v1 进 行分解, 分速 度
v1 便是 M 点沿棒 DC 移动的速 度, 且 有 v1
=
v1 s in
.
同理,
若
AB
棒不动, 对 v2 进行分解, 分速度 v2 便是 M 点沿
AB 棒移动的速度, 亦有: v2 =
v2 s in
.
所Байду номын сангаас,
速度的合成与分解整理

速度关联类问题求解·速度的合成与分解一、分运动与合运动的关系1、一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(v分、s分)互不干扰,即:独立性2、合运动与分运动同时开始、进行、同时结束,即:同时性3、合运动是由各分运动共同产生的总运动效果,合运动与各分运动总的运动效果可以相互替代,即:等效性二、处理速度分解的思路1、选取合适的连结点(该点必须能明显地体现出参与了某个分运动)2、确定该点合速度方向(通常以物体的实际速度为合速度)且速度方向始终不变3、确定该点合速度(实际速度)的实际运动效果从而依据平行四边形定则确定分速度方向4、作出速度分解的示意图,寻找速度关系典型的“抽绳”问题:所谓“抽绳”问题,是指同一根绳的两端连着两个物体,其速度各不相同,常常是已知一个物体的速度和有关角度,求另一个速度。
要顺利解决这类题型,需要搞清两个问题:(1)分解谁的问题哪个运动是合运动就分解哪个运动,物体实际经历的运动就是合运动。
(2)如何分解的问题由于沿同一绳上的速度分量大小相同,所以可将合速度向沿绳方向作“投影”,将合速度分解成一个沿绳方向的速度和一个垂直于绳方向的速度,再根据已知条件进行相应计算。
其实这也可以理解成“根据实际效果将合运动正交分解”的思路。
运动物体间速度关联关系,往往是有些高考命题的切入点.而寻找这种关系则是考生普遍感觉的难点物拉绳(杆)或绳(杆)拉物问题。
由于高中研究的绳都是不可伸长的,杆都是不可伸长和压缩的,即绳或杆的长度不会改变,所以解题原则是:把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相同求解。
合速度方向:物体实际运动方向分速度方向:沿绳(杆)伸(缩)方向:使绳(杆)伸(缩)垂直于绳(杆)方向:使绳(杆)转动速度投影定理:不可伸长的杆或绳,若各点速度不同,各点速度沿绳方向的投影相同。
这类问题也叫做:斜拉船的问题——有转动分速度的问题v拉水平面上的物体A,当绳与水平方向成θ【例题1】如图所示,人用绳子通过定滑轮以不变的速度角时,求物体A的速度。
运动的合成和分解位移速度

假设有一个飞机在飞行过程中同时进行水平和垂直运动,且已知飞机的总速度和总位移。根据位移速 度的分解原理,可以将飞机的总速度分解为水平方向上的分速度和垂直方向上的分速度。通过分解, 可以更好地理解飞机在水平和垂直方向上的运动情况。
THANKS
感谢观看
体育运动的技术分析
将复杂的体育运动技术分解为若干个基本的动作要领,有助于提高 运动员的技术水平。
03
CATALOGUE
位移速度的合成与分解
位移速度的合成
总结词
位移速度合成是指将两个或多个分速度合成一个总速度的过 程。
详细描述
在物理学中,位移速度的合成遵循平行四边形法则,即两个 分速度可以合成一个总速度。总速度的大小和方向可以通过 分速度的大小和方向以及它们之间的夹角计算得出。
运动的合成和分解
目 录
• 运动的合成 • 运动的分解 • 位移速度的合成与分解 • 运动的合成与分解的实例分析
01
CATALOGUE
运动的合成
合成的基本概念
运动的合成是指将两个或多个 简单运动合成为一个复杂运动 的描述过程。
合成的基本原则是平行四边形 法则,即两个矢量(速度和力 )按照平行四边形的边长和角 度进行合成。
详细描述
