关于正弦函数和余弦函数的计算公式
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1+sin(a)=(sin(a2)+cos(a2))2
1-sin(a)=(sin(a2)-cos(a2))2
三角恒等式
sin2θ+cos2θ=1;1+tan2θ=sec2θ;1+cot2θ=csc2θ
复角公式
sin(A+B)=sinAcosB+cosAsinB;sin(A–B)=sinAcosB–cosAsinB
tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)
3.和差化积公式
sin(a)+sin(b)=2sin(a+b2)cos(a-b2)
sin(a)?sin(b)=2cos(a+b2)sin(a-b2)
cos(a)+cos(b)=2cos(a+b2)cos(a-b2)
cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)
sin(π+a)=-sin(a)
cos(π+a)=-cos(a)
2.两角和与差的三角函数
sin(a+b)=sin(a)cos(b)+cos(α)sin(b)
cos(a+b)=cos(a)cos(b)-sin(a)sin(b)
sin(a-b)=sin(a)cos(b)-cos(a)sin(b)
cos(a-b)=cos(a)cos(b)+sin(a)sin(b)
1.诱导公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(π2-a)=cos(a)
cos(π2-a)=sin(a)
sin(π2+a)=cos(a)
cos(π2+a)=-sin(a)
sin(π-a)=sin(a)
cos(π-a)=-cos(a)
sin(π+a)=-sin(a)
cos(π+a)=-cos(a)
cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)
4.二倍角公式
sin(2a)=2sin(a)cos(b)
cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)
5.半角公式
sin2(a2)=1-cos(a)2
cos2(a2)=1+cos(a)2
tan(a2)=1-cos(a)sin(a)=sina1+cos(a)
6.万能公式
sin(a)=2tan(a2)1+tan2(a2)
cos(a)=1-tan2(a2)1+tan2(a2)
tan(a)=2tan(a2)1-tan2(a2)
7.其它公式(推导出来的)
a?sin(a)+b?cos(a)=a2+b2sin(a+c)其中tan©=ba
a?sin(a)+b?cos(a)=a2+b2cos(a-c)其中tan©=ab
tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)
tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)
3.和差化积公式
sin(a)+sin(b)=2sin(a+b2)cos(a-b2)
sin(a)?sin(b)=2cos(a+b2)sin(a-b2)
cos(a)+cos(b)=2cos(a+b2)cos(a-b2)
4.二倍角公式
sin(2a)=2sin(a)cos(b)
cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)
5.半角公式
sin2(a2)=1-cos(a)2
cos2(a2)=1+cos(a)2
tan(a2)=1-cos(a)sin(a)=sina1+cos(a)
cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=——————
1-tanα·tanβ
tanα-tanβ
tan(α-β)=——————
1+tanα·tanβ
2tan(α/2)
sinα=——————
1+tan2(α/2)
1-tan2(α/2)
cosα=——————
1+tan2(α/2)
6.万能公式
sin(a)=2tan(a2)1+tan2(a2)
cos(a)=1-tan2(a2)1+tan2(a2)
tan(a)=2tan(a2)1-tan2(a2)
7.其它公式(推导出来的)
a?sin(a)+b?cos(a)=a2+b2sin(a+c)其中tan©=ba
a?sin(a)+b?co源自文库(a)=a2+b2cos(a-c)其中tan©=ab
cos(A+B)=cosAcosB–sinAsinB;cos(A–B)=cosAcosB+sinAsinB
倍角公式
sin2θ=2sinθcosθ
cos2θ=cos2θ–sin2θ=2cos2θ–1=1–2sin2θ
倍角平方
sin2θ=1-cos2θ2;cos2θ=1+cos2θ2
积化和差
2sinAcosB=sin(A+B)+sin(A–B)
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
(其中k∈Z)
两角和与差的三角函数公式万能公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cot(π/2+α)=-tanα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
2tan(α/2)
tanα=——————
1-tan2(α/2)
二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式
sin2α=2sinαcosα
cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
2tanα
tan2α=—————
1-tan2α
sin3α=3sinα-4sin3α
补充微分阶段的公式
(sinx)'=cosx (cosx)'=-sinx
(tanx)'=(secx)^2
(cotx)'=-(cscx)^2
(secx)'=secx*tanxtx
(cscx)'=-cscx*cotx
