圆周运动平抛运动计算题综合复习题
高三曲线运动综合汇编(平抛运动与圆周运动训练题)
绝密★启用前平抛运动与圆周运动训练题第I卷(选择题)一、选择题(题型注释)1.船在静水中的速度为3.0 m/s,它要渡过宽度为30 m的河,河水的流速为2.0 m/s,则下列说法中正确的是A.船不能渡过河B.船渡河的速度一定为5.0 m/sC.船不能垂直到达对岸D.船到达对岸所需的最短时间为10 s2.2013年7月7日,温网女双决赛开打,“海峡组合”彭帅、谢淑薇击败澳大利亚组合夺得职业生涯首个大满贯冠军。
如图所示是比赛场地,已知底线到网的距离为L,彭帅在网前截击,若她在球网正上方距地面H处,将球以水平速度沿垂直球网的方向击出,球刚好落在底线上。
将球的运动视作平抛运动,重力加速度为g,则下列说法不正确...的是( )A.根据题目条件能求出球的水平速度vB.根据题目条件能求出球从击出至落地所用时间tC.球从击球点至落地点的位移等于LD.球从击球点至落地点的位移与球的质量无关3.关于平抛物体的运动,下列说法中正确的是A.平抛运动不是匀变速运动B.平抛运动的水平位移只与水平速度有关C.平抛运动的飞行时间只取决于初始位置的高度D.平抛运动的速度和加速度方向不断变化4.人在距地面高h、离靶面距离L处,将质量m的飞镖以速度v0水平投出,落在靶心正下方,如图6所示。
不考虑空气阻力,只改变m、h、L、v0四个量中的一个,可使飞镖投中靶心的是A.适当减小v0B.适当减小LC.适当减小m D.适当增大m5.(双选)关于匀速圆周运动的向心加速度,下列说法正确..的是()A.向心加速度是描述线速度变化的物理量B.向心加速度只改变线速度的方向,不改变线速度的大小C.向心加速度恒定D.向心加速度的方向时刻发生变化6.如图所示,用一根轻细线将一个有孔的小球悬挂起来,使其在水平面内做匀速圆周运动而成为圆锥摆,关于摆球A的受力情况,下列说法中正确的是A.摆球A受重力、拉力和向心力的作用B.摆球A受拉力和向心力的作用C.摆球A受拉力和重力的作用D.摆球A受重力和向心力的作用7.如图所示,在匀速转动的圆筒内壁上有一个小物体圆筒一起运动,小物体所需要的向心力由以下哪个力来提供A. 重力B. 弹力C.静摩擦力D. 滑动摩擦力8.(双选)质量相同的小球A和B分别悬挂在长为L和2L的不伸长绳上。
高考物理一轮复习专题应用力学两大观点分析平抛运动与圆周运动组合问题练含解析
专题22 应用力学两大观点分析平抛运动与圆周运动组合问题(练)1.一个质量为m 的小铁块沿半径为R 的固定半圆轨道上边缘由静止滑下,到半圆底部时,小铁块所受向心力为铁块重力的1.5倍,则此过程中铁块损失的机械能为: ( )A .18mgRB .14mgR C .12mgR D .34mgR 【答案】B 【名师点睛】当滑到半球底部时,半圆轨道底部所受压力为铁块重力的1.5倍,根据牛顿第二定律可以求出铁块的速度;铁块下滑过程中,只有重力和摩擦力做功,重力做功不影响机械能的减小,损失的机械能等于克服摩擦力做的功,根据动能定理可以求出铁块克服摩擦力做的功。
2.如图所示,在水平桌面上的A 点有一个质量为m 的物体,以初速度v 0被抛出,不计空气阻力,当它到达B 点时,其动能为: ( )A .mgH mv +2021B .12021mgh mv +C .2mgh mgH -D .22021mgh mv +【答案】B【解析】不计空气阻力,只有重力做功,从A 到B 过程,由动能定理可得:E kB -12021mgh mv =,故E kB =12021mgh mv +,选项B 正确。
【名师点睛】以物体为研究对象,由动能定理或机械能守恒定律可以求出在B 点的动能.3.(多选)如图所示,半径为R 的光滑圆环固定在竖直平面内,AB 、CD 是圆环相互垂直的两条直径,C 、D 两点与圆心O 等高.一个质量为m 的光滑小球套在圆环上,一根轻质弹簧一端连在小球上,另一端固定在P 点,P 点在圆心O 的正下方2R 处.小球从最高点A 由静止开始沿逆时针方向下滑,已知弹簧的原长为R ,弹簧始终处于弹性限度内,重力加速度为g .下列说法正确的有: ( )A .弹簧长度等于R 时,小球的动能最大B .小球运动到B 点时的速度大小为gR 2C .小球在A 、B 两点时对圆环的压力差为4mgD .小球从A 到C 的过程中,弹簧对小球做的功等于小球机械能的增加量【答案】CD【名师点睛】此题是对功能关系的考查;解题时要认真分析小球的受力情况及运动情况;尤其要知道在最高点和最低点弹簧的伸长量等于压缩量,故在两位置的弹力相同,弹性势能也相同;同时要知道机械能的变化量等于除重力以外的其它力做功。
平抛运动-圆周运动测试题(含答案-答题卡)
v0 vvv圆周运动测试一、单项选择题1.关于匀速圆周运动,下列说法中不正确的是A.匀速圆周运动是匀速率圆周运动B.匀速圆周运动是向心力恒定的运动C.匀速圆周运动是加速度的方向始终指向圆心的运动D.匀速圆周运动是变加速运动2.若已知物体运动的初速度v0的方向与物体受到的恒定合外力F 的方向,则下列图中正确的是()3.一辆卡车装载着货物在丘陵地匀地匀速行驶,地形如下图所示,由于轮胎已旧,出现爆胎可能性最大的位置应是()A.a ;B.b ;C.C ;D.d ;4.如图所示,轻绳一端系一小球,另一端固定于O点,在O点正下方的P点钉一颗钉子,使悬线拉紧与竖直方向成一角度θ,然后由静止释放小球,当悬线碰到钉子时错误的是()A、小球的瞬时速度突然变大;B、小球的加速度突然变大;C、小球的所受的向心力突然变大;D、悬线所受的拉力突然变大;二、双项选择题。
5.关于物体的运动状态与受力关系,下列说法中正确的是( ) A.物体的运动状态发生变化,物体的受力情况一定变化B.物体在恒力作用下,一定做匀变速直线运动C.物体的运动状态保持不变,说明物体所受的合外力为零D.物体做曲线运动时,受到的合外力可以是恒力6.甲、乙两球做匀速圆周运动,向心加速度a随半径r变化的关系图如图所示,其中乙图是双曲线的一支,由图像可以知道()A.甲球运动时,线速度大小保持不变;B.甲球运动时,角速度大小保持不变;C.乙球运动时,线速度大小保持不变;D.乙球运动时,角速度大小保持不变;7.如图所示,一圆球绕通过球心O点的固定轴A FB FC FD FθO P转动,下列说法正确的是( )A .A 、B 两点的角速度相等; B .A 、B 两点的线速度相等;C .A 、B 两点转动半径相等;D .A 、B 两点转动周期相等;8.在倾角为30o 的斜面上有一重为10N 物体,被平行与斜面、大小为8N 的恒力推着沿斜面匀速运动,如图2所示.推力F 突然取消的瞬间,物体运动的加速度为(g 取102)A .8 2B .5 2 C. 方向沿斜面向上 D. 方向沿斜面向下 9.某物体做平抛运动时,它的速度方向与水平方向的夹角为θ,其正切值θ随时间t 变化的图像如图所示,则( )A 、 第1s 物体下落的高度为5mB 、第1s 物体下落的高度为10mC 、物体的初速度是5D 、物体的初速度是10三、实验10.(1)“验证力的平行四边形定则”的实验情况如图甲所示,其中A 为固定橡皮筋的图钉,O 为橡皮筋与细绳的结点,和为细绳。
高一下学期物理人教版必修第二册习题课件6.4专题训练3平抛运动与圆周运动的综合问题
等高,且距离 P 专题训练3 平抛运动与圆周运动
专题训练3 平抛运动与圆周运动
点为
L.当飞镖以初速度
v0
专题训练3 平抛运动与圆周运动
垂直盘面瞄准 P 专题训练3 平抛运动与圆周运动
专题训练3 平抛运动与圆周运动
点抛出的同时,圆盘以经过盘心
O
点的水平轴
专题训练3 平抛运动与圆周运动
专专题题训 训在练练33竖平平直抛抛运运平动动与 与面圆圆周周内运运动动匀速转动.忽略空气阻力,重力加速度为 g,若飞
专题训练3 专题训练3
平 平1抛 抛.运 运动 动抓与与圆 圆住周 周运 运两动 动 种运动衔接点的速度是解题的关键.
专题训练3 平抛运动与圆周运动
专题训练3 专题训练3
平平2抛抛.运运动动沿与 与圆圆水周周运运平动动 方向和竖直方向建立平抛运动关系式.