在航空航天领域,飞行员需要根据风速和飞机自身的速度进行速度合成与分解,以准确 判断飞行方向和位置;在航海领域,船长需要了解风速、水流速度、船速等参数,通过 速度合成与分解来制定航行计划;在车辆运动领域,驾驶员需要考虑道路状况、车速、
车辆加速度等参数,通过速度合成与分解来控制车辆运动轨迹。
04
合成运动的分析有助于理解物 体在复杂环境中的运动规律, 为实际应用提供理论支持。
合成的方法
速度的合成与分解问题分析

速度的合成与分解问题分析ʏ何 为速度的合成与分解是高中物理的一个重要知识点,既可以单独考查对运动关系的理解,也可以和能量与动量综合在一起进行考查,在这两类问题中速度关系通常都会作为一个易错点出现,导致很多考生出错㊂如果学生能够将速度合成与分解的典型模型弄清楚,那么在遇到与速度关联的问题时,就能够触类旁通,举一反三,顺利求解㊂一㊁典型模型图1如图1所示,人在岸边通过绳子跨过定滑轮牵引湖中的小船,若人以速度v 向左匀速运动,当绳子与水面呈θ角时,船靠岸的速度为多大?(设绳子一直是拉紧的)常见错误分析:很多学生会由于受到书本上飞机起飞模型的误导,而认为这两个模型是一样的,直接将绳子连接船的速度分解 图2到水平和竖直方向上,如图2所示㊂如图2所示的分解方式错误的原因在于分速度v y 的出现与实际严重不符㊂这样的分解方式意味着船将会慢慢地飞到空中,成为 飞船 ,这与实际观察到的船一直在水面上运动且逐渐靠近河岸相矛盾㊂出现这种错误的根源在于没有分清楚哪个是合运动,哪个是分运动㊂合运动:物体相对于选定的参考系真实运动的速度㊂分运动:物体同时参与的几个相互独立的运动㊂显然,依据合运动的定义可知,我们直接看到的运动应该是合运动,即船靠岸的速度u 是合速度,因此我们应该分解船的速度,而不是绳子的速度㊂正确分析:根据合运动的定义找出合运动后,再找出两个分运动的方向,这样对合速度的分解就可以唯一地确定了㊂要找到两个分运动的方向,我们要从合运动的效果上来确定㊂因为船靠岸,导致拉船的绳子缩短,所以一定有一个沿绳方向的分速度来缩短绳子;同时因为随着船的靠岸,绳子与水面间的夹角θ会逐渐变大,相当于绳子在绕定滑轮转动,所以船一定还有一个垂直于绳子的转动线速度㊂正确的分 图3解如图3所示㊂因为船沿绳子方向的分速度等于人拉动绳子的速度v (绳子不可伸长),所以船前进的速度u =vc o s θ㊂二㊁补充解法解法一:微元法㊂考虑在一极短时间t 内,将绳的运动和船的运动在图4甲中标出来,O A 是绳子的初始位置,O B 是绳子的末位置,小船从A 点运动到B 点,在O A 上取一点C 满足O B =O C ,并连接B C ㊂显然A B 是船在时间t 内的位移,A C 是绳子在时间t 内缩短的长度㊂因为时间极短,等腰三角形O B C 的顶角øO ң0,所以底角øO C B ң90ʎ,即øA C B 趋于直角三角形㊂将此图放大为图4乙,则可以得出s 1=s 2c o s θ㊂因为时间极短,绳子的运动和船的运动都可以认为是匀速运动,所以有s 1=vΔt ,s 2=u Δt ,解得u =vc o s θ㊂图476基础物理 障碍分析 自主招生 2020年7 8月解法二:能量分析法㊂ 图5如图5所示,假设在岸上用力F 牵引小船,绳子拉船的力也等于F ,定滑轮并不消耗能量,只起能量传递的作用,因此绳子两端应具有相同的功率,即P 入=P 出,由P 入=F v 得绳子另一端的功率P 出=F u c o s θ,解得u =vc o s θ㊂解法三:导数求解法㊂ 图6如图6所示,假设河岸高h ,任意时刻船到河岸的水平距离为x ,绳长为l ,三者一定满足h 2+x 2=l 2㊂在方程两边同时对时间求导,可得2hd h d t +2x d xd t=2l d t d l ㊂因为河岸高度固定,是常量,所以有d h d t =0㊂又有d xd