辽宁省盘锦市2020年中考数学试卷解析版

合集下载

辽宁省盘锦市2019-2020学年中考第二次质量检测数学试题含解析

辽宁省盘锦市2019-2020学年中考第二次质量检测数学试题含解析

辽宁省盘锦市2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字6、7、8、1.若转动转盘一次,转盘停止后(当指针恰好指在分界线上时,不记,重转),指针所指区域的数字是奇数的概率为( )A .B .C .D .2.用加减法解方程组437651x y x y +=⎧⎨-=-⎩①②时,若要求消去y ,则应( ) A .32⨯+⨯①② B .3-2⨯⨯①② C .53⨯+⨯①② D .5-3⨯⨯①②3.如图所示的几何体,它的左视图是( )A .B .C .D .4.下列四个数表示在数轴上,它们对应的点中,离原点最远的是( )A .﹣2B .﹣1C .0D .1 5.小明解方程121x x x--=的过程如下,他的解答过程中从第( )步开始出现错误. 解:去分母,得1﹣(x ﹣2)=1①去括号,得1﹣x+2=1②合并同类项,得﹣x+3=1③移项,得﹣x =﹣2④系数化为1,得x =2⑤A .①B .②C .③D .④6.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( )A .3.386×108B .0.3386×109C .33.86×107D .3.386×1097.如图,AB 为⊙O 的直径,C 为⊙O 上的一动点(不与A 、B 重合),CD ⊥AB 于D ,∠OCD 的平分线交⊙O 于P ,则当C 在⊙O 上运动时,点P 的位置( )A .随点C 的运动而变化B .不变C .在使PA=OA 的劣弧上D .无法确定8.如图,AB//CD ,130∠=o ,则2∠的大小是( )A .30oB .120oC .130oD .150o9.如图所示的几何体的俯视图是( )A .B .C .D .10.2018年春运,全国旅客发送量达29.8亿人次,用科学记数法表示29.8亿,正确的是() A .29.8×109 B .2.98×109 C .2.98×1010 D .0.298×101011.右图是由四个小正方体叠成的一个立体图形,那么它的俯视图是( )A .B .C .D .12.已知m =12n =12223m n mn +-的值为 ( )A .±3B .3C .5D .9二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一名模型赛车手遥控一辆赛车,先前进1m ,然后,原地逆时针方向旋转角a(0°<α<180°).被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为14.如图是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是_______.15.如图,在四个小正方体搭成的几何体中,每个小正方体的棱长都是1,则该几何体的三视图的面积之和是_____.16.在平面直角坐标系中,抛物线y=x 2+x+2上有一动点P ,直线y=﹣x ﹣2上有一动线段AB ,当P 点坐标为_____时,△PAB 的面积最小.17.如图,直线(0)y kx k =>交O e 于点A ,B ,O e 与x 轴负半轴,y 轴正半轴分别交于点D ,E ,AD ,BE 的延长线相交于点C ,则:CB CD 的值是_________.18.如图,E 是▱ABCD 的边AD 上一点,AE=ED ,CE 与BD 相交于点F ,BD=10,那么DF=__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为了了解初一年级学生每学期参加综合实践活动的情况,某区教育行政部门随机抽样调查了部分初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:(I )本次随机抽样调查的学生人数为 ,图①中的m 的值为 ;(II )求本次抽样调查获取的样本数据的众数、中位数和平均数;(III )若该区初一年级共有学生2500人,请估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生人数.20.(6分)已知关于x 的一元二次方程(3)(2)(1)x x p p --=+.试证明:无论p 取何值此方程总有两个实数根;若原方程的两根1x ,2x 满足222121231x x x x p +-=+,求p 的值.21.(6分)如图所示,在长和宽分别是a 、b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用a ,b ,x 表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.22.(8分)如图,AB 为⊙O 直径,C 为⊙O 上一点,点D 是»BC的中点,DE ⊥AC 于E ,DF ⊥AB 于F . (1)判断DE 与⊙O 的位置关系,并证明你的结论;(2)若OF=4,求AC 的长度.23.(8分)如图,在矩形ABCD 中,AB═2,3P 是BC 边上的一点,且BP=2CP . (1)用尺规在图①中作出CD 边上的中点E ,连接AE 、BE (保留作图痕迹,不写作法);(2)如图②,在(1)的条体下,判断EB是否平分∠AEC,并说明理由;(3)如图③,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,△PFB 能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)24.(10分)如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(m,n)(m<0,n>0),E点在边BC上,F点在边OA上.将矩形OABC沿EF折叠,点B正好与点O重合,双曲线过点E.(1) 若m=-8,n =4,直接写出E、F的坐标;(2) 若直线EF的解析式为,求k的值;(3) 若双曲线过EF的中点,直接写出tan∠EFO的值.25.(10分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.26.(12分)先化简代数式222x x11x x x2x1-⎛⎫-÷⎪+++⎝⎭,再从12x-≤≤范围内选取一个合适的整数作为x的值代入求值。

盘锦市2020中考数学经典试题

盘锦市2020中考数学经典试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.关于反比例函数4y x=-,下列说法正确的是( ) A .函数图像经过点(2,2);B .函数图像位于第一、三象限;C .当0x >时,函数值y 随着x 的增大而增大;D .当1x >时,4y <-. 2.以坐标原点为圆心,以2个单位为半径画⊙O ,下面的点中,在⊙O 上的是( ) A .(1,1)B .(2,2)C .(1,3)D .(1,2)3.-4的绝对值是( ) A .4B .14C .-4D .14-4.如图,在▱ABCD 中,AC ,BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD 于点F ,已知S △AEF =4,则下列结论:①12AF FD =;②S △BCE =36;③S △ABE =12;④△AEF ~△ACD ,其中一定正确的是( )A .①②③④B .①④C .②③④D .①②③5.若ab <0,则正比例函数y=ax 与反比例函数y=bx在同一坐标系中的大致图象可能是( ) A . B . C . D .6.△ABC 在正方形网格中的位置如图所示,则cosB 的值为( )A .5 B .25C .12D .27.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h 与时间t 之间的关系的图象是( )A .B .C .D.( )8.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是C.∠BAC=∠DAC D.∠B=∠D=90°9.已知抛物线y=x2+3向左平移2个单位,那么平移后的抛物线表达式是()A.y=(x+2)2+3 B.y=(x﹣2)2+3 C.y=x2+1 D.y=x2+510.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上,则下面所列方程正确的是()种植草坪,使草坪的面积为570m1.若设道路的宽为xmC.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=570二、填空题(本题包括8个小题)11.中国古代的数学专著《九章算术》有方程组问题“五只雀,六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重.”设每只雀、燕的重量各为x两,y两,则根据题意,可得方程组为___.12.假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表:价格/(元/kg)12 10 8 合计/kg小菲购买的数量/kg 2 2 2 6小琳购买的数量/kg 1 2 3 6从平均价格看,谁买得比较划算?()A.一样划算B.小菲划算C.小琳划算D.无法比较13.分解因式:3m2﹣6mn+3n2=_____.14.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是_____cm.15.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为_____.16.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=_____.17.如图,有一个横截面边缘为抛物线的水泥门洞,门洞内的地面宽度为8m,两侧离地面4m高处各有一盏灯,两灯间的水平距离为6m,则这个门洞的高度为_______m.(精确到0.1m)18.函数32xyx=-中,自变量x的取值范围是______三、解答题(本题包括8个小题)19.(6分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.m= %,这次共抽取名学生进行调查;并补全条形图;在这次抽样调查中,采用哪种上学方式的人数最多?如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?20.(6分)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.求证:△BDE≌△BCE;试判断四边形ABED的形状,并说明理由.21.(6分)如图,在平面直角坐标系xOy 中,一次函数y =kx+b(k≠0)的图象与反比例函数y =nx(n≠0)的图象交于第二、四象限内的A 、B 两点,与x 轴交于点C ,点B 坐标为(m ,﹣1),AD ⊥x 轴,且AD =3,tan ∠AOD =32.求该反比例函数和一次函数的解析式;求△AOB 的面积;点E 是x 轴上一点,且△AOE 是等腰三角形,请直接写出所有符合条件的E 点的坐标.22.(8分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y (米)与登山时间x (分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:甲登山上升的速度是每分钟 米,乙在A 地时距地面的高度b 为 米.若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y (米)与登山时间x (分)之间的函数关系式.登山多长时间时,甲、乙两人距地面的高度差为50米?23.(8分)图1是一商场的推拉门,已知门的宽度2AD =米,且两扇门的大小相同(即AB CD =),将左边的门11ABB A 绕门轴1AA 向里面旋转37︒,将右边的门11CDD C 绕门轴1DD 向外面旋转45︒,其示意图如图2,求此时B 与C 之间的距离(结果保留一位小数).(参考数据:sin370.6︒≈,cos370.8︒≈,2 1.4≈)24.(10分)甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.求从袋中随机摸出一球,标号是1的概率;从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.25.(10分)在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D 处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.26.(12分)新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:降价8%,另外每套房赠送a元装修基金;降价10%,没有其他赠送.请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数表达式;老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】【分析】直接利用反比例函数的性质分别分析得出答案.【详解】A、关于反比例函数y=-4x,函数图象经过点(2,-2),故此选项错误;B、关于反比例函数y=-4x,函数图象位于第二、四象限,故此选项错误;C、关于反比例函数y=-4x,当x>0时,函数值y随着x的增大而增大,故此选项正确;D、关于反比例函数y=-4x,当x>1时,y>-4,故此选项错误;故选C.【点睛】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键.2.B【解析】【分析】根据点到圆心的距离和半径的数量关系即可判定点与圆的位置关系.【详解】A选项,(1,1)<2,因此点在圆内,B选项) 到坐标原点的距离为2=2,因此点在圆上,C选项(1,3) >2,因此点在圆外D选项(1) 因此点在圆内,故选B.【点睛】本题主要考查点与圆的位置关系,解决本题的关键是要熟练掌握点与圆的位置关系.3.A【解析】【分析】根据绝对值的概念计算即可.(绝对值是指一个数在坐标轴上所对应点到原点的距离叫做这个数的绝对值.)【详解】根据绝对值的概念可得-4的绝对值为4.【点睛】错因分析:容易题.选错的原因是对实数的相关概念没有掌握,与倒数、相反数的概念混淆.4.D【解析】∵在▱ABCD 中,AO=12AC , ∵点E 是OA 的中点, ∴AE=13CE , ∵AD ∥BC , ∴△AFE ∽△CBE , ∴AF AE BC CE ==13, ∵AD=BC ,∴AF=13AD , ∴12AF FD =;故①正确; ∵S △AEF =4,AEF BCESS=(AF BC )2=19, ∴S △BCE =36;故②正确; ∵EF AE BE CE = =13, ∴AEF ABES S=13, ∴S △ABE =12,故③正确; ∵BF 不平行于CD ,∴△AEF 与△ADC 只有一个角相等,∴△AEF 与△ACD 不一定相似,故④错误,故选D . 5.D 【解析】 【分析】根据ab <0及正比例函数与反比例函数图象的特点,可以从a >0,b <0和a <0,b >0两方面分类讨论得出答案. 【详解】 解:∵ab <0, ∴分两种情况:(1)当a >0,b <0时,正比例函数y=ax 数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a <0,b >0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选故选D【点睛】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.6.A【解析】【详解】解:在直角△ABD中,BD=2,AD=4,则AB=22222425BD AD+=+=,则cosB=525BDAB==.故选A.7.C【解析】【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。

