化工热力学总结提纲
化工热力学总结提纲

化工热力学”课程,学习重点及要求(2009年11 月12 日)第二章流体的pVT关系(1)理解气体的非理想性,掌握状态方程的基本选择方法(2)掌握截项virial方程、立方型方程、普遍化关联式的使用(3)熟悉状态方程的混合规则(基本类型)与交互作用参数的使用(简化原则与获得方法),掌握混合物pVT关系的原则求解方法(4)熟悉状态方程的基本选择方法(5)掌握饱和液体体积的计算方法(6)理解学习流体的pVT关系的应用意义第三章流体的热力学性质:焓和熵(1)了解单组分流体的热力学基本关系(2)熟悉Bridgeman表的使用(3)熟悉蒸汽压方程,掌握蒸汽压的计算(4)掌握剩余性质的计算,单组分流体的焓变与熵变的计算(5)掌握水蒸汽表、热力学性质图的使用(6)了解多组分流体的热力学基本关系(7)理解多组分流体的非理想性,掌握混合物与溶液的概念区别(8)掌握理想混合物的概念,熟悉混合性质的基本关系(9)熟悉偏摩尔性质及其与混合物性质关系的分析与计算(10)掌握多组分流体的焓变与熵变的计算第四章能量利用过程与循环(1)掌握系统能量平衡方程的表述方法(2)掌握气体压缩过程与膨胀过程在T-S图和lnp-H图上的分析与计算,以及功量计算方法(3)熟悉简单蒸汽动力循环(Rankine cycle)在T-S图和Inp-H图上的分析与计算(4)熟悉简单蒸汽压缩制冷循环在T-S图和Inp-H图上的分析与计算(5)了解热泵的概念与基本原理2(6)了解深度冷冻与液化的基本原理第五章过程热力学分析(1)了解熵产生以及能量质量不守衡定理(2)熟悉函数的概念,熟悉环境基准态的概念。
(3)了解热量、物质标准、稳定流动体系函数的原则求解方法(4)掌握损失的概念、系统铝平衡方程的表述方法(5)熟悉效率(6)了解分析的基本方法第六章流体的热力学性质:逸度与活度(1)了解多组分流体热力学性质标准态的规定(2)掌握气体和液体纯组分逸度的计算,多组分体系中的组分逸度的计算(3)熟悉超额性质及其与活度系数的关系(4)了解用活度计算混合焓(5)熟悉溶解度参数模型、van larr模型、Margulars模型和Wilson模型的使用(包括模型参数的获取)以及活度系数模型的基本选择方法第七章流体相平衡(1)了解二元体系VLE与LLE相图(2)掌握VLE关系的基本模型(3)掌握VLE问题的计算(4)了解VLE数据的热力学一致性检验方法;(5)了解共沸现象的判别方法(6)了解LLE关系的基本模型第八章化学平衡( 1 )熟悉平衡组成的反应进度表示方法(2)了解反应体系的独立反应数的确定方法(3)掌握化学平衡关系的基本模型(4)掌握均相气相反应计算方法(5)了解液体混合物反应、溶液反应和非均相反应平衡的计算方法3总结提纲第二章流体的pVT关系(1)概念:理解气体,非理想性(相关特性的描述参数:偏心因子、偶极距),状态方程,虚拟临界性质,流体的pVT关系的图形表示(p-V图,T-p图等)(2)原理:对比态原理(3)方法:截项virial方程、RK方程、L-K方程等EOS的选择与计算;混合规则(基本类型)与交互作用参数的使用(简化原则与获得方法);混合物pVT关系的原则求解方法(4)其它:流体的pVT关系的应用意义第三章流体的热力学性质:焓和熵(1)概念:蒸汽压方程;剩余性质;混合物与溶液的概念区别;理想混合物;混合性质;偏摩尔性质;无限稀释偏摩尔性质;热力学性质的标准态规定(2)原理:偏摩尔性质加成关系、Gibbs-Duham方程等(3)方法:熟悉Bridgeman表的使用;蒸汽压、气化焓的计算;单组分流体的焓变与熵变的计算;水蒸汽表、热力学性质图(T-S图、lnp-H图、焓浓图等)的使用;偏摩尔性质与多组分流体性质的3个关系分析(包括结合标准态的分析);利用偏摩尔性质、混合性质计算多组分流体的焓变与熵变(4)其它:获得混合性质的方法第四章能量利用过程与循环(1)概念:流动体系的能量数量与焓(2)原理:能量数量守衡定理(焓守衡定理)(3)方法:稳流系能量平衡分析(包括对象系统的界定和系统边界的能流评价等);气体压缩过程与膨胀过程的数值分析与在T-S图和Inp-H图上的分析和计算,包括膨胀过程的温度效应分析以及功量计算方法;简单蒸汽动力循环(Rankine cycle)的在T-S 图和ln»H图上的分析与计算;简单蒸汽压缩制冷循环在T-S图和Inp-H图上的分析与计算(4)其它:第五章过程热力学分析4(1)概念:熵产生;流动体系的能量质量与勺;勺损失(2)原理:能量质量不守衡定理(〒不守衡定理)(3)方法:稳流系2平衡分析(包括对象系统的界定和系统边界的2流、内部损失的评价等);热量〒的计算;物质标准铝的计算;流体勺的计算;〒效率与〒损失率;〒分析的基本方法(4)其它:第六章流体的热力学性质:逸度与活度(1)概念:逸度(逸度系数);活度(活度系数);理想混合物与Lewis/Ra