t =u为船靠岸的速度,d ld t=v 代表绳子收缩的速度,因此有2x u =2l v ,即u =l v x =vc o s θ㊂评析:绳拉船模型的解法有很多种,思想各异㊂能量分析法在学生学习了功率之后作为补充练习,既让学生巩固了功率的基础知识,又拓展了学生对合成与分解的视野㊂导数分析法在学生学习了导数之后作为补充拓展,既让学生熟悉了导数的应用,又可以让学生感受到物理和数学的紧密联系㊂三㊁拓展应用图7例1 如图7所示,一长度为L 的轻杆一端固定小球A ,另一端通过转轴固定在O 点,一高为h 的木块B 夹在水平面和细杆之间,当细杆与水平面成θ角时,木块向右的速度为v B ,小球A 此时的速度v A 为多大分析:小球A 只能绕O 点做圆周运动,小球A 的速度为线速度,因此只要找到细杆转动的角速度即可㊂细杆与木块的联系是接触点C ,C 点的速度与木块的速度相等㊂木块B 的右移带来的效果是接触点C 沿细杆外移,有沿杆方向的分速度,同时木块B 的右移有让细杆绕O 点转动的效果㊂解:将木块B 的速度v B 分解到沿杆方向的v 1和垂直于杆方向的v 2,如图8所示,图8则v 2=v B s i n θ=r O C ω,r O C =hs i n θ㊂小球A 的线速度v A =L ω=L v B s i n 2θh㊂ 图9例2 如图9所示,两根轻绳跨过定滑轮与物块A 相连,两根轻绳另一端分别连接两个物块B ㊁C ㊂当两轻绳间的夹角为2θ时,物块B ㊁C 以速度v 下降,求物块A 上升的速度v A㊂图10错误分析:如图10所示,直接按照速度的合成得到物块A 的速度㊂错误的原因是这个解法认为物块A 分别有沿两绳方向的分速度,这样的话物块A 最终将会分裂成两份,这显然是不符合实际的㊂出现这种错误的根源在于没有按照合运动和分运动的关系来分析问题,而是想当然地和之前所学的力的合成与分解相类比导致出错㊂正确分析:我们实际看到的是物块A 竖直上升,带来的效果是绳子缩短和角度θ的变大,因此应该将物块A 的速度分解到沿绳 图11和垂直与绳子的方向,如图11所示,则v 1=v A c o s θ=v ,解得v A =vc o s θ㊂小结:速度的合成与分解问题在很多地方必须按照运动的实际效果来处理,因此抓住合运动和分运动的特点是解决这一问题的突破口,正确的理解模型是解决深层次问题的关键㊂作者单位:湖北省十堰市东风高级中学86 基础物理 障碍分析 自主招生 2020年7 8月。
对一道速度合成与分解问题思维误区的探讨

对一道速度合成与分解问题思维误区的探讨
速度合成与分解是物理学中常用的计算方式,它们涉及物理向量的概念。
但在学习过程中,容易出现以下思维误区:
一、“把速度分解成两个分量”误解
1、以为要把向量表达为两个分量,只能在最常用的笛卡尔坐标系内进行分解。
实际上,任何有效的可比系统内的分解都是可以的,例如极坐标系、笛卡尔极坐标系,以及螺旋坐标系等。
2、以为组件速度的方向一定按照坐标轴的方向,实际上,只要在相应的系统
中进行有效的合成,组件速度的方向可以用任何有效的方法来表示。
二、“向量图”误解
1、将向量图中的坐标轴看成是物体真正运动的路线,这是一个巨大的误解,
因为每个坐标系的坐标轴只是表示物体或向量的模型,而不是运动中真正的位置。
2、以为向量是不可细分的,由于科学家们发现,微观物质可以分解成个体粒子,所以也有向量可以分解成若干小粒子,从而达到合成的效果,而不需要考虑
其原有的结构。
三、“向量可折叠”误解
1、认为向量可以折叠,实际上向量不能折叠,它可以通过调整角度而改变,
也可以通过改变量来改变向量的大小,但它不能被完全折叠消失。
2、认为向量折叠后不能再变回去,实际上即使向量被折叠了,也可以按照原
来的路径反向运动而变回原样。
