食品热处理和杀菌

合集下载

第一章 食品热处理和杀菌解析

第一章 食品热处理和杀菌解析
于生产过程的自动控制和连续生产; 4 产品的保藏主要是靠其较低的水分活性和其他条件。
商业杀菌法(commercial sterilization)
將病原菌、产毒菌及在食品上造成食品腐敗的微 生物杀死,罐头内允许残留有微生物或芽孢,不 过,在常溫无冷藏狀況的商业贮运过程中,在一 定的保质期内,不引起食品腐败变质,这种加热 处理方法称为商业灭菌法。
热烫(Blanching or Scalding)作用:
1、破坏或钝化酶活性的最主要和最有效方法之一; 2、一定的杀菌和洗涤作用,可以减少食品表面的微生物数
量; 3、可以排除食品组织中的气体,使食品装罐后形成良好的
真空度及减少氧化作用; 4、热烫还能软化食品组织,方便食品往容器中装填; 5、起到一定的预热作用,有利于装罐后缩短杀菌升温的时
间。
热挤压(Hot extrusion)
挤压:将食品物料放入挤压机中,物料在螺杆的挤压下被压缩并形 成熔融状态,在卸料端通过模具出口被挤出的过程,
是结合混合、蒸煮、揉搓、剪切、成型等几种单元操作的过程。 特点: 1 挤压食品多样化,可以通过调整配料和挤压机的操作条件直接
生产出满足消费者要求-的各种挤压食品; 2 挤压处理的操作成本较低; 3 高温短时,在短时间内完成多种单元操作,生产效率较高;便
-10~25 ℃ -5~55 ℃ 5~55℃
30~90℃
最适生长温度
12~15℃ 25~30 ℃ 30~45℃
50~ 70℃
2、影响微生物耐热性的因素有哪些?
三方面: (1)微生物的种类 (2)微生物生长和细胞(芽孢)形成的环境条件 (3)热处理时的环境条件(温度、湿度、时间)
2、影响微生物耐热性的因素 (1) 微生物种类、状态和数量

第三章 食品的热处理和杀菌

第三章 食品的热处理和杀菌

酵母、霉 菌、酶
2、罐头杀菌工艺条件
罐头杀菌工艺条件制定的原则:在保证罐藏食品安 全性的基础上,尽可能地缩短加热杀菌的时间,以 减少热力对食品品质的影响,
正确合理的杀菌条件:既能杀灭罐内的致病菌和能 在罐内环境中生长繁殖引起食品变质的腐败菌,使 酶失活,又能最大限度地保持食品原有的品质。
t1 t2 t3 p
二、罐藏技术的历史沿革
Nichols Appert(法): 罐藏技术(1804); 《动物和植物物质的永久保存法》(1810); “阿培尔之家“(1812):世界上第一家罐头厂
Louis Paster (法):微生物作用导致变质(1864); 加热杀菌理论(1873)
Bigelow和Esty(20世纪初期): 食品的pH与细菌芽孢 的耐热性之间的关系
金属罐的清洗:人工清洗、机械清洗 玻璃瓶的清洗和消毒 ➢ 人工清洗:回收的旧瓶子:40~50 ºC、浓度2%~
3%的NaOH溶液浸泡5~10min;洗涤剂 ➢ 机械清洗:洗瓶机(喷洗式、浸喷组合式) ➢ 瓶盖:先用温水冲洗,烘干后以75%的酒精消毒。
2、罐盖的打印 3、空罐的钝化处理
定义:将空罐放在化学溶液中作短时间浸 泡或以化学溶液喷射,使其表面产生一 保护薄层,使锡的活泼性变得迟钝而不 易与食品发生作用。
配比:重铬酸钠 0.8kg NaOH 2.0kg 土耳其红油 300ml Na3PO4 0.9kg 自来水100kg
(二)原料选择及预处理
果蔬类原料:选择、分选、洗涤、去皮与修整 、热烫与漂洗、抽空处理
禽畜类原料:选择、解冻、分割、剔骨、整理 、预煮、油炸
水产类原料:选择、解冻、清洗、处理、盐渍 、脱水
热挤压:是指食品物料在螺杆挤压下因受高温、高压、高剪 切力作用,被压缩并形成熔融状态,然后被挤出模具孔, 因压力骤降,水分急骤闪蒸,产品膨胀,从而形成一定形 状和组织形态的产品。

3第三章 食品的热处理和杀菌

3第三章 食品的热处理和杀菌

FOOD TECHNOLOGY
1. 食品pH值与腐败菌的关系
各种腐败菌对酸性环境的适应性不同,而各种食品的酸 度或pH值也各有差异。根据腐败菌对不同pH值的适应情 况及其耐热性,罐头食品按照pH不同常分为四类:
低酸性 中酸性 pH值>5.0 pH值4.6-5.0


pH值3.7-4.6
pH值<3.7

酸性食品
嗜热酸芽孢杆菌
能在pH4或略低的介质中生长,最 适生长温度45℃,最高生长温度 56-60℃。
FOOD TECHNOLOGY
③ 黑变或硫臭腐败
在细菌的活动下,含硫蛋白质分解并产生H2S气体,与 罐内壁铁发生反应生成黑色硫化物(FeS),沉积于罐内 壁或食品上,以致食品发黑并呈臭味。 原因是致黑梭状芽孢杆菌的作用,只有在杀菌严重不足 时才会出现。
0 0 0
2500个平酸菌/10克 糖
95.8 75 54.2
原始菌数和玉米罐头杀菌效果的关系表
FOOD TECHNOLOGY
2. 微生物耐热性特征
① 热力致死速率曲线
微生物及其芽孢的热处理死亡数是按指数递减或按对数 循环下降的。 若以纵坐标为物料单位值内细胞数或芽孢数的对数值, 以横坐标为热处理时间,得到一直线,即热力致死速率 曲线。
第三章 食品的热处理和杀菌
第一节 概述 一.热加工的方法
1.

