金刚石刀具知识点分析
论述金刚石刀具超精密切削的机理丶条件和应用范围
金刚石刀具超精密切削的机理丶条件和应用范围
金刚石刀具是超精密切削中常用的刀具材料,其切削机理、条件和应用范围如下:
1.切削机理:
⏹金刚石刀具的切削刃非常锋利,在切削过程中能够实现“切入式切削”,
使切削力大大减小。
⏹金刚石的硬度极高,切削时不易被工件材料磨损,能够保持良好的切削刃
形状。
⏹金刚石的传热性能极佳,能够快速地将切削热量传递出去,从而降低切削
温度,减少热损伤。
1.切削条件:
⏹刀具刃口半径:为了实现超精密切削,需要将刀具的刃口半径减小到亚微
米级,以提高切削的精度和表面粗糙度。
⏹切削用量:为了减小切削力和热量,需要选择较小的切削深度和进给速度,
以提高切削效率。
⏹工件材料:金刚石刀具适用于加工各种硬材料,如淬火钢、硬质合金等。
但是,对于一些韧性较大的材料,需要进行预处理或选择其他刀具材料。
1.应用范围:
⏹金刚石刀具广泛应用于超精密切削领域,如光学零件、轴承、硬盘磁头、IC
芯片等高精度、高表面质量的零件加工。
⏹在加工过程中,金刚石刀具还可以用于制作各种微细结构,如微孔、微槽
等。
综上所述,金刚石刀具的超精密切削需要满足一定的条件,并具有广泛的应用范围。
金刚石刀具在数控机床中的应用
金刚石刀具在数控机床中的应用随着科技的不断进步和发展,数控机床在工业领域中扮演着重要的角色。
数控机床的出现大大提高了生产效率和加工质量,而金刚石刀具作为一种高性能的切削工具,在数控机床中的应用也越来越广泛。
本文将探讨金刚石刀具在数控机床中的应用,并分析其优势和挑战。
一. 金刚石刀具的基本特性金刚石刀具由金刚石颗粒和金属粉末经压制、烧结等工艺制成,具有极高的硬度、耐磨性和热稳定性。
这些特性使得金刚石刀具在切削加工中具备以下优势:1. 高硬度:金刚石刀具的硬度仅次于金刚石,可用于切削超硬材料如陶瓷和高硬度合金等。
2. 耐磨性:金刚石刀具具有出色的耐磨性,可在切削过程中保持较长的使用寿命。
3. 热稳定性:金刚石刀具具有良好的热稳定性,可承受高温切削环境下的工作,不易变形。
二. 金刚石刀具在数控机床中的应用领域1. 切削加工金刚石刀具广泛应用于数控机床的切削加工领域,包括车削、铣削、钻削、磨削等。
由于金刚石刀具的高硬度和耐磨性,可用于加工硬度较高的材料,如钛合金、高速钢等。
同时,金刚石刀具还能够提供更高的加工精度和表面质量。
2. 精密加工在数控机床的精密加工中,金刚石刀具的应用更能体现出其独特的优势。
例如,在汽车零部件的精密加工过程中,采用金刚石刀具可以实现更高的加工精度和更好的表面质量。
3. 工具磨损监测由于金刚石刀具的耐磨性较高,因此可以通过监测金刚石刀具的磨损情况,准确地评估刀具的使用寿命。
这对机床的保养和刀具的及时更换具有重要意义,可降低生产成本,并提高生产效率。
三. 金刚石刀具在数控机床中的挑战虽然金刚石刀具在数控机床中有广泛的应用前景,但面临着一些挑战和限制:1. 成本高昂:金刚石刀具的制造成本较高,所以其售价也相对较高,这给广泛应用带来了一定的限制。
2. 技术要求高:金刚石刀具的加工工艺复杂,需要高精度和高温高压的条件,所以其生产过程要求较高的技术水平。
3. 刀具表面质量难以保证:由于金刚石刀具的硬度很高,常规的抛光或修整技术难以完成对其表面的加工,从而可能会影响到加工表面质量。
金刚石刀具的优点和缺点
CVD金刚石厚膜(TDF)焊接刀具:金刚石厚膜焊接刀具是把激光切割好CVD金 刚石厚膜一次焊接至基体(通常为K类硬质合金)上,形成复合片,然后抛光复 合片,二次焊接至刀体上,刃磨成需要的形状和刃口。如图3(a)所示,为CVD 金刚石厚膜(金刚石膜厚度达30μm),具有硬度高、耐磨损、摩擦系数小等特 点,是制造切削有色金属和非金属材料刀具的理想材料。 金刚石涂层刀具:金刚石涂层刀具是用CVD法直接在硬质合金(K类硬质合金) 或陶瓷等基体上沉积一层1~25μm金刚石薄膜,无解理面各向同性。薄膜涂 层刀具硬度达9800~10000HV。热导率高,室温下导热系数高达2000W/m·K, 而硬质合金刀具导热系数仅为80~100W/m·K。CVD方法金刚石可以涂层到 任何复杂形状的刀具上,这是聚晶金刚石无法拥晶金刚石(PCD)刀具
金刚石刀具
人造聚晶金刚石复合片(PDC)刀具
CVD金刚石厚膜(TDF)焊接刀具 金刚石涂层刀具
天然金刚石(ND)刀具:天然金刚石是目前已知矿物中最硬的物质,主要用 于制备刀具车刀。天然金刚石刀具精细研磨后刃口半径可达0.01~ 0.002μm。其中天然单晶金刚石(Single Crystalline Diamond,SCD)刀具切削 刃部位经高倍放大1500倍仍然观察到刀刃光滑。SCD车削铝制活塞时Ra可 达到4μm,而在同样切削条件下用PCD刀具加工时的表面粗糙时的Ra 为 15~50μm 。采用SCD刀具配合精密车床迚行精密和超精密加工,可获得 镜面表面。 聚晶金刚石(PCD)刀具:PCD是高温超高压条件下通过钴等金属结合剂将金 刚石微粉聚集烧结合成的多晶体材料,又称烧结金刚石。聚晶金刚石刀具 整体烧结成铣刀,用于铣削加工,PCD晶粒呈无序排列状态,属各向同性, 硬度均匀,石墨化温度为550℃。刀具具有高硬度、高导热性、低热胀系数、 高弹性模量和低摩擦系数。刀刃非常锋利等特点。 人造聚晶金刚石复合片(PDC)刀具:为提高PCD刀片的韧性和可焊性,常将 PCD与硬质合金刀体做成人造聚晶金刚石复合刀片(PDC)。即在硬质合金基 底其表面压制一层0.5~1mm厚的PCD烧结而成。复合刀片的抗弯强度与硬 质合金基本一致,硬度接近PCD,故可以替代PCD使用。