总之,速度合成与分解问题容易导致思维误区,学习者应该牢记它们,避免在学习物理时出现错误的概念。
只要学会运用正确的知识,正确解决问题,就可以在学习中更快地取得进步。
速度的合成与分解例题

速度的合成与分解例题速度的合成与分解是物理学中的一个重要概念,它涉及到多个方向上的速度矢量的运算。
让我们从合成速度和分解速度的概念开始,然后举例说明。
合成速度是指当一个物体同时沿着两个或多个方向移动时,它的总速度是所有分速度的矢量和。
假设一个物体在水平方向上以5 m/s的速度向右移动,在垂直方向上以3 m/s的速度向上移动,那么它的合成速度可以通过矢量相加得到。
根据勾股定理,合成速度的大小可以通过勾股定理求得,即5^2 + 3^2 = 25 + 9 = 34,所以合成速度的大小为√34 m/s。
合成速度的方向可以通过正切函数求得,即θ = arctan(3/5) ≈ 30.96°。
因此,物体的合成速度约为√34 m/s,方向为30.96°向上与右方向的夹角。
分解速度则是相反的过程,即将一个速度矢量分解为两个或多个分速度的过程。
假设一个物体的速度矢量为6 m/s,与水平方向夹角为60°,我们可以使用三角函数将这个速度分解为水平方向和垂直方向上的分速度。
水平方向上的分速度为6 m/s cos(60°) = 3 m/s,垂直方向上的分速度为6 m/s sin(60°) = 3√3 m/s。
这些概念可以通过实际例题更好地理解。
例如,一个船在静水中以10 km/h的速度向东航行,如果河流以8 km/h的速度向北流动,求船相对岸的速度和方向。
这个问题可以通过速度的合成来解决,首先将船的速度向东和河流的速度向北看做两个矢量,然后将它们进行矢量相加得到合成速度。
合成速度的大小可以通过勾股定理得到,即10^2 + 8^2 = 100 + 64 = 164,所以合成速度的大小为√164 km/h。
合成速度的方向可以通过正切函数求得,即θ = arctan(8/10) ≈ 36.87°。
因此,船相对岸的速度约为√164 km/h,方向为36.87°向北与东方向的夹角。
高中物理学习中对速度的合成与分解研究

高中物理学习中对速度的合成与分解研究作者:梁罗展来源:《新教育时代·学生版》2018年第26期摘要:在高中运动物体间速度关联关系中,有关速度的合成与分解是一个比较重要的学习点,和我们学的数学矢量相似,有大小和方向,可以用平行四边形法则来求解和应用,往往是有些高考命题的切入点,因而我们在学习的过程中,要学会寻找这种关系。
本文旨在通过对速度的合成与分解进行研究分析,提高同学们的理解能力,以此对力学部分知识的学习奠定基础。
关键词:高中物理速度合成分解力学合成与分解不光在物体运动方面涉及到,还在力学部分也有相关的知识点,所以学好这一框架的知识,对于我们掌握知识点的链接有很好的促进作用。
速度是有方向和大小的矢量,我们只要学会在平行四边形中分析它们之间的关系就可以很好地解决相关问题,这样不但可以把复杂的应用问题简单化,还可以加深我们的理解,比如在一些复杂的曲线运用中,我们可以“化曲为直”。
因此,我们要学会巧妙运用画图的技巧和方法。
一、有关速度的合成与分解概念和性质关系1.速度的合成与分解概念在一个运动中的物体,我们实际观察到的运用状态可以认为是它的合运动,相对而言,分运动就是把合运动分解在两个不同的方向上,使保持当前的运动状态不变,这样的运动效果和之前的运动效果是一样的。
因此,速度的合成和分解是相对于物体前后运动保持不变来进行研究的,在这过程中速度的方向和大小可以用带箭头的平行四边形来形象描述。