FOOD TECHNOLOGY
灭菌
灭菌是指将食品中所有微生物破坏。 至少需要在121℃下保持15分钟。 多数食品并不适合灭菌操作。
2.

商业无菌
商业无菌的杀菌程度是使所有的病原性微生物、产生 毒素的微生物以及其他可能在正常的存储条件下繁殖 并导致食品腐败的微生物完全被破坏。 一般在100℃下保持15分钟。 商业无菌处理过的产品货架寿命一般在2年以上。

第三章 食品的热处理和杀菌

第三章 食品的热处理和杀菌

9³105 9³104 9³103
105 104 103
5 4 3
4
5 6 7
103
102 101 100
9³102
9³101 9 0.9
102
101 100 0.1
2
1 0 -1
该实验的假设前提是:起始样品中微生物的细胞浓度为106个/ml,每加热1min有90%的细胞死亡, 加热温度为121℃
Survivor Curve
为什么细菌的芽孢比营养细胞更耐热?
蛋白质不同 不同种类的蛋白质具 水分含量及水分
活度不同
(1)芽孢中的水分含 量较低 (2)芽孢中的水大部 分为结合水
有不同的热凝固温度
微生物的污染量
C
B
D
A Time
图3-1 微生物的不同生长阶段
2.热处理温度和时间
热处理温度越高则杀菌效果 越好 加热时间延长,有时并不能
(二)热杀菌食品的pH分类
根据腐败菌对不同pH值的适应情况及其耐热性,(罐头) 食品按照pH值不同常分为四类:低酸性、中酸性、酸性 和高酸性。
酸度 低酸 性 中酸 性 酸性
pH值
食品种类
常见腐败 菌
杀菌要求 高温杀菌 105~121℃
> 5.0 虾、蟹、贝类、禽、牛 嗜热菌、嗜
肉、猪肉、火腿、羊肉、温厌氧菌、 蘑菇、青豆 嗜温兼性厌 蔬菜肉类混合制品、汤 氧菌
保藏热处理的代表产品

罐头食品
金属罐 玻璃瓶 铝箔或复合塑料薄膜
罐头食品的特点
可直接食用或开袋即食
货架期很长 风味、色泽、质构、营养成分受到影响 带有加热后的蒸煮味
适合于加工需要加热烧熟的食品原料

第三章 食品的热处理与杀菌

第三章 食品的热处理与杀菌

SYTU
表2 2000年日本进口罐头的总量
产品名称 2000 占罐头食品进口总量
水果罐头 蔬菜罐头 肉食罐头 水产罐头 果酱罐头
SYTU
342811 335543 38073 25541 9381
45.6% 44.7% 5.l% 3.4% 1.2%
2000年进口的水果罐头总计$246,653,000,主要类别区分 如下: 1)桃 ......$65,759,000 (中国43%、南非29%、希腊17%、 澳大利亚6%、其他5%) 2)菠萝.... $41,137,000 (泰国50%、菲律宾25%、印尼 17%、马来西亚7%、其他1%) 3)什锦水果 $17,504,000 (南非36%、泰国23%、其他 41%) 4)樱桃.... $13,328,000 (智利38%、中国31%、其他 31%) 5)梨 ......$9,196,000 .(澳大利亚48%、南非39%、其他 13%) 6)杏 ......$3,859,000 .(南非76%、其他24%)
SYTU
3.2、国内罐头食品工业的现状和发展趋势 3.2.1 国内主要食品罐头生产和出口状况
表4 国内各类罐头的产量和出口量(万吨) 年份 总产 量 出口 量 出口 额 2001 173.7 100 2002 223.17 2003 256.2 160.73 12.23亿 美元 2004 313.37 178.64 13.63亿 美元 2005 360.06 205.24
SYTU
3.1.1 日本主要罐头产品的生产状况
图1 日本的罐头(包括金属罐、玻璃罐、蒸 煮袋)的生产、进口和出口的数量推移
SYTU
表1 日本罐头生产量的变化(重量:吨)
种类 小 型 金 属 罐 水产 水果 蔬菜 果酱 肉类 调理食品 饮料 小型罐总计 饮料除外小型罐总计 1996 147415 83812 74866 1744 15918 128049 5069730 5521534 451804 1998 150709 67690 75865 1477 14146 117866 2000 152154 62245 75303 1593 13951 93734 2002 122570 47266 68609 959 10209 83119 387128 9 420456 1 332732 2004 121,281 40368 61918 2205 8574 65897 2005 117,773 38,523 59,648 861 8,730 59,932

食品的热处理和杀菌总结

食品的热处理和杀菌总结

食品的热处理和杀菌总结食品热处理的主要目的是降低无益生物如微生物和酶的活性,这类热处理就是保藏热处理。

在有些热处理过程中会出现一些物理特性的变化(如面团转化成面包),这类热处理就称为转化热处理。

在这两类热处理的过程中,都会有一些主要营养成分的损失,都会发生一些不希望的变化。

下表1列出来常用的热处理过程及其效果。

表1 常用的热处理过程及其效果在保藏热处理中,最重要的一种方式是将食品装在容器中密封后,用高温处理,将微生物杀死,在防止外界微生物再次侵入的条件下,可以使食品在室温下长期贮藏。