金刚石刀具
金刚石刀具金刚石刀具具有极高的硬度和耐磨性、低摩擦系数、高弹性模量、高热导、低热膨胀系数,以及与非铁金属亲和力小等优点。
可以用于非金属硬脆材料如石墨、高耐磨材料、复合材料、高硅铝合金及其它韧性有色金属材料的精密加工。
金刚石刀具类型繁多,性能差异显著,不同类型金刚石刀具的结构、制备方法和应用领域有较大区别。
天然金刚石刀具目前主要用于紫铜及铜合金和金、银、铑等贵重有色金属,以及特殊零件的超精密镜面加工,如录相机磁盘、光学平面镜、多面镜和二次曲面镜等。
但其结晶各向异性,刀具价格昂贵。
PCD的性能取决于金刚石晶粒及钴的含量,刀具寿命为硬质合金(WC基体)刀具的10~500倍。
主要用于车削加工各种有色金属如铝、铜、镁及其合金、硬质合金和耐磨性极强的纤维增塑材料、金属基复合材料、木材等非金属材料。
切削加工时切削速度、进给速度和切削深度加工条件取决于工件材料以及硬度。
人造聚晶金刚石复合片(PDC)性能和应用接近PCD刀具,主要用在有色金属、硬质合金、陶瓷、非金属材料(塑料、硬质橡胶、碳棒、木材、水泥制品等)、复合材料等切削加工,逐渐替代硬质合金刀具。
由于金刚石颗粒问有部分残余粘结金属和石墨,其中粘结金属以聚结态或呈叶脉状分布会减低刀具耐磨性和寿命。
此外存在溶媒金属残留量,溶媒金属与金刚石表面直接接触。
降低(PDC)的抗氧化能力和刀具耐热温度,故刀具切削性能不够稳定。
金刚石厚膜刀具制备过程复杂,因金刚石与低熔点金属及其合金之间具有很高的界面能。
金刚石很难被一般的低熔点焊料合金所浸润。
可焊性极差,难以制作复杂几何形状刀具,故TDF焊接刀具不能应用在高速铣削中。
金刚石涂层刀具可以应用于高速加工,原因是除了金刚石涂层刀具具有优良的机械性能外,金刚石涂层工艺能够制备任意复杂形状铣刀,用于高速加工如铝钛合金航空材料和难加工非金属材料如石墨电极等。
显示为纯金刚石。
ND是目前已知矿物中最硬的物质,主要用于制备刀具车刀。
天然金刚石刀具精细研磨后刃口半径可达0.01~0.002µm。
金刚石刀片的分类及应用
金刚石刀片的分类及应用金刚石刀片是一种采用金刚石作为刀片切割工具上的切削物料的硬质金属产品,它具有非常高的硬度和耐磨性,因此在切割、磨削等工业领域有着广泛的应用。
金刚石刀片的分类主要根据其使用环境、切削物料和工作方式等因素。
以下是几种常见的金刚石刀片分类及其应用:1. 粉末冶金金刚石刀片粉末冶金金刚石刀片是通过将金刚石粉末与金属粉末混合,并经高温高压制得的刀片。
该类金刚石刀片具有较高的强度和耐磨性,适用于切割硬质材料如岩石、陶瓷、玻璃、木材等。
2. 镀覆金刚石刀片镀覆金刚石刀片是将金刚石晶体通过电镀或熔连接技术镀覆在刀片表面的一种刀片。
它具有较高的强度和耐磨性,适用于切割石材、建筑材料、陶瓷等。
3. 电镀金刚石刀片电镀金刚石刀片是将金刚石颗粒通过电化学沉积在刀片表面的一种刀片。
通过控制电流密度、镀液成分等因素可实现不同规格和性能的刀片制备。
它具有优秀的耐磨性和高温稳定性,适用于切割石材、陶瓷、光学玻璃等。
4. 绑焊金刚石刀片绑焊金刚石刀片是将金刚石颗粒通过焊接工艺绑定在刀片上的一种刀片。
它具有较高的强度和耐磨性,适用于切割石材、陶瓷、光学玻璃、大理石等。
5. 超硬合金金刚石刀片超硬合金金刚石刀片是将金刚石颗粒通过高温高压工艺与钨钴合金等金属粉末共烧制成型的刀片。
由于超硬合金的优异性能和金刚石颗粒的超硬性,该类刀片具有出色的切削性能和较长的使用寿命,适用于切割高硬度材料。
金刚石刀片的应用范围广泛,主要有以下几个方面:1. 建筑行业在建筑行业中,金刚石刀片常用于切割石材、混凝土、砖块等材料。
它具有快速、精确和高效的特点,可以用于建筑物的修复、改建以及道路建设等工程。
2. 木工行业金刚石刀片在木工行业中被广泛使用,可以用于切割木材、刨削木材等。
其高硬度和耐磨性使得切割更加精准、平滑,并且能够延长刀片的使用寿命。
3. 家具制造业家具制造业中,金刚石刀片可以用来切割加工各种材料,例如纤维板、中密度板、实木等。
单晶金刚石刀具刃磨特点
单晶金刚石刀具刃磨特点1引言在超精密加工中,保证加工表面质量的主要因素除了高精度的机床、超稳定的加工环境外,高质量的刀具也是很重要的一个方面。
天然金刚石具有硬度高、耐磨性好、强度高、导热性好、与有色金属摩擦系数低、抗黏结性好以及优良的抗腐蚀性和化学稳定性,可以刃磨出极其锋利的刀刃,被认为是最理想的超精密切削用刀具材料,在机械加工领域尤其是超精密加工领域有着重要地位并得到广泛应用。
2单晶金刚石的物理特性金刚石是单一碳原子的结晶体,其晶体结构属于等轴面心立方晶系(一种原子密度最高的晶系)。
由于金刚石中碳原子间的连接键为sp3杂化共价键,因此具有很强的结合力、稳定性和方向性。