2. 速度的合成与分解的关系在对速度的合成和分解中,我们会发现两者的关系:(1)等效性:物体的合运动速度和各个分运动速度的矢量和是一样的效果;(2)等时性:没有一前一后之分,同时存在,同时消失;(3)独立性:我们可以这样认为,物体在运动的过程中,会产生几个分速度,而这几个分速度各自产生的效果互不影响,比如在斜坡上运动的物体,竖直方向的运动和水平方向的运动独立存在,且互不干扰。
二、关于速度的合成与分解常见问题分析在对运动的判定过程中,我们必须要学会掌握准确的分解与合成,在读题的过程中把图像完善,比如说是哪个方向的速度,我们就一一对应在我们所描绘的图像上,找准问题的解题关键点,一定要看准物体运动的方向是合运动产生的效果还是分运动产生的效果,这一点分析对才能使我们的正确率大大提高。
《速度的合成与分解》课件

在解决实际问题时,为了简化问题, 通常选择正交分解或按运动轨迹分解 。分解方式可根据题意选择,但不同 的分解方式可能导致不同的结果。
02
速度合成与分解的几何意义
平行四边形法则
总结词
表示两个方向上的分速度合成为实际的速度。
详细描述
平行四边形法则是指,当一个物体在两个方向上分别有分速度时,这两个分速度 合起来,就构成了物体的实际速度。这个法则可以用平行四边形来表示,其中对 角线表示实际的速度,而两个边分别表示两个方向上的分速度。
03
速度合成与分解的应用实例
飞机飞行中的速度合成与分解
总结词
飞机飞行中速度合成与分解的、飞行方向和速度等因 素,通过速度的合成与分解,计算出飞机相对于地面的实 际速度和飞行轨迹。
公式应用
利用平行四边形法则或三角形法则进行速度的合成与分解 ,计算飞机的实际速度和方向。
速度合成与分解的相对性
01
速度的合成与分解是相对的,取 决于参考系的选择。在不同的参 考系下,速度的合成与分解结果 可能不同。
02
当观察者与参考物体有相对运动 时,观察者需要选择适当的参考 系进行速度的合成与分解,以确 保结果的准确性。
速度合成与分解的局限性
速度合成与分解只适用于宏观低速领 域,不适用于微观高速领域。在微观 领域,需要考虑相对论效应和量子力 学原理。
《速度的合成与分解》ppt课件
目录 Contents
• 速度合成与分解的基本概念 • 速度合成与分解的几何意义 • 速度合成与分解的应用实例 • 速度合成与分解的注意事项
01
速度合成与分解的基本概念
速度的定义
总结词
速度是描述物体运动快慢的物理量,等于物体在单位时间内通过的位移。
小议“速度合成与分解”(用文档格式上传

小议“速度合成与分解”(用文档格式上传小议“速度的合成与分解”-------------------何军在面对“速度的合成与分解”时,学生往往无法正确应用矢量合成和分解法则处理问题,导致频频出错。
同样的题目,在隔一段时间后仍然会犯同样的错误,究其原因,还是学生对相关的概念理解不透彻。
下面以几条例题加以分析。
例1.如图1,一轻绳通过一定滑轮匀速拉动一质量为m的小船靠岸,绳的速度为v0当绳和水平面之间夹角为θ时,船的速度为多少?错解:绳不可伸长,将绳方向的速度沿水平和竖直方向分解如图2示,则v=v0cosθ评析:学生习惯于将题中给出的速度进行分解,而不注重“合成与分解”的真正含义是一种等效思想的应用。
“分运动”只是一种效果上的等效,在实际中并不存在。
只有在认可了两种“分运动”之后,“合运动”和“分运动”的等时性和独立性才有意义。
因此,分解只能是对物体的实际运动即“合运动”进行分解。
本题中船的运动是水平方向,因此只能将船水平方向的速度沿绳和垂直于绳方向分解。
则本题正确答案即为v=v0/cosθ根据这一原则,我们可以很简便的分析一些问题例2.如图。
两个相同的小球a、b,通过轻绳绕过定滑轮带动c球上升,某时刻连接c球的两绳夹角为2θ,a、b速度均为v,求此时c球的速度错解:如图a,在c点建立直角坐标系,易得vc=2vcosθ。
评析:在此题中学生简单的理解了矢量合成与分解法则,错把同一时刻作用在物体上的两个力的合成与同一时刻物体的瞬时速度求解混为一谈。