专题训练3 平抛运动与圆周运动
专题训练3 专题训练3
5.如图所示,在链球运动中,运动员 使链球高速旋转,在水平面内做圆周运 动.然后突然松手,由于惯性,链球向远 处飞去.链球做圆周运动的半径为 R,链 球做圆周运动时离地高度为 h.设圆心在地面的投影点为 O,链球 的落地点为 P,OP 两点的距离即为运动员的成绩.若运动员某 次掷链球的成绩为 L,空气阻力不计,重力加速度为 g,则链球 从运动员手中脱开时的速度 v 为( )
专题训练3 平抛运动与圆周运动
专题训练3 平抛运动与圆周运动
专题训练3 专题训练3
2.(多选)如 平抛运动与圆周运动
平抛运动与圆周运动
图所
示,
一位
同
学玩
飞镖
游
专题训练3 平抛运动与圆周运动
戏.圆盘最上端有一 专题训练3 平抛运动与圆周运动
平抛运动与圆周运动的组合问题(含答案)
1平抛运动与圆周运动的组合问题1、如图所示,有一个可视为质点的质量为m =1 kg 的小物块,从光滑平台上的A 点以点以v 0=3 m/s 的初速度水平抛出,到达C 点时,恰好沿C 点的切线方向进入固定在水平地点的切线方向进入固定在水平地面上的光滑圆弧轨道,最后小物块滑上紧靠轨道末端D 点的质量为M =3 kg 的长木板.已知木板上表面与圆弧轨道末端切线相平,木板下表面与水平地面之间光滑接触,小物块与长木板间的动摩擦因数μ=0.3,圆弧轨道的半径为R =0.5 m ,C 点和圆弧的圆心连线与竖直方向的夹角θ=53°,不计空气阻力,取重力加速度g =10 m/s 2.求:求:(1)A 、C 两点的高度差;两点的高度差;(2)小物块刚要到达圆弧轨道末端D 点时对轨道的压力;点时对轨道的压力;(3)要使小物块不滑出长木板,木板的最小长度.(sin 53°=0.8,cos 53°=0.6) 解析 (1)小物块在C 点时的速度大小为v C =v 0cos 53°=5 m/s ,竖直分量为v Cy =4 m/s 下落高度h ==0.8 m (2)小物块由C 到D 的过程中,由动能定理得mgR (1-cos 53°cos 53°))=12m v 2D -12m v 2C解得v D =29 m/s小球在D 点时由牛顿第二定律得F N -mg =m v D 2R 代入数据解得F N =68 N由牛顿第三定律得F N ′=F N =68 N ,方向竖直向下(3)设小物块刚好滑到木板右端时与木板达到共同速度,设小物块刚好滑到木板右端时与木板达到共同速度,大小为大小为v ,小物块在木板上滑行 的过程中,小物块与长木板的加速度大小分别为 a 1=μg =3 m/s 2, a 2=μmg M=1 m/s 2 速度分别为v =v D -a 1t ,v =a 2t 对物块和木板系统,由能量守恒定律得μmgL =12m v 2D -12(m +M )v 2解得L =3.625 m ,即木板的长度至少是3.625 m 答案 (1)0.8 m (2)68 N (3)3.625 m方法点拨程序法在解题中的应用程序法在解题中的应用22cy g v所谓“程序法”是指根据题意按先后顺序分析发生的运动过程,是指根据题意按先后顺序分析发生的运动过程,并明确每一过程的受力并明确每一过程的受力情况、运动性质、满足的规律等等,还要注意前后过程的衔接点是具有相同的速度. 2、在我国南方农村地区有一种简易水轮机,如图所示,从悬崖上流出的水可看做连续做平抛运动的物体,抛运动的物体,水流轨道与下边放置的轮子边缘相切,水流轨道与下边放置的轮子边缘相切,水流轨道与下边放置的轮子边缘相切,水冲击轮子边缘上安装的挡水板,水冲击轮子边缘上安装的挡水板,水冲击轮子边缘上安装的挡水板,可可使轮子连续转动,使轮子连续转动,输出动力.输出动力.当该系统工作稳定时,当该系统工作稳定时,可近似认为水的末速度与轮子边缘的线可近似认为水的末速度与轮子边缘的线速度相同.设水的流出点比轮轴高h =5.6 m ,轮子半径R =1 m .调整轮轴O 的位置,使水流与轮边缘切点对应的半径与水平线成θ=37°角.(已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2)问:问:(1)水流的初速度v 0大小为多少?大小为多少?(2)若不计挡水板的大小,则轮子转动的角速度为多少?若不计挡水板的大小,则轮子转动的角速度为多少? 答案 (1)7.5 m/s (2)12.5 rad/s 解析 (1)水流做平抛运动,有h -R sin 37°=12gt 2解得t =2(h -R sin 37°)g=1 s所以v y =gt =10 m/s ,由图可知: v 0=v y tan 37°=7.5 m/s.(2)由图可知:v =v 0sin 37°=12.5 m/s , 根据ω=v R 可得ω=12.5 rad/s. 3、解析 (1)在C 点:mg =m Rv C 2(2分) 所以v C =5 m/s(1分) (2)由C 点到D 点过程:mg (2R -2r )=12m v 2D -12m v 2C (2分) 在D 点:mg +F N =m v D2r(2分)所以F N =333.3 N (1分) 由牛顿第三定律知小滑车对轨道的压力为333.3 N. (1分) (3)小滑车要能安全通过圆形轨道,在平台上速度至少为v 1,则12m v 2C +mg (2R )=12m v 21 (2分) 小滑车要能落到气垫上,在平台上速度至少为v 2,则 h =12gt 2 (1分) x =v 2t(1分) 解得v 2>v 1,所以只要mgH =12m v 22,即可满足题意.解得H =7.2 m(3分) 答案 (1)5 m/s (2)333.3 N (3)7.2 m技巧点拨1.对于多过程问题首先要搞清各运动过程的特点,然后选用相应规律.2.要特别注意运用有关规律建立两运动之间的联系,把转折点的速度作为分析重点. 4、水上滑梯可简化成如图所示的模型,斜槽AB 和光滑和光滑圆弧槽BC 平滑连接.斜槽AB 的竖直高度差H =6.0 m ,倾角,倾角 θ=37°;圆弧槽BC 的半径R =3.0 m ,末端C 点的切线水平;C 点与水面的距离h =0.80 m .人与AB 间的动摩擦因数μ=0.2,取 重力加速度g =10 m/s 2,cos 37°=0.8,sin 37°=0.6.一个质量m =30 kg 的小朋友从滑梯顶端A 点无初速度地自由滑下,不计空点无初速度地自由滑下,不计空 气阻力.求:气阻力.求:(1)小朋友沿斜槽AB 下滑时加速度a 的大小;的大小;(2)小朋友滑到C 点时速度v 的大小及滑到C 点时受到槽面的支持力F C 的大小;的大小; (3)在从C 点滑出至落到水面的过程中,小朋友在水平方向的位移x 的大小.的大小.答案 (1)4.4 m/s 2(2)10 m/s 1 300 N (3)4 m解析 (1)小朋友沿AB 下滑时,受力情况如图所示,根据牛 顿第二定律得:mg sin θ-F f =ma① 又F f =μF N ② F N =mg cos θ③ 联立①②③式解得:a =4.4 m/s 2④(2)小朋友从A 滑到C 的过程中,根据动能定理得:mgH -F f ·H sin θ+mgR (1-cos θ)=12m v 2-0⑤联立②③⑤式解得:v =10 m/s ⑥根据牛顿第二定律有:F C -mg =m v 2R ⑦联立⑥⑦式解得:F C =1 300 N .⑧(3)在从C 点滑出至落到水面的过程中,小朋友做平抛运动,设此过程经历的时间为t ,则:h =12gt 2 ⑨x =v t ⑩ 联立⑥⑨⑩式解得:x =4 m.5、(2012·福建理综·20)如图所示,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R =0.5 m ,离水平地面的高度H =0.8 m ,物块平抛落地过程水平位移的大小s =0.4 m .设物块所受的最大静摩擦力等于滑动摩擦力,取重力加速度g =10 m/s 2.求:求:(1)物块做平抛运动的初速度大小v 0; (2)物块与转台间的动摩擦因数μ. 答案 (1)1 m/s (2)0.2解析 (1)物块做平抛运动,在竖直方向上有H =12gt 2① 在水平方向上有s =v 0t ②由①②式解得v 0=sg2H 代入数据得v 0=1 m/s(2)物块离开转台时,由最大静摩擦力提供向心力,有f m =m v 02R③ f m =μN =μmg ④ 由③④式得μ=v 02gR代入数据得μ=0.26、(2010·重庆理综·24)小明站在水平地面上,手握不可伸长的轻绳一小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面的小球,甩动手腕,使球在竖直平面 内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水 平距离d 后落地,如图所示.已知握绳的手离地面高度为d ,手与,手与球之间的绳长为34d ,重力加速度为g 忽略手的运动半径和空气阻力. (1)求绳断时球的速度大小v 1和球落地时的速度大小v 2. (2)问绳能承受的最大拉力多大?问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?平距离最大,绳长应为多少?最大水平距离为多少?答案 (1)2gd 52gd (2)(2)11113mg(3)d 2 2 33d解析 (1)设绳断后球飞行的时间为t ,由平抛运动规律有竖直方向:14d =12gt 2水平方向:d =v 1t 解得v 1=2gd由机械能守恒定律有12m v 32=12m v 21+mg (d -34d )解得v 2=52gd(2)设绳能承受的最大拉力大小为F max ,这也是球受到绳的最大拉力的大小.球做圆周运动的半径为R =34d由圆周运动向心力公式,有F max -mg =m v 12R 得F max =113mg(3)设绳长为l ,绳断时球的速度大小为v 3.绳承受的最大拉力不变,有F max -mg =m v 32l ,解得v 3=83gl绳断后球做平抛运动,竖直位移为d -l ,水平位移为x ,时间为t 1.