ndall 规则;逸度与活度的标准态规定;超额性质(2)原理:基于逸度或活度的多组分流体偏摩尔Gibbs函数的模型化(3)方法:逸度的计算(气体纯组分逸度的计算,液体纯组分逸度的计算,多组分体系中的组分逸度的计算);用活度计算混合焓;超额性质及其与活度系数的互推关系;溶解度参数模型、van larr模型、Margulars模型和Wilson模型等ACM的选择与活度系数的计算(包括模型参数的获取)(4)其它:第七章流体相平衡(1)概念:二元体系VLE与LLE相图;VLE条件(2)原理:等温等压条件下,基于Gibbs函数变的零判据所建立的VLE模型( 3) 方法:VLE 模型建立(逸度系数模型,逸度系数与活度系数组合模型,标准态的选择,VLE模型的应用选择与简化等);根据VLE问题(5种典型问题)建立原则求解程序;LLE问题的模型化及原则求解;熟悉共沸现象的判别( 4) 其它:第八章化学平衡( 1 ) 概念:反应进度;化学平衡条件;平衡常数(2)原理:等温等压条件下,基于Gibbs函数变的零判据所建立的化学平衡模型( 3) 方法:反应体系的独立反应数的确定;化学平衡模型建立(逸度系数与活度系数在模型中的运用,标准态的选择,化学平衡模型的应用选择与简化等);根据化学平衡问题建立原则求解程序。
化工热力学复习提纲-2010

化工热力学复习提纲-2010化工热力学复习提纲第二章1.临界点含义及表达式(2-1,2-2)2.立方型方程、普遍化Virial方程(第二、三Virial截断式)的叠代求解摩尔体积、压缩因子(例题2-1);Virial方程B值的普遍化计算(2-39,2-40)。
3.偏心因子定义及表达式,三参数对应态原理。
(2-37),(2-36)4.理想气体模型:(!)理想气体过程变化,如ΔU,ΔH,ΔS,ΔV,Q,W等(2-71,2-72)(2)理想气体通过节流阀过程变化,ΔU,ΔH,ΔS,ΔT 等5.纯物质的P-T,P-V相图(如过热蒸汽、过冷液体)(P5)6.焓、熵的计算式及应用(2-62,2-63),剩余性质的定义;设计计算气体的ΔH,ΔS的状态变化框图(图2-13)。
7. 纯液体ΔH的计算(由等压热容计算)(例题2-10)8. 纯物质逸度及逸度系数的定义,Virial方程第二截断式计算纯物质的逸度系数(2-117)9.纯液体的逸度计算式含义及Virial方程第二截断式计算纯液体的逸度(2-121,及例题2-12)。
第三章1.二元混合物,第二virial系数Bm展开式(3-6)2.偏摩尔性质的定义式及性质(3-22,3-25,3-27),Gibbs-Duhem公式(3-32)3.偏摩尔性质计算(参考例题3-4), 二元溶液偏摩尔体积的计算4.混合物组分逸度、逸度系数的定义式(3-44,3-45,3-46)、组分逸度与混合物逸度、组分逸度系数与混合物逸度系数的关系式(3-51,3-52)。
5. Lewis-Randll规则、Henry定律的适用范围6. 超额性质与混合性质变化的定义及其关系(3-33,3-37,3-83,3-87~3-91)7. 超额吉布斯自由焓与活度系数的关系式及其推导(3-86,3-94)。
8. 理想溶液概念及其混合性质变化(3-64,3-66~3-74)9.由混合物的状态方程推导组分逸度及逸度系数第五章1.封闭体系及稳态流动体系的能量平衡方程表达式及计算(5-4,5-6)2.熵增原理及稳态流动体系的熵平衡式,熵变、熵产与过程可逆性的判断(5-36)3.封闭体系及稳态流动体系的理想功的表达式及计算(换热过程)((5-41,5-44)4.恒温和变温过程热有效能的计算(5-54,5-53)5.稳流体系有效能恒算方程及有效能效率表达式(5-73,5-69)第四章1.相率(自由度)2.汽液平衡关系式及适用范围(表4-1)3.由1111γx P Py s =计算?G 和G E ,由活度系数模型计算参数及活度系数,如Van Laar 活度系数公式(3-103)。
化工热力学总结

化工热力学总结(1)写出多相系统的热力学方程;(2)二组分溶液,若已知一组分的逸度和组分含量,如何求另一组分的逸度? (3)低压下,由气液相平衡关系测得{P ,y ,x ,T },如何由提供的这些数据算出活度系数。
(4)GE> 0,属于正负偏差溶液?为什么?(5)真实溶液在反应器中,经过绝热变化后,系统熵变∆S= - 13000 J ,判断此过程的可能性。
(6)二组分溶液,其超额Gibbs 自由能满足:GE/RT=150-45x1-5x13,求各组分的活度系数r1, r2Gibbs 函数(G 函数) 应用反映真实气体与理想气体性质之差,称之为剩余G 函数。