对同一时刻下两个力是作为两个独立存在,直接合成就可以了。
但作为两根绳的连接点,不可能作为两根绳的独立部分而同时存在,则力的合成显然不适合这里使用。
即类似力合成的图a是错误的。
而应将结点归为一根绳,利用绳的特点和速度的分解求解,如图b所示,根据绳不可伸长的特点,结点沿绳方向速度即a的速度,有速度的分解图易得vc=v/cosθ。
当然,本题亦可以从速度的定义式出发通过微元思想,利用近似关系求解答案。
微专题17 关联体速度的合成与分解

微专题17 关联体速度的合成与分解【核心要点提示】(1)如果物体是通过杆或者绳子关联,由于高中研究的绳都是不可伸长的,杆都是不可伸长和压缩的,即绳或杆的长度不会改变,所以解题的原则是:把物体的实际速度分解为垂直于绳(或杆)和平行于绳(或杆)的两个分量,根据沿绳(杆)方向的分速度大小相同求解.(2)若两物体是通过接触面接触的,则将物体的实际速度沿平行与垂直接触面方向进行分解,在垂直接触面方向上速度相等。
【微专题训练】如图所示,长为L的直杆一端可绕固定轴O无摩擦转动,另一端靠在以水平速度v匀速向左运动、表面光滑的竖直挡板上,当直杆与竖直方向夹角为θ时,直杆端点A的线速度为()A.vsin θB.v sin θ C.vcos θD.v cos θ【解析】将直杆端点A的线速度进行分解,如图所示,由图中的几何关系可得:v0=vcos θ,选项C正确,选项A、B、D错误.【答案】C自行车转弯时,可近似看成自行车绕某个定点O(图中未画出)做圆周运动,如图所示为自行车转弯时的俯视图,自行车前、后两轮轴A、B相距L,虚线表示两轮转弯的轨迹,OB距离为3L,前轮所在平面与车身夹角θ=30°,此时轮轴B的速度大小v2=3 m/s.则轮轴A的速度v1大小为()A.332m/s B .2 3 m/s C. 3 m/s D .3 3 m/s【解析】绳(或杆)端速度的分解法此时轮轴A 的速度产生两个效果,一是与轮轴B 同向运动,二是以B 为圆心向右转,分解如图(a)所示,因此v 1cos θ=v 2,θ=30°,解得v 1=2 3 m/s ,B 项正确.【答案】B一探照灯照射在云层底面上,云层底面是与地面平行的平面,如图所示,云层底面距地面高h ,探照灯以恒定角速度ω在竖直平面内转动,当光束转到与竖直方向夹角为θ时,云层底面上光点的移动速度是( )A .hω B.hωcos θ C.hωcos 2θD .hωtan θ 【解析】当光束转到与竖直方向夹角为θ时,云层底面上光点转动的线速度为hωcos θ.设云层底面上光点的移动速度为v ,则有v cos θ=hωcos θ,解得云层底面上光点的移动速度v =hωcos 2θ,选项C 正确.【答案】C(多选)如图所示,A 、B 两球分别套在两光滑的水平直杆上,两球通过一轻绳绕过一定滑轮相连,现在将A 球以速度v 向左匀速移动,某时刻连接两球的轻绳与水平方向的夹角分别为α、β,下列说法正确的是( )A .此时B 球的速度为cos αcos βv B .此时B 球的速度为sin αsin βv C .在β增大到90°的过程中,B 球做匀速运动D .在β增大到90°的过程中,B 球做加速运动【解析】由于绳连接体沿绳方向的速度大小一定,因此v cos α=v B cos β,解得v B =cos αcos βv ,A 项正确,B 项错误;在β增大到90°的过程中,α在减小,因此B 球的速度在增大,B 球在做加速运动,C 项错误,D 项正确.【答案】AD(多选)如图所示,有一个沿水平方向做匀速直线运动的半径为R 的半圆柱体,半圆柱面上搁着一个只能沿竖直方向运动的竖直杆,在竖直杆未达到半圆柱体的最高点之前( )A .半圆柱体向右匀速运动时,竖直杆向上做匀减速直线运动B .