由平抛运动规律有d -l =12gt 21,x =v 3t 1得x =4 l (d -l )3,当l =d 2时,x 有最大值x max =233d .7、如图所示,一质量为2m 的小球套在一“”滑杆上,小球与滑杆的动摩擦因数为μ=0.5,BC 段为半径为R 的半圆,静止于A 处的小球在大小为F =2mg ,方向与水平面成37°角的拉力F 作用下沿杆运动,到达B 点时立刻撤去F ,小球沿圆弧向上冲并越过C 点后落在D 点(图中未画出),已知D 点到B 点的距离为R ,且AB 的距离为s =10R .试求:试求:(1)小球在C 点对滑杆的压力;点对滑杆的压力;(2)小球在B 点的速度大小;点的速度大小;(3)BC 过程小球克服摩擦力所做的功.过程小球克服摩擦力所做的功.答案 (1)32mg ,方向竖直向下,方向竖直向下 (2)23gR (3)31mgR4解析 (1)小球越过C 点后做平抛运动,有竖直方向:2R =12gt 2①水平方向:R =v C t ② 解①②得v C =gR 2在C 点对小球由牛顿第二定律有:2mg -F N C =2m v C 2R解得F N C =3mg2由牛顿第三定律有,小球在C 点对滑杆的压力F N C ′=F N C =3mg2,方向竖直向下(2)在A 点对小球受力分析有:F N +F sin 37°=2mg③ 小球从A 到B 由动能定理有:F cos 37°cos 37°··s -μF N ·s =12·2m v 2B ④解③④得v B =23gR(3)BC 过程对小球由动能定理有:-2mg ·2R -W f =12×2m v 2C -12×2m v 2B解得W f =31mgR48、如图所示,质量为m =1 kg 的小物块由静止轻轻放在水平匀速运动的传送带上,从A 点随传送带运动到水平部分的最右端B 点,经半圆轨道C 点沿圆弧切线进入竖直光滑的半圆轨道,恰能做圆周运动.C 点在B 点的正上方,D 点为轨道的最低点.小物块离开D 点后,做平抛运动,恰好垂直于倾斜挡板打在挡板跟水平面相交的E 点.已知半圆轨道的半径R =0.9 m ,D 点距水平面的高度h =0.75 m ,取g =10 m/s 2,试求:,试求:(1)摩擦力对小物块做的功;摩擦力对小物块做的功;(2)小物块经过D 点时对轨道压力的大小;点时对轨道压力的大小; (3)倾斜挡板与水平面间的夹角θ.答案 (1)4.5 J (2)60 N ,方向竖直向下,方向竖直向下 (3)60°解析 (1)设小物块经过C 点时的速度大小为v 1,因为经过C 点恰能做圆周运动,所以,由牛顿第二定律得:mg =m v 12R解得:v 1=3 m/s小物块由A 到B 的过程中,设摩擦力对小物块做的功为W ,由动能定理得:W =12m v 21解得:W =4.5 J(2)设小物块经过D 点时的速度大小为v 2,对从C 点运动到D 点的过程,由机械能守恒 定律得: 12m v 21+mg ·2R =12m v 22 小物块经过D 点时,设轨道对它的支持力大小为F N ,由牛顿第二定律得:F N -mg =m v 22R联立解得:F N =60 N由牛顿第三定律可知,小物块经过D 点时对轨道的压力大小为: F N ′=F N =60 N ,方向竖直向下(3)小物块离开D 点后做平抛运动,设经时间t 打在E 点,由h =12gt 2得:t =1510 s设小物块打在E 点时速度的水平、竖直分量分别为v x 、v y ,速度跟竖直方向的夹角为α, 则: v x =v 2 v y =gt tan α=v x v y解得:tan α= 3 所以:α=60°由几何关系得:θ=α=60°60°. .9、水平光滑直轨道ab 与半径为R 的竖直半圆形光滑轨道bc 相切,相切,一小球以初速度v 0沿直轨道向右运动.沿直轨道向右运动.如图如图3所示,所示,小球进入圆小球进入圆小球进入圆 形轨道后刚好能通过c 点,然后小球做平抛运动落在直轨道上的点,然后小球做平抛运动落在直轨道上的 d 点,则点,则( ) A .小球到达c 点的速度为gRB .小球到达b 点时对轨道的压力为5mgC .小球在直轨道上的落点d 与b 点距离为2RD .小球从c 点落到d 点所需时间为2 Rg答案 ACD解析 小球在c 点时由牛顿第二定律得:mg =m v c 2R ,v c =gR ,A 项正确; 小球由b 到c 过程中,由机械能守恒定律得:12m v 2B =2mgR +12m v 2c 小球在b 点,由牛顿第二定律得:F N -mg =m v b 2R ,联立解得 F N=6mg ,B 项错误;小球由c 点平抛,在平抛运动过程中由运动学公式得:x =v c t,2R =12gt 2.解得t =2R g ,x =2R ,C 、D 项正确.1010、如图所示,、如图所示,P 是水平面上的圆弧凹槽.从高台边B 点以某速度点以某速度v 0水平飞出的小球,恰能从固定在某位置的凹槽的圆弧轨道的左水平飞出的小球,恰能从固定在某位置的凹槽的圆弧轨道的左 端A 点沿圆弧切线方向进入轨道.O 是圆弧的圆心,θ1是OA 与 竖直方向的夹角,θ2是BA 与竖直方向的夹角.则与竖直方向的夹角.则( )A .tan θ2tan θ1=2B .tan θ1·tan θ2=2C .1tan θ1·tan θ2=2 D .tan θ1tan θ2=2 答案 B解析 由题意可知:tan θ1=v y v x =gtv 0,tan θ2=x y =v 0t 12gt 2=2v 0gt,所以tan θ1·tan θ2=2,故B 正确.11、如图所示,在水平匀速运动的传送带的左端(P 点),轻放一质量为m =1 kg 的物块,物块随传送带运动到A 点后水平抛出,物块恰好无碰撞的沿圆弧切线从B 点进入竖直光滑圆弧轨道下滑.B 、D 为圆弧的两端点,其连线水平.已知圆弧半径R =1.0 m ,圆弧对应的圆心角θ=106°,轨道最低点为C ,A 点距水平面的高度h =0.8 m(g 取10 m/s 2,sin 53°=0.8,cos 53°=0.6)求:求:(1)物块离开A 点时水平初速度的大小;点时水平初速度的大小; (2)物块经过C 点时对轨道压力的大小;点时对轨道压力的大小;(3)设物块与传送带间的动摩擦因数为0.3,传送带的速度为5 m/s ,求P A 间的距离.间的距离. 答案 (1)3 m/s (2)43 N (3)1.5 m解析 (1)物块由A 到B 在竖直方向有v 2y =2ghv y =4 m/s在B 点:tan θ2=v yv A ,v A =3 m/s(2)物块从B 到C 由功能关系得mgR (1-cos θ2)=12m v 2C -12m v 2Bv B =v A 2+v y 2=5 m/s 解得v 2C =33 m 2/s 2 在C 点:F N -mg =m v C 2R由牛顿第三定律知,物块经过C 点时对轨道压力的大小为F N ′=F N =43 N(3)因物块到达A 点时的速度为3 m/s ,小于传送带速度,故物块在传送带上一直做匀加速直线运动 μmg =ma , a =3 m/s 2 P A 间的距离x P A =v A 22a=1.5 m. 1212、如图所示,半径、如图所示,半径R =1.0 m 的光滑圆弧轨道固定在竖直平面的光滑圆弧轨道固定在竖直平面内,轨道的一个端点B 和圆心O 的连线与水平方向间的夹角的连线与水平方向间的夹角θ= 37°,另一端点C 为轨道的最低点.C 点右侧的水平路面点右侧的水平路面 上紧挨C 点放置一木板,木板质量M =1 kg ,上表面与C 点 等高.质量m =1 kg 的物块(可视为质点)从空中A 点以点以v 0=1.2 m/s 的速度水平抛出,恰好从轨道的B 端沿切线方向进入轨道.端沿切线方向进入轨道.已知物块与木板间的动摩擦因数μ1=0.2,木板与路面间的动摩擦因数μ2=0.05,sin 37° =0.6,cos 37°=0.8,取g =10 m/s 2.试求:试求: (1)物块经过轨道上的C 点时对轨道的压力;点时对轨道的压力;(2)设木板受到的最大静摩擦力跟滑动摩擦力相等,则木板至少多长才能使物块不从木板上滑下?板上滑下?答案 (1)46 N (2)6 m解析 (1)设物块经过B 点时的速度为v B ,则 v B sin 37°=v 0设物块经过C 点的速度为v C ,由机械能守恒得: 12m v 2B +mg (R +R sin 37°sin 37°))=12m v 2C 物块经过C 点时,设轨道对物块的支持力为F C ,根据牛顿第二定律得:F C -mg =m v C 2R 联立解得:F C =46 N由牛顿第三定律可知,物块经过圆轨道上的C 点时对轨道的压力为46 N(2)物块在木板上滑动时,设物块和木板的加速度大小分别为a 1、a 2,得:μ1mg =ma 1 μ1mg -μ2(M +m )g =Ma 2设物块和木板经过时间t 达到共同速度v ,其位移分别为x 1、x 2,则:对物块有: v C -a 1t =v v 2-v 2C =-2a 1x 1 对木板有:a 2t =v v 2=2a 2x 2设木板长度至少为L ,由题意得:L ≥x 1-x 2 联立解得:L ≥6 m即木板长度至少6 m 才能使物块不从木板上滑下.1313、某校物理兴趣小组决定举行遥控赛车比赛.比赛路径如图、某校物理兴趣小组决定举行遥控赛车比赛.比赛路径如图7所示,示,赛车从起点赛车从起点A 出发,出发,沿水平直线轨道运动沿水平直线轨道运动L 后,由B 点进入点进入 半径为R 的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直离开竖直圆轨道后继续在光滑平直 轨道上运动到C 点,并能越过壕沟.已知赛车质量m =0.1 kg ,通电后以额定功率P =1.5 W 工作,进入竖直轨道前受到的阻力工作,进入竖直轨道前受到的阻力 恒为0.3 N ,随后在运动中受到的阻力均可不计.图中L =10.00 m , R =0.32 m ,h =1.25 m ,x =1.50 m .问:要使赛车完成比赛,电动.问:要使赛车完成比赛,电动 机至少工作多长时间?(取g =10 m/s 2)答案 2.53 s解析 设赛车越过壕沟需要的最小速度为v 1,由平抛运动的规律x =v 1t ,h =12gt 2解得v 1=x g2h=3 m/s设赛车恰好越过圆轨道,对应圆轨道最高点的速度为v 2,最低点速度为v 3,由牛顿运动定律及机械能守恒定律得 mg =m v 22/R 12m v 23=12m v 22+mg (2R ) 解得v 3=5gR =4 m/s通过分析比较,赛车要完成比赛,在进入圆轨道前的速度最小应该是v min =4 m/s 设电动机工作时间至少为t ,根据功能关系,有Pt -F f L =12m v 2min ,由此解得t =2.53 s。