辽宁省盘锦市2019-2020学年中考数学第四次调研试卷含解析

辽宁省盘锦市2019-2020学年中考数学第四次调研试卷含解析

辽宁省盘锦市2019-2020学年中考数学第四次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,是中心对称图形,但不是轴对称图形的是( )A .B .C .D .2.若分式方程1x a a x -=+无解,则a 的值为( ) A .0 B .-1 C .0或-1 D .1或-13.下列几何体中三视图完全相同的是( )A .B .C .D .4.如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA 分别在x 轴、y 轴的正半轴上,反比例函数k y x=(x >0)与AB 相交于点D ,与BC 相交于点E ,若BD=3AD ,且△ODE 的面积是9,则k 的值是( )A .92B .74C .245D .125.若2<2a -<3,则a 的值可以是( )A .﹣7B .163C .132D .126.如图所示,某公司有三个住宅区,A 、B 、C 各区分别住有职工30人,15人,10人,且这三点在一条大道上(A ,B ,C 三点共线),已知AB =100米,BC =200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( )A .点AB .点BC .A ,B 之间D .B ,C 之间7.如图,⊙O 的直径AB=2,C 是弧AB 的中点,AE ,BE 分别平分∠BAC 和∠ABC ,以E 为圆心,AE 为半径作扇形EAB ,π取3,则阴影部分的面积为( )A .1324﹣4B .72﹣4C .6﹣524 D .3252- 8.如图,在⊙O 中,弦AB=CD ,AB ⊥CD 于点E ,已知CE•ED=3,BE=1,则⊙O 的直径是( )A .2B .5C .25D .59.如图,在正三角形ABC 中,D,E,F 分别是BC,AC,AB 上的点,DE ⊥AC,EF ⊥AB,FD ⊥BC ,则△DEF 的面积与△ABC 的面积之比等于( )A .1∶3B .2∶3C .3∶2D .3∶310.如图: 在ABC ∆中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若5CM =,则22CE CF +等于( )A .75B .100C .120D .12511.如图,在已知的△ ABC 中,按以下步骤作图:①分别以B 、C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 、N ;②作直线MN 交AB 于点D ,连接CD ,则下列结论正确的是( )A .CD+DB=AB B .CD+AD=ABC .CD+AC=ABD .AD+AC=AB12.下列运算正确的是( )A .a 2•a 3=a 6B .a 3+a 2=a 5C .(a 2)4=a 8D .a 3﹣a 2=a二、填空题:(本大题共6个小题,每小题4分,共24分.)13.平面直角坐标系中一点P (m ﹣3,1﹣2m )在第三象限,则m 的取值范围是_____.14.如图,反比例函数y=k x (x >0)的图象与矩形AOBC 的两边AC ,BC 边相交于E ,F ,已知OA=3,OB=4,△ECF 的面积为83,则k 的值为_____.15.若代数式315x -的值不小于代数式156x -的值,则x 的取值范围是_____. 16.因式分解:3222x x y xy +=﹣__________.17.若y=334x x -+-+,则x+y= .18.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)许昌芙蓉湖位于许昌市水系建设总体规划中部,上游接纳清泥河来水,下游为鹿鸣湖等水系供水,承担着承上启下的重要作用,是利用有限的水资源、形成良好的水生态环境打造生态宜居城市的重要部分.某校课外兴趣小组想测量位于芙蓉湖两端的A ,B 两点之间的距离他沿着与直线AB 平行的道路EF 行走,走到点C 处,测得∠ACF=45°,再向前走300米到点D 处,测得∠BDF=60°.若直线AB 与EF 之间的距离为200米,求A ,B 两点之间的距离(结果保留一位小数)20.(6分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.请根据所给信息,解答以下问题: 表中a=___ ;b=____ 请计算扇形统计图中B组对应扇形的圆心角的度数; 已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率. 21.(6分)海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.22.(8分)三辆汽车经过某收费站下高速时,在2个收费通道A,B中,可随机选择其中的一个通过.(1)三辆汽车经过此收费站时,都选择A通道通过的概率是;(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率.23.(8分)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲,乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可贏利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)24.(10分)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?25.(10分)已知抛物线y=x2+bx+c(b,c是常数)与x轴相交于A,B两点(A在B的左侧),与y轴交于点C .(1)当A (﹣1,0),C (0,﹣3)时,求抛物线的解析式和顶点坐标;(2)P (m ,t )为抛物线上的一个动点.①当点P 关于原点的对称点P′落在直线BC 上时,求m 的值;②当点P 关于原点的对称点P′落在第一象限内,P′A 2取得最小值时,求m 的值及这个最小值.26.(12分)计算:131|13|2sin 60(2016)83π-︒︒⎛⎫+--+-- ⎪⎝⎭.先化简,再求值:2344111x x x x x ++⎛⎫-+÷ ⎪++⎝⎭,其中22x =-. 27.(12分)如图,抛物线2322y ax x =--(a≠0)的图象与x 轴交于A 、B 两点,与y 轴交于C 点,已知B 点坐标为(4,0).(1)求抛物线的解析式; (2)试探究△ABC 的外接圆的圆心位置,并求出圆心坐标;(3)若点M 是线段BC 下方的抛物线上一点,求△MBC 的面积的最大值,并求出此时M 点的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.详解:A 、此图形是中心对称图形,不是轴对称图形,故此选项正确;B 、此图形不是中心对称图形,是轴对称图形,故此选项错误;C 、此图形是中心对称图形,也是轴对称图形,故此选项错误;D 、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选A .点睛:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴. 2.D【解析】试题分析:在方程两边同乘(x +1)得:x -a =a(x +1),整理得:x(1-a)=2a ,当1-a =0时,即a =1,整式方程无解,当x +1=0,即x =-1时,分式方程无解,把x =-1代入x(1-a)=2a 得:-(1-a)=2a ,解得:a =-1,故选D .点睛:本题考查了分式方程的解,解决本题的关键是熟记分式方程无解的条件.3.A【解析】【分析】找到从物体正面、左面和上面看得到的图形全等的几何体即可.【详解】解:A 、球的三视图完全相同,都是圆,正确;B 、圆柱的俯视图与主视图和左视图不同,错误;C 、圆锥的俯视图与主视图和左视图不同,错误;D 、四棱锥的俯视图与主视图和左视图不同,错误;故选A .【点睛】考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.4.C【解析】【分析】设B 点的坐标为(a ,b ),由BD=3AD ,得D (4a ,b ),根据反比例函数定义求出关键点坐标,根据S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE = 9求出k.【详解】∵四边形OCBA 是矩形,∴AB=OC ,OA=BC ,设B 点的坐标为(a ,b ),∵BD=3AD ,∴D (4a ,b ), ∵点D ,E 在反比例函数的图象上, ∴4ab =k , ∴E (a , k a ), ∵S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE =ab-12•4ab -12•4ab -12•34a •(b-k a )=9, ∴k=245, 故选:C【点睛】考核知识点:反比例函数系数k 的几何意义. 结合图形,分析图形面积关系是关键.5.C【解析】【分析】根据已知条件得到4<a-2<9,由此求得a 的取值范围,易得符合条件的选项.【详解】解:∵2<3,∴4<a-2<9,∴6<a <1.又a-2≥0,即a≥2.∴a 的取值范围是6<a <1.观察选项,只有选项C 符合题意.故选C .【点睛】考查了估算无理数的大小,估算无理数大小要用夹逼法.6.A【解析】【分析】此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.【详解】解:①以点A为停靠点,则所有人的路程的和=15×100+10×300=1(米),②以点B为停靠点,则所有人的路程的和=30×100+10×200=5000(米),③以点C为停靠点,则所有人的路程的和=30×300+15×200=12000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<100),则所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=1+5m>1,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<200),则总路程为30(100+n)+15n+10(200﹣n)=5000+35n>1.∴该停靠点的位置应设在点A;故选A.【点睛】此题为数学知识的应用,考查知识点为两点之间线段最短.7.A【解析】∵O的直径AB=2,∴∠C=90°,∵C是弧AB的中点,∴»»AC BC,∴AC=BC,∴∠CAB=∠CBA=45°,∵AE,BE分别平分∠BAC和∠ABC,∴∠EAB=∠EBA=22.5°,∴∠AEB=180°−12(∠BAC+∠CBA)=135°,连接EO,∵∠EAB=∠EBA,∴EA=EB,∵OA=OB,∴EO ⊥AB ,∴EO 为Rt △ABC 内切圆半径,∴S △ABC =12(AB+AC+BC)⋅EO=12AC ⋅BC ,∴−1,∴AE 2=AO 2+EO 2=12−1)2,∴扇形EAB 的面积=135(4360π-=9(24-,△ABE 的面积=12AB ⋅−1,∴弓形AB 的面积=扇形EAB 的面积−△ABE 的面积=224-,∴阴影部分的面积=12O 的面积−弓形AB 的面积=32−4, 故选:A.8.C【解析】【分析】 作OH ⊥AB 于H ,OG ⊥CD 于G ,连接OA ,根据相交弦定理求出EA ,根据题意求出CD ,根据垂径定理、勾股定理计算即可.【详解】解:作OH ⊥AB 于H ,OG ⊥CD 于G ,连接OA ,由相交弦定理得,CE•ED=EA•BE ,即EA×1=3, 解得,AE=3,∴AB=4,∵OH ⊥AB ,∴AH=HB=2,∵AB=CD ,CE•ED=3,∴CD=4,∵OG ⊥CD ,∴EG=1,由题意得,四边形HEGO 是矩形,∴OH=EG=1,由勾股定理得,=∴⊙O的直径为25,故选C.【点睛】此题考查了相交弦定理、垂径定理、勾股定理、矩形的判定与性质;根据图形作出相应的辅助线是解本题的关键.9.A【解析】∵DE⊥AC,EF⊥AB,FD⊥BC,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE,同理可得:∠B=∠DFE,∠A=DEF,∴△DEF∽△CAB,∴△DEF与△ABC的面积之比=2 DEAC⎛⎫⎪⎝⎭,又∵△ABC为正三角形,∴∠B=∠C=∠A=60°∴△EFD是等边三角形,∴EF=DE=DF,又∵DE⊥AC,EF⊥AB,FD⊥BC,∴△AEF≌△CDE≌△BFD,∴BF=AE=CD,AF=BD=EC,在Rt△DEC中,DE=DC×sin∠C=32DC,EC=cos∠C×DC=12DC,又∵DC+BD=BC=AC=32 DC,∴33232DCDEAC DC==,∴△DEF与△ABC的面积之比等于:221:3 DEAC⎛⎫==⎪⎝⎭⎝⎭故选A.点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边DEAC之比,进而得到面积比.10.B【解析】【分析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.【详解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=12∠ACB,∠ACF=12∠ACD,即∠ECF=12(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=1.故选:B.【点睛】本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.11.B【解析】【分析】作弧后可知MN⊥CB,且CD=DB.【详解】由题意性质可知MN是BC的垂直平分线,则MN⊥CB,且CD=DB,则CD+AD=AB.【点睛】了解中垂线的作图规则是解题的关键.12.C【解析】【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘进行计算即可.【详解】A、a2•a3=a5,故原题计算错误;B、a3和a2不是同类项,不能合并,故原题计算错误;C、(a2)4=a8,故原题计算正确;D、a3和a2不是同类项,不能合并,故原题计算错误;故选:C.【点睛】此题主要考查了幂的乘方、同底数幂的乘法,以及合并同类项,关键是掌握计算法则.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.0.5<m<3【解析】【分析】根据第三象限内点的横坐标与纵坐标都是负数列式不等式组,然后求解即可.【详解】∵点P(m−3,1−2m)在第三象限,∴30 120 mm-<⎧⎨-<⎩,解得:0.5<m<3.故答案为:0.5<m<3.【点睛】本题考查了解一元二次方程组与象限及点的坐标的有关性质,解题的关键是熟练的掌握解一元二次方程组与象限及点的坐标的有关性质.14.1【解析】【分析】设E(k3,3),F(1,k4),由题意12(1-k3)(3-k4)=83,求出k即可;【详解】∵四边形OACB是矩形,∴OA=BC=3,AC=OB=1,设E (k 3,3),F (1,k 4), 由题意12(1-k 3)(3-k 4)=83, 整理得:k 2-21k+80=0,解得k=1或20,k=20时,F 点坐标(1,5),不符合题意,∴k=1故答案为1.【点睛】本题考查了反比例函数系数k 的几何意义,解题的关键是会利用参数构建方程解决问题.15.x≥1143【解析】【分析】根据题意列出不等式,依据解不等式得基本步骤求解可得.【详解】 解:根据题意,得:311556x x --≥, 6(3x ﹣1)≥5(1﹣5x ),18x ﹣6≥5﹣25x ,18x+25x≥5+6,43x≥11, x≥1143, 故答案为x≥1143. 【点睛】本题主要考查解不等式得基本技能,熟练掌握解一元一次不等式的基本步骤是解题的关键.16.()2x x y -【解析】【分析】先提取公因式x ,再对余下的多项式利用完全平方公式继续分解.【详解】解:原式()()2222x x xy yx x y =-+=-,故答案为:()2x x y -【点睛】本题考查提公因式,熟练掌握运算法则是解题关键.17.1.【解析】试题解析:∵原二次根式有意义,∴x-3≥0,3-x≥0,∴x=3,y=4,∴x+y=1.考点:二次根式有意义的条件.18.15π【解析】【分析】设圆锥母线长为l ,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l ,∵r=3,h=4,∴母线l=225r h +=,∴S 侧=12×2πr×5=12×2π×3×5=15π, 故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.215.6米.【解析】【分析】过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点,根据Rt △ACM 和三角函数tan BDF ∠求出CM 、DN ,然后根据MN MD DN AB =+=即可求出A 、B 两点间的距离.【详解】解:过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点 在Rt △ACM 中,∵45ACF ∠=︒,∴AM=CM=200米,又∵CD=300米,所以100MD CD CM =-=米,在Rt △BDN 中,∠BDF=60°,BN=200米∴115.6tan 60BN DN =≈o 米, ∴215.6MN MD DN AB =+=≈米即A ,B 两点之间的距离约为215.6米.【点睛】本题主要考查三角函数,正确做辅助线是解题的关键.20.(1)0.3,45;(2)108︒;(3)16【解析】【分析】(1)根据频数的和为样本容量,频率的和为1,可直接求解;(2)根据频率可得到百分比,乘以360°即可;(3)列出相应的可能性表格,找到所发生的所有可能和符合条件的可能求概率即可.【详解】(1)a=0.3,b=45(2)360°×0.3=108° (3)列关系表格为:由表格可知,满足题意的概率为:16. 考点:1、频数分布表,2、扇形统计图,3、概率21.有触礁危险,理由见解析.【解析】试题分析:过点P 作PD ⊥AC 于D ,在Rt △PBD 和Rt △PAD 中,根据三角函数AD ,BD 就可以用PD 表示出来,根据AB=12海里,就得到一个关于PD 的方程,求得PD .从而可以判断如果渔船不改变航线继续向东航行,有没有触礁危险.试题解析:有触礁危险.理由:过点P 作PD ⊥AC 于D .设PD 为x ,在Rt △PBD 中,∠PBD=90°-45°=45°.∴BD=PD=x .在Rt △PAD 中,∵∠PAD=90°-60°=30°∴AD=330x x tan =︒ ∵AD=AB+BD∴3x=12+x∴x==63+131-() ∵6(3+1)<18∴渔船不改变航线继续向东航行,有触礁危险.【点睛】本题主要考查解直角三角形在实际问题中的应用,构造直角三角形是解题的前提和关键. 22.(1)18;(2)12【解析】【分析】(1)用树状图分3次实验列举出所有情况,再看3辆车都选择A 通道通过的情况数占总情况数的多少即可;(2)由(1)可知所有可能的结果数目,再看至少有两辆汽车选择B 通道通过的情况数占总情况数的多少即可.【详解】解:(1)画树状图得:共8种情况,甲、乙、丙三辆车都选择A 通道通过的情况数有1种,所以都选择A 通道通过的概率为18, 故答案为:18; (2)∵共有8种等可能的情况,其中至少有两辆汽车选择B 通道通过的有4种情况, ∴至少有两辆汽车选择B 通道通过的概率为4182=. 【点睛】考查了概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.23.(1)甲、乙两组工作一天,商店各应付300元和140元;(2)单独请乙组需要的费用少;(3)甲乙合作施工更有利于商店.【解析】【分析】(1)设甲组单独工作一天商店应付x元,乙组单独工作一天商店应付y元,根据总费用与时间的关系建立方程组求出其解即可;(2)由甲乙单独完成需要的时间,再结合(1)求出甲、乙两组单独完成的费用进行比较就可以得出结论;(3)先比较甲、乙单独装修的时间和费用谁对商店经营有利,再比较合作装修与甲单独装修对商店的有利经营情况,从而可以得出结论.【详解】解:(1)设:甲组工作一天商店应付x元,乙组工作一天商店付y元.由题意得:883520 6123480x yx y+=⎧⎨+=⎩解得:300140 xy=⎧⎨=⎩答:甲、乙两组工作一天,商店各应付300元和140元(2)单独请甲组需要的费用:300×12=3600元.单独请乙组需要的费用:24×140=3360元.答:单独请乙组需要的费用少.(3)请两组同时装修,理由:甲单独做,需费用3600元,少赢利200×12=2400元,相当于损失6000元;乙单独做,需费用3360元,少赢利200X24=4800元,相当于损失8160元;甲乙合作,需费用3520元,少赢利200×8=1600元,相当于损失5120元;因为5120<6000<8160,所以甲乙合作损失费用最少,答:甲乙合作施工更有利于商店.【点睛】考查列二元一次方程组解实际问题的运用,工作总量=工作效率×工作时间的运用,设计推理方案的运用,解答时建立方程组求出甲乙单独完成的工作时间是关键.24.(1)35元/盒;(2)20%.【解析】【分析】【详解】试题分析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设年增长率为m,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m的一元二次方程,解之即可得出结论.试题解析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据题意得:3500240011x x=-,解得:x=35,经检验,x=35是原方程的解.答:2014年这种礼盒的进价是35元/盒.(2)设年增长率为m,2014年的销售数量为3500÷35=100(盒).根据题意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合题意,舍去).答:年增长率为20%.考点:一元二次方程的应用;分式方程的应用;增长率问题.25.(1)抛物线的解析式为y=x3﹣3x﹣1,顶点坐标为(1,﹣4);(3)①;②P′A3取得最小值时,m的值是22-,这个最小值是154.【解析】【分析】(1)根据A(﹣1,3),C(3,﹣1)在抛物线y=x3+bx+c(b,c是常数)的图象上,可以求得b、c的值;(3)①根据题意可以得到点P′的坐标,再根据函数解析式可以求得点B的坐标,进而求得直线BC的解析式,再根据点P′落在直线BC上,从而可以求得m的值;②根据题意可以表示出P′A3,从而可以求得当P′A3取得最小值时,m的值及这个最小值.【详解】解:(1)∵抛物线y=x3+bx+c(b,c是常数)与x轴相交于A,B两点,与y轴交于点C,A(﹣1,3),C(3,﹣1),∴21103b cc⎧-+⨯-+=⎨=-⎩()(),解得:23bc=-⎧⎨=-⎩,∴该抛物线的解析式为y=x3﹣3x﹣1.∵y=x3﹣3x﹣1=(x﹣1)3﹣4,∴抛物线的顶点坐标为(1,﹣4);(3)①由P(m,t)在抛物线上可得:t=m3﹣3m﹣1.∵点P和P′关于原点对称,∴P′(﹣m,﹣t),当y=3时,3=x3﹣3x﹣1,解得:x1=﹣1,x3=1,由已知可得:点B(1,3).∵点B(1,3),点C(3,﹣1),设直线BC对应的函数解析式为:y=kx+d,303 k dd+=⎧⎨=-⎩,解得:13kd=⎧⎨=-⎩,∴直线BC的直线解析式为y=x﹣1.∵点P′落在直线BC上,∴﹣t=﹣m﹣1,即t=m+1,∴m3﹣3m﹣1=m+1,解得:m=333±;②由题意可知,点P′(﹣m,﹣t)在第一象限,∴﹣m>3,﹣t>3,∴m<3,t<3.∵二次函数的最小值是﹣4,∴﹣4≤t<3.∵点P(m,t)在抛物线上,∴t=m3﹣3m﹣1,∴t+1=m3﹣3m,过点P′作P′H⊥x轴,H为垂足,有H (﹣m,3).又∵A(﹣1,3),则P′H3=t3,AH3=(﹣m+1)3.在Rt△P′AH中,P′A3=AH3+P′H3,∴P′A3=(﹣m+1)3+t3=m3﹣3m+1+t3=t3+t+4=(t+12)3+154,∴当t=﹣12时,P′A3有最小值,此时P′A3=154,∴12-=m3﹣3m﹣1,解得:m=2142±.