与逸度或逸度系数的关系:反映真实溶液和理想溶液性质之差,称为过量Gibbs 函数。
与活度或活度系数的关系为:实验数据的热力学一致性检验 相平衡和化学平衡 有效能的综合利用:理想功与有效能也是一种Gibbs 函数。
理想功: 有效能: 第二章 流体的 P-V-T 关系2.1 纯物质的P-V-T 关系 2.2 气体的状态方程 2.3 对比态原理及其应用2.4 真实气体混合物的P-V-T 关系 2.5 液体的P-V-T 性质 理想气体方程TSH G -=RTTS H RT G RR R pf -===ϕln )ln(0ˆ(/)ln()ln ii i j iE f i f x i T p n nG RT n γ≠⎡⎤∂==⎢⎥∂⎣⎦、、0G T p ∆=、恒定id 00()W H T S G T p T =-∆+∆=∆,,X 00000()()(,,)E H H T S S G T p T p =--+-=∆,PV RTZ PVRT===11 在较低压力和较高温度下可用理想气体方程进行计算。
2 为真实气体状态方程计算提供初始值。
3 判断真实气体状态方程的极限情况的正确程度,当 或者 时,任何的状态方程都还原为理想气体方程。
立方型状态方程立方型状态方程可以展开成为 V 的三次方形式。
天大化工热力学期末复习提纲..55页PPT

16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。—Байду номын сангаас拉布 克 70、浪费时间是一桩大罪过。——卢梭
高等化工热力学复习提纲

RT qi xi
G
~ xi
呈直线关系 (3)Van laar方程适用于分子结构差异较大的体系
RT q i x i GE
~ xi
呈直线关系
溶解时,有热量变化 ②由于高分子由聚集态→溶剂中去,混乱度变大,每个分子有许多构象,则 高分子溶液的混合熵比理想溶液要大得多 > 因此有必要对高分子溶液的热力学函数(如混 合熵,混合热,混合自由能)进行修正。 25 二元体系气液平衡P-T相图的特点? 二元体系 相数()至少为1 ���F = N - + 2=4- 自由度最多为3 1)临界点附近的P-T图 对于纯组分,其P-T图可以用两维坐标表示出来
ni ge i i / kT N gie
i
11 在298.15 K和标准压力下,将1 mol O2(g)放在体积为V的容器中,已知电子 基态的ge,0=3,基态能量e,o=0 ,忽略电子激发态项的贡献。O2的核间距 r=1.207×10-10m。计算氧分子的qe、qr、qt
(1)
(2)
(3) qt (
m(O 2 )
2 mkT 3 2 ) V h2
32 103 kg mol-1 5.313 1026 kg 6.023 1023 mol 298.15 K Vm (O 2 ) (0.0224 m3 mol-1 ) 273.15 K 0.02445 m3 mol-1
19 处理非理想溶液的三种主要的溶液模型的特点? 非理想溶液模型大致分为三种情况 1、正规溶液模型; 正规溶液是指溶液中 SE=0或SE≌0 但HE≠0 2、无热溶液模型; 与正规溶液相反,无热溶液模型主要是溶液的HE=0或HE≌0,但SE≠0。 ∴ GE=-TSE 3、基团溶液模型 基团溶液模型是把溶液看成各种基团组成,基于各基团在溶液中的性质加和 所描述的模型。 20 简述Whol的溶液活度系数方程的的特点及其应用范围? ?特点 wohl型方程的应用范围 (1)适用正规溶液模型体系 GE=HE SE=0或SE≌0 (2)Margules方程适用于分子结构相似的体系 E
南京工业大学化工热力学复习大纲

2019/7/31
15
普遍化压缩因子法
H R (H R ) 0 (H R )1 SR (SR)0 (SR)1
RTc RTc
RTc
R
R
R
查图3-2~3-9
②普遍化维里系数法
HR RTc
Pr [B0
Tr
dB0 dTr
(B1
Tr
dB1 )]
dTr
SR R
Pr
– 立方型状态方程由于形式简单,计算方便受到工 程上的重视,特别是SRK和PR由于适用汽液两 相,能用于汽液平衡;
– 多常数方程在使用范围和计算准确性方面有优势;
– 应用时应根据实际情况和方程特点选择。
2019/7/31
6
4、对应态原理:在相同对比温度、对比压力下,任何 气体或液体的对比体积(或压缩因子)是相同的。
–判断体系所处的状态:饱和水、饱和蒸气、 过热水蒸气、过冷水 、湿蒸气(Ml<M<Mg)。
2019/7/31
19
• 如何判断?