抛体运动、圆周运动测试卷及答案
高一物理“抛体运动、圆周运动”测试说明:全卷计算中,g取10m/s2,最后结果取两位有效数字。
—、选择题(本大题共12道小题,每小题只有一个正确答案,4分×12=48分。
)1.加速度不变的运动A.不可能是竖直上抛运动B.不可能是平抛运动C.不可能是斜抛运动D.不可能是匀速圆周运动2.用m、h、v0分别表示平抛运动物体的质量、初速度和抛出点离水平地面的高度,对于这三个量,下列说法中正确的是A.物体在空中运动的时间由h、v0决定B.物体在空中运动的时间由h、m决定C.物体在空中运动的水平位移由v0、m决定D.物体落地时瞬时速度的方向由v0、h决定3.为更好地提高服务质量,在公交车转弯前,司机会利用车内广播播放录音:“乘客们请注意,前面车辆转弯,请拉好扶手。
”这样做的目的是A.提醒包括坐着和站着的全体乘客均拉好扶手,以免车辆转弯时可能向前倾倒B.提醒包括坐着和站着的全体乘客均拉好扶手,以免车辆转弯时可能向后倾倒C.主要是提醒站着的乘客拉好扶手,以免车辆转弯时可能向转弯的外侧倾倒D.主要是提醒站着的乘客拉好扶手,以免车辆转弯时可能向转弯的内侧倾倒4.用细线系一个小球在竖直面内做圆周运动,若在小球运动过程的某一时刻绳子突然断了,随后小球不可能...做A.自由落体运动B.竖直下抛运动C.竖直上抛运动D.平抛运动5.如图所示为一皮带传动装置,右轮半径为r,a是它边缘上的一点,左侧是一轮轴,大轮的半径为4r,小轮半径为2r,质点b在小轮上,到小轮中心的距离为r,质点c和质点d分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则A.质点a与质点b的线速度大小相等B.质点a与质点b的角速度大小相等C.质点a与质点c的向心加速度大小相等D.质点a与质点d的向心加速度大小相等6.关于不在同一直线上的两个分运动的合成,下列说法正确的是A.两个匀速直线的合运动可能是曲线运动B.一个匀速直线运动和一个匀变速直线运动的合运动必定是直线运动C.一个匀速直线运动和一个匀变速直线运动的合运动必定是曲线运动D.两个匀变速直线运动的合运动必定是直线运动7.如图所示,水平转台绕竖直轴匀速旋转,一个小物体随转台一起转动,它受外力情况是A.重力,弹力B.重力,弹力,静摩擦力C.重力,弹力,滑动摩擦力D.重力,弹力,摩擦力,向心力8.在水平匀速飞行的飞机上,相隔1s先后落下物体P和Q,若忽略空气阻力,那么,在落地前,P物体将A.在Q物体之前B.在Q物体之后C.在Q物体正下方D.在Q物体前下方9.平抛物体的运动规律可以概括为两点:(1)水平方向做匀速直线运动;(2)竖直方向做自由落体运动.为了研究平抛物体的运动,可做如右图所示的实验:用小锤打击弹性金属片,A球就水平飞出,同时B球被松开,做自由落体运动,两球同时落到地面.这个实验A.只能说明上述规律中的第(1)条B.只能说明上述规律中的第(2)条C.不能说明上述规律中的任何一条D.能同时说明上述两条规律10.一物体由静止开始自由下落一小段时间后突然受一恒定的水平风力的影响,则其运动轨迹可能的情况是图中的11.甲、乙两物体做匀速圆周运动,其质量之比为1:2,转动半径之比为l:2,在相等时间里甲转过60度,乙转过45度,则它们所受合外力之比为A.4:9B.2:3C.1:4D.9:1612.如右图所示,用长为L的细线拴一个质量为M的小球,使小球在水平面内做匀速圆周运动,细线与竖直方向间的夹角为θ,关于小球的受力情况,下列说法错误..的是A.向心力等于线的拉力B.向心力等于线的拉力和小球所受重力的合力C.向心力等于细线对小球拉力的水平分量D,向心力的大小等于Mgtanθ二、填空题(本大题共4道小题,每空3分,共24分。
圆周运动与平抛运动相结合的专题练习题
1、质量为m的滑块从半径为R的半球形碗的边缘滑向碗底,过碗底时速度为v,若滑块与碗间的动摩擦因数为μ,则在过碗底时滑块受到摩擦力的大小为()A.μmg B.μm C.μm(g+) D.μm(-g)2、质量为m的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为,当小球以2的速度经过最高点时,对轨道的压力大小是( )A.0 B.mg C.3mg D.5mg3、质量为m的小球在竖直平面内的圆形轨道内侧运动,经过最高点时恰好不脱离轨道的临界速度为v0,则:(1)当小球以2v0的速度经过轨道最高点时,对轨道的压力为多少?4、如图所示,长度为L=的绳,系一小球在竖直面内做圆周运动,小球的质量为M=5kg,小球半径不计,小球在通过最低点的速度大小为v=20m/s,试求:(1)小球在最低点所受绳的拉力 (2)小球在最低的向心加速度5、如图所示,位于竖直平面上的圆弧轨道光滑,半径为R,OB沿竖直方向,上端A距地面高度为H,质量为m的小球从A点由静止释放,到达B点时的速度为,最后落在地面上C点处,不计空气阻力,求:(1)小球刚运动到B点时的加速度为多大,对轨道的压力多大;(2)小球落地点C与B点水平距离为多少。
6、质量为m的小球被一根细线系于O点,线长为L,悬点O距地面的高度为2L,当小球被拉到与O点在同一水平面上的A点时由静止释放,球做圆周运动至最低点B时,线恰好断裂,球落在地面上的C点,C点距悬点O的水平距离为S (不计空气阻力).求:(1)小球从A点运动到B点时的速度大小;(2)悬线能承受的最大拉力;7、如图,AB为竖直半圆轨道的竖直直径,轨道半径R=10m,轨道A端与水平面相切.光滑木块从水平面上以一定初速度滑上轨道,若木块经B点时,对轨道的压力恰好为零,g取10m/s2,求:(1)小球经B点时的速度大小;(2)小球落地点到A点的距离.8、如图所示,半径为R,内径很小的光滑半圆管竖直放置.两个质量均为m 的小球a、b以不同的速度进入管内,a通过最高点A时,对管壁上部的压力为3mg,b通过最高点A时,对管壁下部的压力为,求:(1)a球在最高点速度.(2)b球在最高点速度.(3)a、b两球落地点间的距离10、我校某兴趣研究小组,为探究一个娱乐项目的安全性问题,提出如下力学模型如图所示,在一个固定点O,挂一根长L=m的细绳,绳的下端挂一个质量为m=的小球,已知细绳能承受的最大拉力为4N。
期末复习6平抛、圆周运动与动能定理结合
物理期末复习(六)平抛、圆周运动和动能定理综合高一()班姓名____________知识点:动能定理:协力做的总功等于物体的动能变化,表达式:________________一直与速度方向垂直的力只改变速度的________,不改变速度的_________, _____________习题:1如下图,在半径为R的水平圆板中心轴上方高h 处水平抛出一球,v0圆板做匀速转动,当圆板半径OP 转到与球初速度方向平行时,球开始抛出.要使球恰巧落到圆板边沿的hP 点,球的初速度v0=,圆板的角速度ω=.RO Pω2如下图,有一长为L=1m 的细线,细线的一端固定在O 点,另一端拴一质量为m=0.1kg 的小球,小球能绕 O 点在竖直平面内转动.( g=10m/s 2)( 1)若小球从圆周上与O 点等高的地点 A 由静止开释,求最低点绳索拉力T1;( 2)若小球从最低点出发,为使小球能做完好的圆周运动,起码给小球多大的初速度v0;( 3)若小球从最低点出发,且绳索能蒙受的最大拉力为T m=10N,为使小球能做完好的圆周运动,剖析小球初速度v0的范围.O A OBv03如下图,有一长为L的轻质细杆,杆的一端用钉子钉在O点,另一端固定一个质量为m 的小球,小球能绕 O 点在竖直平面内转动.( 1)若小球从圆周上与水平半径夹角30°的地点 A 由静止开释,求最低点杆子受力F1;( 2)若小球从最低点出发,为使小球能做完好的圆周运动,起码给小球多大的初速度v0;( 3)为使小球在最高点时,对杆子的作使劲向下,剖析小球初速度v0的范围.A30°OOBv04如下图,两个3/4 圆弧轨道固定在水平面上,半径为R,不计全部摩擦.将A、B 两小球分别从两轨道右边正上方静止着落,若设小球开释时距离地面的高度为h A和 h B,试求:( 1)要使小球能够运动到最高点,则A、B 两小球离地面的高度h A和 h B有何要求;(2 )可否使小球能够从最高点飞出后又恰巧落在轨道的右端口,若能,则离地面的高度是多少;若不可以,说明原因.A Bh A h B5质量为25 ㎏的儿童坐在秋千上,儿童离拴绳索的栋梁 2.5m .假如秋千摆到最高点时,绳索与竖直方向的夹角是60°,当秋千板摆到最低点时(不计空气阻力,g 取 10 m/s 2),求:(1)儿童的速度;(2)秋千板对儿童的压力.6如下图,有一长为L 的细线,细线的一端固定在O 点,另一端拴一质量为m 的小球,现使小球恰巧能在竖直面内做完好的圆周运动.已知水平川面上的 C 点位于 O 点正下方,且到 O 点的距离为 1.9L.不计空气阻力.求:( 1)小球经过最高点 A 时的速度 v A;A( 2)小球经过最低点 B 时,细线对小球的拉力T;( 3)若小球运动到最低点 B 时细线恰巧断裂,小球落地址到 C 点的距离.OBC7如下图,位于竖直平面内有1/4 圆弧的圆滑轨道,半径为R,OB 沿竖直方向,圆弧轨道上端 A 点距地面高度为H.