这种保藏食品的方法俗称罐藏,凡用密封容器包装并经过高温杀菌的食品称为罐头食品。

食品的杀菌方法有多种,物理的如热处理、微波、辐射等,化学如加各种防腐剂和抑菌剂,生物的如各种微生物或能产生抗生素的微生物。

虽然杀菌方法有多种并且一直在改进,但是热处理杀菌是食品工业最有效,最经济,最简单的。

热杀菌的主要目的是杀灭在食品正常的保质期内可导致食品腐败变质的微生物。

要制定出既达标又可使食品的质量因素变化最少的合理杀菌工艺,必须研究微生物的耐热性以及食物在食品中的传递情况。

微生物的耐热性研究影响微生物耐热性的因素是多方面的。

首先是内因即微生物的种类,各种微生物的、的耐热性是不同的,同种微生物,耐热性也会因培养条件的不同而有所差异,因此首先要确定食品中所含的主要微生物种类及数量;确定微生物种类后可以确定致死温度,试验找出最节能,最快速的杀菌温度;其次是外因,热处理可使微生物细胞内的蛋白质变性而致死,食品内的各种成分也会影响到蛋白质的凝固速度,从而影响到微生物的的耐热性,主要因素有PH值、脂肪含量、糖的浓度、蛋白质含量、盐浓度和植物杀菌素六大类、微生物耐热性参数F0、Z值、D值以及热力致死时间曲线和热力致死速率曲线等是热处理中的重要参考资料。

食品的传热热的传递方式有三种:传导、对流和辐射。

对于罐头食品我们一般只认为存在传导和对流两种方式。

第二章 食品热处理和杀菌

第二章  食品热处理和杀菌

2. 微生物的生长温度和微生物的耐贮性
不同微生物的最适生长温度不同,当温度高 于微生物的最适生长温度时,微生物的生长就会 受到抑制,而当温度高到足以使微生物体内的蛋 白质发生变性时,微生物即会出现死亡现象。
3. 湿热条件下腐败菌的耐热性
一般认为,微生物细胞内蛋白质受 热凝固而失去新陈代谢的能力是加热导 致微生物死亡的原因。因此,细胞内蛋 白质受热凝固的难易程度直接关系到微 生物的耐热性。蛋白质的热凝固条件受 其它一些条件,如:酸、碱、盐和水分 等的影响。
2. 酶的最适温度和热稳定性 影响酶的热稳定性的因素主要有 两大类:一是酶的种类和来源,另一 是热处理的条件。
四、加热对食品营养成分和感观品质的影响
加热对食品成分的影响可以产生有益的结 果,也会造成营养成分的损失。由于不同食 品成分的耐热性不同,热处理可以破坏食品 中不需要的成分,如禽类蛋白中的抗生物素 蛋白、豆科植物中的胰蛋白酶抑制素。热处 理可改善营养素的可利用率,如淀粉的糊化 和蛋白质的变性可提高其在体内的可消化性 。加热也可改善食品的感官品质,如美化口 味、改善组织状态、产生可口的颜色等。
整合重排得: 2.303R(T-T1) Z
Ea=
式中 T1——参比温度,K; T——杀菌温度,K。
(3)温度系数Q值
Q值表示反应在温度T2下进行的速率比 在较低温度下T1下快多少,若Q值表示温度 增加10℃时反应速率的增加情况,则一般 称之为Q10。Z值和Q10的关系为:
10 Z=
lgQ10
二、加热对微生物的影响
一些食品成分的耐热性参数
第三节 食品热处理条件的选择与确定
一、食品热处理方法的选择 (一)热处理应达到相应的热处理目的 1.以加工为主:热处理后食品应满足 热加工的要求 2.以保藏为主要目的:热处理后的食 品应达到相应的杀菌、钝化酶等目的

食品工艺学-第三章+食品的热处理和杀菌

食品工艺学-第三章+食品的热处理和杀菌

以热处理温度为横 坐标,以微生物全部杀灭 时间为纵坐标(对数值) 得到一条直线,即热力致 死时间曲线。
2. 热处理温度
❖热处理温度越高,杀死一定量腐败菌芽孢 所需要的时间越短。
图1 不同温度时炭疽菌芽孢的活菌残存数曲线
表2 热处理温度对玉米汁中平酸菌死亡时间的影响
3.热处理时介质或食品成分的影响
(1)酸度 pH ▪ 许多高耐热性的微生物,在中性时耐热性最强,
随着pH偏离中性的程度越大,死亡率越大 ▪ 对大多数芽孢杆菌来说,在中性范围内耐热性最
1. 罐头常见的腐败变质的现象
❖罐头食品贮运过程中常会出现胀罐、平盖 酸败、黑变和发霉等腐败变质的现象,此 外还有中毒事故。
(1)胀罐
❖ 原因 –微生物生长繁殖——细菌性胀罐 –食品装量过多或罐内真空度不够引起假胀— 物理性胀罐 –罐内食品酸度太高,腐蚀罐内壁产生氢气,引 起氢胀—化学性胀罐
❖ 出现细菌性胀罐的原因 –杀菌不足 –罐头裂漏
原料污染情况 新鲜度 车间清洁卫生状况 生产技术管理 杀菌操作技术要求 (3)罐头裂漏 (4)嗜热菌生长
(四)微生物耐热性参数
1. 热力致死时间曲线(TDT曲线) Thermal Death Time 热力致死时间用以表示将在一定环 境中一定数量的某种微生物恰好全部杀灭 所采用的杀菌温度和时间组合。
1. 污染微生物的种类和数量
(1)菌种与菌株
–菌种不同,耐热性不同 –同一菌种,菌株不同,耐热性也不同 –正处于生长繁殖的细菌的耐热性比它的芽孢弱 –各种芽孢中,嗜热菌芽孢耐热性最强,厌氧菌芽
孢次之,需氧菌芽孢最弱。 –同一种芽孢的耐热性也会因热处理前菌龄、培育
条件、贮存环境的不同而异
热处理前细菌芽孢的培育和生长