过冷水区
• 过热水蒸气:
– 同T下, P<Ps(T) 。
– 同P下, T> Tb
• 过冷水:
– 同T下, P > Ps(T)
– 同P下, T< Tb
• 湿蒸气
– Ml<M<Mg
其它热力学性质。
2019/7/31
10
§3.1 热力学性质间的关系 S , H, U, G是化工分离中最关键的热力学数据,但不易测。
1、热力学基本关系式
dU TdS PdV dH TdS VdP dA SdT PdV dG SdT VdP
化工热力学复习总结

ideal solution
chapter6
GE RT
ln i
Wid ,EX
热力学第二定律
chapter7
相平衡、化学反应平衡
动力循环、制冷循环
教材的结构
此处未考虑到电、磁、核、界面等方面的影响
chapter1
(p,V,T,x)关系
chapter2
热力学基本方程
dG=-SdT+Vdp
chapter6
分子的大小和形状影响因素
✓分子内和分子间的相互作用力 ✓分子的对称性和分子结构的均一性 ✓无定形和结晶区域内大分子的排列方式
➢ Flory-Huggins密堆积晶格模型理论
Gt At H t TSt RT n1 ln 1 n2 ln 2 n12
St Rn1 ln 1 n2 ln 2
➢ 混合物相平衡关系(温度T、压力p、与各相的组成)的确定 ➢ 汽液相平衡计算类型与方法:T,p,x,y相互推算及双重迭代循环计算方
法 ➢ 气液平衡计算 ➢ Gibbs-Duhem方程应用于汽液平衡数据的热力学一致性校验 ➢ 液-液平衡计算
含恒(共)沸物特征:汽液两相组成相等,即xi=yi
工程热力学篇:热力学第一定律 与第二定律及其工程应用
➢ Rankine循环的热力学分析方法,热效率、气耗率的概念与计 算,以及Rankine改进方法。
➢ 逆Carnot循环与蒸汽压缩制冷循环的基本组成,制冷系数和 单位工质循环量的计算;
➢ 热泵的基本概念和在工业生产中的应用;
核心是采用第一定律及其效率(热机效率)对各热力过 程进行分析与评价
若采用第二定律及其效率(热力学效率或有效能效率)进行评 价将更为复杂一些。
➢系统(system)与系统的性质:
化工热力学考试提纲

第一章绪论○ 什么是化工热力学?研究方法,内容是什么?与化工的关系是什么?第二章纯流体的PVT关系○ 通过纯物质的p –V –T 图、p –V 图和p –T 图,了解纯物质的p –V –T 关系。
○ 掌握维里方程的几种形式及维里系数的物理意义。
○ 熟练运用二阶舍项的维里方程进行pVT 计算。
○ 理解立方型状态方程的普遍特点。
○ 重点掌握RK 方程一般形式和迭代形式的使用。
熟练运用RK 方程进行气体的pV T计算。
○ 掌握RKS 和PR 方程。
并能运用RKS 和PR 方程进行纯流体的pVT 计算。
○ 掌握偏心因子的概念。
○ 理解对比态原理的基本概念和简单对比态原理。
○ 熟练掌握三参数的对应状态原理和压缩因子图的使用。
○ 熟练运用普遍化状态方程式解决实际流体的pVT 计算。
第三章单组份流体的热力学性质○ 熟练掌握热力学性质之间的关系。
并能运用热力学基本方程和麦克斯韦关系式进行各种变量的推导。
○ 掌握焓变与熵变的计算方法。
○ 熟练运用状态方程和普遍化关联式计算熵变焓变。
○ 熟悉蒸发焓与蒸发熵。
○ 学会使用热力学性质图表进行纯物质的热力学性质计算。
○ 掌握气体和液体纯组分逸度的计算,多组分体系中的组分逸度的计算。
第4章流体混合物的热力学性质○ 掌握偏摩尔量的概念。
○ 掌握偏摩尔量的计算。
○ 熟练掌握变组分系统的热力学关系式。
○ 掌握Gibbs-Duhem 方程及其应用。
○ 熟悉混合过程性质变化和计算方法。