当把质量为m 的钢球从 A 点静止开释,最后落在了水平川面的 C 点处.若当地的重力加快度为g,且不计空气阻力.试计算:(1)钢球运动到 B 点的瞬时遇到的支持力多大(2)钢球落地址 C 距 B 点的水平距离 s 为多少8在游玩园坐过山车是一项惊险、刺激的游戏.游玩园“翻腾过山车”的物理原理能够用如图所示的装置演示.斜槽轨道AB、EF 与半径 R=0.4m 的竖直圆轨道(圆心为O)相连, AB、EF 分别与圆O 相切于 B、E 点, C 为轨道的最低点,斜轨AB 倾角为 37°.质量为 m=0.1kg 的小球从 A 点静止开释,先后经 B、C、D、E 到 F 点落入小框.(整个装置的轨道均圆滑,取 g=10m/s 2,sin37 =°, cos37 °=),求:( 1)小球在圆滑斜轨AB 上运动的过程中的加快度;( 2)要使小球在运动的全过程中不离开轨道, A 点距离最低点的竖直高度 h 起码多高,及在 C 点时小球对轨道的压力9有一个固定竖直搁置的圆形轨道,半径为R,由左右两部分构成.如下图,右半部分AEB 是圆滑的,左半部分 BFA是粗拙的.此刻最低点 A 给一质量为m 的小球一个水平向右的初速度 v0,使小球沿轨道恰巧运动到最高点 B,小球在 B 点又能沿 BFA回到 A 点,抵达 A 点时对轨道的压力为 4mg.求小球由 B 经 F 回到 A 的过程中战胜摩擦力所做的功.BF R Ev0A10如下图, ABDO 是处于竖直平面内的圆滑轨道,AB 是半径为R=15m 的 1/4 圆周轨道,半径OA 处于水平川点,BDO 是直径为15m 的半圆轨道, D 为 BDO 轨道的中央.一个小球P 从点的正上方距水平半径OA 高 H 处自由落下,沿竖直平面内的轨道经过 D 点时对轨道的压力A等于其重力的14倍.取g=10m/s 2.求:3(1) H 的大小;(2)试议论此球可否抵达 BDO轨道的 O 点,并说明原因;(3)小球沿轨道运动后再次落到轨道上的速度的大小是多少。
冲刺卷四 平抛运动与圆周运动
冲刺卷四平抛运动与圆周运动冲刺卷四平抛运动与圆周运动�ね蛴幸�力定律的应用满分:100分时间:60分钟一、单项选择题(本题共5小题,每小题5分,共25分。
每小题只有一个选项符合题意。
)1.如图所示,可视为质点的小球,位于半径为3 m半圆柱体左端点A的正上方某处,以一定的初速度水平抛出小球,其运动轨迹恰好能与半圆柱体相切于B点。
过B点的半圆柱体半径与水平方向的夹角为60°,则初速度为(不计空气阻力,重力加速度取g=10 m/s2)( ) 55A.3m/sB.43 m/s 15D.2 m/sC.35 m/s2.如图所示,半径R=1 m且竖直放置的圆盘O正按顺时针方向匀速转动,在圆盘的边缘上有一点Q,当Q点向上转到竖直位置时,在其正上方h=0.25 m处的P点以v0=5m/s的初速度向右水平抛出一个小球(可看做质点),小球飞行一段时间后恰能从圆盘上的Q点沿切线方向飞出,取g=10 m/s2,则下列说法中正确的是( )5A.小球完成这段飞行所用的时间为10 s B.小球在这段飞行时间内下落的高度为0.75 m C.圆盘转动的角速度ω一定等于215π9 rad/sD.小球沿圆盘切线方向飞出时的速度大小为45 m/s3.如图所示,足够大的光滑绝缘水平面上有三个带电质点,A和C围绕B做匀速圆周运动,B恰能保持静止,其中A、C和B的距离分别是L1和L2。
不计三质点间的万有引力,则A和C的比荷(电量与质量之比)之比应是( )L1A.(L)22L1B.(L)32L22C.(L)1L23D.(L)14.研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时。
假设这种趋势会持续下去,地球的其它条件都不变,则未来与现在相比( )A.地球的第一宇宙速度变小 B.地球赤道处的重力加速度变小 C.地球同步卫星距地面的高度变小 D.地球同步卫星的线速度变小5.木星是太阳系中最大的行星,它有众多卫星,观察测出:木星绕太阳做圆周运动的半径为r1,周期为T1;木星的某一卫星绕木星做圆周运动的半径为r2,周期为T2,已知引力常量为G,则( )A.可求出太阳与木星的万有引力 B.可求出太阳的密度C.可求出木星表面的重力加速度 r3r312D.T2=T2 12二、多项选择题(本题共5小题,每小题7分,共计35分。
圆周运动与平抛综合
2.如图所示,一个竖直放置的圆锥筒可绕其中心轴OO ′转动,筒内壁粗糙,筒口半径和筒高分别为R 和H ,筒内壁上A 点高度为筒高的一半,内壁上A 点有一质量为m 的小物块(视为质点)。
求:(1)当物块在A 点随筒做匀速转动,且其受到的摩擦力为零时,筒转动的角速度。
(2)若μ<R H且最大静摩擦力等于滑动摩擦力,求物块在A 点随筒做匀速转动时,求筒转动的角速度范围。
考点:向心力、线速度、角速度、转速(向心力来源、受力分析、临界、牛二)(1、3)答案及解析:2.ω=ω(1)当物块在A 点随筒做匀速转动,且其所受到的摩擦力为零时,物块在筒壁A 点时受到的重力和支持力作用,它们的合力提供向心力,设筒转动的角速度为ω有:2t a n 2Rm g m θω= 由几何关系得tan HR θ=联立以上各式解得ω=(2)如图当ω比较小时,对物体进行受力分析并建立正交坐标系如图所示,则有: 2cos sin 2Rm f N ωθθ=- mg f N =+θθsin cosN f μ=联立以上各式解得HR R gR H μμω+-=21)(2当ω比较大时,对物体进行受力分析并建立正交坐标系如图所示,则有: 2cos sin 2Rm f N ωθθ=+ mg f N =θθsin -cosN f μ= 联立以上各式解得HR R gR H μμω-)(222+=ω(10分)(2014•扬州模拟)如图所示,在投球游戏中,小明坐在可沿竖直方向升降的椅子上,停在不同高度处将小球水平抛出落入固定的球框中.已知球框距地面的高度为h 0,小球的质量为m ,抛出点与球框的水平距离始终为L ,忽略空气阻力.(1)小球距地面高为H 0处水平抛出落入球框,求此过程中小球重力势能的减少量;(2)若小球从不同高度处水平抛出后都落入了球框中,试推导小球水平抛出的速度v 与抛出点高度H 之间满足的函数关系;(3)为防止球入框时弹出,小明认为球落入球框时的动能越小越好.那么,它应该从多高处将球水平抛出,可以使小球入框时的动能最小?并求该动能的最小值.答案及解析:3.(1)此过程中小球重力势能的减少量为mg(H0﹣h0).(2)球水平抛出的速度v与抛出点高度H之间满足的函数关系是:(H>h0).(3)球应该从h0+L高处将球水平抛出,可以使小球入框时的动能最小,该动能的最小值是mgL.考点:机械能守恒定律;牛顿第二定律;向心力(2、3)专题:机械能守恒定律应用专题.分析:(1)小球重力势能的减少量等于等于重力做功mg(H0﹣h0).(2)小球做平抛运动,根据平抛运动的规律求解.(3)小球平抛运动的过程中,只有重力做功,机械能守恒,根据机械能守恒定律得到小球入框时的动能与高度的关系,由数学知识求解.解答:解:(1)小球重力势能的减少量为:△E p=mg(H0﹣h0).(2)设小球做平抛运动的时间为t,则水平方向有:L=vt竖直方向有:解得:(H>h0)或:.(3)小球平抛过程,只受重力,机械能守恒,则得:结合上题结论有:得:E K=+mg(H﹣h0)当H=h 0+L 时,E K 有极小值,得:E Kmin =mgL3.如图是为了检验某种防护罩承受冲击能力的装置,M 为半径为 1.0R m =、固定于竖直平面内的14光滑圆弧轨道,轨道上端切线水平,N 为待检验的固定曲面,该曲面在竖直面内的截面为半径r =的14圆弧,圆弧下端切线水平且圆心恰好位于M 轨道的上端点,M 的下端相切处置放竖直向上的弹簧枪,可发射速度不同的质量0.01m kg =的小钢珠,假设某次发射的钢珠沿轨道恰好能经过M 的上端点,水平飞出后落到N 的某一点上,取210/g m s =,求:(1)发射该钢珠前,弹簧的弹性势能p E 多大?(2)钢珠落到圆弧N 上时的速度大小N v 是多少?(结果保留两位有效数字)1) (2)v N =5.0m/s【解析】(1)设钢珠在M 轨道最高点的速度为v ,恰过最高点,有:从发射前到最高点,根据机械能守恒定律,得:∴(2)钢珠从最高点飞出后做平抛运动,有:从最高点飞出到曲面N 上,由机械能守恒定律,得:∴v N =5.0m/s好25. (长沙市雅礼中学2014届高三模拟试卷) (13分)如图所示,倾角为37°的粗糙斜面AB 底端与半径R =0.4 m 的光滑半圆轨道BC 平滑相连,O 为轨道圆心,BC 为圆轨道直径且处于竖直方向,A 、C 两点等高.质量m =1 kg 的滑块从A 点由静止开始下滑,恰能滑到与O 等高的D 点,g 取10 m/s 2,sin37°=0.6,cos37°=0.8.(1)求滑块与斜面间的动摩擦因数μ;(2)若使滑块能到达C 点,求滑块从A 点沿斜面滑下时的初速度v 0的最小值;(3)若滑块离开C 处的速度大小为4 m/s ,求滑块从C 点飞出至落到斜面上的时间t 。
(完整版)平抛与圆周运动相结合专项训练卷
2013—2014学年度北京师范大学万宁附属中学平抛运动与圆周运动相结合训练卷考试范围:平抛 圆周 机械能;命题人:王占国;审题人:孙炜煜学校:___________姓名:___________班级:___________考号:___________一、选择题(题型注释)6.如图所示,半径为R,内径很小的光滑半圆细管竖直放置,一质量为m 的小球A 以某一速度从下端管口进入,并以速度1v 通过最高点C 时与管壁之间的弹力大小为mg 6.0,另一质量也为m 小球B 以某一速度从下端管口进入,并以速度2v 通过最高点C 时与管壁之间的弹力大小为mg 3.0,且21v v >,210s m g =。
当A 、B 两球落地时,落地点与下端管口之间的水平距离B x 、A x 之比可能为( )A.27=A B x x B 。