食品的热处理与杀菌

食品的热处理与杀菌

应用范围
适用于表面杀菌处理,如面包 、糕点等食品的表面杀菌。
优点
加热速度快,效率高,对食品 营养成分破坏小。
缺点
仅适用于表面杀菌,对于内部 杀菌效果较差。
微波法
原理
应用范围
利用微波对食品进行加热处理,使微生物 体内的水分分子产生高速振动,摩擦产生 热量,从而达到杀菌的目的。
适用于各种液体、固体和半固体食品,如 牛奶、肉类、蔬菜等。
关注新型非热加工技术发展趋势
深入研究非热加工技术
加大对超高压、脉冲电场、超声波等 非热加工技术的研究力度,挖掘其在
食品杀菌和保鲜方面的潜力。
推动技术应用
鼓励企业积极采用非热加工技术,提 高食品加工的效率和安全性,同时保
持食品原有的营养和风味。
加强法规和标准建设
制定和完善非热加工技术的法规和标 准,规范技术应用,保障食品安全。
优势与局限性
脉冲电场技术具有杀菌速度快、效率高、对食品营养成分 破坏小等优点,但设备复杂、操作技术要求高,且对不同 类型的食品适应性有待提高。
超声波技术在食品杀菌中应用
超声波技术原理
利用超声波在食品中传播时产生的空化效应、机械效应和热效应等作用,破坏微生物细胞 结构,达到杀菌的目的。
在食品杀菌中的应用
原理及适用范围
01
热处理原理
通过加热使微生物体内蛋白质变性、酶失活,从而达到杀菌目的。
02
适用范围
适用于大多数食品,特别是液体和半液体食品,如果汁、牛奶等。对于
固体食品,需考虑加热过程中的传热效率和食品质量变化。
03
注意事项
热处理过程中应控制加热温度和时间,避免过度加热导致食品营养成分
损失和品质下降。同时,对于某些热敏性食品,需采用温和的加热条件

食品的热处理和杀菌

食品的热处理和杀菌

腐败特征
低 嗜 嗜热脂肪芽孢杆菌
平盖酸败
酸 热 嗜热解糖梭状芽孢杆菌
产酸产气
性 菌 致黑梭状芽孢杆菌
致黑硫臭
食 嗜 肉毒杆菌 A、B 品 温 生芽孢梭状芽孢杆菌(P.A3697)

产酸产气产毒 产酸产气
酸 嗜 凝结芽孢杆菌
平盖酸败
性 温 巴氏固氮梭状芽孢杆菌
产酸产气
食 菌 酪酸梭状芽孢杆菌
产酸产气

D121℃ = 5
图5
设原始菌数为a,经过一段热处理时间t后, 残存菌数为b ,直线的斜率为k,
则: lg b – lg a= k ( t – 0 ) ∵ a>b
整理上式得 t=﹣1/k(lg a-lg b)
令D = ﹣1/k 则得到热力致死速率曲 线方程
t= D (lg a-lg b)
令b= a10-1 则D=t
(Thermal Death Time Curve,TDT)
表示微生物的热力致死时间(TDT)随热杀菌 温度的变化而呈现的规律。图7
图7 热力致死时间曲线
设直线的斜率为k,取曲线上任意两点
1(TDT1,T1)、2 (TDT2,T2)
则: log TDT2– log TDT1 = k (T2– T1 ) 若 T2 > T1
(一)加热对微生物的影响 1. 微生物的生长温度
微生物的最适生长温度
温度高于微生物的最适生长温度时,微生物的生 长就会受到抑制甚至出现死亡现象。
微生物的最适生长温度与热致死温度(℃)
微生物
最低生长温度
最适生长温度
嗜热菌
30 --- 45
50---70
嗜温菌
5 --- 15
30---45

3食品的热处理和灭菌

3食品的热处理和灭菌


D值反映微生物的抗热能力;

•ቤተ መጻሕፍቲ ባይዱ
D值的大小取决于直线的斜率,与原始菌数无关;
D值与加热温度、菌种及环境的性质有关;

D值的计算:
D
表达: Dt

lg N 0 lg N
D110 = 5 表示:在110℃条件下,杀灭90%的 某种微生物需要5分钟。
思考题
• 低酸性食品和酸性食品的分界线是什么? 为什么? • 影响微生物耐热性的因素主要有哪些? • D值、Z值、F值的概念是什么?分别表 示什么意思?这三者如何互相计算?
水份活度aw和酸碱值pH对微生物的生长有决 定性的影响,实验数据表明,aw 0.85和 pH4.6是一个分界点,如果某食品控制在aw 0.85以下及pH4.6以下是属于较安全的食品, 只需要低于100℃温度杀菌便可,如果汁罐头 就是属于这种情形。但科学家实验也证明上 述两个制约因素中只要有一个达到,便可用 ≤100℃温度杀菌。
罐头食品按照酸度的分类
酸度级 别 pH值 食品种类 常见腐败 菌 热力杀菌要 求
低酸性
中酸性
5.0以上 虾、蟹、贝类、禽、牛肉、猪 嗜热菌、 肉、火腿、羊肉、蘑菇、青豆、嗜温厌氧 青刀豆、笋 菌、嗜温 兼性厌氧 4.6~5.0 蔬菜肉类混合制品、汤类、面 菌 条、沙司、无花果
3.7~4.6 荔枝、龙眼、桃、樱桃、李、 非芽孢耐 苹果、枇杷、梨、草莓、番茄、酸菌、耐 什锦水果、番茄酱、各类果汁 酸芽孢菌
3.巴氏杀菌法(Pasteurization)—— 在100℃以下 的加热介质中的低温杀菌方法,以杀死病原菌 及无芽孢细菌,但无法完全杀灭腐败菌。 4.热烫(Blanching)—— 生鲜的食品原料迅速以热 水或蒸气加热处理的方式,称为热烫。其目的 主要为抑制或破坏食品中酶以及减少微生物数 量。