∵m<3,∴m=2142-,即P′A3取得最小值时,m的值是2142-,这个最小值是154.【点睛】本题是二次函数综合题,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.26.(1)1;(2)2-1.【解析】【分析】(1)分别计算负指数幂、绝对值、零指数幂、特殊角的三角函数值、立方根;(2)先把括号内通分相减,再计算分式的除法,除以一个分式,等于乘它的分子、分母交换位置.【详解】(1)原式31﹣2×32+1﹣313+1﹣2=1.(2)原式=[31x +﹣(1)(1)1x x x +-+]•21(2)x x ++ =(2)(2)1x x x -+-+•21(2)x x ++ =22x x -+,当﹣2时,原式-1. 【点睛】 本题考查负指数幂、绝对值、零指数幂、特殊角的三角函数值、立方根以及分式的化简求值,解题关键是熟练掌握以上性质和分式的混合运算.27.(1)213222y x x =--;(2)(32,0);(3)1,M (2,﹣3). 【解析】试题分析:方法一:(1)该函数解析式只有一个待定系数,只需将B 点坐标代入解析式中即可.(2)首先根据抛物线的解析式确定A 点坐标,然后通过证明△ABC 是直角三角形来推导出直径AB 和圆心的位置,由此确定圆心坐标.(3)△MBC 的面积可由S △MBC =12BC×h 表示,若要它的面积最大,需要使h 取最大值,即点M 到直线BC 的距离最大,若设一条平行于BC 的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M .方法二:(1)该函数解析式只有一个待定系数,只需将B 点坐标代入解析式中即可.(2)通过求出A ,B ,C 三点坐标,利用勾股定理或利用斜率垂直公式可求出AC ⊥BC ,从而求出圆心坐标.(3)利用三角形面积公式,过M 点作x 轴垂线,水平底与铅垂高乘积的一半,得出△MBC 的面积函数,从而求出M 点.试题解析:解:方法一:(1)将B (1,0)代入抛物线的解析式中,得: 0=16a ﹣32×1﹣2,即:a=12,∴抛物线的解析式为:213222y x x =--. (2)由(1)的函数解析式可求得:A (﹣1,0)、C (0,﹣2);∴OA=1,OC=2,OB=1,即:OC 2=OA•OB ,又:OC ⊥AB ,∴△OAC ∽△OCB ,得:∠OCA=∠OBC ;∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC 为直角三角形,AB 为△ABC 外接圆的直径; 所以该外接圆的圆心为AB 的中点,且坐标为:(32,0). (3)已求得:B (1,0)、C (0,﹣2),可得直线BC 的解析式为:y=12x ﹣2; 设直线l ∥BC ,则该直线的解析式可表示为:y=12x+b ,当直线l 与抛物线只有一个交点时,可列方程: 12x+b=213222x x --,即:212202x x b ---=,且△=0; ∴1﹣1×12(﹣2﹣b )=0,即b=﹣1; ∴直线l :y=12x ﹣1. 所以点M 即直线l 和抛物线的唯一交点,有:213222142y x x y x ⎧=--⎪⎪⎨⎪=-⎪⎩,解得:23x y =⎧⎨=-⎩ 即 M (2,﹣3).过M 点作MN ⊥x 轴于N ,S △BMC =S 梯形OCMN +S △MNB ﹣S △OCB =12×2×(2+3)+12×2×3﹣12×2×1=1. 方法二:(1)将B (1,0)代入抛物线的解析式中,得: 0=16a ﹣32×1﹣2,即:a=12,∴抛物线的解析式为:213222y x x =--. (2)∵y=12(x ﹣1)(x+1),∴A (﹣1,0),B (1,0).C (0,﹣2),∴K AC =0210+-- =﹣2,K BC =0240+- =12,∴K AC ×K BC =﹣1,∴AC ⊥BC ,∴△ABC 是以AB 为斜边的直角三角形,△ABC 的外接圆的圆心是AB 的中点,△ABC 的外接圆的圆心坐标为(32,0). (3)过点M 作x 轴的垂线交BC′于H ,∵B (1,0),C (0,﹣2),∴l BC :y=12x ﹣2,设H (t ,12t ﹣2),M (t ,213222t t --),∴S △MBC =12×(H Y ﹣M Y )(B X ﹣C X )=12×(12t ﹣2﹣213222t t ++)(1﹣0)=﹣t 2+1t ,∴当t=2时,S 有最大值1,∴M (2,﹣3).点睛:考查了二次函数综合题,该题的难度不算太大,但用到的琐碎知识点较多,综合性很强.熟练掌握直角三角形的相关性质以及三角形的面积公式是理出思路的关键.。

2020年辽宁省盘锦市中考数学试卷(含答案解析)

2020年辽宁省盘锦市中考数学试卷(含答案解析)

2020年辽宁省盘锦市中考数学试卷副标题题号一总分得分一、选择题(本大题共10小题,共30.0分)1.在有理数1, ? 一1, 0中,最小的数是()A. 1B. -C. —12如图中的几何体是由六个完全相同的小正方体组成的,它的主视图是()B.3.下列运算正确的是()A. a3∙ a3 =α9B. a6÷ a3 = a2C. α3+ α3= 2α6D. (α2)3= α64.不等式4% + l>x + 7的解集在数轴上表示正确的是()A. —I _ I __ I _ ___ I __ L>・ 10 12 3 42.B.第3页•共27贞C.—J——I 1—L-J ---- L>・ 10 12 3 4 5.下列命题正确的是()A.圆内接四边形的对角互补C.菱形的四个角都相等B •平行四边形的对角线相等D.等边三角形是中心对称图形第24贞,共27页6.为了解某地区九年级男生的身髙情况,随机抽取了该地区IooO需九年级男生的身很据以上统计结果,随机抽取该地区一名九年级男生,估计他的身髙不低于170⑷ 的概率是()A. 0.32B. 0.55C. 0.68D. 0.877.在市运动会射击比赛选拔赛中,某校射击队甲、乙、丙、丁四名队员的10次射击成绩如图所示•他们的平均成绩均是9・0环,若选一名射击成绩稳上的队员参加比第3页•共27贞设芦苇的长度是兀尺•根据题意,可列方程为()A. X2 + IO2 = (% + I)2B. (X 一I)2 + S2 =x2C. X2 + S2 = (x + I)2D. (X 一I)2 + IO2 = X29.如图,在EC中,AB = BC, ∆ABC = 90%以AB为直径的Oo交AC于点D,点E为线段OB上的一点,OE:EB = I:√3,连接DE并延长交CB的延长线于点F、连接OF交G)O于点G,若BF =2√3,则紀的长是()第24贞,共27页B-I C 2πc∙ T 3πT10.如图,四边形ABCD是边长为1的正方形,点E是射线AB上的动点(点E不与点A,点B重合),点F 在线段DA的延长线上,且AF = AE t连接ED,将ED绕点E顺时针旋转90。

盘锦市2020年部编人教版中考数学试题及答案

盘锦市2020年部编人教版中考数学试题及答案

2020年辽宁省盘锦市初中毕业升学考试数 学 试 卷(本试卷共26道题 考试时间120分钟 试卷满分150分)注意:所有试题必须在答题卡上作答,在本试卷上答题无效.1.-5的倒数是( )A. 5B.- 5C.15 D. 15- 2.病理学家研究发现,甲型H 7N 9病毒的直径约为0.00015毫米,0.00015用科学记数法表示为( )A. 41.510-⨯ B.51510-⨯ C.30.1510-⨯ D. 31.510-⨯3. 如图,下面几何体的左视图是( )A B C D4.不等式组2(3)5x x +⎧⎨-⎩≥2>4的解集是( )A. 2-≤x <1B.2-<x ≤1C. 1-<x ≤2D.1-≤x <2 5.计算231(2)2a a ⋅正确的结果是( ) A.73a B.74a C.7a D. 64a 6.甲、乙两名学生的十次数学考试成绩的平均分分别是145和146,成绩的方差分别是8.5和60.5,现在要从两人中选择一人参加数学竞赛,下列说法正确的是( )A.甲、乙两人平均分相当,选谁都可以B.乙的平均分比甲高,选乙C.乙的平均分和方差都比甲高,选乙D.两人的平均分相当,甲的方差小,成绩比乙稳定,选甲 7. 如图,某同学用一扇形纸板为一个玩偶制作一个圆锥形帽子,已知扇形半径OA=13cm,扇形的弧长为10πcm,那么这个圆锥形帽子的高是( )cm.(不考虑接缝)A.5B.12C.13D.148.如图,平面直角坐标系中,点M 是直线2y =与x 轴之间的一个动点,且点M 是抛物线212y x bx c =++的顶点,则方程2112x bx c ++=的解的个数是( ) A. 0或2 B.0或 1 C.1或2 D. 0,1或2一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号涂在答题卡上.每小题3分,共30分)9.如图,四边形ABCD 是矩形,点E 和点F 是矩形ABCD 外两点,AE ⊥CF 于点H ,AD=3,DC=4,DE=52,∠EDF=90°,则DF 长是( ) A.158 B.113 C. 103 D. 165第7题图 第8题图 第9题图10.已知, A 、B 两地相距120千米,甲骑自行车以20千米/时的速度由起点A 前往终点B,乙骑摩托车以40千米/时的速度由起点B 前往终点A.两人同时出发,各自到达终点后停止.设两人之间的距离为s (千米),甲行驶的时间为t (小时),则下图中正确反映s 与t A B C D11. 232的值是 .12.在一个不透明的盒子里装有白球和红球共14个,其中红球比白球多4个,所有球除颜色不同外,其它方面均相同,摇匀后,从中摸出一个球为红球的概率为 .13.某公司欲招聘职员若干名,公司对候选人进行了面试和笔试(满分均为100分),规定面试成绩占20%,笔试成绩占80%.一候选人面试成绩和笔试成绩分别为80分和95分,该候选人的最终得分是________分.14.在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名?设获得一等奖的学生有x 名,二等奖的学生有y 名,根据题意可列方程组为 .15.如图,在平面直角坐标系中,点A 和点C 分别在y 轴和x 轴正半轴上,以OA 、OC 为边作矩形OABC ,双曲线6y x=(x >0)交AB 于点E,AE ︰EB=1︰3.则矩形OABC 的面积是 .s t (小时)(千米)306090120s t (小时)(千米)6090120s t (千米)306090120s t (小时)(千米)306090120yO D CGNB EHF KMA二、填空题(每小题3分,共24分)BDE2OyxMHF DBA EB OAy Cx第15题图 第16题图 第18题图16.如图,已知△ABC 是等边三角形,AB=423+,点D 在AB 上,点E 在AC 上,△ADE 沿DE 折叠后点A 恰好落在BC 上的A ′点,且D A ′⊥BC. 则A ′B 的长是 .17.已知,AB 是⊙O 直径,半径OC ⊥AB ,点D 在⊙O 上,且点D 与点C 在直径AB 的两侧,连结CD ,BD ,若∠OCD=22°,则∠ABD 的度数是________.18.如图,在平面直角坐标系中,点A 和点B 分别在x 轴和y 轴的正半轴上,OA=OB=a ,以线段AB 为边在第一象限作正方形ABCD ,CD 的延长线交x 轴于点E ,再以CE 为边作第二个正方形ECGF ,…,依此方法作下去,则第n 个正方形的边长是 .三、解答题(19、20每小题9分,共18分)19. 先化简,再求值.22691()933m m m m m m m -+--÷-++其中tan 452cos30m =+oo20.某城市的A 商场和B 商场都卖同一种电动玩具,A 商场的单价与B 商场的单价之比是5 :4,用120元在A 商场买这种电动玩具比在B 商场少买2个,求这种电动玩具在A 商场和B 商场的单价.四、解答题(本题14分)21.某电视台为了了解本地区电视节目的收视率情况,对部分观众开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了下面两幅不完整的统计图.根据要求回答下列问题:第21题图1 第21题图2(1)本次问卷调查共调查了多少名观众?(2)补全图1中的条形统计图;并求出图2中收看“综艺节目”的人数占调查总人数的百分比;(3)求出图2中“科普节目”在扇形图中所对应的圆心角的度数; (4) 现有喜欢“新闻节目”(记为A )、“体育节目”(记为B )、“综艺节目”(记为C )、“科普节目”(记为D )的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用“列表法”或“画树形图”的方法求出恰好抽到喜欢“新闻节目”和“体育节目”两位观30%科普综艺新闻体育人数节目24168162432众的概率.五、解答题(22小题10分、23小题14分,共24分)22.如图,用一根6米长的笔直钢管弯折成如图所示的路灯杆ABC ,AB 垂直于地面,线段AB 与线段BC 所成的角∠ABC=120°,若路灯杆顶端C 到地面的距离CD=5.5米,求AB 长.第22题图23.如图,△ABC 中,∠C=90°,点G 是线段AC 上的一动点(点G 不与A 、C 重合),以AG 为直径的⊙O 交AB 于点D ,直线EF 垂直平分BD ,垂足为F ,EF 交B C 于点E ,连结DE.(1)求证:DE 是⊙O 的切线;(2)若cosA=12,AB=83,AG=23,求BE 的长; (3)若cosA=12,AB=83,直接写出线段BE 的取值范围.第23题 图六、解答题(本题12分)24.某旅游景点的门票价格是20元/人,日接待游客500人,进入旅游旺季时,景点想提高门票价格增加盈利.经过市场调查发现,门票价格每提高5元,日接待游客人数就会减少50人. 设提价后的门票价格为x (元/人)(x >20),日接待游客的人数为y(人).(1)求y 与x (x >20)的函数关系式;(2)已知景点每日的接待成本为z(元),z 与y 满足函数关系式:z=100+10y.求z 与x 的函数关系式;(3)在(2)的条件下,当门票价格为多少时,景点每日获取的利润最大?最大利润是多G FEDOCAC AD B少?(利润=门票收入-接待成本)七、解答题(本题14分)25.已知,四边形ABCD 是正方形,点P 在直线BC 上,点G 在直线AD 上(P 、G 不与正方形顶点重合,且在CD 的同侧),PD=PG ,DF ⊥PG 于点H ,交直线AB 于点F ,将线段PG 绕点P 逆时针旋转90°得到线段PE ,连结EF.(1)如图1,当点P 与点G 分别在线段BC 与线段AD 上时. ①求证:DG=2PC ;②求证:四边形PEFD 是菱形;(2)如图2,当点P 与点G 分别在线段BC 与线段AD 的延长线上时,请猜想四边形PEFD 是怎样的特殊四边形,并证明你的猜想.第25题图1 第25题图2八、解答题(本题14分)26.如图,抛物线y=ax 2+bx+c 经过原点,与x 轴相交于点E(8, 0 ), 抛物线的顶点A 在第四象限,点A 到x 轴的距离AB=4,点P (m, 0)是线段OE 上一动点,连结PA ,将线段PA 绕点P 逆时针旋转90°得到线段PC ,过点C 作y 轴的平行线交x 轴于点G ,交抛物线于点D ,连结BC 和AD.(1)求抛物线的解析式;(2)求点C 的坐标(用含m 的代数式表示);(3)当以点A 、B 、C 、D 为顶点的四边形是平行四边形时,求点P 的坐标.第26题图 备用图2020年初中毕业升学考试数学试题参考答案及评分标准说明:1本参考答案及评分标准仅供教师评卷时参考使用. 2其它正确的证法(解法),可参照本参考答案及评分标准酌情赋分. 一、选择题(每小题3分,共30分)1.D2.A3.C4.A5.B6.D7.B8.D9.C 10.B 二、填空题(每小题3分,共24分)12. 914 13. 92 14.302016528x y x y +=⎧⎨+=⎩15. 24 16.2 17.23°或67°18. 12n -三、解答题(19、20每小题9分,共18分)19.解: 22691()933m m m m m m m -+--÷-++ =2(3)1(3)(3)33m m m m m m m ⎡⎤---÷⎢⎥+-++⎣⎦ …………………………2分 =31()333m m m m m m ---÷+++ …………………………3分=3331m m m -+⨯+- ……………………………4分 = 31m- …………………………5分tan 452cos30121m =+=+=+o o …………………………7分原式=31m -= …………………………9分20. 解:设电动玩具在 A 商场和B 商场的单价分别为5x 元和4x 元,……1分120120245x x-= …………………………4分 两边同时乘以20x ,得 1205120440x ⨯-⨯=……………………5分解得 x=3 ………………………6分 经检验x=3是分式方程的解 …………………… 7分 所以5x=15 4x=12 ………………… 8分 答:电动玩具在A 商场和B 商场的单价分别为15元和12元 ………9分 四、解答题(本题14分) 21.解:(1)2430%80÷=(人) ………………………2分………………………4分(2)如图收看“综艺节目”的百分比:16100%20%80⨯= ……………………6分 (3)83603680⨯=oo ……………………8分(4)解: 解法一:画树形图如下:……………12分由树形图可知,所有可能出现的结果共有12个,且每种结果出现的可能性相等,其中恰好抽到喜欢“新闻节目”和“体育节目”两位观众(记为事件A )的结果有2个……… 13分∴P (A )=122=1………………………14分 解法二:列表如下由表可知,所有可能出现的结果共有12个,且每种结果出现的可能性相等,其中恰好抽到喜欢“新闻节目”和“体育节目”两位观众(记为事件A )的结果有2个 ……… 13分节目开始∴ P (A )=122=61…………………14分五、解答题(22小题10分,23小题14,共24分)22.解:过点B 作BE ⊥CD,垂足为E. ……………1分 ∵ ∠ABC=120°∴ ∠EBC=30° ……………2分 设AB=x 米,则BC=(6-x )米 ………3分在Rt △BCE 中,CE=12BC=12(6-x ) …………4分 ∵CE+ED=5.5 ∴12(6-x )+ x=5.5 …………………7分 第22题图 解得x=5 ………9分 答:AB 长度是5米 …………………10分 23. .解:(1)连结OD∵OA=OD∴∠A=∠ODA …………………………1分∵EF 垂直平分BD∴ED=EB∴∠B=∠EDB …………………………2分 ∵∠C=90°∴∠A+∠B=90° …………………………3分 ∴∠ODA+∠EDB=90° …………………………4分∴∠ODE=90° 第23题图 ∴ DE ⊥OD ………………………………5分 ∴DE 是⊙O 的切线 ………………………………6分(2) ∵AG=∵cosA=12,∴∠A=60° …………………………7分 又∵OA=OD∴△OAD 是等边三角形∴…………………………8分 ∴BD=AB-AD=………………………10分 ∵直线EF 垂直平分BD ∴BF =12…………………………11分∵∠C=90°,∠A=60°∴∠B=30°A ∴BE=cos BFB=7 …………………………12分 (3)6<BE <8 …………………………14分六、解答题(本题12分)24.解:(1)y=500-205x -×50 ………………2分 y = -10x+700 …………………4分 (2)z=100+10y ……………………6分 =100+10(-10x+700) ……………………7分= -100x+7100 ……………………8分 (3)w= x(-10x+700) - (-100x+7100) …………9分 =2108007100x x -+- …………………10分=210(40)8900x --+ …………………11分∴当 x=40时,w 有最大值,最大值是8900 元. ……12分 七、解答题(本题14分) 25. (1)①证明:如图1 作PM ⊥AD 于点M∵PD=PG , ∴MG=MD , 又∵MD=PC∴DG=2PC ……………2分 ②证明:∵PG ⊥FD 于H ∴∠DGH+∠ADF= 90°1又∵∠ADF+∠AFD= 90°∴∠DGP=∠AFD ………………3分 ∵四边形ABCD 是正方形,PM ⊥AD 于点M , ∴∠A=∠PMD= 90°,PM=AD ,∴△PMG ≌△DAF ……………5分 ∴DF=PG ∵PG=PE∴FD=PE , ∵DF ⊥PG ,PE ⊥PG ∴DF ∥PE ∴四边形PEFD 是平行四边形. ……………6分又∵PE=PD∴□PEFD 是菱形 ……………7分 (2)四边形PEFD 是菱形 ………… 8分证明:如图②∵四边形ABCD 是正方形,DH ⊥PG 于H 第25题图2 ∴∠ADC=∠DHG=90°∴∠CDG=∠DHG=90°∴∠CDP+∠PDG=90°,∠GDH+∠G=90° ∵PD=PG ∴∠PDG=∠G∴∠CDP=∠GDH ……………9分 ∴∠CDP=∠ADF ……………10分 又∵AD=DC ,∠FAD=∠PCD=90°∴△PCD ≌△FAD ……………11分∴FD=PD∵ PD=PG=PE∴FD=PE又∵FD ⊥PG ,PE ⊥PG ∴FD ∥PE∴四边形PEFD 是平行四边形. ……………13分 又∵FD=PD∴□PEFD 是菱形 ……………14分 八、解答题(本题14分)26.(1)解:点E (8,0),AB ⊥x 轴,由抛物线的轴对称性可知B (4,0)点A (4,-4),抛物线经过点O (0,0),A (4,-4)、E (8,0)得, ………1分 解得……2分 ∴抛物线的解析式为2124y x x =- ………3分 (2)解: ∵∠APC=90°∴∠APB+∠CPG=90°∵AB ⊥PE ∴∠APB+∠PAB=90°∴∠CPG=∠PAB∵∠ABP=∠PGC=90°,PC=PA ∴△ABP ≌△PGC ………………………………………4分∴PB=CG ,∵P (m ,0),OP=m ,且点P 是线段OE 上的动点∴PB=CG=︱4-m ︱, OG=︱m+4︱ ……………………5分① 如图1,当点P 在点B 左边时,点C 在x 轴上方, m <4,4-m >0,PB=CG=4-m ∴C (m+4,4-m ) ……………………………………6分②如图2,当点P 在点B 右边时,点C 在x 轴下方, m >4,4-m <0, ∴PB=︱4-m ︱=-(4-m)=m-4∴CG=m-4 第26题 图2 ∴C (m+4,4-m ) ……………………………………7分 综上所述,点C 坐标是C (m+4,4-m ) ………………8分 (3)解:如图1,当点P 在OB 上时1420a b c ⎧=⎪⎪⎨=-⎪⎪=⎩041640648c a b c a b c =⎧⎪-=++⎨⎪=++⎩∵CD ∥y 轴,则CD ⊥OE∵点D 在抛物线上,横坐标是m+4,将x= m+4代入2124y x x =-得 21(4)2(4)4y m m =+-+ 化简得:2144y m =- ∴D (m+4,2144m -) …………………………9分∴CD=4-m-(2144m -)=2184m m --+ ∵四边形ABCD 是平行四边形 第26题图1∴AB=CD=4,∴2184mm --+=4 …………………………10分 解得12m =-+,22m =--∵点P 在线段OE 上,∴22m =--不符合题意,舍去∴P (2-+,0) ……………………11分如图2,当点P 在线段BE 上时,∵C (m+4,4- m )∵点D 在抛物线上,横坐标是m+4,将x= m+4代入2124y x x =-得 21(4)2(4)4y m m =+-+ 化简得:2144y m =- ∴D (m+4,2144m -) …………………12分∴ CD=22114(4)844m m m m ---=++ ∵四边形ABDC 是平行四边形第26题 图2∴AB=CD=4,∴21844m m +-= 解得12m =-+22m =--∵点P 在线段OE 上,∴22m =--∴P (2-+,0) ………………………13分综上所述,当以点A 、B 、C 、D 为顶点的四边形是平行四边形时,点P 的坐标为P (2-+0)或P (2-+,0)………14分。