arctanX)'=(1+^2)^(-1)
artcotX0'=-1/(1+X^2)
PS. X^2的意思是X的平方
2 2
α+βα-β
cosα-cosβ=-2sin—--·sin—-—
2 2 1
sinα·cosβ=-[sin(α+β)+sin(α-β)]21
cosα·sinβ=-[sin(α+β)-sin(α-β)]21
cosα·cosβ=-[cos(α+β)+cos(α-β)]21
sinα·sinβ=--[cos(α+β)-cos(α-β)]2化asinα±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)
2cosAsinB=sin(A+B)–sin(A–B)
2sinAsinB=cos(A–B)–cos(A+B)
2cosAcosB=cos(A–B)+cos(A+B)
三角函数基本公式
sinθ=对边斜边(正弦),
cosθ=邻边斜边(xx),
tanθ=sinθcosθ(正切)
cotθ=cosθsinθ(余切),
诱导公式
sin(-α)=-sinα
cos(-α)=cosαtan(-α)=-tanα
cot(-α)=-cotα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
2.两角和与差的三角函数
sin(a+b)=sin(a)cos(b)+cos(α)sin(b)
cos(a+b)=cos(a)cos(b)-sin(a)sin(b)
sin(a-b)=sin(a)cos(b)-cos(a)sin(b)
cos(a-b)=cos(a)cos(b)+sin(a)sin(b)
tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)
secθ= 1 cosθ(正割),
cscθ= 1 sinθ(余割)
1.诱导公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(π2-a)=cos(a)
cos(π2-a)=sin(a)
sin(π2+a)=cos(a)
cos(π2+a)=-sin(a)
sin(π-a)=sin(a)
cos(π-a)=-cos(a)
cos3α=4cos3α-3cosα
3tanα-tan3α
tan3α=——————
1-3tan2α
三角函数的和差化积公式三角函数的积化和差公式
α+βα-β
sinα+sinβ=2sin—--·cos—-—
2 2
α+βα-β
sinα-sinβ=2cos—--·sin—-—
2 2
α+βα-β
cosα+cosβ=2cos—--·cos—-—
关于正弦函数和
同角三角函数的基本关系式
倒数关系:
商的关系:
平方关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1 sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secαsin2α+cos2α=1
1+tan2α=sec2α
1+cot2α=csc2α
1+sin(a)=(sin(a2)+cos(a2))2
1-sin(a)=(sin(a2)-cos(a2))2
1-sin(a)=(sin(a2)-cos(a2))2
三角恒等式
sin2θ+cos2θ=1;1+tan2θ=sec2θ;1+cot2θ=csc2θ
复角公式
sin(A+B)=sinAcosB+cosAsinB;sin(A–B)=sinAcosB–cosAsinB
tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)
3.和差化积公式
sin(a)+sin(b)=2sin(a+b2)cos(a-b2)
sin(a)?sin(b)=2cos(a+b2)sin(a-b2)
cos(a)+cos(b)=2cos(a+b2)cos(a-b2)
cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)
sin(π+a)=-sin(a)
cos(π+a)=-cos(a)
2.两角和与差的三角函数
sin(a+b)=sin(a)cos(b)+cos(α)sin(b)
cos(a+b)=cos(a)cos(b)-sin(a)sin(b)
sin(a-b)=sin(a)cos(b)-cos(a)sin(b)
cos(a-b)=cos(a)cos(b)+sin(a)sin(b)
1.诱导公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(π2-a)=cos(a)
cos(π2-a)=sin(a)
sin(π2+a)=cos(a)
cos(π2+a)=-sin(a)
sin(π-a)=sin(a)
cos(π-a)=-cos(a)
sin(π+a)=-sin(a)
cos(π+a)=-cos(a)
cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)
4.二倍角公式
sin(2a)=2sin(a)cos(b)
cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)
5.半角公式
sin2(a2)=1-cos(a)2
cos2(a2)=1+cos(a)2
tan(a2)=1-cos(a)sin(a)=sina1+cos(a)
6.万能公式
sin(a)=2tan(a2)1+tan2(a2)
cos(a)=1-tan2(a2)1+tan2(a2)
tan(a)=2tan(a2)1-tan2(a2)
7.其它公式(推导出来的)
a?sin(a)+b?cos(a)=a2+b2sin(a+c)其中tan©=ba
a?sin(a)+b?cos(a)=a2+b2cos(a-c)其中tan©=ab
tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)
tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)
3.和差化积公式
sin(a)+sin(b)=2sin(a+b2)cos(a-b2)