半圆柱体向右匀速运动时,竖直杆向上做减速直线运动C .半圆柱体以速度v 向右匀速运动,杆同半圆柱体接触点和柱心的连线与竖直方向的夹角为θ时,竖直杆向上的运动速度为v tan θD .半圆柱体以速度v 向右匀速运动,杆同半圆柱体接触点和柱心的连线与竖直方向的夹角为θ时,竖直杆向上的运动速度为v sin θ【解析】O 点向右运动,O 点的运动使杆OA 绕A 点(定点)逆时针转动的同时,沿杆OA 方向向上推动A 点;竖直杆的实际速度(A 点的速度)方向竖直向上,使A 点绕O 点(重新定义定点)逆时针转动的同时,沿OA 方向(弹力方向)与OA 具有相同速度.速度分解如图乙所示,对于O 点,v 1=v sin θ,对于A 点,v A =v 1cos θ,解得v A =v tan θ.O 点(半圆柱体)向右匀速运动时,杆向上运动,θ角减小,tan θ减小,v A 减小,但杆不做匀减速直线运动,A 错误,B 正确;由v A =v tan θ可知C 正确,D 错误.【答案】BC(2016·河南郑州高三月考) (多选)如图9所示,人在岸上拉船,已知船的质量为m ,水的阻力恒为F f ,当轻绳与水平面的夹角为θ时,船的速度为v ,此时人的拉力大小为F ,则此时( )A .人拉绳行走的速度为v cos θB .人拉绳行走的速度为v cos θC .船的加速度为F cos θ-F f mD .船的加速度为F -F f m【解析】船的速度产生了两个效果:一是滑轮与船间的绳缩短,二是绳绕滑轮顺时针转动,因此将船的速度进行分解如图所示,人拉绳行走的速度v 人=v cos θ,A 对,B 错;绳对船的拉力等于人拉绳的力,即绳的拉力大小为F ,与水平方向成θ角,因此F cos θ-F f =ma ,得a =F cos θ-F f m,C 对,D 错.【答案】AC如图所示,顶角θ=60°、光滑V 字形轨道AOB 固定在竖直平面内,且AO 竖直.一水平杆与轨道交于M 、N 两点,已知杆自由下落且始终保持水平,经时间t 速度由6 m/s 增大到14 m/s(杆未触地),则在0.5t 时,触点N 沿倾斜轨道运动的速度大小为(g 取10 m/s 2)( )A .10 m/sB .17 m/sC .20 m/sD .28 m/s【解析】杆自由下落,由运动学公式,v =v 0+gt ,则t =v -v 0g =14-610s =0.8 s ;则在0.5t时,杆的下落速度为v ′=v 0+g ·t 2=(6+10×0.4) m/s =10 m/s ;根据运动的分解,杆下落的速度可分解成如图所示的两分运动:则有:触点N 沿倾斜轨道运动的速度大小v ″=v ′cos 60°=1012m/s =20 m/s ,故C 正确,A 、B 、D 错误.【答案】C(多选)如图4所示,不可伸缩、质量不计的细线跨过同一高度处的两个光滑定滑轮连接着质量相同的物体A 和B ,A 套在固定的光滑水平杆上,物体、细线、滑轮和杆都在同一竖直平面内,水平细线与杆的距离h =0.2 m .当倾斜细线与杆的夹角α=53°时,同时无初速度释放A 、B .关于此后的运动过程,下列判断正确的是(cos 53°=0.6,sin 53°=0.8,重力加速度g 取10 m/s 2)( )A .当53°<α<90°时,A 、B 的速率之比v A ∶v B =1∶cos αB .当53°<α<90°时,A 、B 的速率之比v A ∶v B =cos α∶1C .A 能获得的最大速度为1 m/sD .A 能获得的最大速度为22m/s 【解析】将A 的速度沿细线方向和垂直于细线方向分解,沿细线方向上的分速度大小等于B 的速度大小,有v A cos α=v B ,则v A ∶v B =1∶cos α,A 正确,B 错误;A 、B 组成的系统机械能守恒,有mv 2A 2+mv 2B 2=mg (h sin 53°-h sin α),得v 2A =5-4sin α2-sin 2 αm 2/s 2,sin α最大时,v A 最大,当α=90°时,A 的速率最大,此时B 的速率为零,解得v A m =1 m/s ,故C 正确,D 错误. 【答案】AC。