辽宁省盘锦市2020年中考数学试题(精品word版)

辽宁省盘锦市2020年中考数学试题(精品word版)

绝密★启用前辽宁省盘锦市2020年中考数学试题试卷副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息$2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、单选题1.不等式417x x +>+的解集在数轴上表示正确的是( ) A .B .C .D .【答案】A 【解析】 【分析】先将不等式移项、合并同类项、系数化为1求得其解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则即可判断答案. 【详解】解:解不等式:417x x +>+, 移项得:471x x ->- 合并同类项得:36x > 系数化为1得:2x >, 数轴上表示如图所示,故选:A . 【点睛】本题主要考查解一元一次不等式及再数轴上表示不等式解集的能力,掌握“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则是解题的关键.2.在市运动会射击比赛选拔赛中,某校射击队甲、乙、丙、丁四名队员的10次射击成绩如图所示.他们的平均成绩均是9.0环,若选一名射击成绩稳定的队员参加比赛,最合适的人选是( )A .甲B .乙C .丙D .丁【答案】D 【解析】 【分析】根据折线统计图找到数据,再根据方差公式即可得出答案. 【详解】 解:他们的平均成绩均是9.0环()()2221=9.1958.995=0.0110S ⎡⎤∴-⨯+-⨯⎣⎦甲 ()()()()222221=9.2939.1928.9928.893=0.02810S ⎡⎤-⨯+-⨯+-⨯+-⨯⎣⎦乙()()()()222221=9.2929.1938.9938.892=0.02210S ⎡⎤-⨯+-⨯+-⨯+-⨯⎣⎦丙()()()22221=9.1949928.994=0.00810S ⎡⎤-⨯+-⨯+-⨯⎣⎦丁2222S S S S <<<丁甲乙丙∴丁的方差最小.故选D . 【点睛】本题考查了折线统计图和方差,解题的关键是能从折线统计图中正确找出数据.是一道基础题目,比较简单.3.如图,四边形ABCD 是边长为1的正方形,点E 是射线AB 上的动点(点E 不与点A ,点B 重合),点F 在线段DA 的延长线上,且AF AE =,连接ED ,将ED 绕点E 顺时针旋转90°得到EG ,连接,,EF FB BG .设AE x =,四边形EFBG 的面积为y ,下列图象能正确反映出y 与x 的函数关系的是( )A .B .C .D .【答案】B 【解析】 【分析】连接DC ,根据已知条件证明所求得四边形是平行四边形,从而可得=△2EFBG BEF S S ,再分类讨论即可得到结果; 【详解】连接DC ,如图所示,由题可得DE=GE ,AE=AF ,∠DAE=∠BAF=90°, ∴△DAE ≌△BAF ,∴DE=BF,∠EDA=∠FBA,又∵DE=EG, ∴GE=BF,∵∠GEB+∠DEA=∠EDA+∠DEA =90°, ∴∠GEB=∠EDA , ∴∠GEB=∠FBA , ∴GE//BF,且GE=BF ,∴四边形GEFB 是平行四边形, ∵AE x =, 当01x <<∴AF x =,1BE x =-,()21111=1-2222BEF S BE AF x x x x ⨯⨯=⨯⨯=-△,∴22BEFBFEG S S x x ==-四边形,当x >1时,∴AF x =,1BE x =-,()21111=-12222BEF S BE AF x x x x ⨯⨯=⨯⨯=-△,∴22BEFBFEG S S x x ==-四边形,故选:B . 【点睛】本题主要考查了函数图像的判断,准确根据图象进行分析是解题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题4.若关于x 的方程220x x m ++=有两个不相等的实数根,则m 的取值范围是_____. 【答案】1m < 【解析】 【分析】利用一元二次方程根的判别式的意义可以得到2240m ∆=->,然后解关于m 的不等式即可. 【详解】根据题意得2240m ∆=->,解得1m <.故答案为1m <. 【点睛】本题考查一元二次方程根的判别式.一元二次方程()200++=≠ax bx c a 的根与24b ac ∆=-有如下关系:当>0∆时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程无实数根.5.如图,直线//a b ,ABC 的顶点A 和C 分别落在直线a 和b 上,若160∠=︒,40ACB ∠=︒,则2∠的度数是__________.【答案】20° 【解析】 【分析】根据两直线平行内错角相等可得到12ACB ∠=∠+∠,从而计算出2∠的度数. 【详解】解:∵直线//a b , ∴12ACB ∠=∠+∠,又∵160∠=︒,40ACB ∠=︒, ∴220∠=︒, 故答案为:20°. 【点睛】本题考查了平行线的性质,熟练掌握两直线平行内错角相等是解题的关键.6.如图,AOB 三个顶点的坐标分别为(5,0),(0,0),(3,6)A O B ,以点O 为位似中心,相似比为23,将AOB 缩小,则点B 的对应点B '的坐标是____________.【答案】(2,4)或(2,4)-- 【解析】 【分析】利用以原点为位似中心,相似比为k ,位似图形对应点的坐标的比等于k 或-k ,把B 点的横纵坐标分别乘以23或23-即可得到点B′的坐标. 【详解】解:∵以点O 为位似中心,相似比为23,将AOB 缩小, ∴点(3,6)B 的对应点B′的坐标是(2,4)或(-2,-4). 故答案为:(2,4)或(-2,-4). 【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .7.如图,菱形ABCD 的边长为4,45A ︒∠=,分别以点A 和点B 为圆心,大于12AB的长为半径作弧,两弧相交于,M N 两点,直线MN 交AD 于点E ,连接CE ,则CE 的长为____________.【答案】【解析】 【分析】连接BE ,由垂直平分线的性质和等腰直角三角形的性质,得BE=AE= 再得∠EBC=90°,利用勾股定理即可求出CE 的长度. 【详解】解:连接BE ,如图:由题意可知,MN 垂直平分AB , ∴AE=BE ,∴45EBA A ∠=∠=︒,则∠AEB=90°, 在等腰直角三角形ABE 中,AB=4,∴BE=AE= ∵四边形ABCD 为菱形, ∴AD ∥BC ,∴∠EBC=∠AEB=90°, 在Rt △BCE 中,由勾股定理,则CE ==故答案为: 【点睛】本题考查了菱形的性质,垂直平分线的性质,勾股定理,等腰三角形的判定和性质,解题的关键是熟练掌握所学的知识,正确得到∠EBC=∠AEB=90°.三、解答题8.有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外无其他差别,现将它们背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是奇数的概率为______.(2)随机抽取一张卡片,然后放回洗匀,再随机抽取一张卡片,请用列表或画树状图的方法,求两次抽取的卡片上的数字和等于6的概率.【答案】(1)12(2)316【解析】【分析】(1)找出四个数中奇数的个数,即可求出所求的概率;(2)将所有情况用列表法或者树状法表示出来,再将符合题意的个数找出来,即可得出概率.【详解】解:(1)四张卡片中奇数有1,3共二张,则P=21 42 ;故答案为:1 2(2)根据题意,列表如下:第一次第二次根据题意,可以画出如下的树状图:结果(1,1)(1,2)(1,3)(1,4)(2,1)(2,2)(2,3)(2,4)(3,1)(3,2)(3,3)(3,4)(4,1)(4,2)(4,3)(4,4)由表格(树状图)可以看出,所有等可能出现的结果共有16种,其中两次抽取的卡片上的数字和等于6的结果有3种,即(2,4),(3,3),(4,2)所以P(两次抽取的卡片上的数字和等于6)3 16 =【点睛】本题考查列表法与树状图法、概率公式,解答本题的关键是明确题意,画出相应的树状图,求出相应的概率.9.某校为了解学生课外阅读时间情况,随机抽取了m名学生,根据平均每天课外阅读时间的长短,将他们分为,,,A B C D四个组别,并绘制了如下不完整的频数分布表和扇形统计图.频数分布表请根据图表中的信息解答下列问题:(1)求m与n的值,并补全扇形统计图;(2)直接写出所抽取的m名学生平均每天课外阅读时间的中位数落在的组别;(3)该校现有1500名学生,请你估计该校有多少名学生平均每天课外阅读时间不少于1小时.【答案】(1)50;5;图见解析(2)B(3)600名【解析】【分析】(1)根据D组的人数和所占的百分比即可求得m,然后根据四组的人数和等于m即可求得n;(2)直接根据中位数的概念即可确定;(3)先求得时间不少于1小时的学生所占的百分比,再乘以1500即可得到结果.【详解】解:(1)510%50m=÷=22010550n n++++=,解得,5n=A:210100%100%20%5050n⨯=⨯=;C:1015100%100%30%5050n+⨯=⨯=(2)∵总共抽取了50名学生∴中位数是第25和26名学生阅读时间的平均数∴根据频数分布表可以得出:中位数落在B组.(3)1500(30%10%)600⨯+=(名)答:估计该校有600名学生平均每天课外阅读时间不少于1小时.【点睛】统计图的应用是初中数学的重点,是中考必考题,一般难度不大,需熟练掌握.10.如图,某数学活动小组要测量建筑物AB的高度,他们借助测角仪和皮尺进行了实地测量,测量结果如下表.请根据需要,从上面表格中选择3个测量数据,并利用你选择的数据计算出建筑物AB 的高度.(结果精确到0.1米,参考数据:sin 670.92,cos670.39,tan 67 2.36︒≈︒=︒=.sin 220.37,cos 220.93,tan 220.40︒=︒≈︒≈)(选择一种方法解答即可)【答案】11.0m【解析】【分析】第一种选择:选取 1.6,4,67CD m BD m ACE ==∠=︒,解直角三角形ACE 求得AE ,根据AE+EB 即可得到结论;第二种选择:选取 1.6m ,,6722CD ACE BCE =∠=∠=︒︒,先解直角三角形BCD 求出BD 的长,再解直角三角形ACE 求出AE 的长,根据AE+EB 即可得到结论;第三种选择:选取4m BD =,,6722ACE BCE ∠=∠=︒︒,求出CD 和AE 的长即可.【详解】解:第一种选择:选取 1.6,4,67CD m BD m ACE ==∠=︒‘,,CD BD AB BD CE AB ⊥⊥⊥90ABD D BEC ∴∠=∠=∠=︒∴四边形BDCE 为矩形4, 1.6CE BD m BE CD m ∴====CE AB ⊥90AEC ∴∠=︒在Rt ACE △中,tan AF ACE CE∠= tan 4tan674 2.369.44AE CE ACE =∠=︒≈⨯=9.44 1.611.0411.0(m)AB AE BE =+≈+=≈答:建筑物AB 的高度约为11.0m .第二种选择选取 1.6m ,,6722CD ACE BCE =∠=∠=︒︒,,CD BD AB BD CE AB ⊥⊥⊥90ABD D BEC ∴∠=∠=∠=︒∴四边形BDCE 为矩形1.6BE CD m ∴==在Rt BCE 中,BE tan BCE CE∠= 1.6 1.64tan 220.4CE m =≈=︒ CE AB ⊥90AEC ∴∠=︒在Rt ACE △中,tan AE ACE CE∠= tan 4tan674 2.369.44AE CE ACE m =∠=︒≈⨯=9.44 1.611.0411.0(m)AB AE BE =+≈+=≈答:建筑物AB 的高度的为11.0m .第三种选择选取4m BD =,,6722ACE BCE ∠=∠=︒︒,,CD BD AB BD CE AB ⊥⊥⊥90ABD D BEC ∴∠=∠=∠=︒∴四边形BDCE 为矩形4CE BD m ∴==在Rt BCE 中,tan BE BCE CE∠= 4tan 2240.4 1.6BE m ≈=︒⨯=CE AB ⊥90AEC ∴∠=︒在R t ACE 中,tan AE ACE CE∠= tan 4tan674 2.769.44AE CE ACE m =∠=︒≈⨯=9.44 1.611.0411.0(m)AB AE BE =+=+=≈答:建筑物AB 的高度约为11.0m .【点睛】本题考查解直角三角形的应用-仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.11.如图,BC 是O 的直径,AD 是O 的弦,AD 交BC 于点E ,连接,AB CD ,过点E 作EF AB ⊥,垂足为F ,AEF D ∠=∠.(1)求证:AD BC ⊥;(2)点G 在BC 的延长线上,连接,2AG DAG D ∠=∠.①求证:AG 与O 相切; ②当2,45AF CE BF ==时,直接写出CG 的长.【答案】(1)见解析 (2)①见解析 ②283【解析】【分析】 (1)由圆周角定理,以及等角的余角相等,得到90AEB =︒∠,即可得到结论成立; (2)①连接AO ,先证明AOE DAG ∠=∠,然后证明90OAG ∠=︒,即可得到结论成立;②由AC ∥EF ,得到25CE AF BE BF ==,然后得到BE=10,得到OA=OC=7,OE=3,然后得到AE 的长度,再利用△AOE ∽△GAE ,即可求出GE ,即可得到CG 的长度.【详解】(1)证明:AC AC =B D ∴∠=∠,D AEP ∠=∠B AEF ∴∠=∠EF AB ⊥90BFE ︒∴∠=90B BEF ︒∴∠+∠=90AEF BEF ︒∴∠+∠=即90AEB ︒∠=AD BC ∴⊥(2)①连接AOAC AC =2AOE D ∴∠=∠AOE DAG ∴∠=∠AD BC ⊥90AEO ︒∴∠=90AOE OAE ︒∴∠+∠=90DAG OME ︒∴∠+∠=即90OAG ∠=︒AG AO ∴⊥ AO 是O 的半径AG ∴与O 相切②如图,∵BC 为直径,EF ⊥AB ,∴∠BAC=∠BFE=90°,∴AC ∥FE , ∴25CE AF BE BF ==, ∵CE=4,∴BE=10,∴BC=14,∴OA=OC=7,∴743OE =-=,在Rt △AOE 中,由勾股定理,得AE ==,∵AOE DAG ∠=∠,90AEO AEG ∠=∠=︒,∴△AEO ∽△GEA ,∴OE AEAE GE =GE =, ∴403GE =,∴4028433CG GE CE =-=-=. 【点睛】 本题考查了相似三角形的判定和性质,切线的判定和性质,圆周角定理,勾股定理,以及等角的余角相等,解题的关键是熟练掌握所学的知识,正确作出辅助线,从而进行解题.12.某服装厂生产A 品种服装,每件成本为71元,零售商到此服装厂一次性批发A 品牌服装x 件时,批发单价为y 元,y 与x 之间满足如图所示的函数关系,其中批发件数x 为10的正整数倍.(1)当100300x ≤≤时,y 与x 的函数关系式为__________.(2)某零售商到此服装厂一次性批发A 品牌服装200件,需要支付多少元?(3)零售商到此服装厂一次性批发A 品牌服装(100400)x x ≤≤件,服装厂的利润为w 元,问:x 为何值时,w 最大?最大值是多少?【答案】(1)111010y x =-+ (2)18000元 (3)190x =或200x =;3800 【解析】【分析】(1)将两点(100,100),(300,80)代入到一次函数解析式,利用待定系数法即可求解;(2)将x=200代入到(1)求出y 的值,最后求得答案;(3)当100300x 时,求得y 的最大值,当300400x <≤求得y 的最大值,最后作答.【详解】解:(1)当100≤x≤300时,设y 与x 的函数关系式为y=kx+b ,(k≠0),将点(100,100),(300,80)代入y=kx+b ,(k≠0), 10010030080k b k b +=⎧⎨+=⎩,解,得110110k b ⎧=-⎪⎨⎪=⎩∴ 111010y x =-+ 故答案填:111010y x =-+ (2)当200x =时,2011090y =-+=2009018000⨯=元答:零售商一次性批发200件,需要支付18000元(3)当100300x 时22111(71)3939(195)3802.5101010w y x x x x x x ⎛⎫=-=-+=-+=--+ ⎪⎝⎭ 1010a =-<,抛物线开口向下 当195x <时,w 随x 的增大而增大 又x 为10的正整数倍190x ∴=时,w 最大,最大值是3800当195x >时,w 随x 的增大而减小又x 为10的正整数倍200x ∴=时,w 最大,最大值是3800当300400x <≤时,(8071)9w x x =-=90k =>w ∴随x 的增大而增大400x ∴=时,w 最大,最大值是360038003600>∴当190x =或200x =时,w 最大,最大值是3800【点睛】本题主要考查一次函数和二次函数的应用,根据题意列出函数表达式,熟练运用函数的性质是解决问题的关键.13.如图,四边形ABCD 是正方形,点F 是射线AD 上的动点,连接CF ,以CF 为对角线作正方形CGFE (,,,C G F E 按逆时针排列),连接,BE DG .(1)当点F 在线段AD 上时.①求证:BE DG =;②求证:CD FD -=;(2)设正方形ABCD 的面积为1S ,正方形CGFE 的面积为2S ,以,,,C G D F 为原点的四边形的面积为3S ,当211325S S =时,请直接写出31S S 的值. 【答案】(1)①见解析;②见解析;(2)310或925【解析】【分析】 (1)①根据正方形的性质,可以推断出BCE DCG ∠=∠,有BCE 和DCG △全等,从而根据三角形全等的性质推断出BE DG =;②在线段CD 上截CH FD =,连接HG ,设FG 与CD 相交于点M ,根据正方形的性质,可以证明FDG △和CHG △全等,可以证明90DGH ∠=︒,再利用勾股定理得出DH ==,从而可以证明结论;(2)根据题目信息以及第(1)问可以设出各边长,再根据面积公式进行比值即可解答.【详解】(1)①证明:∵四边形ABCD 和四边形CGFE 都是正方形∴90BCD ECG BC DC EC GC ︒∠=∠===,,∴BCD ECD ECG ECD ∠-∠=∠-∠即BCE DCG ∠=∠∴()BCE DCG SAS ≌∴BE DG =②证明:方法一:在线段CD 上截CH FD =,连接HG ,设FG 与CD 相交于点M ∵四边形ABCD 和四边形CGFE 都是正方形∴90ADC CGF GC GF ∠=∠=︒=,∴9090MFD FMD MCG CMG ︒︒∠+∠=∠+∠=,∵FMD CMG ∠=∠∴MFD MCG ∠=∠∴()FDG CHG SAS ≌∴DG HG DGF HGC =∠=∠,∴90DGF FGH HGC FGH ∠+∠=∠+∠=︒,即90DGH ∠=︒在Rt DGH △中,∵22222DH DG HG DG =+=∴DH ==∵CD FD CD HC DH -=-=∴CD FD -=方法二:连接AC∵四边形ABCD 和四边形CGFE 都是正方形∴9045ADC FGC AD DC FG CG ACD FCG ︒︒∠=∠===∠=∠=,,, ∴ACD FCD FCG FCD ∠-∠=∠-∠即ACF DCG ∠=∠在Rt ADC 和Rt FCG △中,∵22222AC AD CD CD =+=∴22222FC FG CG CG =+=∴,AC FC ==∴AC FC DC GC==ACF DCG ∠=∠∴ACF DCG ∽∴AF AC AF DG DC====∴CD FD -=(2)310或925①根据211325S S =,设DC =5n ,GC,FD =n ,由(1)有,DG =, 从而有()311552325510n n n n S S n n ⨯+⨯==⨯ ②根据211325S S =,设DC =5n ,GC,FD =n ,从而有()3115925525n n S S n n ⨯==⨯ 故答案为:310或925. 【点睛】 本题主要考查了正方形的性质、全等三角形、相似三角形的证明及性质、勾股定理的综合运用,其中对于正方形的性质、全等三角形的证明及性质熟练掌握是解题的关键.14.如 图1 ,直线4y x =-与x 轴交于点B ,与y 轴交于点A ,抛物线212y x bx c =-++经过点B 和点(0,4),C ABO 从点,开始沿射线AB 方向以每秒DEF (点,,A B O 的对应点分别为点,,D E F ),平移时间为(04)t t <<秒,射线DF 交x 轴于点G ,交抛物线于点M ,连接ME .(1)求抛物线的解析式;(2)当4tan 3EMF ∠=时,请直接写出t 的值; (3)如图2,点N 在抛物线上,点N 的横坐标是点M 的横坐标的12,连接,,OM NF OM 与NF 相交于点P ,当NP FP =时,求t 的值.【答案】(1)2142y x x =-++;(2(3)5. 【解析】【分析】(1)求出点B 坐标,把点B 和点C 坐标代入抛物线解析式,利用待定系数法即可求解; (2)设点D 坐标为(),4m m -,则点M 坐标为21,42m m m ⎛⎫-++ ⎪⎝⎭,用含m 式子表示出DM 长,求出DM=7或1,分类讨论即可求解;(3)连接OF ,过点N 作//NH MF 交OM 于Q ,交OB 于H ,证明四边形OADF 是平行四边形,得到FG OG t ==,证明PQN PMF △≌△,得到2142NQ ME t ==-+证明OQH OMG △∽△,得到2213142282t t t t ⎛⎫-++=+ ⎪⎝⎭,问题得解.【详解】解:(1)将0y =代入4y x =-,得40x -=解得4x =,(4,0)B ∴, ∵抛物线212y x bx c =-++经过点(4,0)B 和(0,4)C , 2144024x b c c ⎧-+++=⎪∴⎨⎪=⎩,解得14b c =⎧⎨=⎩, ∴抛物线的解析式是2142y x x =-++; (2)设点D 坐标为(),4m m -,则点M 坐标为21,42m m m ⎛⎫-++ ⎪⎝⎭, 则()221144822DM m m m m =-++⎫-⎛--=⎪⎝⎭+ , ∵ABO 平移得到DEF ,∴DF=EF=4, ∵4tan 3EMF ∠=, ∴MF=3.如图3,当M 位于EF 上方时,MD=DF+MF=7, ∴218=72m -+,解得12m m ==;如图4,当M 位于EF 下方时,MD=DF-MF=1 ∴218=12m -+,解得12m m =(不合题意,舍去);,∵t m ==,∴(3)连接OF ,过点N 作//NH MF 交OM 于Q ,交OB 于H ,将0x =代入4y x =-,解得4y =-,(0,4)A ∴-,(4,0)B ,4OA OB ∴==,90AOB ︒∠=,45︒∴∠=OAB .由平移可知//,OA FD OA FD =,∴四边形OADF 是平行四边形,,45OF AD OFD OAD ︒∴==∠=∠=,90OGF ︒∠=,FG OG t ∴==,22114422MF MG FG t t t t ∴=-=-++-=-+. //NH MF ,,PQN PMF PNQ PFM ∴∠=∠∠=∠,PN PF =,()PQN PMF SAS ∴≌,2142NQ ME t ∴==-+, 由题意点N 横坐标是点M 的横坐标的12, 21114282N t t t ⎛⎫∴-++ ⎪⎝⎭, 222111314482282QH NH NQ t t t t t ⎛⎫=-=-++--+=+ ⎪⎝⎭. //QH MG ,,OQH OMG OHQ OGM ∴∠=∠∠=∠,OQH OMG ∴∽,1,22OH OH MG QH MG OG ∴==∴=, 2213142282t t t t ⎛⎫∴-++=+ ⎪⎝⎭,解得:1255t t ==-(不合题意,舍去),5t ∴=. 【点睛】本题为二次函数综合题,考查了待定系数法,数形结合,全等三角形,平行四边形,相似,三角函数等知识,综合性较强,根据题意正确画出图形,用式子表示相关线段,构造方程是解题关键.。