○ 熟练掌握真实气体理想混合物中组元的逸度、真实气体混合物中组元的逸度、液体混合物中组元的逸度及其逸度系数的定义及其他们的计算。
○ 熟悉纯液体和纯固体的活度。
○ 掌握液体混合物中组元的活度、活度系数的概念和计算方法。
○ 熟练掌握超额性质的概念及其相关计算。
○ 熟悉液体混合物中组元活度系数的测定,了解溶液中溶剂和溶质的活度及其活度系数的测定。
○ 了解活度系数方程,斯格恰-希尔勃兰德方程、弗洛瑞-哈金斯方程、Redlish-Kister经验式、沃尔型方程。
化工热力学知识点框架总结

化工热力学知识点框架总结热力学是一门研究能量转化和能量传递规律的自然科学。
在化工领域,热力学是一门重要的基础学科,它不仅是理论研究的基础,也是工程设计和实践的重要依据。
本文将对化工热力学的相关知识点进行总结,包括热力学基本概念、热力学系统与过程、物态方程、热力学第一定律、热力学第二定律、熵和热力学函数等内容。
1. 热力学基本概念热力学是研究能量转化和能量传递的规律的一门科学,它是人们认识能源转化过程的基础。
热力学基本概念包括系统、边界、环境、状态、过程等。
系统是研究对象的一部分,可以是封闭系统、开放系统或闭合系统;边界是系统与环境之间的分界面;环境是系统外部的一切事物;状态是系统在一定条件下所处的特定状态,可以通过状态方程描述;过程是系统从一个状态变为另一个状态的行为。
2. 热力学系统与过程根据热力学研究对象的不同,系统可以分为孤立系统、封闭系统和开放系统。
孤立系统与外界无能量和物质的交换;封闭系统能与外界进行能量交换但不能与物质交换;开放系统能与外界进行能量和物质的交换。
根据系统的体积和质量的变化,热力学过程可以分为等体过程、等压过程、等温过程和绝热过程。
等体过程中系统的体积不变,等压过程中系统的压强不变,等温过程中系统的温度不变,绝热过程中系统与外界无热交换。
3. 物态方程物态方程描述了气体的状态参数之间的关系,最常用的气体状态方程是理想气体状态方程。
理想气体状态方程描述了理想气体的压强、体积、温度之间的关系,可以表示为P*V=n*R*T,其中P为气体的压强,V为气体的体积,n为气体的物质量,R为气体的特定常数,T为气体的温度。
除了理想气体状态方程,还有范德瓦尔斯方程等描述气体状态的方程。
在实际工程中,通过物态方程可以描述气体在不同条件下的状态参数,为工程设计和生产提供基础数据。
4. 热力学第一定律热力学第一定律是能量守恒定律的表达,在闭合系统中能量不会自发减少或增加。
热力学第一定律可以表达为系统内能的变化等于系统所做的功与系统所吸收的热的代数和。
化工热力学各章总结[1].
![化工热力学各章总结[1].](https://img.taocdn.com/s3/m/4c647d3277232f60ddcca174.png)
⑶掌握蒸汽动力循环流程原理图与T ①流程原理图与T-S图热力计算:②热力计算:各过程的能量关系分析③提高效率的途径⑷掌握制冷循环流程原理图与T ①流程原理图与T-S图热力计算:②热力计算:各过程的能量关系分析③实现更低温度的制冷途径吸收式制冷特点;④吸收式制冷特点;热泵林德循环与克劳德循环的循环与克劳德循环的特点和差异⑸林德循环与克劳德循环的特点和差异EXIT
第七章复习题 1、节流膨胀和等熵膨胀有何不同? 2、画出朗肯循环原理图和T-S图,并分别以过程中的每个设备及整套装置为系统进行热力分析,写出能量方程并对各相应系统进行方程简化处理。
3、循环的特点是什么?写出热效率与制冷系数的定义式。
5、提高蒸气动力循环热效率有哪些方法?在朗肯循环基础上进行改进的循环有哪些循环?它们分别通过采取什么措施来提高热效率或扩大应用范围的?