重点高中物理曲线运动速度的合成与分解牵连运动中的速度分解

精心整理牵连运动问题中的速度分解1、微移法处理牵连运动这类问题,可以从实际情况出发.设想物体发生一个微小位移,分析由此而引起的牵连物体运动的位移是怎样的,得出位移分解的图示,再从中找到对应的速度分解的图示,进而求出牵连物体间的速度大小的关系.例1、如图1-1所示,人用绳子通过定滑轮将水中的小船系住,并以3m/s 的速度将绳子收短,此时绳与水面夹角30°角,求此时小船的速度.解:设船在Δt 内由A移到B,位移为ΔS 2,如图1(a ),取OC =OB ,则绳子缩短ΔS 1,绳子端点横向摆动ΔS 3,合位移ΔS 2可以分解为ΔS 1和ΔS 3两个分位移.当Δt →0,ΔS 2→0,∠ACB →90°,此时:ΔS 1=ΔS 2cos30°,即有:02130cos ⋅∆∆=∆∆tS t S ,即:02130cos V V = 所以有:)/(32330cos 23012s m V V === 2、速度的分解法此题也可直接由速度分解的方法进行.船的实际速度V 2是合速度,水平向左,认为绳不可伸长,分速度V 1为沿绳方向的速度,即等于将绳子收短的速度3m/s ,分速度V 3为绕O 点以OA 为半径的绕滑轮向内偏的圆周运动的速度,垂直于绳的方向,画出速度分解的矢量图如图1(b )所示,从而求出)/(32330cos 23012s m V V ===3、沿绳的速度相等法中学物理对于绳子的形变一般都不计,因此,绳拉紧时绳上各点的速度大小必定相等. 例2、一根绳通过定滑轮两端分别系着两个物体A 和B ,如图2所示,物体A 在外力作用下向左以v 匀速运动,某一时刻连A 的绳子与水平方向成α角,连B 的绳子与水平方向成β角,求此时物体B 的速度的大小.解:物体A 的实际速度大小为v ,方向向左,把沿绳方向和垂直于绳的方向分解,沿绳子方向的分速度αcos /v v=设物体B 的实际速度为B v ,则沿绳子方向的分速度βcos /B B v v =由于沿绳上各点的速度大小相等,所以:βαcos cos B v v =,即:v v B⋅=βαcos cos4、功率法中学物理对于绳子的质量和形变一般都不计,因此,绳子没有动能,重力势能、弹性势能、内能,即绳子没有能量,不能和外界交换能量,只能传递能量,所以绳子两端的瞬时功率必定相等.例3:如图3所示,一轻绳的一端通过光滑的定滑轮O 与处在光滑的倾角为300的斜面上的物体A 连接,A 的质量为m ,轻绳的另一端和套在竖直光滑直杆上的物体B 连接,B 的质量为M ,OB 绳水平且距离S =3m ,当B 由静止释放下降h=1m 时,A 的速率由多大?解:设A 的速度大小为1v ,方向沿斜面向上,B 的速度大小为2v ,方向竖直向下,此时绳子与杆的夹角为α,由几何关系可得060=α;由机械能守恒得:)1...(..........30sin )60sin (2121002221⋅-++=s s mg Mv mv Mgh 设绳子得张力为T ,由绳子两端的瞬时功率相等,即有:02160cos Tv Tv =即:)2..(..........60cos 021v v =联立(1)(2)两式可得:mM mgMg v +--=4)32(21精心整理〖例3〗在光滑的水平面上,放一质量为M,高度为a的木块,支承一长L的轻质杆,杆的一端固定着质量为m的小球,另一端用O点绞链着,如图1-5所示。