食品加工中的热处理技术教程

食品加工中的热处理技术教程

食品加工中的热处理技术教程热处理是食品加工过程中非常重要的一项技术,它可以通过加热食物来延长其保质期、改善口感和质地,以及杀灭细菌和其他微生物。

本文将介绍食品加工中常用的热处理技术,并解释其原理和具体操作步骤。

一、热处理的原理热处理是利用高温或热处理时间来杀灭细菌和其他有害微生物的一种方法。

细菌、真菌和酵母等微生物会生长繁殖在食物中,导致食物腐败和变质,甚至引发食源性疾病。

通过加热食品,可以破坏这些微生物的细胞结构和蛋白质,从而有效杀灭它们。

同时,热处理还可以使食物中的酶活性降低,减缓食物的自然变质。

二、常用的热处理技术1. 杀菌杀菌是食品加工中最常见的热处理技术之一,它是指将食品加热到一定温度,保持一定时间,以达到杀灭细菌的目的。

常用的杀菌方法包括高温短时间处理(HTST)、超高温处理(UHT)和罐头加热处理。

HTST是将食品加热到72-85摄氏度,保持15-30秒,然后迅速冷却。

通过快速加热和冷却,可以杀灭细菌,同时保持食物的营养成分和口感。

UHT是将食物加热到超过100摄氏度的高温,保持2-5秒,然后迅速冷却。

这种方法可以杀灭细菌和酵母等微生物,使食物可以长时间保存。

罐头加热处理是将食品放入密封罐中,加热到高温,以达到杀菌的目的。

这种方法适用于肉类、海产品和果蔬等食品的加工。

2. 灭活酶活性酶是一种生物催化剂,可以加速食物的化学反应,但在食品加工中也可能导致食物的变质和质量损失。

通过加热食物,可以灭活酶的活性,延缓食物的自然变质。

不同的酶对热的敏感程度不同,因此需要根据具体食材和处理要求来确定加热条件。

一般来说,将食材加热到70-90摄氏度,保持几分钟到几十分钟,可以有效灭活大部分酶的活性。

3. 热处理与食品质地的关系热处理不仅可以杀灭细菌和灭活酶的活性,还可以改善食物的质地和口感。

在加热的过程中,食物中的蛋白质会发生变性、凝固和固化,使食物变得更坚固和有弹性。

同时,热处理还可以破坏食物中的纤维结构,使口感更加柔软和容易消化。

食品工程中的热处理技术及其应用

食品工程中的热处理技术及其应用

食品工程中的热处理技术及其应用热处理是食品工程中重要的食品加工技术之一,通过热处理可以有效杀灭微生物、延长食品货架期、改善食品口感及质地,并保持食品的营养成分。

本文将探讨食品工程中的热处理技术及其应用,并介绍其中几种常见的热处理方法。

一、热处理技术概述热处理技术是指在一定时间和温度条件下对食品进行加热处理的过程。

通过热处理,可以有效杀灭食品中的细菌、病毒等微生物,抑制食品的自然酶活性以及延长食品的货架期。

二、热处理的方法和设备1. 灭菌:灭菌是通过加热杀灭食品中的病毒、细菌等微生物的一种常见热处理方法。

常用的设备有高温灭菌锅、高温灭菌箱等。

2. 杀菌:杀菌是通过热处理在一定的温度和时间条件下杀灭食品中的细菌和其他病原微生物的方法。

常见的杀菌设备有高温烘箱、杀菌锅等。

3. 保鲜:通过热处理可以有效抑制食品中的酶活性,延长食品的货架期。

常见的设备有热水浴、热风烘干机等。

三、热处理技术在食品工程中的应用1. 高温灭菌:高温灭菌是将食品加热到一定的温度条件下,彻底杀灭食品中的细菌、病毒等微生物。

常见的高温灭菌技术包括高温灭菌锅、高温灭菌箱等。

2. 热风烘干:热风烘干是将食品通过热风流动的方式,将食品中的水分蒸发掉,实现食品的干燥和保鲜。

热风烘干可用于干果、肉制品等的加工。

3. 杀菌保鲜:杀菌保鲜是通过热处理杀灭食品中的菌落,抑制微生物的生长繁殖,延长食品的货架期。

常见的杀菌保鲜方法有热水浴、杀菌锅等。

4. 热水浴:热水浴是将食品浸泡在加热的水中,通过水温的升高杀灭食品中的细菌和其他微生物。

热水浴适用于蔬菜、水果等的杀菌处理。

四、热处理技术的优势和挑战热处理技术在食品工程中具有以下优势:1. 杀菌彻底:热处理技术可以有效杀灭食品中的细菌和病毒,保证食品的安全性。

2. 改善食品质量:热处理可以改善食品的口感和质地,提高食品的风味品质。

3. 延长货架期:热处理可以抑制食品中的酶活性,延长食品的货架期。

4. 保持营养成分:适当的热处理可以保持食品的营养成分。

第三章__食品的热处理和杀菌技术分析

第三章__食品的热处理和杀菌技术分析

6D
7D 8D
10-2
10-3 10-4
食品保藏原理
从表可以看出,从5D以后,为负指数,也就是说有 1/10~1/10000活菌残存下来的可能。 细菌和芽孢按分数出现并不显示实际个数,这只是表明 理论上很难将活菌完全消灭掉。 实际上,这应该从概率的角度来考虑,如果100支试管 中各有1ml悬浮液,每ml悬浮液中仅含有1个芽孢,经过5D 处理后,残存菌数为10-1,即1/10活,也就是100支试管中可 能有90支不再有活菌存在,而10支尚有活菌的可能。