6、画出单级蒸汽制冷循环原理图和T-S图,并分别以过程中的每个设备及整套装置为系统进行热力分析,写出能量方程并对各相应系统进行方程简化。
7、为达到获得
较低的制冷温度,而能耗不增加的目的可采用什么制冷循环?吸收式制冷有何特点?热泵与制冷有什么区别? 8、林德循环与克劳特循环的特点和差异是什么?。
化工热力学专业知识点总结

化工热力学专业知识点总结一、物质的热力学性质1.热力学状态方程:描述热力学系统状态的方程,可以通过实验数据拟合得到,常见的有理想气体状态方程、范德华方程等。
2.热力学过程:系统经历的状态变化过程,包括等温过程、等容过程、绝热过程等,这些过程可以通过热力学定律进行定量描述和分析。
3.热力学势函数:用来描述系统稳定状态的函数,常见的有焓、内能、吉布斯函数等。
4.相变热力学性质:液相、气相、固相之间的相互转化过程,包括液气平衡、固液平衡等。
5.热力学平衡条件:系统达到热力学平衡的条件,包括热平衡、力学平衡、相平衡等。
二、热力学定律1.热力学第一定律:能量守恒定律,即能量既不会凭空消失,也不会凭空产生,只会在不同形式之间进行转化。
2.热力学第二定律:热不能自发地从低温物体传递到高温物体,这是宇宙中熵增加的基本规律。
3.热力学第三定律:当温度趋近于绝对零度时,系统的熵趋于常数,这是绝对零度不可能实现的热力学定律。
化工热力学不仅包含了上述物质的热力学性质和热力学定律,还涉及到一些实际的应用技术和工程问题。
例如,化工过程中的热力学分析、热力学循环、热能利用、燃烧热力学等内容。
下面我们来重点介绍一些与化工工程实际相关的热力学知识点。
三、热力学循环1.卡诺循环:理想可逆循环过程,由等温膨胀、绝热膨胀、等温压缩和绝热压缩四个过程组成,是热机效率的理论极限。
2.汽轮机循环:以水蒸气为工质的循环,包括理想朗肯循环、实际朗肯循环、再热朗肯循环等。
3.制冷循环:以制冷剂为工质的循环,包括制冷机、空调机、冷冻机等。
四、燃烧热力学1.燃烧过程:燃烧是一种复杂的热力学过程,包括燃烧反应机理、燃料燃烧热值、燃烧平衡等内容。
2.燃烧产物:燃料燃烧的产物包括二氧化碳、水蒸汽、一氧化碳、氨气、硫化物等,这些产物的生成与燃烧条件密切相关。
3.燃烧效率:燃料的利用效率,可以通过燃烧反应焓变来计算。
五、化工热力学应用1.热力学分析:化工反应器设计、炼油装置设计、化工装备热力计算等都需要进行热力学分析。
化工热力学各章总结[1]
![化工热力学各章总结[1]](https://img.taocdn.com/s3/m/d55e3a0cbb68a98271fefaac.png)
第五章总结 1、掌握相律公式及应用 掌握相律公式及应用 相律公式 F=C-π+2 =
dT=0、dP=0 、
(5-5)
2、掌握达到相平衡的条件及相平衡判据 掌握达到相平衡的条件及相平衡判据
(dG )T , P = 0
(5 - 1) µiα = µiβ
∧ ∧
= L = µiπ
∧
(5 - 2)
f iα = f i β = L = f i π
恒温、恒压时∑ xi d M i =0
(
)
5、了解低压下正偏差、负偏差类型的溶液与拉 了解低压下正偏差、负偏差类型的溶液与拉 乌尔定律的偏差情况(P- 图对照) 乌尔定律的偏差情况(P-X图对照)。 的偏差情况(P 6、共沸点处的特点。 共沸点处的特点。
EXIT
第六章总结 1、热力学第一定律 、 1)实质:能量守恒,即能量总量是守恒的 实质: 实质 能量守恒,即能量总量 2)计算 计算 ⑴能量平衡 ①封闭系统 ∆U = Q + W 封闭系统 稳流系统 在不同条件下简化) 系统( ②稳流系统(在不同条件下简化) 1 ∆H + m∆u 2 + mg∆z = Q + Ws 2 ⑵可逆功的计算
(3 − 24 )
EXIT
⑴理想气体的H、S计算 理想气体的H
dH ig = C ig dT p
∆H =∫ d T
ig T1 ig p
T2
(3 - 32)
R dS = dT − dP T P
ig
C ig p
∆S =∫
ig
T2
T1
p2 C d ln T - Rln p1
ig p
(3 − 34)
EXIT
化工热力学复习提纲共29页文档

16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