它是目前自然界已知的最硬物质,其显微硬度可达10000HV,其它物理特性见下表。
表金刚石的物理性能物理性能-数值硬度-60000~100000MPa,随晶体方向和温度而定抗弯强度-210~490MPa抗压强度-1500~2500MPa弹性模量-(9~10.5)×10的12次方MPa热导率-8.4~16.7J/cm·s·℃质量热容-0.156J/(g·℃)(常温)开始氧化温度-900~1000K开始石墨化温度-1800K(在惰性气体中)和铝合金、黄铜间的摩擦系数-0.05~0.07(在常温下)二十世纪七十年代后期,在激光核融合技术的研究中,需要大量加工高精度软质金属反射镜,要求软质金属表面粗糙度和形状精度达到超精密水平。
如采用传统的研磨、抛光加工方法,不仅加工时间长、费用高、操作难度大,而且不易达到要求的精度。
因此,亟需开发新的加工方法。
在现实需求的推动下,单晶金刚石超精密切削技术得以迅速发展。
由于单晶金刚石本身的物理特性,切削时不易黏刀及产生积屑瘤,加工表面质量好,加工有色金属时,表面粗糙度可达Rz0.1~0.05μm。
金刚石还能有效地加工非铁金属材料和非金属材料,如铜、铝等有色金属及其合金、陶瓷、未烧结硬质合金、各种纤维和颗粒加强复合材料、塑料、橡胶、石墨、玻璃和各种耐磨木材(尤其是实心木和胶合板、MDF等复合材料)。
2.4金刚石刀具解析
4.正确选择金刚石晶体方向
❖ 为了充分发挥金刚石刀具的切削性能和保证 加工质量,设计和制造金刚石刀具时须正确 选择晶体方向。
❖ 金刚石晶体定向方法有: 1.人工目测定向 适于优质规整晶体,方便精度低 2.X射线晶体定向 X光衍射图像精度高价高有害健康 3.激光晶体定向 价格低1/10,操作简便足够的精度
❖ 精研 是制造金刚石刀具的关键工序,主要考虑提
高研磨质量,使切削刃更锋利。研磨盘小圆周处加细 微粉用于精研,采取逆磨,即沿刃口指向刀体内的方 向研磨,切削刃承受压应力,得到锋利完好的刃口。
不重磨精密金刚石刀具
❖ 金刚石刀具的制造研磨及用钝重磨,是一项 保密性很强,难度很大的技术。国外多数使 用厂不自己磨刀,用钝后送回制造厂重磨。
❖ 三个重要晶面的原子排列形式—最小单元
金刚石晶体的面网密度及面网距
❖ 面网的单位面积上的原子数称为面网密度
❖❖ 三(1个00晶)(面11的0)面面网网密的度分之布比是为均:匀的,(111)面网间
距一宽(一1窄00交)替:(看1成10加)厚:(面1网11,)宽=1间:1距.4即14(:11.1)5面4 间距
钎焊法固定较好,钎料配方及工艺处于研究阶段。
金刚石刀具的研磨加工
❖ 粗研 一颗单晶金刚石毛坯,要做成精密刀具,先
要晶体定向,确定前后刀面位置,确定需磨去的部分。 仔细检查内部有无缺陷。采用高速旋转铸铁盘加金刚 石微粉进行粗研磨。费时很长,要研究提高其效率, 找准好磨方向,压力9~12N,先用较粗再用细的微粉
金刚石刀具结构及金刚石固定方法
❖ 金刚石刀具结构
常把金刚石固定在小刀头上,小刀头用螺钉压板固定 在刀杆上,也有将金刚石直接固定在车刀刀杆上。
❖ 金刚石在刀头上的固定方法
全面的金刚石刀锯基础知识
全面的金刚石刀锯基础知识1金刚石金刚石俗称“金刚钻”。
也就是我们常说的钻石,它是一种由纯碳组成的矿物。
金刚石是自然界中最坚硬的物质,因此也就具有了许多重要的工业用途,如精细研磨材料、高硬切割工具、各类钻头、拉丝模。
金刚石还被作为很多精密仪器的部件。
1.1金刚石的成份早在公元1世纪的文献中就有了关于金刚石的记载,然而,在其后的1600多年中,人们始终不知道金刚石的成分是什么。
直到18世纪的70至90年代,才有法国化学家拉瓦锡(1743~1794)等人进行的在氧气中燃烧金刚石的实验,结果发现得到的是二氧化碳气体。
证明了组成金刚石的材料是碳。
1.2金刚石和石墨的区别石墨和金刚石都属于碳单质,但金刚石和石墨不是同种物质,它们是由相同元素构成的同素异型体. 所不同的是物理结构特征。
二者的化学式都是c ,石墨原子间构成正六边形是平面结构,呈片状。
金刚石原子间是立体的正四面体结构,呈金字塔形结构。
正是这种致密的结构,使得金刚石具有最大的硬度。
换句话说,金刚石是碳原子被挤压而形成的一种矿物。
1.3金刚石的硬度金刚石的硬度一般用莫氏硬度来表示,其硬度值为10 。
显微硬度10000kg/mm2,显微硬度比石英高1000倍,比刚玉高150倍。
依照莫氏硬度标准(Mohs hardness scale)共分10级,钻石(金刚石)为最高级第10级;如小刀其硬度约为5.5、铜币约为3.5至4、指甲约为2至3、玻璃硬度为6。
1.4工业金刚石金刚石由其生成方式分为天然金刚石和人工合成金刚石,用于金刚石工具制作的一般是人工合成金刚石。
也称作工业金刚石。
其密度为3.52g/cm3,其质量单位一般情况用“克拉”表示,1克拉=0.2克。
人造金刚石的粒度(颗粒大小)一般用“目”表示。
人造金刚石常见粒度为25/30、30/40、40/45、45/50、50/60、60/70… …2粉料金刚石工具的原材料,除金刚石之外,其它主要为粉末,这些粉末可以是金属、非金属,也可以是合金、化合物。
金刚石刀具这么硬,他的磨削特点真的不一般!