不同温度时炭疽菌芽孢的活菌残存数曲线
食品保藏原理
热处理温度对玉米汁中平酸菌死亡时间的影响
平酸菌 芽孢全 部死亡 所需时 间/min 1200 600 平酸菌 芽孢全 部死亡 所需时 间/min 70 19 平酸菌 芽孢全 部死亡 所需时 间/min 3 1
温度/ ℃
温度 /℃
温度/℃
100 105
二、热烫的目的 首要目标:钝化酶、稳定产品性质;其次 是减少M。
食品保藏原理
二、影响热烫效果的因素包括:
热烫时间 热烫温度、介质 及时冷却 Ph值
第三节 食品的罐藏
食品保藏原理
何为食品罐藏?特点? 两个要素:容器的密封性和商业无菌 发展历史: 1806-1810年诞生了世界上第一批罐头食品 1810年发明了镀锡薄板罐 1849创办第一个罐头工厂 1847年发明高压杀菌锅 我国的罐头工业创建于1906年
1000
Ó ) Ö Ö ä (· ±¼ Ó È Ê ú ¼ ±¾ É
100
10
Z
1 95 100 105 110 115 120 125 ±¾ É ú Î Â ¶ È (¡ æ )
热力致死时间曲线

食品的热处理和杀菌03

食品的热处理和杀菌03
同时将热力致死速率曲线和热力致死时 间曲线联系在了一起,使得D值、Z值和F值 之间建立了相应的换算关系。
思考题: 1、低酸性食品和酸性食品的分界线是什么? 为什么? 2、影响微生物耐热性的因素主要有哪些?它 们的影响机理各是什么? 3、D值、Z值、F0值的概念各是什么?分别表 示什么意思?
二、食品的传热 前述的所有参数(尤其是F0值)都是一 种理论杀菌时间,没有考虑到升温和降温 过程。

热烫(Blanching)—— 生鲜的食品原料迅 速以热水或蒸气加热处理的方式,称为热 烫。
其目的主要为抑制或破坏食品中酶以及 减少微生物数量。
表3-1
热处理 热烫 产品 蔬菜、水果
常用的热处理过程及效果
加工参数 预期变化 不良变化 蒸汽或热水加热 钝化酶,除氧,减菌, 营养损失、流失, 到90-100℃ 减少苦味,改变质构 色泽变化 杀灭致病菌 杀灭微生物及其孢子 色泽变化、营养 变化、感官变化 色泽变化、营养 变化、感官变化
3、传热测定 指罐头中心温度(或冷点温度)的测 定。 冷点:罐头杀菌冷却过程中,温度变化 最缓慢的点。
传导型食品罐头的冷 点在罐的几何中心 特点:传热速度较慢
传导加热型冷点位置
对流型食品罐头的 冷点在罐中心轴 上,离罐底2~4cm 处。 特点:传热速度快 对流加热型冷点位置
传热测定的目的: 了解杀菌过程中温度随时间变化曲 线,为正确制定杀菌工艺条件奠定基 础 比较杀菌锅内不同位置的升温情况, 为改进、维修设备和改进操作水平提 供技术依据 经过数据分析和处理可以判断罐头食 品的杀菌效果
冷却
后处理
排气 密封前将罐内空气尽可能除去的处理措 施,罐内真空度一般为(2.666~5.332) ×104Pa。 排气方法 热灌装法 加热排气法 蒸汽喷射排气法 真空排气法

肉类食品杀菌原理

肉类食品杀菌原理

肉类食品杀菌原理
肉类食品杀菌的原理主要有以下几种。

1. 热处理法:通过高温对肉类食品进行加热处理,达到一定温度和时间,以杀灭其中的细菌、寄生虫、病原菌等微生物。

常用的方法包括煮沸、蒸煮、烘烤和炖煮等。

热处理可以破坏微生物的细胞结构和生物活性酶,使其失去生长和繁殖的能力。

2. 乳酸发酵法:将肉类食品浸泡在乳酸菌液中,通过乳酸菌发酵产生的酸性环境,抑制和杀灭其他细菌的生长。

乳酸菌可以降低肉类食品的pH值,改变其微生物生态环境,从而起到抑
制细菌的作用。

常见的乳酸菌有乳酸杆菌、乳酸链球菌等。

3. 调味品添加法:在肉类食品中加入具有杀菌作用的调味品,如盐、糖、醋等。

这些调味品能够在一定浓度下抑制细菌的生长和繁殖。

盐可以使细胞内的水分减少,抑制细菌的代谢和生长;糖能吸收细菌的水分,使其失去代谢的能力;醋具有一定的酸性,可以破坏细菌的细胞膜结构。

4. 真空包装法:将肉类食品置于真空包装的容器中,通过真空抽气使其中的氧气含量降低,从而抑制细菌的生长和繁殖。

细菌需要氧气来进行代谢和生长,缺乏氧气的环境会限制其生长。

真空包装还可以减少细菌的氧气传播、抑制氧化酶的活性,并延长肉类食品的保鲜周期。

总之,肉类食品的杀菌原理多种多样,可以通过热处理、乳酸
发酵、调味品添加和真空包装等方法来达到杀灭细菌、寄生虫和病原菌的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