213=A B x x C 。
47=A B x x D 。
413=A B x x 【答案】CD 【解析】试题分析:若A 球通过最高点时,对细管是向下的压力,则B 也是向下的压力,则根据牛顿第二定律可得,'210.6v mg mg m R -=,解得:'10.4v gR =,'220.3v mg mg m R-=,解得'20.7v gR =不符合题意故对A 只能有:'210.6v mg mg m R+=解得:'1 1.6v gR =对B 有:'220.3v mg mg m R -=,解得'20.7v gR '220.3v mg mg m R+=解得'2 1.3v gR 通过C 点后,小球做平抛运动,所以水平位移x vt =,因为距离地面的高度相同,所以落地时间相同,故可得47=A B x x 或者413=A B x x 故选CD考点:考查了平抛运动点评:做本题的关键是知道小球在C 点的向心力来源,可根据21v v >判断7.如图所示,半径为R 的半圆形圆弧槽固定在水平面上,在圆弧槽的边缘A 点有一小球(可视为质点,图中未画出),今让小球对着圆弧槽的圆心O 以初速度0v 作平抛运动,从抛出到击中槽面所用时间为gR (g为重力加速度).则平抛的初速度可能是A .gRv 2320-=B .gRv 2320+=C .0332v gR+=D .gR v 2330-=【答案】AB【解析】试题分析:平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动.由竖直位移2122Rh gt ==,小球可能落在左半边也可能落在右半边,水平位移有两个值,由勾股定理可求出分别为00cos30,cos30R R R R -+,由水平方向匀速直线运动可求出两个水平速度分别为gRv 2320-=、gRv 2320+=AB 对。
高考物理一轮复习 专题22 应用力学两大观点分析平抛运动与圆周运动组合问题(练)(含解析)-人教版高
专题22 应用力学两大观点分析平抛运动与圆周运动组合问题1.如下列图,AB是倾角为30θ=︒的粗糙直轨道,BCD是光滑的圆弧轨道,AB恰好在B点与圆弧相切,圆弧的半径为R,一个质量为m的物体〔可以看做质点〕从直轨道上的P点由静止释放,结果它能在两轨道间做往返运动。
P点与圆弧的圆心O等高,物体与轨道AB间的动摩擦因数为μ。
求:〔1〕物体做往返运动的整个过程中在AB轨道上通过的总路程;〔2〕最终当物体通过圆弧轨道最低点E时,对圆弧轨道的压力;〔3〕为使物体能顺利到达圆弧轨道的最高点D,释放点距B点的距离L′至少多大。
【答案】〔1〕Rμ;〔2〕(33)mg-;〔3〕(33)13Rμ+-【解析】【名师点睛】此题综合应用了动能定理求摩擦力做的功、圆周运动与圆周运动中能过最高点的条件,对动能定理、圆周运动局部的内容考查的较全,是圆周运动局部的一个好题.①利用动能定理求摩擦力做的功;②对圆周运动条件的分析和应用;③圆周运动中能过最高点的条件.2.如下列图,足够长的光滑斜面与水平面的夹角为037θ=,斜面下端与半径0.50R m =的半圆形轨道平滑相连,连接点为C ,半圆形轨道最低点为B ,半圆形轨道最高点为A ,sin 0.637=,0cos 0.837=,当地的重力加速度为210/g m s =。
〔1〕假设将质量为0.10m kg =的小球从斜面上距离C 点为 2.0L m =的斜面上D 点由静止释放,如此小球到达半圆形轨道最低点B 时,对轨道的压力多大?〔2〕要使小球经过最高点A 时不能脱离轨道,如此小球经过A 点时速度大小应满足什么条件? 〔3〕当小球经过A 点处的速度大小为多大时,小球与斜面发生一次弹性碰撞后还能沿原来的运动轨迹返回A 点?【答案】〔1〕 6.2N N = 〔2〕 2/C v m s ≥ 〔3〕12/C v m s =如此x 轴方向的分加速度为37x a gsin =-°,y 轴方向的分加速度为37y a gcos =︒且有0x A v a t +=,2122y R a t =联立解得 12/C v m s =【名师点睛】解决此题的关键理清物块的运动过程,把握隐含的临界条件,明确小球到达A 点的临界条件是轨道对小球没有作用力,由重力的径向分力提供向心力.小球只有垂直撞上斜面,才能沿原路返回.对斜抛要灵活选择坐标系,使得以简化。
2020-2021【名校提分专用】年高考物理一轮复习 专题4.10 平抛运动与圆周运动综合问题千题精练
专题4.10 平抛运动与圆周运动综合问题一.选择题1. (2018徐州期中)如图所示,链球上面安有链子和把手。
运动员两手握着链球的把手,人和球同时快速旋转,最后运动员松开把手,链球沿斜向上方向飞出,不计空气阻力。
关于链球的运动, 下列说法正确的有A.链球脱手后做匀变速曲线运动B.链球脱手时沿金属链方向飞出C.链球抛出角度一定时,脱手时的速率越大,则飞得越远D.链球脱手时的速率一定时,抛出角度越小,一定飞得越远 【参考答案】AC2(2018湖北荆州第一次质检)如图所示,一位同学玩飞镖游戏。
圆盘最上端有一P 点,飞镖抛出时与P 等高,且距离P 点为L 。
当飞镖以初速度v 0垂直盘面瞄准P 点抛出的同时,圆盘以经过盘心O 点的水平轴在竖直平面内匀速转动。
忽略空气阻力,重力加速度为g ,若飞镖恰好击中P 点,则v 0可能为 ( )A .2LωπB .2L ωπC .3L ωπD .4L ωπ.【参考答案】C3. 如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3 s 后又恰好垂直与倾角为45°的斜面相碰。
已知半圆形管道的半径R =1 m ,小球可看做质点且其质量为m =1 kg ,g 取10 m/s 2。
则( )A.小球在斜面上的相碰点C 与B 点的水平距离是0.9 mB.小球在斜面上的相碰点C 与B 点的水平距离是1.9 mC.小球经过管道的B 点时,受到管道的作用力F N B 的大小是1 ND.小球经过管道的B 点时,受到管道的作用力F N B 的大小是2 N 【参考答案】AC【名师解析】根据平抛运动的规律,小球在C 点的竖直分速度v y =gt =3 m/s ,水平分速度v x =v y tan 45°=3 m/s ,则B 点与C 点的水平距离为x =v x t =0.9 m ,选项A 正确,B 错误;在B 点设管道对小球的作用力方向向下,根据牛顿第二定律,有F N B +mg =m v 2BR,v B =v x =3 m/s ,解得F N B =-1 N ,负号表示管道对小球的作用力方向向上,选项C 正确,D 错误。
平抛 圆周运动练习题
上一份圆周运动WORD题目答案1 C2 CD3 AB4 A5 B6 465m/s 7.26×10-5 rad/s7 9.42 4.71 15.78 2:2:1 2:2:1 9 (1)πrad/s;(2)2πm/s周末练习题一、选择题1、下列说法中正确的是[]A.曲线运动一定是变速运动B、变速运动一定是曲线运动C.匀速圆周运动就是速度不变的运动D.匀速圆周运动就是角速度不变的运动2、一质点做匀速圆周运动,下列说法中,错误的是[]A.任意相等的时间内,通过相等的弧长B.任意相等的时间内,通过的位移相同C.任意相等的时间内,转过相等的角度D.任意相等的时间内,速度的变化相同3下列关于运动状态与受力关系的说法中,正确的是[]A.物体的运动状态发生变化,物体的受力情况一定变化B.物体在恒力作用下,一定作匀变速直线运动C.物体的运动状态保持不变,说明物体所受的合外力为零D.物体作曲线运动时,受到的合外力可以是恒力4、对于做匀速圆周运动的物体,下面说法错误的是:A、线速度不变 B 线速度的大小不变。
C角速度不变。
D周期不变。
5飞机以150m/s的水平速度匀速习行,不计空气阻力,在某一时刻让A物体落下,相隔1秒钟又让B物体落下,在以后运动中关于A物体与B物体的位置关系,正确的是A.A物体在B物体的前下方B.A物体在B物体的后下方C.A物体始终在B物体的正下方5m处D.以上说法都不正确二、填空题1、从3H高处水平抛一个小球,当它落下第一个H,第二个H和第三个H 时的水平位移之比______。
2、、以相同的水平初速度从不同高度水平抛出A、B两小球,其抛出高度之比为h A:h B=4:1,则它们做平抛运动的时间之比t A:t B=————,水平位移之比s A:s B=————。
3、以20m/s的初速度水平抛出一物体,它的加速度大小为————,方向是—;2秒末物体的速度大小为————————,方向与水平方向的夹角是————————————(g=10m/s2)。
高考物理一轮总复习第四章第四讲平抛运动圆周运动的临界问题练习含解析