中考数学真题试题(含答案)

中考数学真题试题(含答案)

2020年辽宁省盘锦市中考数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号涂在答题卡上,每小题3分,共30分)1.﹣2的相反数是( ) A .2 B .12 C .﹣12D .﹣2 【答案】A .2.以下分别是回收、节水、绿色包装、低碳四个标志,其中是中心对称图形的是( )A .B .C .D .【答案】C .3.下列等式从左到右的变形,属于因式分解的是( )A .2221(1)x x x +-=- B .22()()a b a b a b +-=-C .2244(2)x x x ++=+D .22(1)ax a a x -=- 【答案】C .4.如图,下面几何体的俯视图是( )A .B .C .D .【答案】D .5.在我市举办的中学生“争做文明盘锦人”演讲比赛中,有15名学生进入决赛,他们决赛的成绩各不相同,小明想知道自己能否进入前8名,不仅要了解自己的成绩,还要了解这15名学生成绩的( ) A .众数 B .方差 C .平均数 D .中位数 【答案】D .6.不等式组1122(2)13x x -⎧<⎪⎨⎪++≥⎩的解集是( )A .﹣1<x ≤3B .1≤x <3C .﹣1≤x <3D .1<x ≤3 【答案】C .7.样本数据3,2,4,a ,8的平均数是4,则这组数据的众数是( ) A .2 B .3 C .4 D .8 【答案】B .8.十一期间,几名同学共同包租一辆中巴车去红海滩游玩,中巴车的租价为480元,出发时又有4名学生参加进来,结果每位同学比原来少分摊4元车费.设原来游玩的同学有x 名,则可得方程( )A .48048044x x -=+ B .48048044x x -=- C .48048044x x -=- D .48048044x x -=+【答案】D .9.如图,双曲线32y x=-(x <0)经过▱ABCO 的对角线交点D ,已知边OC 在y 轴上,且AC ⊥OC 于点C ,则▱OABC 的面积是( )A .32 B .94C .3D .6 【答案】C .10.如图,抛物线2y ax bx c =++ 与x 轴交于点A (﹣1,0),顶点坐标(1,n ),与y 轴的交点在(0,3),(0,4)之间(包含端点),则下列结论:①abc >0;②3a+b <0;③﹣43≤a ≤﹣1;④a+b ≥am 2+bm (m 为任意实数);⑤一元二次方程2ax bx c n ++= 有两个不相等的实数根,其中正确的有( )A .2个B .3个C .4个D .5个 【答案】B .二、填空题(每小题3分,共24分)11.2020年我国对“一带一路”沿线国家直接投资145亿美元,将145亿用科学记数法表示为 . 【答案】1.45×1010. 12.若式子123x +有意义,则x 的取值范围是 .【答案】x >32-. 13.计算:310(5)ab ab ÷-= . 【答案】22b -.14.对于▱ABCD ,从以下五个关系式中任取一个作为条件:①AB=BC ;②∠BAD=90°;③AC=BD ;④AC ⊥BD ;⑤∠DAB=∠ABC ,能判定▱ABCD 是矩形的概率是 . 【答案】35. 15.如图,在△ABC 中,∠B=30°,∠C =45°,AD 是BC 边上的高,AB=4cm ,分别以B 、C 为圆心,以BD 、CD 为半径画弧,交边AB 、AC 于点E 、F ,则图中阴影部分的面积是 cm 2.【答案】32322π-. 16.在平面直角坐标系中,点P 的坐标为(0,﹣5),以P 为圆心的圆与x 轴相切,⊙P 的弦AB (B 点在A 点右侧)垂直于y 轴,且AB=8,反比例函数ky x=(k ≠0)经过点B ,则k= . 【答案】﹣8或﹣32.17.如图,⊙O 的半径OA=3,OA 的垂直平分线交⊙O 于B 、C 两点,连接OB 、OC ,用扇形OBC 围成一个圆锥的侧面,则这个圆锥的高为 .【答案】22.18.如图,点A 1(1,1)在直线y=x 上,过点A 1分别作y 轴、x 轴的平行线交直线32y x =于点B 1,B 2,过点B 2作y 轴的平行线交直线y=x 于点A 2,过点A 2作x 轴的平行线交直线32y x =于点B 3,…,按照此规律进行下去,则点A n 的横坐标为 .【答案】13()3n -. 三、解答题(19小题8分,20小题10分,共18分) 19.先化简,再求值:22214()244a a a a a a a a +--+÷--+,其中a=011(3)()2π-+. 【答案】21(2)a -,1.20.如图,码头A 、B 分别在海岛O 的北偏东45°和北偏东60°方向上,仓库C 在海岛O 的北偏东75°方向上,码头A 、B 均在仓库C 的正西方向,码头B 和仓库C 的距离BC=50km ,若将一批物资从仓库C 用汽车运送到A 、B 两个码头中的一处,再用货船运送到海岛O ,若汽车的行驶速度为50km/h ,货船航行的速度为25km/h ,问这批物资在哪个码头装船,最早运抵海岛O ?(两个码头物资装船所用的时间相同,参2≈1.43≈1.7)【答案】这批物资在B码头装船,最早运抵海岛O.21.如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料.根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题:(1)这个班级有多少名同学?并补全条形统计图.(2)若该班同学没人每天只饮用一种饮品(每种仅限1瓶,价格如下表),则该班同学用于饮品上的人均花费是多少元?饮品名称自带白开水瓶装矿泉水碳酸饮料非碳酸饮料平均价格(元/瓶)0234(3)若我市约有初中生4万人,估计我市初中生每天用于饮品上的花费是多少元?(4)为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学做良好习惯监督员,请用列表法或树状图法求出恰好抽到2名女生的概率.【答案】(1)50;(2)2.6;(3)104000元;(4)35.22.如图,在平面直角坐标系中,直线l:343y x=-+与x轴、y轴分别交于点M,N,高为3的等边三角形ABC,边BC在x轴上,将此三角形沿着x轴的正方向平移,在平移过程中,得到△A1B1C1,当点B1与原点重合时,解答下列问题:(1)求出点A1的坐标,并判断点A1是否在直线l上;(2)求出边A1C1所在直线的解析式;(3)在坐标平面内找一点P ,使得以P 、A 1、C 1、M 为顶点的四边形是平行四边形,请直接写出P 点坐标.【答案】(1)A 1(3,3),在直线上;(2)36y x =-+;(3)P 1(33,3),P 2(53,﹣3),P 3(﹣3,3).23.端午节前夕,三位同学到某超市调研一种进价为80元的粽子礼盒的销售情况,请根据小梅提供的信息,解答小慧和小杰提出的问题.(价格取正整数)【答案】小慧:定价为102元;小杰:8580元的销售利润不是最多,当定价为110元或111元时,销售利润最多,最多利润为9300元.24.如图,在等腰△ABC 中,AB=BC ,以BC 为直径的⊙O 与AC 相交于点D ,过点D 作DE ⊥AB 交CB 延长线于点E ,垂足为点F .(1)判断DE 与⊙O 的位置关系,并说明理由; (2)若⊙O 的半径R=5,tanC=12,求EF 的长.【答案】(1)直线DE 是⊙O 的切线;(2)83. 25.如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,点O 为AB 中点,点P 为直线BC 上的动点(不与点B 、点C 重合),连接OC 、OP ,将线段OP 绕点P 顺时针旋转60°,得到线段PQ ,连接BQ . (1)如图1,当点P 在线段BC 上时,请直接写出线段BQ 与CP 的数量关系.(2)如图2,当点P 在CB 延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P 在BC 延长线上时,若∠BPO=15°,BP=4,请求出BQ 的长.【答案】(1)BQ=CP ;(2)成立:PC=BQ ;(3)434-. 26.如图,直线y=﹣2x+4交y 轴于点A ,交抛物线212y x bx c =++ 于点B (3,﹣2),抛物线经过点C (﹣1,0),交y 轴于点D ,点P 是抛物线上的动点,作PE ⊥DB 交DB 所在直线于点E . (1)求抛物线的解析式;(2)当△PDE 为等腰直角三角形时,求出PE 的长及P 点坐标;(3)在(2)的条件下,连接PB ,将△PBE 沿直线AB 翻折,直接写出翻折点后E 的对称点坐标.【答案】(1)213222y x x =--;(2)PE=5或2,P (2,﹣3)或(5,3);(3)E 的对称点坐标为(95,﹣185)或(3.6,﹣1.2).2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知二次函数y =x 2﹣4x+m 的图象与x 轴交于A 、B 两点,且点A 的坐标为(1,0),则线段AB 的长为( ) A .1B .2C .3D .42.若55+55+55+55+55=25n ,则n 的值为( ) A .10B .6C .5D .33.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-4.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .5.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是( )A .中位数是9B .众数为16C .平均分为7.78D .方差为26.如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,MC =6,NC =23MABN 的面积是( )A .63B .123C .183D .2437.如图,点O 为平面直角坐标系的原点,点A 在x 轴上,△OAB 是边长为4的等边三角形,以O 为旋转中心,将△OAB 按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为( )A .(2,23)B .(﹣2,4)C .(﹣2,22)D .(﹣2,23)8.根据下表中的二次函数2y ax bx c =++的自变量x 与函数y 的对应值,可判断该二次函数的图象与x 轴( ).x…1-12…y…1-74-2-74-…A .只有一个交点B .有两个交点,且它们分别在y 轴两侧C .有两个交点,且它们均在y 轴同侧D .无交点9.如图,在矩形ABCD 中,AB=2,AD=3,点E 是BC 边上靠近点B 的三等分点,动点P 从点A 出发,沿路径A→D→C→E 运动,则△APE 的面积y 与点P 经过的路径长x 之间的函数关系用图象表示大致是( )A .B .C .D.10.如图,已知△ABC,按以下步骤作图:①分别以B,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M,N;②作直线MN 交AB 于点D,连接CD.若CD=AC,∠A=50°,则∠ACB 的度数为()A.90°B.95°C.105°D.110°11.如图是某个几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥12.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.方程3x(x-1)=2(x-1)的根是14.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是_____.15.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等_________.16.如果正比例函数3)y k x =-(的图像经过第一、三象限,那么k 的取值范围是 __. 17.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB=60°,弦AD 平分∠CAB ,若AD=6,则AC=_____.18.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C 表示)开展社会实践活动,车到达A 地后,发现C 地恰好在A 地的正北方向,且距离A 地13千米,导航显示车辆应沿北偏东60°方向行驶至B 地,再沿北偏西37°方向行驶一段距离才能到达C 地,求B 、C 两地的距离.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)20.(6分)为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A 、B 、C 、D 四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C 厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.抽查D 厂家的零件为 件,扇形统计图中D 厂家对应的圆心角为 ;抽查C 厂家的合格零件为 件,并将图1补充完整;通过计算说明合格率排在前两名的是哪两个厂家;若要从A 、B 、C 、D 四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.21.(6分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了13,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?22.(8分)如图,在平面直角坐标系中,一次函数()10y kx b k =+≠与反比例函数()20m y m x=≠的图像交于点()3,1A 和点B ,且经过点()0,2C -. 求反比例函数和一次函数的表达式;求当12y y >时自变量x 的取值范围.23.(8分)如图1,已知△ABC 是等腰直角三角形,∠BAC =90°,点D 是BC 的中点.作正方形DEFG ,使点A 、C 分别在DG 和DE 上,连接AE ,BG .试猜想线段BG 和AE 的数量关系是_____;将正方形DEFG 绕点D 逆时针方向旋转α(0°<α≤360°),①判断(1)中的结论是否仍然成立?请利用图2证明你的结论;②若BC =DE =4,当AE 取最大值时,求AF 的值.24.(10分)先化简22121211x x x x x ÷---++,然后从﹣1,0,2中选一个合适的x 的值,代入求值. 25.(10分)如图,在等边△ABC 中,点D 是 AB 边上一点,连接CD ,将线段CD 绕点C 按顺时针方向旋转60°后得到CE ,连接AE .求证:AE ∥BC .26.(12分)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠EAC=∠D=60°.求∠ABC 的度数;求证:AE 是⊙O 的切线;当BC=4时,求劣弧AC 的长.27.(12分)先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】先将点A(1,0)代入y =x 2﹣4x+m ,求出m 的值,将点A(1,0)代入y =x 2﹣4x+m ,得到x 1+x 2=4,x 1•x 2=3,即可解答【详解】将点A(1,0)代入y =x 2﹣4x+m ,得到m =3,所以y =x 2﹣4x+3,与x 轴交于两点,设A(x 1,y 1),b(x 2,y 2)∴x 2﹣4x+3=0有两个不等的实数根,∴x 1+x 2=4,x 1•x 2=3,∴AB =|x 1﹣x 2|21212)4x x x x ++( =2;故选B.【点睛】此题考查抛物线与坐标轴的交点,解题关键在于将已知点代入.2.D【解析】【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.【详解】解:∵55+55+55+55+55=25n,∴55×5=52n,则56=52n,解得:n=1.故选D.【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.3.D【解析】分析:详解:如图,∵AB⊥CD,CE⊥AD,∴∠1=∠2,又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3,即∠A=∠C.∵BF⊥AD,∴∠CED=∠BFD=90°,∵AB=CD,∴△ABF ≌△CDE,∴AF=CE=a,ED=BF=b,又∵EF=c,∴AD=a+b-c.故选:D.点睛:本题主要考查全等三角形的判定与性质,证明△ABF ≌△CDE 是关键.4.B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B .考点:简单组合体的三视图.5.A【解析】【分析】根据中位数,众数,平均数,方差等知识即可判断;【详解】观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1. 故选A .【点睛】本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型. 6.C【解析】连接CD ,交MN 于E ,∵将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,∴MN ⊥CD ,且CE=DE .∴CD=2CE .∵MN ∥AB ,∴CD ⊥AB .∴△CMN ∽△CAB . ∴2CMN CAB S CE 1S CD 4∆∆⎛⎫== ⎪⎝⎭. ∵在△CMN 中,∠C=90°,MC=6,NC=3CMN 11S ?CM CN 62?3?6?322∆=⋅=⨯⨯=∴CAB CMN S 4S 46?3?24?3∆∆==⨯=.∴CAB CMN MABN S S S 24?36?318?3∆∆=-=-=四边形.故选C . 7.D【解析】分析:作BC ⊥x 轴于C ,如图,根据等边三角形的性质得4,2,60OA OB AC OC BOA ====∠=,则易得A 点坐标和O 点坐标,再利用勾股定理计算出224223BC =-=,然后根据第二象限点的坐标特征可写出B 点坐标;由旋转的性质得60,AOA BOB OA OB OA OB ∠'=∠'==='=',则点A′与点B 重合,于是可得点A′的坐标.详解:作BC ⊥x 轴于C ,如图,∵△OAB 是边长为4的等边三角形∴4,2,60OA OB AC OC BOA ====∠=,∴A 点坐标为(−4,0),O 点坐标为(0,0),在Rt △BOC 中,224223BC =-=,∴B 点坐标为(2,3)-;∵△OAB 按顺时针方向旋转60,得到△OA′B′,∴60,AOA BOB OA OB OA OB ∠'=∠'==='=',∴点A′与点B 重合,即点A′的坐标为(2,3)-,故选D.点睛:考查图形的旋转,等边三角形的性质.求解时,注意等边三角形三线合一的性质.8.B【解析】【分析】根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断.【详解】解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上则该二次函数的图像与x 轴有两个交点,且它们分别在y 轴两侧故选B.【点睛】本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成.9.B【解析】【详解】由题意可知,当03x ≤≤时,11222y AP AB x x =⋅=⨯=; 当35x <≤时, ABE ADP EPC ABCD y S S S S ∆∆∆=---矩形()()11123123325222x x =⨯-⨯⨯-⨯--⨯-1922x =-+; 当57x <≤时,()1127722y AB EP x x =⋅=⨯⨯-=-.∵3x =时,3y =;5x =时,2y =.∴结合函数解析式,可知选项B 正确.【点睛】考点:1.动点问题的函数图象;2.三角形的面积.10.C【解析】【分析】 根据等腰三角形的性质得到∠CDA=∠A=50°,根据三角形内角和定理可得∠DCA=80°,根据题目中作图步骤可知,MN 垂直平分线段BC ,根据线段垂直平分线定理可知BD=CD ,根据等边对等角得到∠B=∠BCD ,根据三角形外角性质可知∠B+∠BCD=∠CDA ,进而求得∠BCD=25°,根据图形可知∠ACB=∠ACD+∠BCD ,即可解决问题.【详解】∵CD=AC ,∠A=50°∴∠CDA=∠A=50°∵∠CDA+∠A+∠DCA=180°∴∠DCA=80°根据作图步骤可知,MN 垂直平分线段BC∴BD=CD∴∠B=∠BCD∵∠B+∠BCD=∠CDA∴2∠BCD=50°∴∠BCD=25°∴∠ACB=∠ACD+∠BCD=80°+25°=105°故选C【点睛】本题考查了等腰三角形的性质、三角形内角和定理、线段垂直平分线定理以及三角形外角性质,熟练掌握各个性质定理是解题关键.11.A【解析】试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A.考点:由三视图判定几何体.12.A【解析】若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.解:设走路线一时的平均速度为x千米/小时,故选A.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x1=1,x2=-.【解析】试题解析:3x(x-1)=2(x-1)3x(x-1)-2 (x-1) =0(3x-2)(x-1)=03x-2=0,x-1=0解得:x 1=1,x 2=-.考点:解一元二次方程---因式分解法.14.55【解析】【详解】如图,过点O 作OC ⊥AB 的延长线于点C ,则AC=4,OC=2,在Rt △ACO 中,22224225AC OC ++=,∴sin ∠OAB=525OCOA ==. 5.15.2π【解析】试题解析:2222121111ππππ228228AC BC S AC S BC ⎛⎫⎛⎫=⋅==⋅= ⎪ ⎪⎝⎭⎝⎭,,所以()22212111πππ162π888S S AC BC AB +=+==⨯=.故答案为2π.16.k>1【解析】【分析】根据正比例函数y=(k-1)x 的图象经过第一、三象限得出k 的取值范围即可.【详解】因为正比例函数y=(k-1)x 的图象经过第一、三象限,所以k-1>0,解得:k >1,故答案为:k >1.【点睛】此题考查一次函数问题,关键是根据正比例函数y=(k-1)x 的图象经过第一、三象限解答. 17.23 【解析】 【分析】 首先连接BD ,由AB 是⊙O 的直径,可得∠C=∠D=90°,然后由∠BAC=60°,弦AD 平分∠BAC ,求得∠BAD 的度数,又由AD=6,求得AB 的长,继而求得答案.【详解】解:连接BD ,∵AB 是⊙O 的直径,∴∠C=∠D=90°,∵∠BAC=60°,弦AD 平分∠BAC ,∴∠BAD=12∠BAC=30°,∴在Rt △ABD 中,AB=AD cos30︒=43,∴在Rt △ABC 中,AC=AB•cos60°=43×12=23.故答案为23.18.5245 1【解析】【详解】如图所示:①当AP=AE=1时,∵∠BAD=90°,∴△AEP 是等腰直角三角形,∴底边2AE=52 ②当PE=AE=1时,∵BE=AB ﹣AE=8﹣1=3,∠B=90°,∴22PE BE -=4,∴底边22AB PB +2284+5③当PA=PE时,底边AE=1;综上所述:等腰三角形AEP的对边长为52或45或1;故答案为52或45或1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(20-53)千米.【解析】分析:作BD⊥AC,设AD=x,在Rt△ABD中求得BD=3x,在Rt△BCD中求得CD=433x,由AC=AD+CD建立关于x的方程,解之求得x的值,最后由BC=BDcos DBC∠可得答案.详解:过点B作BD⊥ AC,依题可得:∠BAD=60°,∠CBE=37°,AC=13(千米),∵BD⊥AC,∴∠ABD=30°,∠CBD=53°,在Rt△ABD中,设AD=x,∴tan∠ABD=AD BD即tan30°=3 ADBD=∴3,在Rt△DCB中,∴tan∠CBD=CD BD即tan53°=43 CDBD=,∴∵CD+AD=AC,∴x+3=13,解得,x=3∴BD=12-在Rt△BDC中,∴cos∠CBD=tan60°=BD BC,即:BC=205BDcos DBC==-∠千米),故B、C两地的距离为()千米.点睛:此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.20.(1)500,90°;(2)380;(3)合格率排在前两名的是C、D两个厂家;(4)P(选中C、D)=16.【解析】试题分析:(1)计算出D厂的零件比例,则D厂的零件数=总数×所占比例,D厂家对应的圆心角为360°×所占比例;(2)C厂的零件数=总数×所占比例;(3)计算出各厂的合格率后,进一步比较得出答案即可;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.试题解析:(1)D厂的零件比例=1-20%-20%-35%=25%,D厂的零件数=2000×25%=500件;D厂家对应的圆心角为360°×25%=90°;(2)C厂的零件数=2000×20%=400件,C厂的合格零件数=400×95%=380件,如图:(3)A厂家合格率=630÷(2000×35%)=90%,B厂家合格率=370÷(2000×20%)=92.5%,C厂家合格率=95%,D厂家合格率470÷500=94%,合格率排在前两名的是C、D两个厂家;(4)根据题意画树形图如下:共有12种情况,选中C、D的有2种,则P(选中C、D)=212=16.考点:1.条形统计图;2.扇形统计图;3. 树状图法. 21.软件升级后每小时生产1个零件.【解析】分析:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+13)x个零件,根据工作时间=工作总量÷工作效率结合软件升级后节省的时间,即可得出关于x的分式方程,解之经检验后即可得出结论.详解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+13)x个零件,根据题意得:240240402016060(1)3x x-=++,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴(1+13)x=1.答:软件升级后每小时生产1个零件.点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22. (1) 3y x=,2y x =-;(2)10x -<<或3x >. 【解析】【分析】 (1)把点A 坐标代入()m y m 0x=≠可求出m 的值即可得反比例函数解析式;把点A 、点C 代入()1y kx b k 0=+≠可求出k 、b 的值,即可得一次函数解析式;(2)联立一次函数和反比例函数解析式可求出点B 的坐标,根据图象,求出一次函数图象在反比例函数图象的上方时,x 的取值范围即可.【详解】(1)把()A 3,1代入()m y m 0x=≠得m 3=. ∴反比例函数的表达式为3y x = 把()A 3,1和()B 0,2-代入y kx b =+得132k b b =+⎧⎨-=⎩, 解得12k b =⎧⎨=-⎩∴一次函数的表达式为y x 2=-.(2)由3x 2y y x ⎧=⎪⎨⎪=-⎩得()B 1,3--∴当1x 0-<<或x 3>时,12y y >.【点睛】本题考查了一次函数和反比例函数的交点问题,解决问题的关键是掌握待定系数法求函数解析式.求反比例函数与一次函数的交点坐标时,把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,若方程组无解,则两者无交点.23.(1)BG=AE .(2)①成立BG=AE .证明见解析.②AF=【解析】【分析】(1)由等腰直角三角形的性质及正方形的性质就可以得出△ADE ≌△BDG 就可以得出结论;(2)①如图2,连接AD ,由等腰直角三角形的性质及正方形的性质就可以得出△ADE ≌△BDG 就可以得出结论;②由①可知BG=AE ,当BG 取得最大值时,AE 取得最大值,由勾股定理就可以得出结论.【详解】(1)BG=AE.理由:如图1,∵△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,∴AD⊥BC,BD=CD,∴∠ADB=∠ADC=90°.∵四边形DEFG是正方形,∴DE=DG.在△BDG和△ADE中,BD=AD,∠BDG=∠ADE,GD=ED,∴△ADE≌△BDG(SAS),∴BG=AE.故答案为BG=AE;(2)①成立BG=AE.理由:如图2,连接AD,∵在Rt△BAC中,D为斜边BC中点,∴AD=BD,AD⊥BC,∴∠ADG+∠GDB=90°.∵四边形EFGD为正方形,∴DE=DG,且∠GDE=90°,∴∠ADG+∠ADE=90°,∴∠BDG=∠ADE.在△BDG和△ADE中,BD=AD,∠BDG=∠ADE,GD=ED,∴△BDG≌△ADE(SAS),∴BG=AE;②∵BG=AE,∴当BG取得最大值时,AE取得最大值.如图3,当旋转角为270°时,BG=AE.∵BC=DE=4,∴BG=2+4=6.∴AE=6.在Rt△AEF中,由勾股定理,得AF=22AE EF+=3616+,∴AF=213.【点睛】本题考查的知识点是全等三角形的判定与性质及勾股定理及正方形的性质和等腰直角三角形,解题的关键是熟练的掌握全等三角形的判定与性质及勾股定理以及正方形的性质和等腰直角三角形.24.-11 ,2 x-.【解析】【分析】先把分式除法转换成乘法进行约分化简,然后再找出分式的最小公分母通分进行化简求值,在代入求值时要保证每一个分式的分母不能为1【详解】解:原式=22121·1x xx x-+--21x+=2 1(1)·1)(1)xx x x-+-(-21 x+=121)1 xx x x(--++=()121)1x x x x x x --++( =-1x. 当x=-1或者x=1时分式没有意义 所以选择当x=2时,原式=12-. 【点睛】分式的化简求值是此题的考点,需要特别注意的是分式的分母不能为1.25.见解析【解析】试题分析:根据等边三角形的性质得出AC=BC,∠B=∠ACB=60°,根据旋转的性质得出CD=CE,∠DCE=60°,求出∠BCD=∠ACE,根据SAS 推出△BCD ≌△ACE,根据全等得出∠EAC=∠B=60°,求出∠EAC=∠ACB,根据平行线的判定得出即可.试题解析:∵△ABC 是等边三角形,∴AC=BC,∠B=∠ACB=60°,∵线段CD 绕点C 顺时针旋转60°得到CE,∴CD=CE,∠DCE=60°,∴∠DCE=∠ACB,即∠BCD+∠DCA=∠DCA+∠ACE,∴∠BCD=∠ACE,在△BCD 与△ACE 中,BC AC BCD ACE DC EC =⎧⎪∠=∠⎨⎪=⎩,∴△BCD ≌△ACE,∴∠EAC=∠B=60°,∴∠EAC=∠ACB,∴AE ∥BC.26.(1)60°;(2)证明略;(3)83π 【解析】【分析】(1)根据∠ABC 与∠D 都是劣弧AC 所对的圆周角,利用圆周角定理可证出∠ABC=∠D=60°; (2)根据AB 是⊙O 的直径,利用直径所对的圆周角是直角得到∠ACB=90°,结合∠ABC=60°求得∠BAC=30°,从而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切线;(3)连结OC,证出△OBC是等边三角形,算出∠BOC=60°且⊙O的半径等于4,可得劣弧AC所对的圆心角∠AOC=120°,再由弧长公式加以计算,可得劣弧AC的长.【详解】(1)∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直径,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切线;(3)如图,连接OC,∵OB=OC,∠ABC=60°,∴△OBC是等边三角形,∴OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC的长为120180Rπ=1204180π=83π.【点睛】本题考查了切线长定理及弧长公式,熟练掌握定理及公式是解题的关键.27.1.【解析】【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【详解】原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=1.【点睛】本题考查的知识点是分式的化简求值,解题的关键是熟练的掌握分式的化简求值.。