金刚石刀具这么硬,他的磨削特点真的不一般!一.金刚石刀具磨削的工艺特点金刚石刀具的磨削有其自身的工艺特点,比较突出的特点为是材料硬度高,导致砂轮在磨削过程中损耗过快,尺寸不稳定;其二,金刚石刀具多数为车刀或刀片,其磨削部位相对于机床的位置是不确定的(如刀片厚度的变化),引起磨削点的变化。
其三,磨削抗力大,使砂轮、刀具、卡具和机床组成的工艺系统产生比较大的弹性变形,从而产生比较大的“让刀”现象。
这三个特点是实现自动化磨削的三只“挡路虎”,直接影响刀具的模削后的尺寸精度。
如果不妥善解决,必然引起磨削尺寸精度和粗糙度一致性差,磨削效率低,不适合大批量生产。
声控技术在金刚石工具磨床上的使用,能有效地解决这个三个问题。
二.自适应控制技术在粗磨时的应用粗磨金刚石的主要任务是:提高磨削效率,也就是尽量少地设定安全距离,减少“磨削”空气的时间;在机床刚性能承受的范围内,尽快地去除磨削余量;尽早地发现磨削余量已经去除(标志是磨削抗力减少到最小)。
砂轮与金刚石刀具摩擦产生剧烈的声波在工艺装备上传播,对声波的监控能准确地反映出磨削状况,如刀具与砂轮是否接触,刀具与砂轮之间的压力(即磨削抗力)是否消除等。
如果控制系统能实时采集这些信息并进行分析,使机床控制系统与之相适应,这无异于给机床安装上了一只灵敏的耳朵,使机床控制器成为一个更为智能的自适应系统。
事实上,该系统的研发也是受现场工人磨刀的启发。
正常磨削的时候,有两种情况声波频率是有明显特征,一是刀具和砂轮接触的瞬间,二是磨削达到最终尺寸(磨削抗力下降为最小)时,这很容易理解。
前者可以作为快速进给结束,开始磨削进给的分界线;后者则可以作为磨削完成的标志。
即便是在刀具与砂轮“紧密接触”的过程中,声波频率的变化也能反映出刀具与砂轮之间的抗力,将这“信息”反馈给机床控制器,调整伺服的进给速度,使磨削在相对“恒定”的抗力下完成,对于提高磨削效率,延长机床寿命具有很大的意义。
三.“对刀磨法”在精磨上的应用金刚石精磨的主要任务是:准确而稳定地控制磨削的最终尺寸精度。
金刚石刀具标准
金刚石刀具标准金刚石刀具的标准主要包括对其物理性能、制造工艺、几何参数、使用性能等方面的详细规定。
以下是一些关于金刚石刀具标准的信息:1.物理性能标准:硬度:金刚石刀具的硬度极高,约为HV10000(维氏硬度)。
导热性:PCD(聚晶金刚石)刀具的导热系数非常高,约700W/mK,有利于散热和延长刀具使用寿命。
热膨胀系数:PCD的热膨胀系数远低于硬质合金,使得在高温加工条件下仍能保持良好的尺寸稳定性,有助于提高加工精度。
2.制造工艺标准:金刚石颗粒大小:根据用途和精度要求,金刚石刀具的金刚石颗粒度可分为粗粒度、中粒度和细粒度三个级别,分别对应不同的加工应用和切削性能。
结合剂成分与含量:金刚石刀具性能受到金刚石晶粒与结合剂(如钴)含量的影响,标准会规定合适的配方比例以保证刀具的强度和耐磨性。
3.几何参数标准:刀具的前角、后角、主偏角、副偏角、刃倾角等几何参数都有严格的公差范围,以满足不同材料和加工方式的需求。
4.使用性能标准:刀具寿命:金刚石刀具因其优异的耐磨性和耐热性,其寿命普遍远高于硬质合金刀具,具体标准可能涉及到连续切削长度或切削次数等指标。
加工精度:根据国家或行业标准,金刚石刀具在使用过程中应能达到规定的加工精度和表面粗糙度要求。
5.国内标准:国内对于金刚石刀具的质量和生产有专门的国家标准,例如提到的“燕矶标准”是中国国家金刚石刀具生产标准的一部分,由国家和地方技术监督部门联合制定,以确保产品质量和一致性。
要了解具体的金刚石刀具标准,可以查阅相关国家标准,如GB/T系列标准,以及行业标准等官方发布的详细文档。
此外,国际上也有一些ISO标准对金刚石刀具的生产和检测进行了规定。
五金知识:金刚石刀具材料解析
五金知识:金刚石刀具材料解析来源:五金资讯网关键字:金刚石刀具;材料摘要:可以制成切削刀具金刚石材料有天然单晶金刚石、人造单晶金刚石、化学气相沉积法(CVD)金刚石厚膜、人造聚晶金刚石复合片等。
可以制成切削刀具金刚石材料有天然单晶金刚石、人造单晶金刚石、化学气相沉积法(CVD)金刚石厚膜、人造聚晶金刚石复合片等。
1、天然单晶金刚石天然单晶金刚石一种各向异性单晶体。
硬度达HV9000-10000,自然界最硬物质。
这种材料耐磨性极好,制成刀具切削可长时间保持尺寸稳定,故而有很长刀具寿命。
天然金刚石刀具刃口可以加工到极其锋利。
可用于制作眼科神经外科手术刀;可用于加工隐形眼镜曲面;可用于切割光导玻璃纤维;用于加工黄金、白金首饰花纹;最重要用途于高速超精加工有色金属及其合金。
如铝、黄金、巴氏合金、铍铜、紫铜等。
用天然金刚石制作超精加工刀具其刀尖圆弧部分400倍显微镜下观察无缺陷,用于加工铝合金多面体反射镜、无氧铜激光反射镜、陀螺仪、录像机磁鼓等。
表现粗糙度可达到Ra(0.01-0.025)μm。
天然金刚石材料韧性很差,抗弯强度很低,仅为(0.2-0.5)Gpa。
热稳定性差,温度达到700℃-800℃时就会失去硬度。
温度再高就会碳化。
另外,它与铁亲力很强,一般不适于加工钢铁。
2、人造单晶金刚石人造单晶金刚石作为刀具材料,市场上能买到目前有戴比尔斯(DE-BEERS)生产工业级单晶金刚石材料。
这种材料硬度略逊于天然金刚石。
其它性能都与天然金刚石不相上下。
由于经过人工制造,其解理方向尺寸变得可控统一。
随着高温高压技术发展,人造单晶金刚石最大尺寸已经可以做到8mm。
由于这种材料有相对较好一致性较低价格,所以受到广泛关注。
作为替代天然金刚石新材料,人造单晶金刚石应用将会有大发展。
3、人造聚晶金刚石人造聚晶金刚石(PCD)高温高压下将金刚石微粉加溶剂聚合而成多晶体材料。
一般情况下制成以硬质合金为基体整体圆形片,称为聚晶金刚石复合片。
金刚石刀具切削加工课件
1.谢谢聆 听
03
降低成本和提高经济效益
随着金刚石刀具材料的发展和新型切削工艺的应用,金刚 石刀具在难加工材料切削加工中的应用将会降低成本和提 高经济效益。
金刚石刀具切削加工案例分析
06