化工热力学复习提纲4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
化工热力学知识点总结思维导图

化工热力学知识点总结思维导图化工工程是涉及化学反应、热传递、质量转移等许多学科的交叉学科。
在这个复杂的过程中,热力学是一个非常重要的学科,它研究了化学反应、物质转化过程中的能量关系。
热力学在化工工程中有着广泛的应用,涉及到反应过程的热力学性质、热力学分析和计算等方面。
本文将对化工热力学知识点进行总结,并提供一份简洁的思维导图。
第一部分:基本概念1.1 热力学系统定义:热力学所研究的任何物体或物质都称为系统。
分类:封闭系统、开放系统、孤立系统。
1.2 状态量定义:用于描述系统状态的量,如压力、温度、体积、物质的量等。
分类:广延量、强度量、定量量、自由量、参量等。
1.3 热力学过程定义:由一个状态变化到另一个状态的过程称为热力学过程。
分类:可逆过程、不可逆过程、等压过程等。
1.4 热力学第一定律定义:能量守恒定律。
公式:ΔU=Q-W解释:U代表系统内能,Q代表热量,W代表功。
第二部分:热力学计算2.1 热力学平衡定义:系统属性、热力学状态处于平衡状态的条件称为热力学平衡。
条件:熵最大、内能最小。
2.2 热力学计算公式:ΔG=ΔH-TΔS解释:G代表吉泽自由能,H代表焓,S代表熵。
2.3 热力学逆过程定义:系统在平衡状态下,由外界施加的微小变化。
公式:dS/dt=Q/T第三部分:化学反应3.1 化学反应热力学性质定义:化学反应在热力学上可以由焓和熵来描述。
公式:ΔH=ΔHp-ΔHr解释:Hp代表生成热,Hr代表反应热。
3.2 变温变压等热力学性质计算公式:(ΔG/ΔT)p=ΔH/ΔT-V(ΔS/ΔT)(ΔG/ΔP)p=V(ΔS/ΔP)-ΔV/ΔP解释:ΔG代表自由能变化量,ΔH代表焓变化量,ΔS代表熵变化量,ΔV代表体积变化量。
第四部分:区域综合4.1 热力学循环定义:通过吸收和放出热量,沿固定的轨迹完成气态、液态和固态之间的相互转换的过程。
条件:热机循环和制冷循环。
4.2 活动热力学定义:在非平衡状态下,化学势是描述物质转移的最适宜量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
“化工热力学”课程,学习重点及要求
(2009年11月12日)
第二章流体的pVT关系
(1)理解气体的非理想性,掌握状态方程的基本选择方法
(2)掌握截项virial方程、立方型方程、普遍化关联式的使用
(3)熟悉状态方程的混合规则(基本类型)与交互作用参数的使用(简化原则与
获得方法),掌握混合物pVT 关系的原则求解方法
(4)熟悉状态方程的基本选择方法
(5)掌握饱和液体体积的计算方法
(6)理解学习流体的pVT 关系的应用意义
第三章流体的热力学性质:焓和熵
(1)了解单组分流体的热力学基本关系
(2)熟悉Bridgeman表的使用
(3)熟悉蒸汽压方程,掌握蒸汽压的计算
(4)掌握剩余性质的计算,单组分流体的焓变与熵变的计算
(5)掌握水蒸汽表、热力学性质图的使用
(6)了解多组分流体的热力学基本关系
(7)理解多组分流体的非理想性,掌握混合物与溶液的概念区别
(8)掌握理想混合物的概念,熟悉混合性质的基本关系
(9)熟悉偏摩尔性质及其与混合物性质关系的分析与计算
(10)掌握多组分流体的焓变与熵变的计算
第四章能量利用过程与循环
(1)掌握系统能量平衡方程的表述方法
(2)掌握气体压缩过程与膨胀过程在T-S图和ln p-H图上的分析与计算,以及功量
计算方法
(3)熟悉简单蒸汽动力循环(Rankine cycle)在T-S 图和ln p-H图上的分析与计算
(4)熟悉简单蒸汽压缩制冷循环在T-S 图和ln p-H图上的分析与计算
(5)了解热泵的概念与基本原理
2
(6)了解深度冷冻与液化的基本原理
第五章过程热力学分析
(1)了解熵产生以及能量质量不守衡定理
(2)熟悉函数的概念,熟悉环境基准态的概念。
(3)了解热量、物质标准、稳定流动体系函数的原则求解方法
(4)掌握损失的概念、系统 平衡方程的表述方法
(5)熟悉效率
(6)了解分析的基本方法
第六章流体的热力学性质:逸度与活度
(1)了解多组分流体热力学性质标准态的规定