2020年辽宁省中考数学试卷及答案解析

2020年辽宁省中考数学试卷及答案解析

2020年辽宁省中考数学试卷一、选择题(本大题共10小题,共30.0分)1.−13的绝对值是()A. 13B. −13C. 3D. −32.如图是由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.3.下列运算正确的是()A. a2⋅a3=a6B. a8÷a4=a2C. 5a−3a=2aD. (−ab2)2=−a2b44.一组数据1,4,3,1,7,5的众数是()A. 1B. 2C. 2.5D. 3.55.一个不透明的口袋中有4个红球、2个白球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸到红球的概率是()A. 16B. 13C. 12D. 236.不等式组{3+x>12x−3≤1的整数解的个数是()A. 2B. 3C. 4D. 57. 我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工x 米,乙工程队每天施工y 米.根据题意,所列方程组正确的是( )A. {x =y −22x +3y =400 B. {x =y −22x +3(x +y)=400−50 C. {x =y +22x +3y =400−50D. {x =y +22x +3(x +y)=400−508. 一个零件的形状如图所示,AB//DE ,AD//BC ,∠CBD =60°,∠BDE =40°,则∠A 的度数是( )A. 70°B. 80°C. 90°D. 100°9. 如图,矩形ABCD 的顶点D 在反比例函数y =kx (x >0)的图象上,点E(1,0)和点F(0,1)在AB 边上,AE =EF ,连接DF ,DF//x 轴,则k 的值为( )A. 2√2B. 3C. 4D. 4√210. 如图,二次函数y =ax 2+bx +c(a ≠0)的图象的对称轴是直线x =1,则以下四个结论中:①abc >0,②2a +b =0,③4a +b 2<4ac ,④3a +c <0.正确的个数是( )A. 1B. 2C. 3D. 4二、填空题(本大题共8小题,共24.0分)11.伴随“互联网+”时代的来临,预计到2025年,我国各类网络互助平台的实际参与人数将达到450000000,将数据450000000用科学记数法表示为______.12.分解因式:ab2−9a=______.13.甲、乙两人参加“环保知识”竞赛,经过6轮比赛,他们的平均成绩都是97分.如果甲、乙两人比赛成绩的方差分别为s甲2=6.67,s乙2=2.50,则这6次比赛成绩比较稳定的是______.(填“甲”或“乙”)14.关于x的一元二次方程x2−2x−k=0有两个不相等的实数根,则k的取值范围是______.15.如图,在△ABC中,AB=5,AC=8,BC=9,以A为圆心,以适当的长为半径MN的长为半径作弧,交AB于点M,交AC于点N.分别以M,N为圆心,以大于12作弧,两弧在∠BAC的内部相交于点G,作射线AG,交BC于点D,点F在AC边上,AF=AB,连接DF,则△CDF的周长为______.16.如图,以AB为边,在AB的同侧分别作正五边形ABCDE和等边△ABF,连接FE,FC,则∠EFA的度数是______.17. 一张菱形纸片ABCD 的边长为6cm ,高AE 等于边长的一半,将菱形纸片沿直线MN 折叠,使点A 与点B 重合,直线MN 交直线CD 于点F ,则DF 的长为______cm . 18. 如图,∠MON =45°,正方形ABB 1C ,正方形A 1B 1B 2C 1,正方形A 2B 2B 3C 2,正方形A 3B 3B 4C 3,…,的顶点A ,A 1,A 2,A 3,…,在射线OM 上,顶点B ,B 1,B 2,B 3,B 4,…,在射线ON 上,连接AB 2交A 1B 1于点D ,连接A 1B 3交A 2B 2于点D 1,连接A 2B 4交A 3B 3于点D 2,…,连接B 1D 1交AB 2于点E ,连接B 2D 2交A 1B 3于点E 1,…,按照这个规律进行下去,设△ACD 与△B 1DE 的面积之和为S 1,△A 1C 1D 1与△B 2D 1E 1的面积之和为S 2,△A 2C 2D 2与△B 3D 2E 2的面积之和为S 3,…,若AB =2,则S n 等于______.(用含有正整数n 的式子表示)三、解答题(本大题共8小题,共96.0分)19. 先化简,再求值:(x −1−x 2x+1)÷xx 2+2x+1,其中x =3.20. 某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如图两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有______人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.21.某中学为了创设“书香校园”,准备购买A,B两种书架,用于放置图书.在购买时发现,A种书架的单价比B种书架的单价多20元,用600元购买A种书架的个数与用480元购买B种书架的个数相同.(1)求A,B两种书架的单价各是多少元?(2)学校准备购买A,B两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个A种书架?22.如图,小明利用学到的数学知识测量大桥主架在水面以上的高度AB,在观测点C处测得大桥主架顶端A的仰角为30°,测得大桥主架与水面交汇点B的俯角为14°,观测点与大桥主架的水平距离CM为60米,且AB垂直于桥面.(点A,B,C,M 在同一平面内)(1)求大桥主架在桥面以上的高度AM;(结果保留根号)(2)求大桥主架在水面以上的高度AB.(结果精确到1米)(参考数据sin14°≈0.24,cos14°≈0.97,tan14°≈0.25,√3≈1.73)23.小红经营的网店以销售文具为主,其中一款笔记本进价为每本10元,该网店在试销售期间发现,每周销售数量y(本)与销售单价x(元)之间满足一次函数关系,三对对应值如下表:销售单价x(元)121416每周的销售量y(本)500400300(1)求y与x之间的函数关系式;(2)通过与其他网店对比,小红将这款笔记本的单价定为x元(12≤x≤15,且x为整数),设每周销售该款笔记本所获利润为w元,当销售单价定为多少元时每周所获利润最大,最大利润是多少元?24.如图,四边形ABCD内接于⊙O,AC是直径,AB=BC,连接BD,过点D的直线与CA的延长线相交于点E,且∠EDA=∠ACD.(1)求证:直线DE是⊙O的切线;(2)若AD=6,CD=8,求BD的长.25.在等腰△ADC和等腰△BEC中,∠ADC=∠BEC=90°,BC<CD,将△BEC绕点C逆时针旋转,连接AB,点O为线段AB的中点,连接DO,EO.(1)如图1,当点B旋转到CD边上时,请直接写出线段DO与EO的位置关系和数量关系;(2)如图2,当点B旋转到AC边上时,(1)中的结论是否成立?若成立,请写出证明过程,若不成立,请说明理由;(3)若BC=4,CD=2√6,在△BEC绕点C逆时针旋转的过程中,当∠ACB=60°时,请直接写出线段OD的长.x+c(a≠0)与x轴相交于点A(−1,0)和点B,与y轴相交26.如图,抛物线y=ax2+94于点C(0,3),作直线BC.(1)求抛物线的解析式;(2)在直线BC上方的抛物线上存在点D,使∠DCB=2∠ABC,求点D的坐标;),点M在抛物线上,点N在直线BC上.当(3)在(2)的条件下,点F的坐标为(0,72以D,F,M,N为顶点的四边形是平行四边形时,请直接写出点N的坐标.答案和解析1.【答案】A【解析】解:|−13|=13.故选:A.依据绝对值的性质求解即可.本题主要考查的是绝对值的性质,熟练掌握绝对值的性质是解题的关键.2.【答案】B【解析】解:从上面看,底层左边是一个小正方形,上层是两个小正方形.故选:B.根据从上面看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,解题时注意从上面看得到的图形是俯视图.3.【答案】C【解析】解:(A)原式=a5,故A错误.(B)原式=a4,故B错误.(D)原式=a4b2,故D错误.故选:C.根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.4.【答案】A【解析】解:本题中数据1出现了2次,出现的次数最多,所以本组数据的众数是1.故选:A.众数是指一组数据中出现次数最多的数据;据此即可求得正确答案.主要考查了众数的概念.注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.5.【答案】D【解析】解:根据题意可得:袋中有4个红球、2个白球,共6个, 从袋子中随机摸出1个球,则摸到红球的概率是46=23. 故选:D .根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,即可求出答案.此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.6.【答案】C【解析】解:解不等式3+x >1,得:x >−2, 解不等式2x −3≤1,得:x ≤2, 则不等式组的解集为−2<x ≤2,所以不等式组的整数解有−1、0、1、2这4个, 故选:C .分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出答案.本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.【答案】D【解析】解:由题意可得, {x =y +22x +3(x +y)=400−50, 故选:D .根据甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程和甲工程队每天比乙工程队多施工2米,可以列出相应的二元一次方程组,本题得以解决.本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.8.【答案】B【解析】解:∵AB//DE ,AD//BC , ∴∠ABD =∠BDE ,∠ADB =∠CBD ,∵∠CBD=60°,∠BDE=40°,∴∠ADB=60°,∠ABD=40°,∴∠A=180°−∠ADB−∠ABD=80°,故选:B.根据平行线的性质,可以得到∠ADB=60°和∠ABD的度数,再根据三角形内角和,即可得到∠A的度数.本题考查平行线的性质、三角形内角和,解答本题的关键是明确题意,利用数形结合的思想解答.9.【答案】C【解析】解:如图,过点D作DH⊥x轴于点H,设AD交x轴于点G,∵DF//x轴,∴得矩形OFDH,∴DF=OH,DH=OF,∵E(1,0)和点F(0,1),∴OE=OF=1,∠OEF=45,∴AE=EF=√2,∵四边形ABCD是矩形,∴∠A=90°,∵∠AEG=∠OEF=45°,∴AG=AE=√2,∴EG=2,∵DH=OF=1,∠DHG=90°,∠DGH=∠AGE=45°,∴GH=DH=1,∴DF=OH=OE+EG+GH=1+2+1=4,∴D(4,1),(x>0)的图象上,∵矩形ABCD的顶点D在反比例函数y=kx∵k=4.则k的值为4.故选:C.过点D作DH⊥x轴于点H,设AD交x轴于点G,得矩形OFDH,根据点E(1,0)和点F(0,1)在AB边上,AE=EF,可以求出EG和DH的长,进而可得OH的长,所以得点D的坐标,即可得k的值.本题考查了反比例函数图象上点的坐标特征、矩形的性质,解决本题的关键是掌握反比例函数图象和性质.10.【答案】B【解析】解:①根据抛物线开口向下可知:a<0,因为对称轴在y轴右侧,所以b>0,因为抛物线与y轴正半轴相交,所以c>0,所以abc<0,所以①错误;②因为抛物线对称轴是直线x=1,=1,即−b2a所以b=−2a,所以b+2a=0,所以②正确;③因为抛物线与x轴有2个交点,所以Δ>0,即b2−4ac>0,所以b2−4ac+4a>4a,所以4a+b2>4ac+4a,所以③错误;④当x=−1时,y<0,即a−b+c<0,因为b=−2a,所以3a+c<0,所以④正确.所以正确的个数是②④2个.故选:B.①根据抛物线开口向下可得a<0,对称轴在y轴右侧,得b>0,抛物线与y轴正半轴相交,得c>0,进而即可判断;=1,可得b=−2a,进而可以判断;②根据抛物线对称轴是直线x=1,即−b2a③根据抛物线与x轴有2个交点,可得Δ>0,即b2−4ac>0,进而可以判断;④当x=−1时,y<0,即a−b+c<0,根据b=−2a,可得3a+c<0,即可判断.本题考查了二次函数图象与系数的关系,解决本题的关键是掌握二次函数图象和性质.11.【答案】4.5×108【解析】解:将数据450000000用科学记数法表示为4.5×108.故答案为:4.5×108.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.12.【答案】a(b+3)(b−3)【解析】解:原式=a(b2−9)=a(b+3)(b−3),故答案为:a(b+3)(b−3).根据提公因式,平方差公式,可得答案.本题考查了因式分解,一提,二套,三检查,分解要彻底.13.【答案】乙【解析】解:∵s 甲2=6.67,s 乙2=2.50, ∴s 甲2=>s 乙2,∴这6次比赛成绩比较稳定的是乙, 故答案为:乙.根据方差的意义求解可得.本题主要考查方差,解题的关键是掌握方差的意义.14.【答案】k >−1【解析】解:∵关于x 的一元二次方程x 2−2x −k =0有两个不相等的实数根, ∴△=(−2)2+4k >0, 解得k >−1. 故答案为:k >−1.根据判别式的意义得到△=(−2)2+4k >0,然后解不等式即可.此题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2−4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.【答案】12【解析】解:∵AB =5,AC =8,AF =AB , ∴FC =AC −AF =8−5=3, 由作图方法可得:AD 平分∠BAC , ∴∠BAD =∠CAD , 在△ABD 和△AFD 中 {AB =AF∠BAD =∠FAD AD =AD, ∴△ABD≌△AFD(SAS), ∴BD =DF ,∴△DFC 的周长为:DF +FC +DC =BD +DC +FC =BC +FC =9+3=12. 故答案为:12.直接利用基本作图方法结合全等三角形的判定与性质进而得出BD =DF ,即可得出答案. 此题主要考查了基本作图以及全等三角形的判定与性质,正确理解基本作图方法是解题关键.16.【答案】66°【解析】解:∵正五边形ABCDE,∴∠EAB=(5−2)×180°5=108°,∵△ABF是等边三角形,∴∠FAB=60°,∴∠EAF=108°−60°=48°,∵AE=AF,∴∠AE=∠AFE=12×(180°−48°)=66°,故答案为:66°.根据正五边形和电视背景下的性质得到∠EAF=108°−60°=48°,根据等腰三角形的性质即可得到结论.本题考查了正多边形与圆,正五边形和等边三角形的性质,等腰三角形的性质,正确的识别图形是解题的关键.17.【答案】(3√3+3)或(3√3−3)【解析】解:①根据题意画出如图1:∵菱形纸片ABCD的边长为6cm,∴AB=BC=CD=AD=6,∵高AE等于边长的一半,∴AE=3,∵sin∠B=AEAB =12,∴∠B=30°,将菱形纸片沿直线MN折叠,使点A与点B重合,∴BH=AH=3,∴BG=BHcos30∘=2√3,∴CG=BC−BG=6−2√3,∵AB//CD,∴∠GCF=∠B=30°,∴CF=CG⋅cos30°=(6−2√3)×√32=3√3−3,∴DF=DC+CF=6+3√3−3=(3√3+3)cm;②如图2,BE=AE=3,同理可得DF=3√3−3.综上所述:则DF的长为(3√3+3)或(3√3−3)cm.故答案为:(3√3+3)或(3√3−3).根据题意分两种情况:①如图1:根据菱形纸片ABCD的边长为6cm,高AE等于边长的一半,可得菱形的一个内角为30°,根据折叠可得BH=AH=3,再根据特殊角三角函数即可求出CF的长,进而可得DF的长;如图2,将如图1中的点A和点B交换一下位置,同理即可求出DF的长就是如图1中的CF的长.本题考查了翻折变换、菱形的性质,解决本题的关键是分两种情况分类讨论,进行计算.18.【答案】149×4n−1【解析】解:设△ADC的面积为S,由题意,AC//B1B2,AC=AB=2,B1B2=4,∴△ACD∽△B2B1D,∴S△ADCS△B1B2D =(ACB1B2)2=14,∴S△B1B2D=4S,∵CDDB1=ACB1B2=12,CB1=2,∴DB1=43,同法D 1B 2=83, ∵DB 1//D 1B 2, ∴DEEB 2=DB 1D1B 2=12,∴S △DB 1E =4S3, ∴S 1=S +4S 3=7S 3,∵△A 1C 1D 1∽△ACD , ∴S △A 1C 1D 1S △ACD=(A 1C 1AC)2=14, ∴S △A 1C 1D 1=4S , 同法可得,S △D 1B 1E 1=16S 3, ∴S 2=4S +16S 3=28S 3=7S 3×4,…S n =7S 3×4n−1,∵S =12×2×23=23, ∴S n =149×4n−1.故答案为:149×4n−1.设△ADC 的面积为S ,利用相似三角形的性质求出S 1,S 2,…S n 与S 的关系即可解决问题.本题考查正方形的性质,三角形的面积,相似三角形的判定和性质等知识,解题的关键是学会探究规律的方法,属于中考常考题型.19.【答案】解:(x −1−x 2x+1)÷xx 2+2x+1=[(x −1)(x +1)x +1−x 2x +1]⋅(x +1)2x =x 2−1−x 2x +1⋅(x +1)2x=−x+1x,当x =3时,原式=−3+13=−43.【解析】根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.【答案】60【解析】解:(1)本次被调查的学生有:9÷15%=60(人);故答案为:60;(2)航模的人数有:60−9−15−12=24(人),补全条形统计图如图:“航模”所对应的圆心角的度数是:360°×2460=144°;(3)设两名男生分别为男1,男2,两名女生分别为女1,女2,列表如下:男1男2女1女2男1(男2,男1)(女1,男1)(女2,男1)男2(男1,男2)(女1,男2)(女2,男2)女1(男1,女1)(男2,女1)(女2,女1)女2(男1,女2)(男2,女2)(女1,女2)由表格可以看出,所有可能出现的结果有12种,并且它们出现的可能性相等,其中恰好是1名男生和1名女生的情况有8种.则所选的2人恰好是1名男生和1名女生的概率是812=23.(1)根据摄影的人数和所占的百分比求出抽取的总人数;(2)用总人数减去其他兴趣小组的人数求出航模的人数,从而补全统计图;用360°乘以“航模”所占的百分比即可得出扇形统计图中“航模”所对应的圆心角的度数;(3)根据题意画出图表得出所有等可能的情况数和所选的2人恰好是1名男生和1名女生的情况数,然后根据概率公式即可得出答案.此题考查的是用列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】解:(1)设B种书架的单价为x元,根据题意,得600x+20=480x.解得x=80.经检验:x=80是原分式方程的解.∴x+20=100.答:购买A种书架需要100元,B种书架需要80元.(2)设准备购买m个A种书架,根据题意,得100m+80(15−m)≤1400.解得m≤10.答:最多可购买10个A种书架.【解析】(1)设B种书架的单价为x元,则A种书架的单价为(x+20)元,根据数量=总价÷单价结合用600元购买A种书架的个数与用480元购买B种书架的个数相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设准备购买m个A种书架,则购买B种书架(15−m)个,根据题意列出不等式并解答.本题主要考查了分式方程的应用和一元一次不等式的应用,分析题意,找到关键描述语,找到合适的数量关系是解决问题的关键.22.【答案】解:(1)∵AB垂直于桥面,∴∠AMC=∠BMC=90°,在Rt△AMC中,CM=60,∠ACM=30°,tan∠ACM=AMCM,∴AM=CM⋅tan∠ACM=60×√33=20√3(米),答:大桥主架在桥面以上的高度AM为20√3米;(2)在Rt△BMC中,CM=60,∠BCM=14°,tan∠BCM=BMCM,∴MB=CM⋅tan∠BCM≈60×0.25=15,∴AB=AM+MB=15+20√3≈50(米)答:大桥主架在水面以上的高度AB约为50米.【解析】(1)根据正切的定义求出AM ;(2)根据正切的定义求出BM ,结合图形计算即可.本题考查的是解直角三角形的应用−仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.23.【答案】解:(1)设y 与x 之间的函数关系式是y =kx +b(k ≠0),{12k +b =50014k +b =400,得{k =−50b =1100, 即y 与x 之间的函数关系式为y =−50x +1100; (2)由题意可得,w =(x −10)y =(x −10)(−50x +1100)=−50(x −16)2+1800,∵a =−50<0∴w 有最大值∴当x <16时,w 随x 的增大而增大, ∵12≤x ≤15,x 为整数, ∴当x =15时,w 有最大值,∴w =−50(15−16)2+1800=1750,答:销售单价为15元时,每周获利最大,最大利润是1750元.【解析】(1)根据题意和表格中的数据,可以求得y 与x 之间的函数关系式; (2)根据题意,可以得到w 与x 的函数关系式,然后根据二次函数的性质,可以解答本题.本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.24.【答案】(1)证明:连接OD ,∵OC =OD , ∴∠OCD =∠ODC , ∵AC 是直径, ∴∠ADC =90°, ∵∠EDA =∠ACD ,∴∠ADO +∠ODC =∠EDA +∠ADO , ∴∠EDO =∠EDA +∠ADO =90°, ∴OD ⊥DE , ∵OD 是半径,∴直线DE 是⊙O 的切线.(2)解法一:过点A作AF⊥BD于点F,则∠AFB=∠AFD=90°,∵AC是直径,∴∠ABC=∠ADC=90°,∵在Rt△ACD中,AD=6,CD=8,∴AC2=AD2+CD2=62+82=100,∴AC=10,∵在Rt△ABC中,AB=BC,∴∠BAC=∠ACB=45°,∵sin∠ACB=AB,AC∴AB=sin45°⋅AC=5√2,∵∠ADB=∠ACB=45°,∵在Rt△ADF中,AD=6,∵sin∠ADF=AF,AD∴AF=sin45°⋅AD=3√2,∴DF=AF=3√2,∵在Rt△ABF中,∴BF2=AB2−AF2=(5√2)2−(3√2)2=32,∴BF=4√2,∴BD=BF+DF=7√2.解法二:过点B作BH⊥BD交DC延长线于点H.∴∠DBH=90°,∵AC是直径,∴∠ABC=90°,∵∠ABD=90°−∠DBC∠CBH=90°−∠DBC,∴∠ABD=∠CBH,∵四边形ABCD内接于⊙O,∴∠BAD+∠BCD=180°,∵∠BCD+∠BCH=180°,∴∠BAD=∠BCH,∵AB=CB,∴△ABD≌△CBH(ASA),∴AD=CH,BD=BH,∵AD=6,CD=8,∴DH=CD+CH=14,在Rt△BDH中,∵BD2=DH2−BH2=98,∴BD=7√2.【解析】(1)连接OD.想办法证明OD⊥DE即可.(2)解法一:过点A作AF⊥BD于点F,则∠AFB=∠AFD=90°,想办法求出BF,DF 即可.解法二:过点B作BH⊥BD交DC延长线于点H.证明△BDH是等腰直角三角形,求出DH即可.本题考查切线的判定和性质,圆周角定理,圆内接四边形的性质,解直角三角形,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.25.【答案】解:(1)DO⊥EO,DO=EO;理由:当点B旋转到CD边上时,点E必在边AC上,∴∠AEB=∠CEB=90°,在Rt△ABE中,点O是AB的中点,AB,∴OE=OA=12∴∠BOE=2∠BAE,在Rt△ABD中,点O是AB的中点,AB,∴OD=OA=12∴∠DOE=2∠BAD,∴OD=OE,∵等腰△ADC,且∠ADC=90°,∴∠DAC=45°,∴∠DOE=∠BOE+DOE=2∠BAE+2∠BAD=2(∠BAE+∠DAE)=2∠DAC=90°,∴OD⊥OE;(2)仍然成立,理由:如图1,延长ED到点M,使得OM=OE,连接AM,DM,DE,∵O是AB的中点,∴OA=OB,∵∠AOM=∠BOE,∴△AOM≌△BOE(SAS),∴∠MAO=∠EBO,MA=EB,∵△ACD和△CBE是等腰三角形,∠ADC=∠CEB=90°,∴∠CAD=∠ACD=∠EBC=∠BCE=45°,∵∠OBE=180°−∠EBC=135°,∴∠MAO=135°,∴∠MAD=∠MAO−∠DAC=90°,∵∠DCE=∠DCA+∠BCE=90°,∴∠MAD=∠DCE,∵MA=EB,EB=EC,∴MA=EC,∵AD=DC,∴△MAD≌△ECD,∴MD=ED,∠ADM=∠CDE,∵∠CDE+∠ADE=90°,∴∠ADM+∠ADE=90°,∴∠MDE=90°,∵MO=EO,MD=DE,ME,OD⊥ME,∴OD=12∵OE=1ME,2∴OD=OE,OD⊥OE;(3)①当点B在AC左侧时,如图3,延长ED到点M,使得OM=OE,连接AM,DM,DE,同(2)的方法得,△OBE≌△OAM(SAS),∴∠OBE=∠OAM,OM=OE,BE=AM,∵BE=CE,∴AM=CE,在四边形ABECD中,∠ADC+∠DCE+∠BEC+∠OBE+∠BAD=540°,∵∠ADC=∠BEC=90°,∴∠DCE=540°−90°−90°−∠OBE−∠BAD=360°−∠OBE=360°−∠OAM−∠BAD,∵∠DAM+∠OAM+∠BAD=360°,∴∠DAM=360°−∠OAM−∠BAD,∴∠DAM=∠DCE,∵AD=CD,∴△DAM≌△DCE(SAS),∴DM=DE,∠ADM=∠CDE,∴∠EDM=∠ADM+∠ADE=∠CDE+∠ADE=∠ADC=90°,∵OM=OE,∴OD=OE=1ME,∠DOE=90°,2BC=2√2,在Rt△BCE中,CE=√22过点E作EH⊥DC交DC的延长线于H,在Rt△CHE中,∠ECH=180°−∠ACD−∠ACB−∠BCE=180°−45°−60°−45°= 30°,CE=√2,∴EH=12根据勾股定理得,CH=√3EH=√6,∴DH=CD+CH=3√6,在Rt△DHE中,根据勾股定理得,DE=√EH2+DH2=2√14,DE=2√7,∴OD=√22②当点B在AC右侧时,如图4,同①的方法得,OD=OE,∠DOE=90°,连接DE,过点E作EH⊥CD于H,在Rt△EHC中,∠ECH=30°,CE=√2,∴EH=12根据勾股定理得,CH=√6,∴DH=CD−CH=√6,在Rt△DHE中,根据勾股定理得,DE=2√2,∴OD=√22DE=2,即:线段OD的长为2或2√7.【解析】(1)利用直角三角形斜边的中线等于斜边的一半,得出OE=OA=12AB,进而得出∠BOE=2∠BAE,同理得出OD=OA=12AB,∠DOE=2∠BAD,即可得出结论;(2)先判断出△AOM≌△BOE(SAS),得出∠MAO=∠EBO,MA=EB,再判断出∠MAD=∠DCE,进而判断出△MAD≌△ECD,即可得出结论;(3)分点B在AC左侧和右侧两种情况,类似(2)的方法判断出OD=OE,即可得出结论.此题是几何变换综合题,主要考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,五边形的内角和,判断出∠DAM=∠DCE是解本题的关键.26.【答案】解:(1)∵抛物线y=ax2+94x+c经过点A(−1,0),C(0,3),∴{a−94+c=0c=3,解得:{a=−34c=3,∴抛物线的解析式为:y=−34x2+94x+3;(2)如图1,过点C作CE//x轴交抛物线于点E,则∠ECB=∠ABC,过点D作DH⊥CE于点H,则∠DHC=90°,∵∠DCB=∠DCH+∠ECB=2∠ABC,∴∠DCH=∠ABC,∵∠DHC=∠COB=90°,∴△DCH∽△CBO,∴DHCO =CHBO,设点D的横坐标为t,则D(t,−34t2+94t+3),∵C(0,3),∴DH =−34t 2+94t , ∵点B 是y =−34x 2+94x +3与x 轴的交点,∴−34x 2+94x +3=0,解得x 1=4,x 2=−1,∴B 的坐标为(4,0),∴OB =4,∴−34t 2+94t3=t 4, 解得t 1=0(舍去),t 2=2,∴点D 的纵坐标为:−34t 2+94t +3=92,则点D 坐标为(2,92);(3)设直线BC 的解析式为:y =kx +b ,则{4k +b =0b =3,解得:{k =−34b =3, ∴直线BC 的解析式为:y =−34x +3,设N(m,−34m +3),分两种情况:①如图2,以DF 为边,N 在x 轴的上方时,四边形DFNM 是平行四边形,∵D(2,92),F(0,72),∴M(m +2,−34m +4),代入抛物线的解析式得:−34(m +2)2+94(m +2)+3=−34m +4,解得:m =±√63,∴N(√63,3−√64)或(−√63,3+√64);②如图3,以DF为边,N在x轴的下方时,四边形DFMN是平行四边形,同理得:M(m−2,−34m+2),代入抛物线的解析式得:−34(m−2)2+94(m−2)+3=−34m+2,解得:m=4±√663,∴N(4+√663,−√664)或(4−√663,√664);综上,点N的坐标分别为:(√63,3−√64)或(−√63,3+√64)或(4+√663,−√664)或(4−√663,√664).【解析】(1)把点A(−1,0),C(0,3)代入抛物线的解析式中,列方程组解出即可;(2)如图1,作辅助线,构建相似三角形,证明△DCH∽△CBO,则DHCO =CHBO,设点D的横坐标为t,则D(t,−34t2+94t+3),列关于t的方程解出可得结论;(3)利用待定系数法求直线BC的解析式为:y=−34x+3,设N(m,−34m+3),当以D,F,M,N为顶点的四边形是平行四边形时,存在两种情况:如图2和图3,分别画图,根据平移的性质可表示M的坐标,代入抛物线的解析式列方程可解答.本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质、平行四边形的性质以及解一元二次方程,解题的关键是:(1)根据点A、C的坐标,利用待定系数法求出二次函数解析式;(2)利用相似三角形可解决问题;(3)分N在x轴的上方和下方两种情况,表示M和N两点的坐标,确定关于m的一元二次方程.。

2020年辽宁省盘锦市中考数学试卷(含详细解析)

2020年辽宁省盘锦市中考数学试卷(含详细解析)
身高
人数
60
260
550
130
根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于 的概率是()
A.0.32B.0.55C.0.68D.0.87
7.在市运动会射击比赛选拔赛中,某校射击队甲、乙、丙、丁四名队员的10次射击成绩如图所示.他们的平均成绩均是9.0环,若选一名射击成绩稳定的队员参加比赛,最合适的人选是()
A.甲B.乙C.丙D.丁
8.我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是 尺.根据题意,可列方程为()
14.如图, 三个顶点的坐标分别为 ,以点 为位似中心,相似比为 ,将 缩小,则点 的对应点 的坐标是____________.
15.如图,菱形 的边长为4, ,分别以点 和点 为圆心,大于 的长为半径作弧,两弧相交于 两点,直线 交 于点 ,连接 ,则 的长为____________.
16.如图,在矩形 中, ,点 和点 分别为 上的点,将 沿 翻折,使点 落在 上的点 处,过点 作 交 于点 ,过点 作 交 于点 .若四边形 与四边形 的面积相等,则 的长为__________.
(1)当 时, 与 的函数关系式为__________.
(2)某零售商到此服装厂一次性批发 品牌服装200件,需要支付多少元?
(3)零售商到此服装厂一次性批发 品牌服装 件,服装厂的利润为 元,问: 为何值时, 最大?最大值是多少?

辽宁省盘锦市中考数学试卷及答案(Word解析版)

辽宁省盘锦市中考数学试卷及答案(Word解析版)