案例一
要点一
总结词
高效、高精度、高可靠性
要点二
详细描述
金刚石刀具在汽车零件切削加工中表现出高效、高精度和 高可靠性的优势。通过优化切削参数和刀具设计,能够实 现高效加工,提高生产效率。同时,金刚石刀具具有高硬 度和高耐磨性,可保证加工精度和延长刀具使用寿命。此 外,金刚石刀具切削过程中产生的热量较少,可减少工件 热变形和加工误差。
素有关。
通过合理的选择刀具材料和几何 参数,可以降低切削力,提高加
工效率。
金刚石刀具的切削热
金刚石刀具的切削热主要来自于切削刃与工件之间的摩擦和冲击。
切削热会导致刀具温度升高,从而影响刀具的硬度和耐磨性,甚至引起工件变形和 产生表面缺陷。
通过使用冷却润滑剂和选择合适的刀具材料和几何参数,可以降低切削热的影响。
特点
硬度高、耐磨性好、热稳定性优 异、抗粘结性好、导热性好、化 学稳定性好。
金刚石刀具切削加工的应用范围
01
难加工材料
如硬质合金、陶瓷、玻璃等硬脆材料。
02
高精度加工
如超精密切削、微细加工等。
03
高效率加工
如粗加工、重型切削等。
金刚石刀具切削加工的历史与发展
历史
金刚石刀具的发展可以追溯到20世纪初,当时人们开始利用天然金刚石进行手 工切削。随着科技的发展,人造金刚石的出现进一步推动了金刚石刀具的发展。
智能化控制
随着人工智能技术的发展,智能化控制技术在金刚石刀具切削加工中得到了广泛应用,通 过智能化控制技术,能够对切削过程进行实时监控和调整,从而提高加工精度和效率。
金刚石刀具的独有特征
金刚石刀具的独有特征
金刚石刀具现在已经是被业内公认的、理想的和不能代替的超精密加工刀具。
那么金刚石的什么特征让“它”得到这么多“荣誉”呢?今天就给大家讲下金刚石刀具的特有特征: 1金刚石刀具具有极高的硬度和耐磨性:金刚石是自然界已经发现的最硬的物质;
2金刚石刀具具有很低的摩擦系数:摩擦系数低,加工时变形小,可减小切削力;
3金刚石刀具切削刃非常锋利:金刚石刀具的切削刃可以磨得非常锋利;
4金刚石刀具具有很高的导热性能:金刚石的导热系数及热扩散率高,切削热容易散出,刀具切削部分温度低。
刚石刀具现在已经是被业内公认的、理想的和不能代替的超精密加工刀具。
那么金刚石的什么特征让“它”得到这么多“荣誉”呢?今天就给大家讲下金刚石刀具的特有特征:
1金刚石刀具具有极高的硬度和耐磨性:金刚石是自然界已经发现的最硬的物质;
2金刚石刀具具有很低的摩擦系数:摩擦系数低,加工时变形小,可减小切削力;
3金刚石刀具切削刃非常锋利:金刚石刀具的切削刃可以磨得非常锋利;
4金刚石刀具具有很高的导热性能:金刚石的导热系数及热扩散率高,切削热容易散出,刀具切削部分温度低。
5金刚石刀具具有较低的热膨胀系数:金刚石的热膨胀系数比硬质合金小几倍,由切削热引起的刀具尺寸的变化很小。
以上几点金刚石刀具所具有的特有特征,使的“他”成为业内“宠儿”,并且在很多很行都可以看到金刚石刀具的“身影”。
5金刚石刀具具有较低的热膨胀系数:金刚石的热膨胀系数比硬质合金小几倍,由切削热引起的刀具尺寸的变化很小。
以上几点金刚石刀具所具有的特有特征,使的“他”成为业内“宠儿”,并且在很多很行都可以看到金刚石刀具的“身影”。
02-第2章 金刚石刀具超精密切削加工(2)
ρ
金刚石刃口粗糙度:目前经研磨成形的刀面粗糙度在刀具有效
切削长度上较容易达到1nm,切削刃粗糙度可达到Ry10nm。
7
第2章 超精密切削与金刚石刀具
通过扫描电镜对刀具刃口的观察和对最小切屑厚度的测 量,推断目前刃口半径最小可达到<10nm。
8
第2章 超精密切削与金刚石刀具
4) 通用金刚石刀具切削部分几何形状
26
第2章 超精密切削与金刚石刀具
2.6 金刚石刀具切削机理
2.6.1刀具切削模型
在超精密切削过程 中,要把刀尖看成具有 圆弧半径R的圆角。
刀尖附近的二维切削模型
切削时给定的切削深度为t时,由于刀尖局部变形δ1而使实际切削 深度为t1。当刀具走过之后,工件表而将有δ2的弹性变形恢复量。故 27 实际去除层将小于实际切削深度。 δ1和 δ2可通过近似计算求出。
金刚石刀具刃磨的基本过程: (a) 对金刚石晶体定向,确定制成刀具的前后刀面的空间位 置,需磨去的部分;
(b) 仔细观察切削部分的金刚石内部是否有裂纹、杂质或其 它缺陷;
(c) 采用高速旋转的铸铁盘加金刚石微粉进行粗研磨,基本 成形;
(d) 进行精研磨,以磨出锋锐、完好、无缺陷的刀刃;
(e) 严格检验刀具质量,使之切出超光滑表面。
p研磨时金刚石所承受的力n22施加在金刚石上的载荷磨削速度与磨削量的关系磨削量与载荷的关系金刚石微粉粒度w10w1232525影响金刚石超精密加工质量和效率的因素影响金刚石超精密加工质量和效率的因素251影响超精密加工质量和效率的因素24加工部位形状精度粗糙度反射率加工变形残余应力加工变质层刀具特性刀尖形状刃磨方法损伤磨损加工条件工艺参数切削温度切屑处理冷却液种类供给方式温度加工后处理清洗被覆预加工加工方式加工精度热处理金刚石刀具超精密切削加工材料组织成分制造方法强度可加工性夹具安装夹持方式变形精度分度方式精度加工机床主轴精度导轨形式定位精度微进给机床刚度防尘温度控制切削过程切削力切削温度切屑生成252机床性能对加工质量和效率的影响1机床的刚度主轴导轨等2机床的动态特性3机床的热变形4机床的抗振和隔振措施空气隔振垫隔振系统原理图26253加工环境对加工质量和效率的影响稳定的加工环境条件主要是指温度湿度净化和防振四个方面的条件
超硬刀具金刚石刀具介绍
超硬刀具金刚石刀具介绍PCD聚晶金刚石刀具;CVD金刚石膜刀具(物理涂层)PVD物理涂层金刚石刀具PCBN聚晶立方氮化硼刀具;一、概述超硬刀具材料是指比陶瓷材料更硬的刀具材料。
包括:单晶金刚石、聚晶金刚石(PCD)、聚晶立方氮化硼(PCBN)和CVD金刚石等。
超硬刀具主要是以金刚石和立方氮化硼为材料制作的刀具,其中以人造金刚石复合片(PCD)刀具及立方氮化硼复合片(PCBN)刀具占主导地位。