平抛运动、圆周运动的临界问题[A组·基础题]1. 如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为3 2(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g取10 m/s2.则ω的最大值是( C )A. 5 rad/s B. 3 rad/sC.1.0 rad/s D.5 rad/s2. 一圆盘可以绕其竖直轴在水平面内转动,圆盘半径为R,甲、乙两物体的质量分别为M 与m(M>m),它们与圆盘之间的最大静摩擦力均为正压力的μ倍,两物体用一根长为l(l <R)的轻绳连在一起,如图所示,若将甲物体放在转轴的位置上,甲、乙之间接线刚好沿半径方向拉直,要使两物体与转盘之间不发生相对滑动,则转盘旋转的角速度最大值不得超过( D )A.μM-m gmlB.μM-m gMlC.μM+m gMlD.μM+m gml3. (2019·河南中原名校考评)如图所示,半径分别为R、2R的两个水平圆盘,小圆盘转动时会带动大圆盘不打滑的一起转动.质量为m的小物块甲放置在大圆盘上距离转轴R处,质量为2m的小物块放置在小圆盘的边缘处.它们与盘面间的动摩擦因数相同,当小圆盘以角速度转动时,两物块均相对圆盘静止,设最大静摩擦力等于滑动摩擦力,下列说法正确的是( B )A.二者线速度大小相等B .甲受到的摩擦力大小为14mω2RC .在ω逐渐增大的过程中,甲先滑动D .在ω逐渐增大但未相对滑动的过程中,物块所受摩擦力仍沿半径指向圆心解析:大圆盘和小圆盘边缘上的线速度大小相等,当小圆盘以角速度ω转动时,大圆盘以ω2转动;两物块做圆周运动的半径相等,但是角速度不同,则线速度大小不等,A 错误;根据v =ωr 知,大圆盘以ω2转动,则小物块甲受到的摩擦力f =m ⎝ ⎛⎭⎪⎫ω22R =14mω2R ,B 正确;根据μmg =mω2r 知,临界角速度ω=μgr,两物块的半径相等,知临界角速度相等,在角速度ω逐渐增大的过程中,ω大=12ω小,可知物块乙先滑动,C 错误;在角速度ω逐渐增大的过程中,甲乙的线速度逐渐增大,根据动能定理知,摩擦力对两物块均做正功,可知摩擦力一定有沿线速度方向的分力,所以物块受到的摩擦力的方向一定不是指向圆心,D 错误. 4. (2018·广东七校联考)如图所示,半径为R 的圆轮在竖直面内绕O 轴匀速转动,轮上A 、B 两点各粘有一小物体,当B 点转至最低位置时,此时O 、A 、B 、P 四点在同一竖直线上,已知:OA =AB ,P 是地面上的一点.此时A 、B 两点处的小物体同时脱落,最终落到水平地面上同一点.不计空气阻力,则OP 的距离是( A )A.76R B .52R C .5RD .7R解析:设OP 之间的距离为h ,则A 下落的高度为h -12R ,A 随圆轮运动的线速度为12ωR ,设A 下落的时间为t 1,水平位移为s ,则有:在竖直方向上有:h -12R =12gt 21在水平方向上有: s =12ωRt 1B 下落的高度为h -R ,B 随圆轮运动的线速度为ωR ,设B 下落的时间为t 2,水平位移也为s ,则有:在竖直方向上有:h -R =12gt 22在水平方向上有:s =ωRt 2联立上式解得:h =76R选项A 正确,B 、C 、D 错误.5.(多选) 水平面上有倾角为θ、质量为M 的斜面体,质量为m 的小物块放在斜面上,现用一平行于斜面、大小恒定的拉力F 作用于小物块上,绕小物块旋转一周,这个过程中斜面体和小物块始终保持静止状态.下列说法中正确的是( AC )A .小物块受到斜面的最大摩擦力为F +mg sin θB .小物块受到斜面的最大摩擦力为F -mg sin θC .斜面体受到地面的最大摩擦力为FD .斜面体受到地面的最大摩擦力为F cos θ6.(多选) (2018·山西省吕梁市期中)如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R ,小球半径为r ,则下列说法正确的是( BC )A .小球通过最高点时的最小速度v min =g R +rB .小球通过最高点时的最小速度v min =0C .小球在水平线ab 以下的管道中运动时,内侧管壁对小球一定无作用力D .小球在水平线ab 以上的管道中运动时,外侧管壁对小球一定有作用力解析:小球过最高点时可能受到外壁对其向下的压力或内壁对其向上的支持力,类似于轻杆端点的小球过最高点,则其通过最高点的最小速度为零.故A 项错误,B 项正确;小球在管道中运动时,向心力的方向要指向圆心;小球在水平线ab 以下时,重力沿半径的分量背离圆心,则管壁必然提供指向圆心的支持力,只有外侧管壁才能提供此力,内侧管壁对小球一定无作用力,C 项正确;同理在水平线ab 以上时,重力沿半径的分量指向圆心,外侧管壁对小球可能没有作用力,D 项错误.7. 如图所示,水平屋顶高H =5 m ,围墙高h =3.2 m ,围墙到房子的水平距离L =3 m ,围墙外空地宽x =10 m ,为使小球从屋顶水平飞出落在围墙外的空地上,g 取10 m/s 2.求:(1)小球离开屋顶时的速度v 0的大小范围;(2)小球落在空地上的最小速度.解析:(1)设小球恰好落到空地的右侧边缘时的水平初速度为v 01,则小球的水平位移:L +x =v 01t 1小球的竖直位移:H =12gt 21解以上两式得v 01=(L +x )g2H=13 m/s 设小球恰好越过围墙的边缘时的水平初速度为v 02,则此过程中小球的水平位移:L =v 02t 2 小球的竖直位移:H -h =12gt 22解以上两式得:v 02=Lg2H -h=5 m/s小球离开屋顶时的速度大小为5 m/s≤v 0≤13 m/s.(2)小球落在空地上,下落高度一定,落地时的竖直分速度一定,当小球恰好越好围墙的边缘落在空地上时,落地速度最小. 竖直方向:v 2y =2gH 又有:v min =v 202+v 2y 解得:v min =5 5 m/s.答案:(1)5 m/s≤v 0≤13 m/s (2)5 5 m/s[B 组·能力题]8. (多选)如图所示,两物块A 、B 套在水平粗糙的CD 杆上,并用不可伸长的轻绳连接,整个装置能绕过CD 中点的轴转动,已知两物块质量相等,杆CD 对物块A 、B 的最大静摩擦力大小相等,开始时绳子处于自然长度(绳子恰好伸直但无弹力),物块B 到轴的距离为物块A 到轴距离的两倍,现让该装置从静止开始转动,使转速逐渐慢慢增大,在从绳子处于自然长度到两物块A 、B 即将滑动的过程中,下列说法正确的是( BC )A .A 受到的静摩擦力一直增大B .B 受到的静摩擦力先增大后保持不变C .A 受到的静摩擦力先增大后减小再增大D .B 受到的合外力先增大后保持不变9. (多选)(2016·浙江卷)如图所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R =90 m 的大圆弧和r =40 m 的小圆弧,直道与弯道相切.大、小圆弧圆心O 、O ′距离L =100 m .赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍,假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动,要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g =10 m/s 2,π=3.14),则赛车( AB )A .在绕过小圆弧弯道后加速B .在大圆弧弯道上的速率为45 m/sC .在直道上的加速度大小为5.63 m/s 2D .通过小圆弧弯道的时间为5.58 s10.如图为“快乐大冲关”节目中某个环节的示意图,参与游戏的选手会遇到一个人造山谷AOB ,AO 是高h =3 m 的竖直峭壁,OB 是以A 点为圆心的弧形坡,∠OAB =60°,B 点右侧是一段水平跑道.选手可以自A 点借助绳索降到O 点后再爬上跑道,但身体素质好的选手会选择自A 点直接跃上跑道.选手可视为质点,忽略空气阻力,重力加速度g =10 m/s 2.(1)若选手以速度v 0水平跳出后,能跳在水平跑道上,求v 0的最小值; (2)若选手以速度v 1=4 m/s 水平跳出,求该选手在空中的运动时间.解析:(1)运动员从A 到B 点做平抛运动,设刚好能到达B 点,水平方向上h sin 60°=v 0t 竖直方向上h cos 60°=12gt 2计算可得v 0=3102m/sv 0的最小值为3102m/s. (2)若选手以速度v 1=4 m/s 水平跳出,v 1<v 0,选手会落到圆弧上, 水平方向上x =v 1t 1 竖直方向上y =12gt 21根据几何关系x 2+y 2=h 2计算可得t 1=0.6 s.答案:(1)3102m/s (2)0.6 s11. (2017·河南开封模拟)如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN 调节其与水平面所成的倾角.板上一根长为l =0.60 m 的轻细绳,它的一端系住一质量为m 的小球P ,另一端固定在板上的O 点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN 拉直,然后给小球一沿着平板并与轻绳垂直的初速度v 0=3.0 m/s.若小球能保持在板面内做圆周运动,倾角α的值应在什么范围内?(取重力加速度g =10 m/s 2)解析:小球在倾斜平板上运动时受到绳子拉力、平板弹力、重力.在垂直平板方向上合力为0,重力在沿平板方向的分量为mg sin α小球在最高点时,由绳子的拉力和重力沿平板方向的分力的合力提供向心力,有F T +mg sinα=mv 21l①研究小球从释放到最高点的过程,根据动能定理有 -mgl sin α=12mv 21-12mv 20②若恰好能通过最高点,则绳子拉力F T =0③ 联立①②③解得sin α=12,解得α=30°故α的范围为0°≤α≤30°. 答案:0°≤α≤30°。
平抛运动复习题,难度由低到高,内附答案
第一讲平抛运动知识点梳理习题训练一、选择题1、关于平抛运动,下列说法正确的是()A.是匀速运动B.是匀变速运动C.是非匀变速运动D.合力恒定2、对平抛运动,下列说法不正确的是()A.平抛运动是匀变速曲线运动B.做平抛运动的物体,在任何相等的时间内速度的增量都是相等的C.平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动D.落地时间和落地时的速度只与抛出点的高度有关3、关于平抛运动和圆周运动,下列说法正确的是()A.匀速圆周运动是速度不变的运动B.匀速圆周运动是匀变速曲线运动C.平抛运动是匀变速曲线运动D.做平抛运动的物体落地时的速度可能是竖直向下的4、(2017宝鸡模拟)一个物体以初速度v0水平抛出,经过一段时间t后其速度方向与水平方向夹角为45°,若重力加速度为g,则t为A.B.C.D.5、在同一点O抛出的三个物体,做平抛运动的轨迹如图2所示,则三个物体做平抛运动的初速度v A、v B、v C的关系和三个物体做平抛运动的时间t A、t B、t C的关系分别是()A.v A>v B>v C t A>t B>t CB.v A=v B=v C t A=t B=t CC.v A<v B<v C t A>t B>t CD.v A>v B>v C t A<t B<t C6、如图1所示,在同一竖直面内,小球a、b从高度不同的两点,分别以初速度v a和v b沿水平方向抛出,经过时间t a和t b后落到与两出发点水平距离相等的P点.若不计空气阻力,则下列关系式正确的是()A.t a>t b,v a<v bB.t a>t b,v a>v bC.t a<t b,v a<v bD.t a<t b,v a>v b7、(2017陕西黄陵中学质检)如图所示,某同学为了找出平抛运动物体的初速度之间的关系,用一个小球在O点对准前方的一块竖直放置的挡板,O与A在同一高度,小球的水平初速度分别是v1、v2、v3,打在挡板上的位置分别是B、C、D,AB:BC:CD=1:3:5.则v1、v2、v3之间的正确关系是()A.v1:v2:v3=3:2:1B.v1:v2:v3=5:3:1C.v1:v2:v3=6:3:2D.v1:v2:v3=9:4:18、(2016福建质检)如图,将a、b两小球以不同的初速度同时水平抛出,它们均落在水平地面上的P 点,a球抛出时的高度较b球的高,P点到两球起抛点的水平距离相等,不计空气阻力。