辽宁省盘锦市中考数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案涂在答题卡上.每小题3分,共30分)1.(3分)(•盘锦)﹣|﹣2|的值为()A.﹣2 B.2C.D.﹣考点:绝对值;相反数分析:根据绝对值的定义求解即可.解答:解:﹣|﹣2|=﹣2.故选A.点评:本题考查了绝对值的定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(•盘锦)8月31日,我国第12届全民运动会即将开幕,据某市财政预算统计,用于体育场馆建设的资金约为14000000,14000000用科学记数法表示为()A.1.4×105B.1.4×106C.1.4×107D.1.4×108考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将14000000用科学记数法表示为1.4×107.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(•盘锦)下列调查中适合采用全面调查的是()A.调查市场上某种白酒的塑化剂的含量B.调查鞋厂生产的鞋底能承受弯折次数C.了解某火车的一节车厢内感染禽流感病毒的人数D.了解某城市居民收看辽宁卫视的时间考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、数量较大,具有破坏性,适合抽查;B、数量较大,具有破坏性,适合抽查;C、事关重大,因而必须进行全面调查;D、数量较大,不容易普查,适合抽查.故选C.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.(3分)(•盘锦)如图下面几何体的左视图是()A.B.C.D.考点:简单组合体的三视图分析:左视图即从物体左面看到的图形,找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解答:解:从左面看易得三个竖直排列的长方形,且上下两个长方形的长大于宽,比较小,中间的长方形的宽大于长,比较大.故选B.点评:本题考查了三视图的知识,难度一般,注意左视图是从物体的左面看得到的视图.5.(3分)(•盘锦)下列计算正确的是()A.3mn﹣3n=m B.(2m)3=6m3C.m8÷m4=m2D.3m2•m=3m3考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.分析:依据同底数的幂的除法、单项式的乘法以及积的乘方法则,合并同类项法则即可判断.解答:解:A、不是同类项,不能合并,选项错误;B、(2m)3=8m3,选项错误;C、m8÷m4=m4,选项错误;D、正确.故选D.点评:本题主要考查了合并同类项的法则,幂的乘方的性质,单项式的乘法法则,熟练掌握运算法则是解题的关键.6.(3分)(•盘锦)某校举行健美操比赛,甲、乙两班个班选20名学生参加比赛,两个班参赛学生的平均身高都是1.65米,其方差分别是=1.9,=2.4,则参赛学生身高比较整齐的班级是()A.甲班B.乙班C.同样整齐D.无法确定考点:方差.分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答:解:∵=1.9,=2.4,∴<,∴参赛学生身高比较整齐的班级是甲班,故选:A.点评:此题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.7.(3分)(•盘锦)某班为了解学生“多读书、读好书”活动的开展情况,对该班50名学生一周阅读课外书的时间进行了统计,统计结果如下:阅读时间(小时)1 2 3 4 5人数(人)7 19 13 7 4由上表知,这50名学生周一阅读课外书时间的众数和中位数分别为()A.19,13 B.19,19 C.2,3 D.2,2考点:众数;中位数.分析:根据众数、中位数的定义,结合表格数据进行判断即可.解答:解:阅读课外书时间学生数最多的是2小时,故众数为3;共50名学生,中位数在第25、26名学生处,第25、26名学生阅读2小时,故中位数为2;故选D.点评:本题考查了众数及中位数的知识,解答本题的关键是熟练掌握众数及中位数的定义,注意仔细审题题目要求的是:“阅读课外书时间”的众数和中位数.8.(3分)(•盘锦)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.30°B.20°C.15°D.14°考点:平行线的性质.分析:延长两三角板重合的边与直尺相交,根据两直线平行,内错角相等求出∠2,再利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:如图,∠2=30°,∠1=∠3﹣∠2=45°﹣30°=15°.故选C.点评:本题考查了平行线的性质,三角板的知识,熟记平行线的性质,三角板的度数是解题的关键.9.(3分)(•盘锦)如图,△ABC中,AB=6,AC=8,BC=10,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是()A.相交B.相切C.相离D.无法确定考点:直线与圆的位置关系.分析:首先根据三角形面积求出AM的长,进而得出直线BC与DE的距离,进而得出直线与圆的位置关系.解答:解:过点A作AM⊥BC于点M,交DE于点N,∴AM×BC=AC×AB,∴AM==4.8,∵D、E分别是AC、AB的中点,∴DE∥BC,DE=BC=5,∴AN=MN=AM,∴MN=2.4,∴以DE为直径的圆半径为2.5,∵r>2.5>2.4,∴以DE为直径的圆与BC的位置关系是:相交.故选:A.点评:本题考查了直线和圆的位置关系,利用中位线定理比较出BC到圆心的距离与半径的关系是解题的关键.10.(3分)(•盘锦)如图,将边长为4的正方形ABCD的一边BC与直角边分别是2和4的Rt△GEF的一边GF重合.正方形ABCD以每秒1个单位长度的速度沿GE向右匀速运动,当点A和点E重合时正方形停止运动.设正方形的运动时间为t秒,正方形ABCD 与Rt△GEF重叠部分面积为s,则s关于t的函数图象为()A.B.C.D.考点:动点问题的函数图象.分析:分类讨论:当0≤t≤2时,BG=t,BE=2﹣t,运用△EBP∽△EGF的相似比可表示PB=1﹣t,S为梯形PBGF的面积,则S=(1﹣t+4)•t=﹣(t﹣5)2+,其图象为开口向下的抛物线的一部分;当2<t≤4时,S=FG•GE=4,其图象为平行于x 轴的一条线段;当4<t≤6时,GA=t﹣4,AE=6﹣t,运用△EAP∽△EGF的相似比可得到PA=2(6﹣t),∴S为三角形PAE的面积,则S=(t﹣6)2,其图象为开口向上的抛物线的一部分.解答:解:当0≤t≤2时,如图,BG=t,BE=2﹣t,∵PB∥GF,∴△EBP∽△EGF,∴=,即=,∴PB=1﹣t,∴S=(PB+FG)•GB=(1﹣t+4)•t=﹣(t﹣5)2+;当2<t≤4时,S=FG•GE=4;当4<t≤6时,如图,GA=t﹣4,AE=6﹣t,∵PA∥GF,∴△EAP∽△EGF,∴=,即=,∴PA=2(6﹣t),∴S=PA•AE=•2(6﹣t)(6﹣t)=(t﹣6)2,综上所述,当0≤t≤2时,s关于t的函数图象为开口向下的抛物线的一部分;当2<t≤4时,s关于t的函数图象为平行于x轴的一条线段;当4<t≤6时,s关于t的函数图象为开口向上的抛物线的一部分.故选B.点评:本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.二、填空题(每小题3分,共24分)11.(3分)(•盘锦)若式子有意义,则x的取值范围是x≥﹣1且x≠0.考点:二次根式有意义的条件;分式有意义的条件分析:根据二次根式及分式有意义的条件解答即可.解答:解:根据二次根式的性质可知:x+1≥0,即x≥﹣1,又因为分式的分母不能为0,所以x的取值范围是x≥﹣1且x≠0.点评:此题主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义;当分母中含字母时,还要考虑分母不等于零.12.(3分)(•盘锦)在一个不透明的袋子里装有6个白球和若干个黄球,它们除了颜色不同外,其它方面均相同,从中随机摸出一个球为白球的概率为,则黄球的个数为2.考点:概率公式分析:首先设黄球的个数为x个,根据题意,利用概率公式即可得方程:=,解此方程即可求得答案.解答:解:设黄球的个数为x个,根据题意得,=,解得:x=2.故答案为2.点评:此题考查了概率公式的应用.此题难度不大,注意掌握方程思想的应用,注意概率=所求情况数与总情况数之比.13.(3分)(•盘锦)如图,张老师在上课前用硬纸做了一个无底的圆锥形教具,那么这个教具的用纸面积是300πcm2.(不考虑接缝等因素,计算结果用π表示).考点:圆锥的计算.分析:首先求得底面周长,然后根据扇形的面积公式即可求解.解答:解:底面周长是:30πcm,则纸面积是:×20×30π=300πcm2.故答案是:300π.点评:正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.14.(3分)(•盘锦)如图,等腰梯形ABCD,AD∥BC,BD平分∠ABC,∠A=120°.若梯形的周长为10,则AD的长为2.考点:等腰梯形的性质分析:由等腰梯形ABCD,AD∥BC,BD平分∠ABC,易求得△ACD是等腰三角形,继而可得AB=AD=CD,又由∠A=120°,△BCDD的是直角三角形,即可得BC=2CD,继而求得答案.解答:解:∵AD∥BC,BD平分∠ABC,∴∠ABD=∠CBD,∠ADB=∠CBD,∴∠ABD=∠ADB,∴AD=AB,∵∠A=120°,∴∠ABD=∠CBD=30°,∵梯形ABCD是等腰梯形,∴∠C=∠ABC=60°,AB=CD,∴∠BDC=180°﹣∠CBD﹣∠C=90°,AB=CD=AD,∴BC=2CD=2AD,∵梯形的周长为10,∴AB+BC+CD+AD=10,即5AD=10,∴AD=2.故答案为:2.点评:此题考查了等腰梯形的性质、等腰三角形的判定与性质以及含30°角的直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.15.(3分)(•盘锦)小成每周末要到距离家5千米的体育馆打球,他骑自行车前往体育馆比乘汽车多用10分钟,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x千米/时,根据题意列方程为﹣=.考点:由实际问题抽象出分式方程.分析:如果设骑自行车的速度为x千米/时,那么乘汽车的速度为2x千米/时,根据“他骑自行车前往体育馆比乘汽车多用10分钟”,得到等量关系为:骑自行车所用的时间﹣乘汽车所用的时间=,据此列出方程即可.解答:解:设骑自行车的速度为x千米/时,那么乘汽车的速度为2x千米/时,由题意,得﹣=.故答案为﹣=.点评:本题考查由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关键.本题用到了行程问题中的基本关系式关系:时间=路程÷速度.本题要注意:时间的单位要和所设速度的单位相一致.16.(3分)(•盘锦)如图,⊙O直径AB=8,∠CBD=30°,则CD=4.考点:圆周角定理;等边三角形的判定与性质.分析:作直径DE,连接CE,求出∠DCE=90°,∠DEC=30°,根据含30度角的直角三角形性质得出DC=DE,代入求出即可.解答:解:作直径DE,连接CE,则∠DCE=90°,∵∠DBC=30°,∴∠DEC=∠DBC=30°,∵DE=AB=8,∴DC=DE=4,故答案为:4.点评:本题考查了含30度角的直角三角形性质,圆周角定理的应用,关键是构造直角三角形,题目比较好,难度适中.17.(3分)(•盘锦)如图,矩形ABCD的边AB上有一点P,且AD=,BP=,以点P 为直角顶点的直角三角形两条直角边分别交线段DC,线段BC于点E,F,连接EF,则tan∠PEF=.考点:相似三角形的判定与性质;矩形的性质;锐角三角函数的定义.分析:过点E作EM⊥AB于点M,证明△EPM∽△PFB,利用对应边成比例可得出PF:PE的值,继而得出tan∠PEF.解答:解:过点E作EM⊥AB于点M,∵∠PEM+∠EPM=90°,∠FPB+∠EPM=90°,∴∠PEM=∠FPB,又∵∠EMP=∠PBF=90°,∴△EPM∽△PFB,∴===.∴tan∠PEF==.故答案为:.点评:本题考查了相似三角形的判定与性质及锐角三角函数的定义,解答本题的关键是作出辅助线,证明△EPM∽△PFB,难度一般.18.(3分)(•盘锦)如图,在平面直角坐标系中,直线l经过原点O,且与x轴正半轴的夹角为30°,点M在x轴上,⊙M半径为2,⊙M与直线l相交于A,B两点,若△ABM为等腰直角三角形,则点M的坐标为(2,0)或(﹣2,0).考点:一次函数综合题.分析:先根据题意画出图形,当点M在原点右边时,过点M作MN⊥AB,得出AN2+MN2=AM2,再根据△ABM为等腰直角三角形,得出AN=MN,根据AM=2,求出MN=,最后根据直线l与x轴正半轴的夹角为30°,求出OM=2,即可得出点M的坐标,当点M在原点左边时,根据点M′与点M关于原点对称,即可得出点M′的坐标.解答:解;如图;当点M在原点右边时,过点M作MN⊥AB,垂足为N,则AN2+MN2=AM2,∵△ABM为等腰直角三角形,∴AN=MN,∴2MN2=AM2,∵AM=2,∴2MN2=22,∴MN=,∵直线l与x轴正半轴的夹角为30°,∴OM=2,∴点M的坐标为(2,0),当点M在原点左边时,则点M′与点M关于原点对称,此时点M′的坐标为(﹣2,0),故答案为;(2,0)或(﹣2,0).点评:此题考查了一次函数综合,用到的知识点是解直角三角形、勾股定理、点的坐标、一次函数等,关键是根据题意画出图形,注意有两种情况.三、解答题(19、20每小题9分,共18分)19.(9分)(•盘锦)先化简,再求值:,其中.考点:分式的化简求值;负整数指数幂;特殊角的三角函数值分析:原式括号中第二项约分后,两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,利用负指数幂及特殊角的三角函数值求出a的值,代入计算即可求出值.解答:解:原式=(a﹣)•=•=a+1,当a=2﹣1=1时,原式=1+1=2.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.20.(9分)(•盘锦)如图,点A(1,a)在反比例函数(x>0)的图象上,AB垂直于x轴,垂足为点B,将△ABO沿x轴向右平移2个单位长度,得到Rt△DEF,点D落在反比例函数(x>0)的图象上.(1)求点A的坐标;(2)求k值.考反比例函数图象上点的坐标特征;坐标与图形变化-平移.点:分(1)把点A(1,a)代入反比例函数可求出a,则可确定A点坐标;析:(2)根据平移的性质得到D点坐标为(3,3),然后把D(3,3)代入y=即可求出k.解解:(1)把点A(1,a)代入反比例函数(x>0)得a=3,则A点坐标为答:(1,3),(2)因为将△ABO沿x轴向右平移2个单位长度,得到Rt△DEF,所以D点坐标为(3,3),把D(3,3)代入y=得k=3×3=9.点本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k≠0)图象上点的横评:纵坐标之积为k.也考查了坐标与图形变化﹣平移.四、解答题(本题14分)21.(14分)(•盘锦)为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.请根据图表中提供的信息,解答下列问题:整理情况频数频率非常好0.21较好70一般不好36(1)本次抽样共调查了多少学生?(2)补全统计表中所缺的数据.(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.考点:频数(率)分布表;用样本估计总体;扇形统计图;列表法与树状图法分析:(1)根据较好的部分对应的圆心角即可求得对应的百分比,即可求得总数,然后根据频率=即可求解;(2)根据频率=即可求解;(3)利用总人数乘以对应的频率即可;(4)利用树形图方法,利用概率公式即可求解.解答:解:(1)较好的所占的比例是:,则本次抽样共调查的人数是:70÷=200(人);(2)非常好的频数是:200×0.21=42(人),一般的频数是:200﹣42﹣70﹣36=52(人),较好的频率是:=0.35,一般的频率是:=0.26,不好的频率是:=0.18;(3)该校学生整理错题集情况“非常好”和“较好”的学生一共约有1500×(0.21+0.35)=840(人),(4)则两次抽到的错题集都是“非常好”的概率是:=.点评:读图时要全面细致,同时,解题方法要灵活多样,切忌死记硬背,要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.五、解答题(22、23每小题12分,共24分)22.(12分)(•盘锦)如图,图1是某仓库的实物图片,图2是该仓库屋顶(虚线部分)的正面示意图,BE、CF关于AD轴对称,且AD、BE、CF都与EF垂直,AD=3米,在B点测得A点的仰角为30°,在E点测得D点的仰角为20°,EF=6米,求BE的长.(结果精确到0.1米,参考数据:)考点:解直角三角形的应用-仰角俯角问题分析:延长AD交EF于点M,过B作BN⊥AD于点N,可证四边形BEMN为矩形,分别在Rt△ABN和Rt△DEM中求出AN、DM的长度,即可求得BE=MN=AD﹣AN+DM的长度.解答:解:延长AD交EF于点M,过B作BN⊥AD于点N,∵BE、CF关于AD轴对称,且AD、BE、CF都与EF垂直,∴四边形BEMN为矩形,EM=MF=EF=3米,∴BN=EM=3米,BE=MN,在Rt△ABN中,∵∠ABN=30°,BN=3米,=tan30°,∴AN=BNtan30°=3×=(米),在Rt△DEM中,∵∠DEM=20°,EM=3米,=tan20°,∴DM=EMtan20°≈3×0.36=1.08(米),∴BE=MN=(AD﹣AN)+DM=3﹣+1.08≈3﹣1.73+1.08=2.35≈2.4(米).答:BE的长度为2.4米.点评:本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角的知识构造直角三角形,运用解直角三角形的知识分别求出AN、DM的长度,难度适中.23.(12分)(•盘锦)如图,AB,CD是⊙O的直径,点E在AB延长线上,FE⊥AB,BE=EF=2,FE的延长线交CD延长线于点G,DG=GE=3,连接FD.(1)求⊙O的半径;(2)求证:DF是⊙O的切线.考点:切线的判定;全等三角形的判定与性质;勾股定理分析:(1)⊙0半径为R,则OD=OB=R,在Rt△OEG中,∠OEG=90°,由勾股定理得出方程(R+3)2=(R+2)2+32,求出即可;(2)证△FDG≌△OEG,推出∠FDG=∠OEG=90°,求出OD⊥DF,根据切线的判定推出即可.解答:(1)解:设⊙0半径为R,则OD=OB=R,在Rt△OEG中,∠OEG=90°,由勾股定理得:OG2=OE2+EG2,∴(R+3)2=(R+2)2+32,R=2,即⊙O半径是2.(2)证明:∵OB=OD=2,∴OG=2+3=5,GF=2+3=5=OG,∵在△FDG和△OEG中∴△FDG≌△OEG(SAS),∴∠FDG=∠OEG=90°,∴∠ODF=90°,∴OD⊥DF,∵OD为半径,∴DF是⊙O的切线.点评:本题考查了勾股定理,全等三角形的性质和判定,切线的判定的应用,主要考查学生的推理能力和计算能力,用了方程思想.六、解答题(本题12分)24.(12分)(•盘锦)端午节期间,某校“慈善小组”筹集到1240元善款,全部用于购买水果和粽子,然后到福利院送给老人,决定购买大枣粽子和普通粽子共20盒,剩下的钱用于购买水果,要求购买水果的钱数不少于180元但不超过240元.已知大枣粽子比普通粽子每盒贵15元,若用300元恰好可以买到2盒大枣粽子和4盒普通粽子.(1)请求出两种口味的粽子每盒的价格;(2)设买大枣粽子x盒,买水果共用了w元.①请求出w关于x的函数关系式;‚②求出购买两种粽子的可能方案,并说明哪一种方案使购买水果的钱数最多.考点:一次函数的应用;一元一次不等式组的应用分析:(1)设买大枣粽子x元/盒,普通粽子y元/盒,根据两种粽子的单价和购买两种粽子用300元列出二元一次方程组,然后求解即可;(2)①表示出购买普通粽子的(20﹣x)盒,然后根据购买水果的钱数等于善款总数减去购买两种粽子的钱数,整理即可得解;②根据购买水果的钱数不少于180元但不超过240元列出不等式组,然后求解得到x的取值范围,再根据粽子的盒数是正整数从而写出所有的可能购买方案,再根据一次函数的增减性求出购买水果钱数最多的方案.解答:解:(1)设买大枣粽子x元/盒,普通粽子y元/盒,根据题意得,,解得.答:大枣粽子60元/盒,普通粽子45元/盒;(2)①设买大枣粽子x盒,则购买普通粽子(20﹣x)盒,买水果共用了w元,根据题意得,w=1240﹣60x﹣45(20﹣x),=1240﹣60x﹣900+45x,=﹣15x+340,故,w关于x的函数关系式为w=﹣15x+340;②∵要求购买水果的钱数不少于180元但不超过240元,∴,解不等式①得,x≤10,解不等式②得,x≥6,所以,不等式组的解集是6≤x≤10,∵x是正整数,∴x=7、8、9、10,可能方案有:方案一:购买大枣粽子7盒,普通粽子13盒,方案二:购买大枣粽子8盒,普通粽子12盒,方案三:购买大枣粽子9盒,普通粽子11盒,方案四:购买大枣粽子10盒,普通粽子10盒;∵﹣15<0,∴w随x的增大而减小,∴方案一可使购买水果的钱数最多,最多为﹣15×7+340=235元.点评:本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.七、解答题(本题14分)25.(14分)(•盘锦)如图,正方形ABCD的边长是3,点P是直线BC上一点,连接PA,将线段PA绕点P逆时针旋转90°得到线段PE,在直线BA上取点F,使BF=BP,且点F与点E在BC同侧,连接EF,CF.(1)如图 ,当点P在CB延长线上时,求证:四边形PCFE是平行四边形;(2)如图 ,当点P在线段BC上时,四边形PCFE是否还是平行四边形,说明理由;(3)在(2)的条件下,四边形PCFE的面积是否有最大值?若有,请求出面积的最大值及此时BP长;若没有,请说明理由.考点:四边形综合题分析:(1)由正方形的性质可以得出AB=BC,∠ABP=∠ABC=∠90°,可以得出△PBA≌△FBC,由其性质就可以得出结论;(2)由正方形的性质可以得出AB=BC,∠FBC=∠ABC=∠90°,可以得出△PBA≌△FBC,由其性质就可以得出结论;(3)设BP=x,则PC=3﹣x 平行四边形PEFC的面积为S,由平行四边形的面积公式就可以求出其解析式,再根据二次函数的性质就可以求出其最大值.解答:解:(1)∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠PBA=90°∵在△PBA和△FBC中,,∴△PBA≌△FBC(SAS),∴PA=FC,∠PAB=∠FCB.∵PA=PE,∴PE=FC.∵∠PAB+∠APB=90°,∴∠FCB+∠APB=90°.∵∠EPA=90°,∴∠APB+∠EPA+∠FPC=180°,即∠EPC+∠PCF=180°,∴EP∥FC,∴四边形EPCF是平行四边形;(2)结论:四边形EPCF是平行四边形,∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠CBF=90°∵在△PBA和△FBC中,,∴△PBA≌△FBC(SAS),∴PA=FC,∠PAB=∠FCB.∵PA=PE,∴PE=FC.∵∠FCB+∠BFC=90°,∠EPB+∠APB=90°,∴∠BPE=∠FCB,∴EP∥FC,∴四边形EPCF是平行四边形;(3)设BP=x,则PC=3﹣x 平行四边形PEFC的面积为S, S=PC•BF=PC•PB=(3﹣x)x=﹣(x﹣)2+.∵a=﹣1<0,∴抛物线的开口向下,∴当x=时,S最大=,∴当BP=时,四边形PCFE的面积最大,最大值为.点评:本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,平行四边形的判定及性质的运用,平行四边形的面积公式的运用,二次函数的性质的运用,解答时灵活运用平行四边形的判定方法是关键.八、解答题(本题14分)26.(14分)(•盘锦)如图,抛物线y=ax2+bx+3与x轴相交于点A(﹣1,0)、B(3,0),与y轴相交于点C,点P为线段OB上的动点(不与O、B重合),过点P垂直于x 轴的直线与抛物线及线段BC分别交于点E、F,点D在y轴正半轴上,OD=2,连接DE、OF.(1)求抛物线的解析式;(2)当四边形ODEF是平行四边形时,求点P的坐标;(3)过点A的直线将(2)中的平行四边形ODEF分成面积相等的两部分,求这条直线的解析式.(不必说明平分平行四边形面积的理由)考点:二次函数综合题.分析:(1)利用待定系数法求出抛物线的解析式;(2)平行四边形的对边相等,因此EF=OD=2,据此列方程求出点P的坐标;(3)本问利用中心对称的性质求解.平行四边形是中心对称图形,其对称中心为两条对角线的交点(或对角线的中点),过对称中心的直线平分平行四边形的面积,因此过点A与▱ODEF对称中心的直线平分▱ODEF的面积.解答:解:(1)∵点A(﹣1,0)、B(3,0)在抛物线y=ax2+bx+3上,∴,解得a=﹣1,b=2,∴抛物线的解析式为:y=﹣x2+2x+3.(2)在抛物线解析式y=﹣x2+2x+3中,令x=0,得y=3,∴C(0,3).设直线BC的解析式为y=kx+b,将B(3,0),C(0,3)坐标代入得:,解得k=﹣1,b=3,∴y=﹣x+3.设E点坐标为(x,﹣x2+2x+3),则P(x,0),F(x,﹣x+3),∴EF=y E﹣y F=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x.∵四边形ODEF是平行四边形,∴EF=OD=2,∴﹣x2+3x=2,即x2﹣3x+2=0,解得x=1或x=2,∴P点坐标为(1,0)或(2,0).(3)平行四边形是中心对称图形,其对称中心为两条对角线的交点(或对角线的中点),过对称中心的直线平分平行四边形的面积,因此过点A与▱ODEF对称中心的直线平分▱ODEF的面积.①当P(1,0)时,点F坐标为(1,2),又D(0,2),设对角线DF的中点为G,则G(,2).设直线AG的解析式为y=kx+b,将A(﹣1,0),G(,2)坐标代入得:,解得k=b=,∴所求直线的解析式为:y=x+;②当P(2,0)时,点F坐标为(2,1),又D(0,2),设对角线DF的中点为G,则G(1,).设直线AG的解析式为y=kx+b,将A(﹣1,0),G(1,)坐标代入得:,解得k=b=,∴所求直线的解析式为:y=x+.综上所述,所求直线的解析式为:y=x+或y=x+.点评:本题是二次函数的综合题型,考查了二次函数的图象与性质、待定系数法、平行四边形的性质、中心对称的性质等知识点.第(3)问中,特别注意要充分利用平行四边形中心对称的性质,只要求出其对称中心的坐标,即可利用待定系数法求出所求直线的解析式.。