许多切削加工概念,如绿色加工、以车代磨、以铣代磨、硬态加工、高速切削、干式切削等都因超硬刀具的应用而起,故超硬刀具已成为切削加工中不可缺少的重要手段。
随着科技的进步,制造业的高速发展,CNC 加工技术的迅猛发展以及数控机床的普遍使用,超硬刀具的生产及应用也越来越广泛。
PCD和PCBN刀具已广泛应用于机械加工的各个行业,如汽车零部件的切削加工,强化木地板的加工等,极大地促进了切削加工及先进制造技术的飞速发展。
二、切削材料及超硬材料发展史3、金刚石、超硬材料的特性与作用众所周知,金刚石材料的成分是碳,金刚石与铁系有亲和力,切削过程中,金刚石的导热性优越,散热快,但是要注意切削热不宜高于700度,否则会发生石墨化现象,工具会很快磨损。
因为金刚石在高温下和W、Ta、Ti、Zr、Fe、Ni、Co、Mn、Cr、Pt等会发生反应,与黑色金属(铁碳合金)在加工中会发生化学磨损,所以,金刚石不能用于加工黑色金属只能用在有色金属和非金属材料上,而CBN即使在1000oC的高温下,切削黑色金属也完全能胜任。
已成为未来难加工材料的主要切削工具材料。
一般超硬材料指的是人造金刚石、人造CBN。
这两种材料的同时存在,起到了互补的作用、可以覆盖当前与今后发展的各种新型材料的加工,对整个切削加工领域极为有利。
1.PCD金刚石烧结体(PCD)的出现,在许多方面代替了天然单晶金刚石。
PCD与天然金刚石比较,价格便宜,且刃磨远比天然金刚石方便,所以其应用、推广特别迅速。
金刚石刀具知识点分析
刀具基础知识一、刀具材料应具备的性能;A,高的硬度和高耐磨性1.硬度是刀具材料应具备的基本特性2.耐磨性是指材料抵抗磨损的能力。
B,足够的强度和韧性1•强度是刀具材料抵抗破坏的能力2.韧性是指材料发生断裂时外界做功的大小。
3.高的耐热性和热传性4.良好的工艺性和经济性1)切削性能目前刀具材料分四大类:工具钢、硬质合金、陶瓷及超硬刀具材料等。
各种刀具功料的主夏物理力学性能常用的刀具材料一、工具钢1.碳素工具钢碳素工具钢是含碳量为0.65%〜1.3%的优质碳素钢。
常用的钢号有T7A、T8A等。
耐热温度:200・C〜300°C。
2.合金工具钢1868年,英国的穆舍特制成含铸的合金工具钢。
在碳素工具钢中加入适当的元素洛(Cr)、硅常用的合金工具钢有9CrSi, CrWMn等(Si)、猛(Mn)、锐(V)、鸨(W)等炼成的。
耐热温度:325C〜400°C。
主要用于制造细长的或截而积大、刃形复杂的刀具。
二,高速钢高速钢是一种富含鸽(W)、洛(Cr)、铝(Mo)、帆(V)等元素的髙合金工具钢。
美国的F.W.泰勒和M.怀特于1898年创制的。
含碳量一般在0.70〜1.65%之间。
耐热温度:50(TC~650°C。
髙速钢的抗弯强度是硬质合金的3〜5倍,冲击韧性是硬质合金的6-10倍帮用高速钢的种类.料号及主夏性能1.普通高速钢(HSS)2.鸽系髙速钢:W18Cr4V (W18)3.具有较好的综合性能,可制造复杂刃型的刀具。
但由于鸽是稀有金属,现在很少使用。
4.鸽钳系高速钢:W6Mo5Cr4V2 (M2)5.M2的碳化物颗粒小,分布均匀,具有较高的抗弯强度、塑性、韧性和耐磨性。
又因为铝的存在,使其热塑性非常好。
2.高性能高速钢(HSS-E)高性能高速钢是在普通髙速钢中增加一些碳、锐及添加钻(Co)、铝等元素的新钢种。
钻髙速钢:W2Mo9Cr4VCo8 (M42)一种含钻的超硬高速钢,常温硬度67HRC-69HRC,具有良好的综合性能。
钻石(金刚石)刀片知多少
钻石(金刚石)刀片知多少刃具基体及镀层材料刃具基体为 0101~ 0115 mm 厚的不锈钢带, 刃口处由金属镍包裹着金刚石微粒, 镀层的硬度随切割材料的不同而变化, 一般硬度为 HV519 左右。
100 mm 以上刀片大多采用天然金刚砂, 因其硬度高, 耐腐蚀, 磨擦系数小, 抗粘接性好, 但韧性差, 易粉碎。
金属镍将金刚石微粒包裹较紧, 牢固度好, 切割效果好。
但切割时热量大, 散热困难, 因此对切割时冷却要求高。
刃口采用水滴状, 对基体的撞击力变小, 不易发生损失, 镀层中的金刚石微粒不易在切割撞击下粉碎, 保证了刀片应有的使用寿命, 也就不会出现镀层良好而基体损坏现象。
切割材料刀片切割材料一般都有硬度较高, 较脆的性质, 切割这种材料时切割力大, 产生的热量多, 这对刃口几何形状、冷却方式都有非常高的要求。
水滴状刃口比矩形刃口具有的优点: ¹ 对切割材料撞击小, 容易保证切割精度; º 对切割槽宽尺寸易于保证; » 能切硬度高、脆性好的贵重材料。
切割温度切割温度和热量直接影响刃口磨损和耐用度, 从而限制切割速度的提高, 影响被切材料的加工精度和表面质量, 同时切割温度过高也不利于安全生产。
切割脆性材料, 接触区短, 温度主要集中在刃口附近, 所以改善散热条件是有效降低切割温度的必须手段。
影响切割温度的因素主要有材料的力学物理性能, 切削用量, 刃口几何形状和冷却条件。
选择合理的几何形状对降低切削温度有着很重要的作用。
切割高硬度、脆性材料时采用水冷却液易于流入切割材料与刃口交界处, 提高刀片耐用度, 解决了使用矩形刃口易烧焦, 发糊现象。
而且, 提高冲刷能力, 迅速将细碎切屑及砂粒粉末及时冲走, 提高了清洗能力。
切割中的冷却冷却液对降低切割温度, 提高表面粗糙度十分有效, 采用冷却液, 可以从两个方面降低切削温度: ¹ 减少切屑、切割材料与刃口之间的磨擦, 减少切割热的产生; º 将产生的切削热从切割区迅速带走。
单晶金刚石刀具
热导率 /W·m-1·K-1
1000~2200
热膨胀系数 αl/10-6·K-1 热稳定性/℃
2.5~5.0 700~800
抗拉强度(MPa)
1050-3000
单晶金刚石刀具的种类
按刀具结构来分:主要用于车刀、铣刀、轮廓刀、倒角刀,切槽刀。
(车刀、刀片所配备的机床为单点金刚石车床或其他精密车床;铣刀、倒角刀类常搭载CNC雕铣机或加工中心。)
单晶金刚石刀具的种类