高二学考专题11平抛运动与圆周运动组合问题
高二学考专题11平抛运动与圆周运动组合问题考点一平抛运动与直线运动的组合问题1.平抛运动可以分为水平方向的匀速直线运动和竖直方向的自由落体运动,两分运动具有等时性.2.当物体做直线运动时,分析物体受力是解题的关键.正确分析物体受力,求出物体的加速度,然后运用运动学公式确定物体的运动规律.3.平抛运动与直线运动的衔接点的速度是联系两个运动的桥梁,因此解题时要正确分析衔接点速度的大小和方向.★典型例题★如图甲所示,在高h =0.8m的平台上放置一质量为M=1kg的小木块(视为质点),小木块距平台右边缘d =2m。
现给小木块一水平向右的初速度v0,其在平台上运动的v2-x关系如图乙所示。
小木块最终从平台边缘滑出落在距平台右侧水平距离s =0.8m的地面上,g取10m/s2,求:(1)小木块滑出时的速度v;(2)小木块在水平面滑动的时间t;(3)小木块在滑动过程中产生的热量Q。
★针对练习1★如图所示,滑板运动员以速度v0从离地高度为h的平台末端水平飞出,落在水平地面上。
忽略空气阻力,运动员和滑板可视为质点,下列表述正确的是:()A.v0越大,运动员在空中运动时间越长B.B.v0越大,运动员落地时重力的瞬时功率越大C.v0越大,运动员落地时机械能越大D.v0越大,运动员落地时偏离水平水平方向的夹角越大考点二平抛运动与圆周运动的组合问题1.物体的圆周运动主要是竖直面内的圆周运动,通常应用动能定理和牛顿第二定律进行分析,有的题目需要注意物体能否通过圆周的最高点.2.平抛运动与圆周运动的衔接点的速度是解题的关键.★典型例题★如图所示为圆弧形固定光滑轨道,a点切线方向与水平方向夹角53o,b点切线方向水平。
一小球以水平初速度6m/s做平抛运动刚好能沿轨道切线方向进入轨道,已知轨道半径1m ,小球质量1kg 。
(sin53o =0.8,cos53o =0.6,g =10m/s 2)求 (1)小球做平抛运动的飞行时间。
平抛运动和圆周运动典型例题
平抛运动、圆周运动一、 平抛运动1、定义:平抛运动是指物体只在重力作用下,从水平初速度开场的运动。
2、条件:a 、只受重力;b 、初速度与重力垂直.3、运动性质:尽管其速度大小和方向时刻在改变,但其运动的加速度却恒为重力加速度g ,因而平抛运动是一个匀变速曲线运动。
g a =4、研究平抛运动的方法:通常,可以把平抛运动看作为两个分运动的合动动:一个是水平方向〔垂直于恒力方向〕的匀速直线运动,一个是竖直方向〔沿着恒力方向〕的匀加速直线运动。
水平方向和竖直方向的两个分运动既具有独立性,又具有等时性.5、平抛运动的规律①水平速度:v x =v 0,竖直速度:v y =gt 合速度〔实际速度〕的大小:22y x v v v +=物体的合速度v 与x 轴之间的夹角为:tan v gt v v xy ==α ②水平位移:t v x 0=,竖直位移221gt y = 合位移〔实际位移〕的大小:22y x s +=物体的总位移s 与x 轴之间的夹角为:2tan v gt x y ==θ 可见,平抛运动的速度方向与位移方向不一样。
而且θαtan 2tan =而θα2≠轨迹方程:由t v x 0=和221gt y =消去t 得到:222x v g y =。
可见平抛运动的轨迹为抛物线。
6、平抛运动的几个结论①落地时间由竖直方向分运动决定: 由221gt h =得:gh t 2=②水平飞行射程由高度和水平初速度共同决定:ghv t v x 200== ③平抛物体任意时刻瞬时速度v 与平抛初速度v 0夹角θa 的正切值为位移s 与水平位移x 夹角θ正切值的两倍。
④平抛物体任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半。
证明:221tan 20x s s gt v gt =⇒==α ⑤平抛运动中,任意一段时间内速度的变化量Δv =gΔt ,方向恒为竖直向下〔与g 同向〕。
任意一样时间内的Δv 都一样〔包括大小、方向〕,如右图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆周复习2(计算题)
一.必须背写公式(以图为本展开记忆)
1、平抛运动:水平方向匀速直线运动和竖直方向自由落体运动的合运动
水平分运动: 水平位移: x= 水平分速度:v x = 竖直分运动: 竖直位移: y = 竖直分速度:v y =
结论:
由y =221gt 得 t = (下落时间由下落的高度y 决定)
2、匀速圆周运动公式
线速度: V= =
角速度:ω= =
向心加速度:a = =
向心力:F= = =
周期与频率(或转速)T= =
结论: 匀速圆周运动的物体的向心力就是物体
所受的合外力,总是指向圆心
二.思维导学
(一).必须懂得平抛分解
1.一个小球从1.25m 高处被水平抛出,落到地面的位置与抛出点的水平距离为2.5m ,不计空气阻力,g=10m/s 2。
求:
(1)小球在空中运动的时间;
(2)小球被抛出时速度的大小。
2.从地面上方某点,将一小球以10m/s 的初速度沿水平方向抛出,小球经过1s 落地,不计空气阻力,取g =10m/s ²。
试求小球在这过程中的位移和落地速度。
(二).已知中出现角度,则必须画出平抛的位移或速度矢量图
3.在距地面某一高处,将一物体水平抛出,物体飞出的速度为v 0=10m/s ,如果物体落地时速度与水平方向成θ=60°
角,则水平位移是多少?(g 取10m/s 2)
4.如图所示,从倾角为θ的斜面顶点A 将一小球以v 0初速水平抛出,小球落在
斜面上B 点,求:
(1)AB 的长度?
(2)小球落在B 点时的速度为多少?
θ
)
5.如图所示,质量m = 2.0 kg的木块静止在高h = 1.8 m的水平台上,木块距平台右边缘10 m,木块与平台间的动摩擦因数µ= 0.2。
用水平拉力F = 20N拉动木块,当木块运动到水平末端时撤去F。
不计空气阻力,g取10m/s2。
求:
(1)木块离开平台时的速度大小;
(2)木块落地时距平台边缘的水平距离。
(三).必须懂得圆周运动的解题步骤
匀速圆周运动(找圆心,定半径,画轨迹)
①确定研究对象;
②确定圆周轨道,圆心,半径;
③受力分析,弄清向心力的来源;
④根据牛顿第二定律,选用合适的加速度表达式列方程,注意方向。
(1).必须懂得水平面内找向心力
1.如图所示,在水平转盘上有一小木块,随转盘一起转动(木块与转盘间无相对滑动),木块到转轴的距离r=0.2m,圆盘转动的周期T= (s)。
求:
(1)木块的线速度大小;
(2)木块的向心加速度大小。
2.长为L的细线,拴一质量为m的小球,一端固定于O点.让其在水平面内做匀速圆周运动(这种运动通常称为圆锥摆运动),如图.求摆线L与竖直方向的夹角为α时:
3.
(1)线的拉力F;
(2)小球运动的线速度的大小;
(3)小球运动的角速度及周期.
(2).必须懂得竖直面内找向心力
3.如图所示,长度为L=1m的绳,系一小球在竖直平面内做圆周运动,小球的质量为M=0.5kg,小球直径不计,小球通过最低点时的速度大小为v=2m/s,试计算:
(1)小球在最低点的向心加速度;
(2)小球在最低点所受绳子的拉力。
(g 取10m/s 2
)
(3).必须懂得竖直面内的最高点存在临界速度问题
4.轻杆长m L 5.1=,以一端为圆心,在竖直面内做圆周运动,杆另一端固定一个质量Kg m 2.1=的小球,小球通过最高点时速率s m v /0.3=,已知重力加速度为2/10s m g =。
求此时小球对杆的作用力大小及方向。
(四).必须学会圆周与平抛结合的题型
1.如图13所示,半径为R 的半圆槽木块固定在水平地面上,质量为m 的小球以某速度从A 点无摩擦地滚上半圆槽,小球通过最高点B 后落到水平地面上的C 点,已知AC=AB=2R 。
求:
(1)小球在B 点时的速度大小为多少?
(2)小球刚达A 点时对半圆槽木块的压力为多少?
2.质量为m=0.1kg 的可看成质点的小滑块由静止释放,下落h=0.8m 后正好沿切线方向进入半径为R=0.2m 的1/4光滑圆弧。
(g=10m/s2)
(1)求滑块刚进入圆弧C 点时的速度大小,
(2)如果小滑块运动到水平面上与A 接近的B 点时速度为√10m/s ,求滑块对水平面的压力?
(3)设水平面的动摩擦因数为μ=0.2,则小滑块停止运动时距A 多远?
(五).必须学会解平抛的实验题
(1)两个方向
(2)两的匀变速直线运动的推论 C
1.如图所示,在“研究平抛物体运动”的实验中,用一张印有小
方格的纸记录轨迹,小方格的边长l=2.5cm。
若小球在平抛运
动途中的几个位置如图中的a、b、c、d所示,则小球平抛的初
速度的计算式为v o= (用l、g表示),其值是
(取g=10m/s2)。
(素材和资料部分来自网络,供参考。
可复制、编制,期待您的好评与关注)。