sin(a)?sin(b)=2cos(a+b2)sin(a-b2)
cos(a)+cos(b)=2cos(a+b2)cos(a-b2)
4.二倍角公式
sin(2a)=2sin(a)cos(b)
cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)
5.半角公式
sin2(a2)=1-cos(a)2
cos2(a2)=1+cos(a)2
tan(a2)=1-cos(a)sin(a)=sina1+cos(a)
cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=——————
1-tanα·tanβ
tanα-tanβ
tan(α-β)=——————
1+tanα·tanβ
2tan(α/2)
sinα=——————
1+tan2(α/2)
1-tan2(α/2)
cosα=——————
1+tan2(α/2)
6.万能公式
sin(a)=2tan(a2)1+tan2(a2)
cos(a)=1-tan2(a2)1+tan2(a2)
tan(a)=2tan(a2)1-tan2(a2)
7.其它公式(推导出来的)
a?sin(a)+b?cos(a)=a2+b2sin(a+c)其中tan©=ba
a?sin(a)+b?co源自文库(a)=a2+b2cos(a-c)其中tan©=ab
cos(A+B)=cosAcosB–sinAsinB;cos(A–B)=cosAcosB+sinAsinB
倍角公式
sin2θ=2sinθcosθ
cos2θ=cos2θ–sin2θ=2cos2θ–1=1–2sin2θ
倍角平方
sin2θ=1-cos2θ2;cos2θ=1+cos2θ2
积化和差
2sinAcosB=sin(A+B)+sin(A–B)
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
(其中k∈Z)
两角和与差的三角函数公式万能公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cot(π/2+α)=-tanα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
2tan(α/2)
tanα=——————
1-tan2(α/2)
二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式
sin2α=2sinαcosα
cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
2tanα
tan2α=—————
1-tan2α
sin3α=3sinα-4sin3α
补充微分阶段的公式
(sinx)'=cosx (cosx)'=-sinx
(tanx)'=(secx)^2
(cotx)'=-(cscx)^2
(secx)'=secx*tanxtx
(cscx)'=-cscx*cotx
arctanX)'=(1+^2)^(-1)
artcotX0'=-1/(1+X^2)
PS. X^2的意思是X的平方
2 2
α+βα-β
cosα-cosβ=-2sin—--·sin—-—
2 2 1
sinα·cosβ=-[sin(α+β)+sin(α-β)]21
cosα·sinβ=-[sin(α+β)-sin(α-β)]21
cosα·cosβ=-[cos(α+β)+cos(α-β)]21
sinα·sinβ=--[cos(α+β)-cos(α-β)]2化asinα±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)
2cosAsinB=sin(A+B)–sin(A–B)
2sinAsinB=cos(A–B)–cos(A+B)
2cosAcosB=cos(A–B)+cos(A+B)
三角函数基本公式
sinθ=对边斜边(正弦),
cosθ=邻边斜边(xx),
tanθ=sinθcosθ(正切)
cotθ=cosθsinθ(余切),
诱导公式
sin(-α)=-sinα
cos(-α)=cosαtan(-α)=-tanα
cot(-α)=-cotα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
2.两角和与差的三角函数
sin(a+b)=sin(a)cos(b)+cos(α)sin(b)
cos(a+b)=cos(a)cos(b)-sin(a)sin(b)
sin(a-b)=sin(a)cos(b)-cos(a)sin(b)
cos(a-b)=cos(a)cos(b)+sin(a)sin(b)
tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)
secθ= 1 cosθ(正割),
cscθ= 1 sinθ(余割)
1.诱导公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(π2-a)=cos(a)
cos(π2-a)=sin(a)
sin(π2+a)=cos(a)
cos(π2+a)=-sin(a)
sin(π-a)=sin(a)
cos(π-a)=-cos(a)
cos3α=4cos3α-3cosα
3tanα-tan3α
tan3α=——————
1-3tan2α
三角函数的和差化积公式三角函数的积化和差公式
α+βα-β
sinα+sinβ=2sin—--·cos—-—
2 2
α+βα-β
sinα-sinβ=2cos—--·sin—-—
2 2
α+βα-β
cosα+cosβ=2cos—--·cos—-—
关于正弦函数和
同角三角函数的基本关系式
倒数关系:
商的关系:
平方关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1 sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secαsin2α+cos2α=1
1+tan2α=sec2α
1+cot2α=csc2α
1+sin(a)=(sin(a2)+cos(a2))2
1-sin(a)=(sin(a2)-cos(a2))2