食品热处理和杀菌1、食品热处理是食品加工与保藏中用于改善食品品质、延长食品贮藏期的最重要的处理方法之一。

主要作用是杀灭致病菌和其它有害的微生物,钝化酶类,破坏食品中不需要或有害的成分或因子,改善食品的品质与特性,以及提高食品中营养成分的可利用率、可消化性等。

当然,热处理也存在一定的负面影响,如对热敏性成分影响较大,也会使食品的品质和特性产生不良的变化,加工过程消耗的能量较大。

2、工业烹饪一般作为食品加工的一种前处理过程,通常是为了提高食品的感官质量而采取的一种处理手段。

烹饪通常有煮、焖(炖)、烘(焙)、炸(煎)、烤等几种形式。

3、焙烤焙(Baking)和烤(Roasting)基本上是相同的单元操作,它们都是以高温热来改变食品的食用特性。

两者的区别在于烘焙主要用于面制品和水果,而烧烤主要针对肉类、坚果和蔬菜。

焙烤也可达到一定的杀菌和降低食品表面水分活性的作用,使制品有一定的保藏性,但焙烤食品的贮藏期一般较短,结合冷藏和包装可适当地延长贮藏期。

4、油炸主要是为了提高食品的食用品质而采用的一种热处理手段。

通过油炸可以产生油炸食品特有的色香味和质感。

油炸处理也有一定的杀菌、灭酶和降低食品水分活性的作用。

油炸食品的的贮藏性主要由油炸后食品的水分活性所决定。

5、热烫又称烫漂、杀青、预煮。

主要应用于蔬菜和某些水果,通常是蔬菜和水果冷冻、干燥或罐藏前的一种前处理工序。

6、热挤压挤压是将食品物料放入挤压机中,物料在螺杆的挤压下被压缩并形成熔融状态,然后在卸料端通过模具出口被挤出的过程,热挤压则是指食品物料在挤压的过程中还被加热。

7、热杀菌是以杀灭微生物为主要目的的热处理形式。

根据要杀灭微生物的种类的不同可分为巴氏杀菌(Pasteurisation)和商业杀菌(Sterilization)。

杀菌的方法通常以压力、温度、时间、加热介质和设备、以及杀菌和装罐密封的关系等来划分,以压力划分可分为常压杀菌和加压杀菌;杀菌的加热介质可以是热水、水蒸气、水蒸气和空气的混合物以及火焰等。

8、湿热杀菌以蒸气、热水为热介质,或直接用蒸汽喷射式加热的杀菌法。

利用热能转换器(如锅炉)将燃烧的热能转变为热水或蒸汽作为加热介质,再以换热器将热水或蒸汽的热能传给食品,或将蒸汽直接喷入待加热的食品。

9、常压杀菌主要以水(也有用水蒸汽)为加热介质,杀菌温度在100℃或100℃以下,用于酸性食品或杀菌程度要求不高的低酸性食品的杀菌。

杀菌时罐头处于常压下,适合于金属罐、玻璃瓶和软性包装材料为容器的罐头。

杀菌设备有间歇式和连续式的。

10、高压蒸汽杀菌利用饱和水蒸汽作为加热介质,杀菌时罐头处于饱和蒸汽中,杀菌温度高于100℃,用于低酸性食品的杀菌。

由于杀菌时杀菌设备中的空气被排尽,有利于温度保持一致。

在较高杀菌温度(罐直径102mm以上,或罐直径102mm以下温度高于121.1℃)时,冷却时一般采用空气反压冷却。

杀菌设备有间歇式和连续式的,罐头在杀菌设备中有静止的也有回转的。

回转式杀菌设备可以缩短杀菌时间。

11、高压水煮杀菌利用空气加压下的水作为加热介质,杀菌温度高于100℃,主要用于玻璃瓶和软性材料为容器的低酸性罐头的杀菌。

杀菌(包括冷却)时罐头浸没于水中以使传热均匀,并防止由于罐内外压差太大或温度变化过剧而造成的容器破损。

杀菌时需保持空气和水的良好循环以使温度均匀。

杀菌设备主要是间歇式的,但罐头在杀菌时可保持回转。

软罐头杀菌时则需要特殊的托盘(架)放置软罐头以利于加热介质的循环。

12、空气加压蒸汽杀菌是利用蒸汽为加热介质,同时在杀菌设备内加入压缩空气以增加罐外压力、减小罐内外压差。

主要用于玻璃瓶和软罐头的高温杀菌。

杀菌温度在100℃以上,杀菌设备为间歇式。

其控制要求严格,否则易造成杀菌时杀菌设备内温度分配不均。

13、火焰杀菌是利用火焰直接加热罐头,是一种常压下的高温短时杀菌。

杀菌时罐头经预热后在高温火焰(温度达1300℃以上)上滚过,短时间内达到高温,维持一段较短时间后,经水喷淋冷却。

罐内食品可不需要汤汁作为对流传热的介质,内容物中固形物含量高。

但由于灭菌时罐内压较高,一般只用于小型金属罐。

此法的杀菌温度较难控制(一般以加入后测定罐头辐射出的热量确定)。

14、热装罐密封杀菌是对装罐前的食品进行热处理,然后趁热立即将食品装罐密封,利用食品的余热完成对密封后罐头的杀菌或进行二次杀菌,达到杀菌要求后再将罐头冷却。

主要用于汁酱类酸性食品的杀菌。

杀菌设备多用管式或片式,对装罐容器的清洁无菌程度要求较高,密封后多将罐头倒置,以保证对罐盖的杀菌。

15、预杀菌无菌装罐是使食品在预杀菌过程中达到杀菌要求,然后冷却至常温,在无菌的状态下装入经灭菌处理的无菌容器中并进行密封(封罐)。

多用于液态和半液态食品的杀菌。

预杀菌在热交换器中完成,时间短。

无菌装罐可在无菌包装设备或系统中完成,是一种连续的高温短时或超高温瞬时杀菌方法。

适用于软性包装材料和金属、塑料容器。

16、DT值(指数递减时间)是热力致死速率曲线斜率的负倒数,可以认为是在某一温度下,每减少90%活菌(或芽孢)所需的时间,通常以分钟为单位。

由于热力致死速率曲线是在一定的热处理(致死)温度下得出的,为了区分不同温度下微生物的D值,一般热处理的温度T作为下标,标注在D值上,即为DT。

17、TDT值(热力致死时间)在某一恒定温度(热力致死温度)条件下,将食品中的一定浓度的某种微生物活菌(细菌和芽孢)全部杀死所需要的时间(min),一般用TDT值表示,同样在右下角标上杀菌温度。

