模拟电子电路仿真(很全 很好)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

仿真

1.1.1 共射极基本放大电路

按图7.1-1搭建共射极基本放大电路,选择电路菜单电路图选项(Circuit/Schematic Option )中的显示/隐藏(Show/Hide)按钮,设置并显示元件的标号与数值等

1.静态工作点分析

选择分析菜单中的直流工作点分析选项(Analysis/DC Operating Point)(当然,也可以使用仪器库中的数字多用表直接测量)分析结果表明晶体管Q1工作在放大状态。

2.动态分析

用仪器库的函数发生器为电路提供正弦输入信号Vi(幅值为5mV,频率为10kH),用示波器观察到输入,输出波形。由波形图可观察到电路的输入,输出电压信号反相位关系。再一种直接测量电压放大倍数的简便方法是用仪器库中的数字多用表直接测得。

3.参数扫描分析

在图7.1-1所示的共射极基本放大电路中,偏置电阻R1的阻值大小直接决定了静态电流IC的大小,保持输入信号不变,改变R1的阻值,可以观察到输出电压波形的失真情况。选择分析菜单中的参数扫描选项(Analysis/Parameter Sweep Analysis),在参数扫描设置对话框中将扫描元件设为R1,参数为电阻,扫描起始值为100K,终值为900K,扫描方式为线性,步长增量为400K,输出节点5,扫描用于暂态分析。

4.频率响应分析

选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis)在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。

由图分析可得:当共射极基本放大电路输入信号电压VI为幅值5mV的变频电压时,电路输出中频电压幅值约为0.5V,中频电压放大倍数约为-100倍,下限频率(X1)为14.22Hz,上限频率(X2)为25.12MHz,放大器的通频带约为25.12MHz。

由理论分析可得,上述共射极基本放大电路的输入电阻由晶体管的输入电阻rbe限定,输出电阻由集电极电阻R3限定。

1.1.2共集电极基本放大电路(射极输出器)

图7.1-7为一共集电极基本放大电路,用仪器库的函数发生器为电路提供正弦输入信号VI(幅值为1V,频率为10 kHz)采用与共射极基本放大电路相同的分析方法获得电路的静态工作点分析结果。用示波器测得电路的输出,输入电压波形,选用交流频率分析项分析出电路的频率响应曲线及相关参数。

由图所示共集电极基本放大电路的频率响应曲线可求得:电路的上限频率(X2)为4.50GHz,下限频率(X1)为2.73Hz,通频带约为4.50GHz。

1.1.3共基极基本放大电路

图7.1-11为一共基极基本放大电路,用仪器库的函数发生器为电路提供正弦输入信号Vi(幅值为5mV,频率为10kHz),采用与共射极基本放大电路相同的分析方法获得电路的静态工作点分析结果。用示波器测得电路的输出,输入电压波形,选用交流频率分析项分析出电路的频率响应曲线及相关参数。

由图所示共基极基本放大电路的频率响应曲线可求得:电路的上限频率(X2)为27.94MHz,下限频率(X1)为261.01Hz,通频带约为27.94MHz。

1.2 场效应管基本放大电路

1.2.1 共源极放大电路

共源极放大电路如图7.2-1所示,Q1选用三端式增强型N沟道绝缘栅场效应管。按图7.2-1在EWB主界面内搭建电路后,双击Q1,出现三端式增强型N-MOSFET参数设置对话框,选模型(Model) 项,将库元件设置为默认(default) ,理想(ideal) 模式,然后点击对话框右侧编辑(Edit) 按钮,在Sheet 1中将跨导系数(Transconductance coefficient (KP)) 设置为0.001A/V。

分析共源极放大电路可参照7.1节中共射极放大电路的分析过程进行,可根据图7.2-1电路参数和共源极放大器的电压放大倍数表达式求得A V的理论计算值,然后与仿真实测值进行比较。

1.2.2 共漏极放大电路

共漏极放大电路如图7.2-2所示,按图在EWB主界面内搭建电路后,选Q1为理想三端式增强型N沟道绝缘栅场效应管,并将跨导值设置为0.001A/V。电路仿真分析过程可参

见7.1节中共集电极放大电路的分析过程进行。

可根据图7.2-2电路参数和共源极放大器的电压放大倍数表达式求得A的理论计算值,然后与仿真实测值进行比较。

1.2.3共栅极放大电路

共栅极放大电路如图7.2-3所示,按图在EWB主界面内搭建电路后,选Q1为理想三端式增强型N沟道绝缘栅场效应管,并将跨导值设置为0.001A/V。电路仿真分析过程可参见7.1节中共基极放大电路的分析过程进行。

可根据图7.2-2电路参数和共源极放大器的电压放大倍数表达式求得A的理论计算值,然后与仿真实测值进行比较。

1.3场效应管与晶体管组合放大电路

场效应管具有输入阻抗高,噪声小等显著特点,但放大能力较弱(小),而半导体三极管具有较强的放大能力(高)和负载能力。若将场效应管与半导体三极管组合使用,就可大大提高和改善放大电路的某些性能指标,扩展场效应管的应用范围。

图7.3-1是由场效应管共源极放大电路和晶体管共射极放大电路组成的两极组合放大电路,图中三端式增强型绝缘栅场效应管Q1选用理想模型,将跨导gm设置为0.001A/V,晶体管Q2选用N2222A,其电流放大系数为255.9。先队该电路进行静态分析,再进行动态分析,频率特性分析以及关键元件的参数扫描分析等。

1.静态分析。选择分析菜单中的直流工作点分析项,获得电路静态分析结果。

2.动态分析。(1)理论分析。(2)仿真测试分析。用仪器库的函数发生器为电路提

供正弦输入信号(Vi的幅值为5mV,频率为10kHz),用示波器测得电路的输出,输入电压。

再计算出电路的放大倍数。

3.频率特性分析。

4.元件参数扫描分析。

1.4差动放大电路

差动放大电路是模拟集成电路中使用最广泛的单元电路,它几乎是所有集成运放,数据放大器,模拟乘法器,电压比较器等电路的输入级,又几乎完全决定着这些电路的差模输入特性。共模输入特性,输入失调特性和噪声特性。以下仅对晶体管构成的射极耦合差放和恒流源差放进行仿真分析,对用场效应管构成的差放电路可采用相同方法进行分析。

在图7.4-1所示差放电路中,晶体管Q1和Q2的发射极通过开关S1与射极电阻R3和Q3构成的恒流源有选择的连接(通过敲击”K”键,选择连接点9或11),完成射极耦合差放和恒流源差放两种电路的转换.

1.4.1 射极耦合差放仿真分析

按图7.4-1搭建电路,选择晶体管Q1,Q2和Q3均为2N2222A,电流放大系数为200。将开关S1和R3相连,构成射极偶合差放电路。

1.静态分析。选择分析菜单中的直流工作点分析项,获得电路静态分析结果。

2.动态分析。

(1)理论分析。

(2)差模输入仿真测试分析。A。用示波器测量差模电压放大倍数,观察波形相位关系。按单端输入方式(见图7.4-1)用仪器库的函数信号发生器为电路提供正

弦输入信号(Vi的幅值为10mV,频率为1kHz)。用示波器测得电路的两输出端输

出电压波形。B。差模输入频率响应分析。选择分析菜单中的交流频率分析

项(Analysis/AC Frequency Analysis)),在交流频率分析参数设置对话框中设定:

相关文档
最新文档