单晶金刚石刀具是目前超精密加工领域的主要切削刀具,其切削刀具一般质量大于0.1g, 最小径长不小于2mm,可实现镜面加工,可以加工出极高的工件精度和极低的表面粗糙度, 切削出来的效果非常光亮,是公认的、理想的超精密加工刀具。
单晶金刚石有天然和人造两种,天然单晶金刚石数量少,价格昂贵,主要用于某些有色金 属的超精密切削加工或黄金首饰的生产中。
单晶金刚石刀具 知识介绍
郑州华菱超硬材料有限公司 2018年9月
目录
一、单晶金刚石刀具的种类 二、单晶金刚石刀具的性能 三、单晶金刚石刀具的应用
1、单晶金刚石刀具在光学模仁方面的应用 2、单晶金刚石刀具在大型辊筒光电模具方面的应用
四、单晶金刚石刀具和CVD金刚石刀具,PCD刀具的区别 五、单晶金刚石刀具应用案例
人造单晶金刚石目前最大尺寸可达8mm。
单晶金刚石刀具的种类
人造(CVD合成)单晶金刚石:
属于IIa型金刚石型单结晶合成金刚石之一,氮[N]<1 ppm,[B] < 0.05 ppm ,CVD合成单晶金刚 石的制程环境是在氢碳之混合气的腔体中,利用化学气相沉积法(CVD)来合成出来。
这是一种超高技术所合成出来的高质量单晶金刚石,可做到完全无色透明,几乎没有任何杂质, 拥有更高的耐磨耗和更好热传导系数,更能够使被加工物拥有更高质量的加工表面,同时如果在生 长过程中有选择性的通入掺杂气体,便可以制备出多种有色金刚石。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
刀具基础知识一、刀具材料应具备的性能;A,高的硬度和高耐磨性1.硬度是刀具材料应具备的基本特性2.耐磨性是指材料抵抗磨损的能力。
B,足够的强度和韧性1.强度是刀具材料抵抗破坏的能力2,韧性是指材料发生断裂时外界做功的大小。
3.高的耐热性和热传性4.良好的工艺性和经济性1)切削性能目前刀具材料分四大类:工具钢、硬质合金、陶瓷及超硬刀具材料等。
常用的刀具材料一、工具钢1. 碳素工具钢碳素工具钢是含碳量为0.65%~1.3%的优质碳素钢。
常用的钢号有T7A、T8A等。
耐热温度:200℃~300℃。
2. 合金工具钢1868年,英国的穆舍特制成含钨的合金工具钢。
在碳素工具钢中加入适当的元素铬(Cr)、硅常用的合金工具钢有9CrSi,CrWMn等(Si)、锰(Mn)、钒(V)、钨(W)等炼成的。
耐热温度:325℃~400℃。
主要用于制造细长的或截面积大、刃形复杂的刀具。
二,高速钢高速钢是一种富含钨(W)、铬(Cr)、钼(Mo)、钒(V)等元素的高合金工具钢。
美国的F.W.泰勒和M.怀特于1898年创制的。
含碳量一般在0.70~1.65%之间。
耐热温度:500℃~650℃。
高速钢的抗弯强度是硬质合金的3~5倍,冲击韧性是硬质合金的6~10倍1.普通高速钢(HSS)2.钨系高速钢:W18Cr4V (W18)3.具有较好的综合性能,可制造复杂刃型的刀具。
但由于钨是稀有金属,现在很少使用。
4.钨钼系高速钢:W6Mo5Cr4V2 (M2)5.M2的碳化物颗粒小,分布均匀,具有较高的抗弯强度、塑性、韧性和耐磨性。
又因为钼的存在,使其热塑性非常好。
2. 高性能高速钢(HSS-E)高性能高速钢是在普通高速钢中增加一些碳、钒及添加钴(Co)、铝等元素的新钢种。
钴高速钢:W2Mo9Cr4VCo8 (M42)一种含钴的超硬高速钢,常温硬度67HRC-69HRC,具有良好的综合性能。
铝高速钢:W6Mo5Cr4V2Al在M2的基础上加Al、增C,提高了钢的耐热性和耐磨性。
在600℃时的硬度能达到54HRC,其切削性能较好,应用广泛。
3. 粉末冶金高速钢(HSS-PM)粉末冶金高速钢是把炼好的高速钢液,在保护性气罐中,在高压氩气或纯氮气等惰性气体中雾化成细小粉末,并在高速冷却下获得细小而均匀的结晶组织,然后将粉末在高温高压下压制成致密的钢坯,最后用一般锻造或轧制方法成形。
其碳化物颗粒小、分布均匀,有良好的各向同性的力学性能,热处理变形小,耐磨性和可磨性好。
用于制造各种复杂形状的高性能刀具、精密刀具;该种钢的冶炼成本高,国内应用较少。
三,硬质合金硬质合金是以碳化钨(WC),碳化钛(TiC)粉末为主要成分,并以钴、钼、镍(Ni)为粘结剂在真空炉或氢气还原炉中烧结而成的粉末冶金制品。
1923年,德国的施勒特尔往碳化钨粉末中加入10%~20%的钴做粘结剂,发明了碳化钨和钴的新合金,硬度仅次于金刚石。
这是世界上人工制成的第一种硬质合金。
1.硬质合金的主要性能(1)硬度高;常温硬度达89~94HRA 一般情况下,硬度越高者可允许的切削速度越高,而韧性越高者可承受的切削力越大。
(2)耐热性好;(3)抗弯强度和冲击韧性比高速钢低;(4)可加工性差。
耐热温度:800℃~1000℃。
2.普通硬质合金K类硬质合金(钨钴类,标准YG类)这类硬质合金的成分为90%~97%的碳化钨加上3%~10%的钴。
YG3X----碳化钨(WC)97%、钴(Co)3%YG8C----碳化钨(WC)92%、钴(Co)8%主要用于加工铸铁、非铁材料和非金属材料。
P类硬质合金(钨钛钴类,标准YT类这类硬质合金的成分为5%~40%的碳化钛,其余均为碳化钨和钴。
YT5----碳化钛(TiC)5%、碳化钨(WC)85%、钴(Co)10%YT30----碳化钛(TiC)30%、碳化钨(WC)66%、钴(Co)4%主要用于加工以钢为代表的塑性材料,不宜加工不锈钢和钛合金M类硬质合金(钨钛钽(铌)类,标准YW类)硬质合金的成分:5%~10%碳化钛(TiC)加上碳化钽TaC (NbC),其余均为碳化钨(WC)和钴(Co)。
国内常用的牌号为YW1、YW2等。
既可以加工铸铁、非铁材料,也可以加工钢材,称为通用硬质合金。
碳化钽(TaC)或碳化铌(NbC)的作用:提高合金的高温硬度与高温强度;与钢的粘结温度较高,减缓了合金成分向钢中扩散,延长刀具寿命;在合金中的质量分数达到12%~15%时,可提高抵抗周期性温度变化的能力,防止产生裂纹;改善合金的焊接、刃磨工艺性,提高合金的使用性能。