(2)掌握气体和液体纯组分逸度的计算,多组分体系中的组分逸度的计算(3)熟悉超额性质及其与活度系数的关系
(4)了解用活度计算混合焓
(5)熟悉溶解度参数模型、van larr模型、Margulars模型和Wilson模型的使用(包括模型参数的获取)以及活度系数模型的基本选择方法
第七章流体相平衡
(1)了解二元体系VLE与LLE相图
(2)掌握VLE关系的基本模型
(3)掌握VLE问题的计算
(4)了解VLE数据的热力学一致性检验方法;
(5)了解共沸现象的判别方法
(6)了解LLE关系的基本模型
第八章化学平衡
(1)熟悉平衡组成的反应进度表示方法
(2)了解反应体系的独立反应数的确定方法
(3)掌握化学平衡关系的基本模型
(4)掌握均相气相反应计算方法
(5)了解液体混合物反应、溶液反应和非均相反应平衡的计算方法
3
总结提纲
第二章流体的pVT关系
(1)概念:理解气体,非理想性(相关特性的描述参数:偏心因子、偶极距),状
态方程,虚拟临界性质,流体的pVT关系的图形表示(p-V图,T-p图等)
(2)原理:对比态原理
(3)方法:截项virial方程、RK方程、L-K方程等EOS的选择与计算;混合规则(基
本类型)与交互作用参数的使用(简化原则与获得方法);混合物pVT关系的原则求解方
法
(4)其它:流体的pVT关系的应用意义
第三章流体的热力学性质:焓和熵
(1)概念:蒸汽压方程;剩余性质;混合物与溶液的概念区别;理想混合物;混
合性质;偏摩尔性质;无限稀释偏摩尔性质;热力学性质的标准态规定
(2)原理:偏摩尔性质加成关系、Gibbs-Duham方程等
(3)方法:熟悉Bridgeman表的使用;蒸汽压、气化焓的计算;单组分流体的焓变
与熵变的计算;水蒸汽表、热力学性质图(T-S图、ln p-H图、焓浓图等)的使用;偏摩
尔性质与多组分流体性质的3个关系分析(包括结合标准态的分析);利用偏摩尔性质、
混合性质计算多组分流体的焓变与熵变
(4)其它:获得混合性质的方法
第四章能量利用过程与循环
(1)概念:流动体系的能量数量与焓
(2)原理:能量数量守衡定理(焓守衡定理)
(3)方法:稳流系能量平衡分析(包括对象系统的界定和系统边界的能流评价等);
气体压缩过程与膨胀过程的数值分析与在T-S图和ln p-H图上的分析和计算,包括膨胀过
程的温度效应分析以及功量计算方法;简单蒸汽动力循环(Rankine cycle)的在T-S 图
和ln p-H图上的分析与计算;简单蒸汽压缩制冷循环在T-S图和ln p-H图上的分析与计算
(4)其它:
第五章过程热力学分析
4
(1)概念:熵产生;流动体系的能量质量与 ; 损失
(2)原理:能量质量不守衡定理( 不守衡定理)
(3)方法:稳流系 平衡分析(包括对象系统的界定和系统边界的 流、内部
损失的评价等);热量 的计算;物质标准 的计算;流体 的计算; 效率与 损失
率; 分析的基本方法
(4)其它:
第六章流体的热力学性质:逸度与活度
(1)概念:逸度(逸度系数);活度(活度系数);理想混合物与Lewis/Randall 规则;
逸度与活度的标准态规定;超额性质
(2)原理:基于逸度或活度的多组分流体偏摩尔Gibbs函数的模型化
(3)方法:逸度的计算(气体纯组分逸度的计算,液体纯组分逸度的计算,多组
分体系中的组分逸度的计算);用活度计算混合焓;超额性质及其与活度系数的互推关
系;溶解度参数模型、van larr模型、Margulars模型和Wilson模型等ACM的选择与活度
系数的计算(包括模型参数的获取)
(4)其它:
第七章流体相平衡
(1)概念:二元体系VLE与LLE相图;VLE条件
(2)原理:等温等压条件下,基于Gibbs函数变的零判据所建立的VLE模型(3)方法:VLE模型建立(逸度系数模型,逸度系数与活度系数组合模型,标准
态的选择,VLE模型的应用选择与简化等);根据VLE问题(5种典型问题)建立原则求
解程序;LLE问题的模型化及原则求解;熟悉共沸现象的判别
(4)其它:
第八章化学平衡
(1)概念:反应进度;化学平衡条件;平衡常数
(2)原理:等温等压条件下,基于Gibbs函数变的零判据所建立的化学平衡模型
(3)方法:反应体系的独立反应数的确定;化学平衡模型建立(逸度系数与活度
系数在模型中的运用,标准态的选择,化学平衡模型的应用选择与简化等);根据化学
平衡问题建立原则求解程序。