18、F值(杀菌值)是指在一定的致死温度下将一定数量的某种微生物全部杀死所需的时间(min)。

19、Z值当热力致死时间减少1/10或增加10倍时所需提高或降低的温度值,一般用Z值表示。

Z值是衡量温度变化时微生物死灭速率变化的一个尺度。

20、TRT值(热力指数递减时间)在某特定的热死温度下,将细菌或芽孢数减少到10-n时所需的热处理时间,。

它是指在一定的致死温度下将微生物的活菌数减少到某一程度如10-n或1/10n(即原来活菌数的1/10n)所需的时间(min),记为TRTn,单位为分钟,n就是递减指数。

21、酸性食品指天然pH≤4.6的食品。

对番茄、梨、菠萝及其汁类,pH<4.7,对无花果,pH≤4.9,也称为酸性食品。

22、低酸性食品指最终平衡pH>4.6,aw>0.85的任何食品,包括酸化而降低pH的低酸性水果、蔬菜制品,它不包括pH<4.7的番茄、梨、菠萝及其汁类和pH≤4.9的无花果。

23、酸化食品是指加入酸或酸性食品使产品最后平衡pH≤4.6和aw>0.85的食品。

它们也被称为酸渍食品。

在加工食品时,可以通过适当的加酸提高食品的酸度,以抑制微生物(通常以肉毒杆菌芽孢为主)的生长,降低或缩短杀菌的温度或时间,此即为酸化食品。

24、罐头冷点罐头加热时,该点温度变化最慢,常作为代表罐头容器内食品温度变化的温度点。

加热时该点的温度最低(此时又称最低加热温度点),冷却时该点的温度最高。

热处理时,若处于冷点的食品达到热处理的要求,则罐内其它各处的食品也肯定达到或超过要求的热处理程度。

25、热力致死时间热力致死时间曲线是采用类似热力致死速率曲线的方法而制得的,它将TDT值与对应的温度T在半对数坐标中作图,则可以得到类似于致死速率曲线的热力致死时间曲线。

26、阿累尼乌斯方程反映热破坏反应和温度关系,即反应动力学理论。

27、温度系数Q值描述温度对反应体系的影响。

Q值表示反应在温度T2下进行的速率比在较低温度T1下快多少,若Q值表示温度增加10℃时反应速率的增加情况,则一般称之为Q10。

28、非热杀菌杀菌过程中食品温度并不升高或升高很低,既有利于保持食品中功能成分的生理活性,又有利于保持色、香、味及营养成分。

非热杀菌技术主要包括物理杀菌和化学杀菌。

非热物理杀菌是采用物理手段(如电磁波、压力、光照等)进行杀菌,化学杀菌则是通过化学试剂来达到杀菌的作用。

29、超高压(UHP)杀菌技术是指将密封于弹性容器内的食品置于水或其它液体作为传压介质的压力系统中,经100MPa以上的压力处理,以达到杀菌,灭酶和改善食品的功能特性等作用。

30、高压脉冲电场(PEF)杀菌是利用强电场脉冲的介电阻断原理对食品微生物产生抑制作用,具有处理时间短、能耗低、传递快速、均匀等优点,因而有望广泛地用于食品杀菌。

31、脉冲强光杀菌是用连续的宽带光谱短而强的脉冲,抑制食品和包装材料表面、透明饮料、固体表面和气体中的微生物。

32、磁力杀菌是处于实验开发阶段的非热杀菌技术。

研究表明,采用6000的磁力强度,将食品放在N极与S极之间,经过连续摆动,不需加热,即可达到100%的杀菌效果,对食品的成分和风味无任何影响。

可运用于饮料、调味品及各种包装的固体食品。

33、感应电子杀菌是以电为能源的线性感应电子加速器所产生的电离辐射导致微生物的DNA和细胞发生变化,进而钝化和杀死有害微生物。

34、半导体光催化杀菌半导体光催化技术应用到了杀菌领域,尤其是水的深度处理方面,开辟了杀菌领域新天地。

这种杀菌是通过生物生命活动过程中电子的得失而导致的结果。

因而控制合适的光催化条件,就能达到良好的杀菌效果。

35、超声波灭菌超声波对传声媒质的相互作用,蕴藏着巨大的能量,这种能量能在极短的时间内足以起到杀灭和破坏微生物的作用,而且能够对食品产生诸如均质、催陈、裂解大分子物质等多种作用,具有其它物理灭菌方法难以取得的最佳效果,从而提高品质,保持功能成分不受破坏。

36、紫外线杀菌是用紫外线照射物质,使物体表面的微生物细胞内核蛋白分子构造发生变化而引起死亡。

37、电阻杀菌技术是利用电流通过食品时,食品中的极性分子在电极极性的高频变化下,不断地旋转摩擦而产生热量,达到杀死活菌体的作用。

相关文档
最新文档