四、涂层刀具在韧性较好的硬质合金基体上,或在高速钢刀具基体上,涂一薄层或多层硬度和耐磨性很高的难熔金属化合物(TiC、TiN、TiCN、Al2O3)而制成的刀具。
1969年瑞典研制成功了碳化钛涂层刀具,其基体是钨钛钴硬质合金或钨钴硬质合金,表面碳化钛涂层的厚度仅有几微米,与同牌号的合金刀具相比,其使用寿命延长了3倍,切削速度提高了25%~50%。
涂层高速钢刀具采用PVD方法在高速钢刀具基体上涂复TiN、碳氮化钛TiCN、氮铝化钛(TiAlN)等硬膜,可制成涂层高速钢刀具。
沉积温度为500℃左右。
涂层硬质合金刀具通过化学气相沉积法(CVD) 、等离子体化学气相沉积法(PCVD),在硬质合金刀片上涂复耐磨的碳化钛(TiC)或TiN、Al2O3等薄层,形成表面涂层硬质合金,沉积温度为1000℃左右。
涂层硬质合金刀具的优点:(1)表层的涂层材料具有极高的硬度和耐磨性,允许采用较高的切削速度。
(2)切削时,涂层材料与被加工材料之间能产生氧化钛薄膜,降低摩擦系数,使切削力降低。
(3)涂层材料与钢的粘结温度高,表面晶粒较细,切削时很少产生积屑瘤,适合于精加工。
(4)涂层硬质合金是一种复合材料,基体是强度、韧性较好的合金,表层是高硬度、高耐磨、耐高温、低摩擦的材料,其综合性能好。
(5)可靠性受基体成分影响很大。
一、陶瓷刀具材料以氧化铝或氧化硅为基体,再添加少量金属,在高温高压下烧结而成的一种刀具材料。
用于在高速下精细加工硬材料。
(1)具有很高的硬度、耐磨性、耐热性和化学稳定性;(2)摩擦因数小,切削不易粘结,不易产生积屑瘤。
(3)强度、韧性低,脆性大,强度只有硬质合金的1/2;(4)导热能力差,只有硬质合金的1/2~1/5;(5)线膨胀系数大,在力、热冲击下易破裂。
不易有较大的温度波动,一般不用切削液。
二、立方氮化硼——超硬刀具材料立方氮化硼(CBN)是由软的六方氮化硼(白石墨)在高温高压下加入催化剂转变而成的。
主要对淬硬钢、冷硬铸铁进行粗加工与半精加工。
还能高速切削高温合金、热喷涂材料等难加工材料。
硬度高和耐磨性好,达到3500~4500HV,仅次于金刚石;热稳定性较高,1300℃时不发生氧化;导热性较好,与铁的摩擦系数较小;抗弯强度与断裂韧性介于陶瓷与硬质合金之间。
三、金刚石——超硬刀具材料四、金刚石(ND)刀具的优点是:五、有较高的硬度和耐磨性;能长期保持锋利的切削刃;六、有很好的导热性,较低的热膨胀系数;七、摩擦系数小,刃面粗糙度小,刃口非常锋利。
八、缺点:九、较脆易崩刃,刃磨困难,制造工艺差;十、热稳定性差,切削温度在700℃~800℃时,表面就会碳化,而且与碳亲和力强,故不易加工含碳的黑色金属,用于非铁材料、非金属材料以及复合材料的加工;十一、金刚石来源有限,价格昂贵。
断裂刀具材料的耐磨性与断裂一、超硬刀具材料超硬刀具是指用天然单晶金刚石及性能与之相近的人造金刚石和立方氮化硼作为切削部分的刀具。
超硬刀具出现于20世纪50年代,主要包括金刚石刀具和立方氮化硼刀具。
二、超硬刀具的类型人造聚晶金刚石(PCD)或聚晶立方氮化硼(PCBN) 刀具;人造聚晶金刚石(PCD)或聚晶立方氮化硼(PCBN) 复合片刀具;超硬材料涂层刀具;电镀金刚石或电镀立方氮化硼。
1. PCD或PCBN刀具PCD又称为金刚石烧结体,是在高温高压作用下,通过钴等结合剂将人造金刚石的单晶粉聚晶成的多晶体材料。
PCBN是CBN单晶粉的烧结体可任意取向刃磨,抗磨损能力强;原料来源丰富,其价格远低于ND刀具;可采用较高的切削速度和较大的背吃刀量;晶粒尺寸大,切削刃较粗糙,刃口质量差。
2. PCD或PCBN复合片刀具以硬质合金为基底,在其表面烧结或压制一层0.5~1mm厚的PCD或PCBN而组成的金刚石复合片或立方氮化硼复合片。
这种复合片的抗弯强度与硬质合金基本一致,而工作表面的硬度接近PCD或PCBN,且可焊性好,重磨容易,成本低,故应用广泛。
v超硬刀具材料的脆性大、强度低。
四、超硬刀具的合理使用1.正确选用刀片的种类和牌号2.PCD或PCBN刀片的使用性能与其晶粒尺寸的大小有关。
晶粒尺寸越大,耐磨性越好,刀具的寿命越高,但切削刃较粗糙,刃口质量差。
3.粗晶粒晶粒的平均尺寸为20~50m;4.中晶粒晶粒的平均尺寸为10~20m;5.细晶粒晶粒的平均尺寸为2~10m。
6.2. 选取合适的切削用量3.防止水解作用2.立方氮化硼刀具能承受1250~1350℃的切削温度,但在1000℃左右高温下,CBN会同水蒸气及空气中的氧起反应,生产氨和硼酸,这种化学反应称为水解作用。
3.会加速刀具的磨损。
在湿式切削时,忌用水溶液作切削液,须用带极压添加剂的水溶液或极压切削油,以减弱水解作用。
4.刀具材料应具备的性能:足够的硬度和耐磨性、足够的强度与韧性、较高的耐热性、较好的工艺性、较好的传热性、经济性。
5.工具钢包括碳素工具钢和合金工具钢。
碳素工具钢主要用于制造手用刀具、低速及小进给量的机用刀具。
合金工具钢比碳素工具钢有较高的淬透性、韧性、耐磨性和耐热性。
主要用于制造细长刀具或截面积大、刃形复杂的刀具。
6.高速钢按切削性能分为普通高速钢、高性能高速钢和粉末冶金高速钢。
与工具钢相比,高速钢有较高的硬度、耐磨性以及强度和韧性。
与硬质合金相比,高速钢的最大优点是可加工性好并具有良好的综合力学性能。
高速钢仍是主要用于制造形状复杂的刀具。
高性能高速钢和粉末冶金高速钢适于制造切削难加工材料的各种精密刀具和形状复杂刀具。
7.硬质合金刀具材料有YG类、YT类、YW类三种。
具有高硬度、高耐磨性、高耐热性、抗弯强度低、可加工工艺性差等特点。
YG类硬质合金主要用于加工形成短切屑的铸铁、有色金属及非金属等脆性材料以及淬硬钢、高强度钢、奥氏体不锈钢等难加工材料。
YT类硬度合金主要用于加工形成长屑的钢材等塑性材料。
YW类主要是加工钢料和难加工材料的半精加工和精加工陶瓷材料具有很高的硬度和耐磨性及耐热性,抗扩散和抗粘结能力强。
最大缺点是强度低、韧性差。
适用于钢、铸铁及塑性大的材料的半精加工和精加工,尤其对于冷硬铸铁、淬硬钢等高硬度材料零件加工特别有效;但不适于机械冲击和热冲击大的加工场合。