辽宁省盘锦市2019-2020学年中考第四次质量检测数学试题含解析

辽宁省盘锦市2019-2020学年中考第四次质量检测数学试题含解析

辽宁省盘锦市2019-2020学年中考第四次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为( ) A .8.23×10﹣6B .8.23×10﹣7C .8.23×106D .8.23×1072.股市有风险,投资需谨慎.截至今年五月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学计数法表示为( ) A .9.5×106B .9.5×107C .9.5×108D .9.5×1093.如果23510a a +-=,那么代数式()()()5323+232a a a a +--的值是( ) A .6B .2C .-2D .-64.自1993年起,联合国将每年的3月11日定为“世界水日”,宗旨是唤起公众的节水意识,加强水资源保护.某校在开展“节约每一滴水”的活动中,从初三年级随机选出10名学生统计出各自家庭一个月的节约用水量,有关数据整理如下表. 节约用水量(单位:吨) 1 1.1 1.4 1 1.5 家庭数46531这组数据的中位数和众数分别是( ) A .1.1,1.1; B .1.4,1.1;C .1.3,1.4;D .1.3,1.1.5.方程13122x x-=--的解为( ) A .x=4B .x=﹣3C .x=6D .此方程无解6.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为( ) A .5.3×103B .5.3×104C .5.3×107D .5.3×1087.在实数|﹣3|,﹣2,0,π中,最小的数是( ) A .|﹣3|B .﹣2C .0D .π8.如图,正六边形ABCDEF 内接于⊙O ,半径为4,则这个正六边形的边心距OM 和的长分别为( )A .2,B .2 ,πC .,D .2,9.下列图案中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .10.18的绝对值是( ) A .8B .﹣8C .18D .﹣1811.在2014年5月崇左市教育局举行的“经典诗朗诵”演讲比赛中,有11名学生参加决赛,他们决赛的成绩各不相同,其中的一名学生想知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的( ) A .众数B .中位数C .平均数D .方差12.下列运算正确的是( ) A .()a b c a b c -+=-+ B .()2211x x =++ C .()33a a -=D .235236a a a =⋅二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,用黑白两种颜色的纸片,按黑色纸片数逐渐增加1的规律拼成如图图案,则第4个图案中有__________白色纸片,第n 个图案中有__________张白色纸片.14.如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限,若反比例函数ky x=的图象经过点B ,则k 的值是_____.15.如图,将矩形ABCD 绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A 在整个旋转过程中所经过的路径总长为_____.16.如图,在一次数学活动课上,小明用18个棱长为1的正方体积木搭成一个几何体,然后他请小亮用其他棱长为1的正方体积木在旁边再搭一个几何体,使小亮所搭几何体恰好和小明所搭几何体拼成一个无空隙的大长方体(不改变小明所搭几何体的形状).请从下面的A、B两题中任选一题作答,我选择__________.A、按照小明的要求搭几何体,小亮至少需要__________个正方体积木.B、按照小明的要求,小亮所搭几何体的表面积最小为__________.17.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(1)AB的长等于____;(2)在△ABC的内部有一点P,满足S△PAB S△PBC S△PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)_______18.已知a2+1=3a,则代数式a+1a的值为.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,圆内接四边形ABCD的两组对边延长线分别交于E、F,∠AEB、∠AFD的平分线交于P点.求证:PE⊥PF.20.(6分)如图所示,点C为线段OB的中点,D为线段OA上一点.连结AC、BD交于点P.(问题引入)(1)如图1,若点P为AC的中点,求ADDO的值.温馨提示:过点C作CE∥AO交BD于点E.(探索研究)(2)如图2,点D 为OA 上的任意一点(不与点A 、O 重合),求证:PD ADPB AO=. (问题解决)(3)如图2,若AO=BO ,AO ⊥BO ,14AD AO =,求tan ∠BPC 的值.21.(6分)进入冬季,某商家根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包.试确定周销售量y (包)与售价x (元/包)之间的函数关系式;试确定商场每周销售这种防尘口罩所获得的利润w (元)与售价x (元/包)之间的函数关系式,并直接写出售价x 的范围;当售价x (元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w (元)最大?最大利润是多少?22.(8分)如图, 二次函数23y ax bx =++的图象与 x 轴交于()30A -,和()10B ,两点,与 y 轴交于点 C ,一次函数的图象过点 A 、C .(1)求二次函数的表达式(2)根据函数图象直接写出使二次函数值大于一次函数值的自变量 x 的取值范围.23.(8分)如图,一座钢结构桥梁的框架是△ABC ,水平横梁BC 长18米,中柱AD 高6米,其中D 是BC 的中点,且AD ⊥BC . (1)求sinB 的值;(2)现需要加装支架DE 、EF ,其中点E 在AB 上,BE =2AE ,且EF ⊥BC ,垂足为点F ,求支架DE 的长.24.(10分)某文教店老板到批发市场选购A 、B 两种品牌的绘图工具套装,每套A 品牌套装进价比B 品牌每套套装进价多2.5元,已知用200元购进A 种套装的数量是用75元购进B 种套装数量的2倍.求A 、B 两种品牌套装每套进价分别为多少元?若A 品牌套装每套售价为13元,B 品牌套装每套售价为9.5元,店老板决定,购进B品牌的数量比购进A品牌的数量的2倍还多4套,两种工具套装全部售出后,要使总的获利超过120元,则最少购进A品牌工具套装多少套?25.(10分)解分式方程:12x-=3x26.(12分)抛物线y=﹣3x2+bx+c(b,c均是常数)经过点O(0,0),A(4,43),与x轴的另一交点为点B,且抛物线对称轴与线段OA交于点P.(1)求该抛物线的解析式和顶点坐标;(2)过点P作x轴的平行线l,若点Q是直线上的动点,连接QB.①若点O关于直线QB的对称点为点C,当点C恰好在直线l上时,求点Q的坐标;②若点O关于直线QB的对称点为点D,当线段AD的长最短时,求点Q的坐标(直接写出答案即可).27.(12分)先化简,再求值:(12a+-1)÷212aa-+,其中a31参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.详解:0.000000823=8.23×10-1.故选B.点睛:本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.B【解析】试题分析:15000000=1.5×2.故选B.考点:科学记数法—表示较大的数3.A【解析】【分析】将所求代数式先利用单项式乘多项式法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.【详解】∵3a2+5a-1=0,∴3a2+5a=1,∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故选A.【点睛】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.4.D【解析】分析:中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.详解:这组数据的中位数是1.2 1.41.32+=;这组数据的众数是1.1.故选D.点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5.C【解析】【分析】先把分式方程化为整式方程,求出x的值,代入最简公分母进行检验.【详解】方程两边同时乘以x-2得到1-(x-2)=﹣3,解得x=6.将x=6代入x-2得6-2=4,∴x=6就是原方程的解.故选C【点睛】本题考查的是解分式方程,熟知解分式方程的基本步骤是解答此题的关键.6.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:5300万=53000000=75.310⨯.故选C.【点睛】在把一个绝对值较大的数用科学记数法表示为10na⨯的形式时,我们要注意两点:①a必须满足:a≤<;②n比原来的数的整数位数少1(也可以通过小数点移位来确定n).1107.B【解析】【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【详解】在实数|-3|,-1,0,π中,|-3|=3,则-1<0<|-3|<π,故最小的数是:-1.故选B.【点睛】此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.8.D【解析】试题分析:连接OB,∵OB=4,∴BM=2,∴OM=2,,故选D.考点:1正多边形和圆;2.弧长的计算.9.D【解析】分析:根据轴对称图形与中心对称图形的概念分别分析得出答案.详解:A.是轴对称图形,也是中心对称图形,故此选项错误;B.不是轴对称图形,也不是中心对称图形,故此选项错误;C.不是轴对称图形,是中心对称图形,故此选项错误;D.是轴对称图形,不是中心对称图形,故此选项正确.故选D.点睛:本题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.10.C【解析】【分析】根据绝对值的计算法则解答.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.【详解】解:11 88 .故选C.【点睛】此题重点考查学生对绝对值的理解,熟练掌握绝对值的计算方法是解题的关键.11.B【解析】【分析】【详解】解:11人成绩的中位数是第6名的成绩.参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.故选B.【点睛】本题考查统计量的选择,掌握中位数的意义是本题的解题关键.12.D【解析】【分析】由去括号法则:如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反;完全平方公式:(a±b)2=a2±2ab+b2;单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式进行计算即可.【详解】解:A、a-(b+c)=a-b-c≠a-b+c,故原题计算错误;B、(x+1)2=x2+2x+1≠x²+1,故原题计算错误;C、(-a)3=3a ≠3a,故原题计算错误;D、2a2•3a3=6a5,故原题计算正确;故选:D.【点睛】本题考查了整式的乘法,解题的关键是掌握有关计算法则.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.13 3n+1【解析】分析:观察图形发现:白色纸片在4的基础上,依次多3个;根据其中的规律得出第n个图案中有白色纸片即可.详解:∵第1个图案中有白色纸片3×1+1=4张第2个图案中有白色纸片3×2+1=7张,第3图案中有白色纸片3×3+1=10张,∴第4个图案中有白色纸片3×4+1=13张第n个图案中有白色纸片3n+1张,故答案为:13、3n+1.点睛:考查学生的探究能力,解题时必须仔细观察规律,通过归纳得出结论.14【解析】【分析】已知△ABO 是等边三角形,通过作高BC ,利用等边三角形的性质可以求出OB 和OC 的长度;由于Rt △OBC 中一条直角边和一条斜边的长度已知,根据勾股定理还可求出BC 的长度,进而确定点B 的坐标;将点B 的坐标代入反比例函数的解析式ky x=中,即可求出k 的值. 【详解】过点B 作BC 垂直OA 于C , ∵点A 的坐标是(2,0), ∴AO=2,∵△ABO 是等边三角形, ∴OC=1,BC=3, ∴点B 的坐标是()1,3, 把()1,3代入ky x=,得3k =.故答案为3.【点睛】考查待定系数法确定反比例函数的解析式,只需求出反比例函数图象上一点的坐标; 15.3026π. 【解析】分析:首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可. 详解:∵AB=4,BC=3, ∴AC=BD=5,转动一次A 的路线长是:90π42π180⨯=, 转动第二次的路线长是:90π55π1802⨯=, 转动第三次的路线长是:90π33π1802⨯=, 转动第四次的路线长是:0, 以此类推,每四次循环,故顶点A 转动四次经过的路线长为:53ππ2π6π22++=,∵2017÷4=504…1,⨯+=∴顶点A转动四次经过的路线长为:6π5042π3026π.故答案为3026π.点睛:考查旋转的性质和弧长公式,熟记弧长公式是解题的关键.16.A,18, 1【解析】【分析】A、首先确定小明所搭几何体所需的正方体的个数,然后确定两人共搭建几何体所需小立方体的数量,求差即可;B、分别得到前后面,上下面,左右面的面积,相加即可求解.【详解】A、∵小亮所搭几何体恰好可以和小明所搭几何体拼成一个无缝隙的大长方体,∴该长方体需要小立方体4×32=36个,∵小明用18个边长为1的小正方体搭成了一个几何体,∴小亮至少还需36-18=18个小立方体,B、表面积为:2×(8+8+7)=1.故答案是:A,18,1.【点睛】考查了由三视图判断几何体的知识,能够确定两人所搭几何体的形状是解答本题的关键.17;答案见解析.【解析】【详解】(1).(2)如图AC与网格相交,得到点D、E,取格点F,连接FB并且延长,与网格相交,得到M,N,G.连接DN,EM,DG,DN与EM相交于点P,点P即为所求.理由:平行四边形ABME 的面积:平行四边形CDNB 的面积:平行四边形DEMG 的面积=1:2:1,△PAB的面积=12平行四边形ABME 的面积,△PBC 的面积=12平行四边形CDNB 的面积,△PAC 的面积=△PNG 的面积=12△DGN 的面积=12平行四边形DEMG 的面积,∴S △PAB :S △PBC :S △PCA =1:2:1. 18.1【解析】【分析】根据题意a 2+1=1a ,整体代入所求的式子即可求解.【详解】∵a 2+1=1a ,∴a+1a =2a a +1a =2a 1a+=3a a =1. 故答案为1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.证明见解析.【解析】【分析】由圆内接四边形ABCD 的两组对边延长线分别交于E 、F ,∠AEB 、∠AFD 的平分线交于P 点,继而可得EM=EN ,即可证得:PE ⊥PF .【详解】∵四边形ABCD 内接于圆,∴BCF A ∠∠=,∵FM 平分BFC ∠,∴BFN CFN ∠∠=,∵EMP A BFN ∠∠∠=+,PNE BCF CFN ∠∠∠=+,∴EMP PNE ∠∠=,∴EM EN =,∵PE 平分MEN ∠,∴PE PF ⊥.【点睛】此题考查了圆的内接多边形的性质以及圆周角定理.此题难度不大,注意掌握数形结合思想的应用. 20.(1)12;(2) 见解析;(3) 12 【解析】 【分析】 (1)过点C 作CE ∥OA 交BD 于点E ,即可得△BCE ∽△BOD ,根据相似三角形的性质可得CE BC OD BO=,再证明△ECP ≌△DAP ,由此即可求得AD DO的值;(2)过点D 作DF ∥BO 交AC 于点F ,即可得PD DF PB BC =,AD DF AO OC =,由点C 为OB 的中点可得BC=OC ,即可证得PD AD PB AO =;(3)由(2)可知PD AD PB AO ==14,设AD=t ,则BO=AO=4t ,OD=3t ,根据勾股定理求得BD=5t ,即可得PD=t ,PB=4t ,所以PD=AD ,从而得∠A=∠APD=∠BPC ,所以tan ∠BPC=tan ∠A=12OC OA =. 【详解】(1)如图1,过点C 作CE ∥OA 交BD 于点E ,∴△BCE ∽△BOD ,∴=,又BC=BO ,∴CE=DO .∵CE ∥OA ,∴∠ECP=∠DAP ,又∠EPC=∠DPA ,PA=PC ,∴△ECP ≌△DAP ,∴AD=CE=DO ,即 =;(2)如图2,过点D 作DF ∥BO 交AC 于点F ,则=,=.∵点C为OB的中点,∴BC=OC,∴=;(3)如图2,∵=,由(2)可知==.设AD=t,则BO=AO=4t,OD=3t,∵AO⊥BO,即∠AOB=90°,∴BD==5t,∴PD=t,PB=4t,∴PD=AD,∴∠A=∠APD=∠BPC,则tan∠BPC=tan∠A==.【点睛】本题考查了相似三角形的判定与性质,准确作出辅助线,构造相似三角形是解决本题的关键,也是求解的难点.21.(1)y=﹣5x+350;(2)w=﹣5x2+450x﹣7000(30≤x≤40);(3)当售价定为45元时,商场每周销售这种防尘口罩所获得的利润w(元)最大,最大利润是1元.【解析】试题分析:(1)根据题意可以直接写出y与x之间的函数关系式;(2)根据题意可以直接写出w与x之间的函数关系式,由供货厂家规定市场价不得低于30元/包,且商场每周完成不少于150包的销售任务可以确定x的取值范围;(3)根据第(2)问中的函数解析式和x的取值范围,可以解答本题.试题解析:解:(1)由题意可得:y=200﹣(x﹣30)×5=﹣5x+350即周销售量y(包)与售价x(元/包)之间的函数关系式是:y=﹣5x+350;(2)由题意可得,w=(x﹣20)×(﹣5x+ 350)=﹣5x2+450x﹣7000(30≤x≤70),即商场每周销售这种防尘口罩所获得的利润w (元)与售价x (元/包)之间的函数关系式是:w=﹣5x 2+450x ﹣7000(30≤x≤40);(3)∵w=﹣5x 2+450x ﹣7000=﹣5(x ﹣45)2+1∵二次项系数﹣5<0,∴x=45时,w 取得最大值,最大值为1.答:当售价定为45元时,商场每周销售这种防尘口罩所获得的利润最大,最大利润是1元.点睛:本题考查了二次函数的应用,解题的关键是明确题意,可以写出相应的函数解析式,并确定自变量的取值范围以及可以求出函数的最值.22.(1)223y x x =--+;(2)30x -<<.【解析】【分析】(1)将()30A -,和()10B ,两点代入函数解析式即可; (2)结合二次函数图象即可.【详解】解:(1)∵二次函数23y ax bx =++与x 轴交于(3,0)A -和(1,0)B 两点, 933030a b a b -+=⎧∴⎨++=⎩解得12a b =-⎧⎨=-⎩∴二次函数的表达式为223y x x =--+.(2)由函数图象可知,二次函数值大于一次函数值的自变量x 的取值范围是30x -<<.【点睛】本题考查了待定系数法求二次函数解析式以及二次函数与不等式,解题的关键是熟悉二次函数的性质.23.(1)sinB =13;(2)DE =1. 【解析】【分析】(1)在Rt △ABD 中,利用勾股定理求出AB ,再根据sinB=AD AB 计算即可; (2)由EF ∥AD ,BE=2AE ,可得23EF BF BE AD BD BA ===,求出EF 、DF 即可利用勾股定理解决问题; 【详解】(1)在Rt △ABD 中,∵BD=DC=9,AD=6,∴sinB=AD AB =13.(2)∵EF∥AD,BE=2AE,∴23EF BF BEAD BD BA===,∴2693EF BF==,∴EF=4,BF=6,∴DF=3,在Rt△DEF中,DE=2222=43EF DF++=1.考点:1.解直角三角形的应用;2.平行线分线段成比例定理.24.(1)A种品牌套装每套进价为1元,B种品牌套装每套进价为7.5元;(2)最少购进A品牌工具套装2套.【解析】试题分析:(1)利用两种套装的套数作为等量关系列方程求解.(2)利用总获利大于等于120,解不等式.试题解析:(1)解:设B种品牌套装每套进价为x元,则A种品牌套装每套进价为(x+2.5)元.根据题意得:2002.5x+=2×75x,解得:x=7.5,经检验,x=7.5为分式方程的解,∴x+2.5=1.答:A种品牌套装每套进价为1元,B种品牌套装每套进价为7.5元.(2)解:设购进A品牌工具套装a套,则购进B品牌工具套装(2a+4)套,根据题意得:(13﹣1)a+(9.5﹣7.5)(2a+4)>120,解得:a>16,∵a为正整数,∴a取最小值2.答:最少购进A品牌工具套装2套.点睛:分式方程应用题:一设,一般题里有两个有关联的未知量,先设出一个未知量,并找出两个未知量的联系;二列,找等量关系,列方程,这个时候应该注意的是和差分倍关系:三解,正确解分式方程;四验,应用题要双检验;五答,应用题要写答.25.x=1【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】方程两边都乘以x(x﹣2),得:x=1(x﹣2),解得:x=1,检验:x=1时,x(x﹣2)=1×1=1≠0,则分式方程的解为x=1.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.26.(1)y=﹣3(x﹣52)2+2534;(52,2534);(2)①(﹣52,532)或(52,532);②(0,532);【解析】【分析】1)把0(0,0),A(4,4v3)的坐标代入y=﹣x2+bx+c,转化为解方程组即可.(2)先求出直线OA的解析式,点B坐标,抛物线的对称轴即可解决问题.(3)①如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,首先证明四边形BOQC是菱形,设Q(m,53),根据OQ=OB=5,可得方程22253=5m(),解方程即可解决问题.②如图2中,由题意点D在以B为圆心5为半径的OB上运动,当A,D、B共线时,线段AD最小,设OD与BQ交于点H.先求出D、H两点坐标,再求出直线BH的解析式即可解决问题.【详解】(1)把O(0,0),A(4,4)的坐标代入y=﹣x2+bx+c,得,解得,∴抛物线的解析式为y=﹣x2+5x=﹣(x﹣)2+.所以抛物线的顶点坐标为(,);(2)①由题意B(5,0),A(4,4),∴直线OA的解析式为y=x,AB==7,∵抛物线的对称轴x=,∴P(,).如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,∵QC∥OB,∴∠CQB=∠QBO=∠QBC,∴CQ=BC=OB=5,∴四边形BOQC是平行四边形,∵BO=BC,∴四边形BOQC是菱形,设Q(m,),∴OQ=OB=5,∴m2+()2=52,∴m=±,∴点Q坐标为(﹣,)或(,);②如图2中,由题意点D在以B为圆心5为半径的⊙B上运动,当A、D、B共线时,线段AD最小,设OD与BQ交于点H.∵AB=7,BD=5,∴AD=2,D (,), ∵OH=HD ,∴H (,),∴直线BH 的解析式为y=﹣x+, 当y=时,x=0, ∴Q (0,).【点睛】 本题二次函数与一次函数的关系、几何动态问题、最值问题、作辅助圆解决问题,难度较大,需积极思考,灵活应对.27.33- 【解析】分析:首先将括号里面的分式进行通分,然后将分式的分子和分母进行因式分解,然后将除法改成乘法进行约分化简,最后将a 的值代入化简后的式子得出答案.详解:原式=()()22111112211.11a a a a a a a a a a-----+÷===++--+- 将31a =代入得:原式()33131==-+点睛:本题主要考查的是分式的化简求值,属于简单题型.解决这个问题的关键就是就是将括号里面的分式进行化成同分母.。

辽宁省盘锦市2019-2020学年中考第四次大联考数学试卷含解析

辽宁省盘锦市2019-2020学年中考第四次大联考数学试卷含解析

辽宁省盘锦市2019-2020学年中考第四次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是()A.B.C.D.2.- 14的绝对值是()A.-4 B.14C.4 D.0.43.到三角形三个顶点的距离相等的点是三角形()的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高4.如图,AB是⊙O的弦,半径OC⊥AB 于D,若CD=2,⊙O的半径为5,那么AB的长为()A.3 B.4 C.6 D.85.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是( )A.8374y xy x+=⎧⎨-=⎩B.8374x yx y+=⎧⎨-=⎩C.8374x yx y-=⎧⎨+=⎩D.8374y xy x-=⎧⎨+=⎩6.一次函数满足,且随的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.不等式组21xx≥-⎧⎨>⎩的解集在数轴上表示为()A.B.C.D.8.如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的-元二次方程-x2+mx-t=0 (t为实数)在l<x<3的范围内有解,则t 的取值范围是( )A .-5<t≤4B .3<t≤4C .-5<t<3D .t>-5 9.数据4,8,4,6,3的众数和平均数分别是( )A .5,4B .8,5C .6,5D .4,510.如图,在,//ABC DE BC ∆中,,D E 分别在边,AB AC 边上,已知13AD DB =,则DE BC 的值为( )A .13B .14C .15D .2511.如图,在△ABC 中,AC=BC ,∠ACB=90°,点D 在BC 上,BD=3,DC=1,点P 是AB 上的动点,则PC+PD 的最小值为( )A .4B .5C .6D .712.某种圆形合金板材的成本y (元)与它的面积(cm 2)成正比,设半径为xcm ,当x =3时,y =18,那么当半径为6cm 时,成本为( )A .18元B .36元C .54元D .72元二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,网格中的四个格点组成菱形ABCD ,则tan ∠DBC 的值为___________ .14.如图,正△ABO 的边长为2,O 为坐标原点,A 在x 轴上,B 在第二象限,△ABO 沿x 轴正方向作无滑动的翻滚,经第一次翻滚后得到△A 1B 1O ,则翻滚2017次后AB 中点M 经过的路径长为______.15.如图,AC 是以AB 为直径的⊙O 的弦,点D 是⊙O 上的一点,过点D 作⊙O 的切线交直线AC 于点E ,AD 平分∠BAE ,若AB=10,DE=3,则AE 的长为_____.16.若一次函数y=﹣2(x+1)+4的值是正数,则x 的取值范围是_______.17.已知:如图,AD 、BE 分别是△ABC 的中线和角平分线,AD ⊥BE ,AD =BE =6,则AC 的长等于______.18.已知(x-ay)(x+ay)22x 16y =-,那么a=_______三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A )、白鹿原(记为B )、兴庆公园(记为C )、秦岭国家植物园(记为D )中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.求小明选择去白鹿原游玩的概率;用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.20.(6分)某快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本). 若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x (元)取整数,用y (元)表示该店每天的利润.若每份套餐售价不超过10元.①试写出y 与x 的函数关系式;②若要使该店每天的利润不少于800元,则每份套餐的售价应不低于多少元?该店把每份套餐的售价提高到10元以上,每天的利润能否达到1560元?若能,求出每份套餐的售价应定为多少元时,既能保证利润又能吸引顾客?若不能,请说明理由.21.(6分)为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.(1)参加音乐类活动的学生人数为 人,参加球类活动的人数的百分比为(2)请把图2(条形统计图)补充完整;(3)该校学生共600人,则参加棋类活动的人数约为.(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.22.(8分)( 19﹣4sin31°+(2115﹣π)1﹣(﹣3)2(2)先化简,再求值:1﹣2222244x y x yx y x xy y--÷+++,其中x、y满足|x﹣2|+(2x﹣y﹣3)2=1.23.(8分)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx﹣3(m≠0)与x轴交于A(3,0),B两点.(1)求抛物线的表达式及点B的坐标;(2)当﹣2<x<3时的函数图象记为G,求此时函数y的取值范围;(3)在(2)的条件下,将图象G在x轴上方的部分沿x轴翻折,图象G的其余部分保持不变,得到一个新图象M.若经过点C(4.2)的直线y=kx+b(k≠0)与图象M在第三象限内有两个公共点,结合图象求b的取值范围.24.(10分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x的代数式表示);销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?25.(10分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.小礼诵读《论语》的概率是;(直接写出答案)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.26.(12分)已知:如图,在半径是4的⊙O中,AB、CD是两条直径,M是OB的中点,CM的延长线交⊙O于点E,且EM>MC,连接DE,15(1)求证:△AMC∽△EMB;(2)求EM的长;(3)求sin∠EOB的值.27.(12分)某商店销售两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需280元;购买3个A品牌和1个B品牌的计算器共需210元.(Ⅰ)求这两种品牌计算器的单价;(Ⅱ)开学前,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的九折销售,B品牌计算器10个以上超出部分按原价的七折销售.设购买x个A品牌的计算器需要y1元,购买x个B 品牌的计算器需要y2元,分别求出y1,y2关于x的函数关系式.(Ⅲ)某校准备集体购买同一品牌的计算器,若购买计算器的数量超过15个,购买哪种品牌的计算器更合算?请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据轴对称图形的概念求解.【详解】解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形.故选D.【点睛】本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形2.B【解析】【分析】直接用绝对值的意义求解.【详解】−14的绝对值是14.故选B.【点睛】此题是绝对值题,掌握绝对值的意义是解本题的关键.3.B【解析】试题分析:根据线段垂直平分线上的点到两端点的距离相等解答.解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选B.点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,熟记性质是解题的关键.4.D【解析】【分析】连接OA,构建直角三角形AOD;利用垂径定理求得AB=2AD;然后在直角三角形AOD中由勾股定理求得AD的长度,从而求得AB=2AD=1.【详解】连接OA.∵⊙O的半径为5,CD=2,∵OD=5-2=3,即OD=3;又∵AB是⊙O的弦,OC⊥AB,∴AD=12 AB;在直角三角形ODC中,根据勾股定理,得22OA OD=4,∴AB=1.故选D.【点睛】本题考查了垂径定理、勾股定理.解答该题的关键是通过作辅助线OA构建直角三角形,在直角三角形中利用勾股定理求相关线段的长度.5.C【解析】根据题意相等关系:①8×人数-3=物品价值,②7×人数+4=物品价值,可列方程组:8374x yx y-=⎧⎨+=⎩,故选C.点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.6.A【解析】试题分析:根据y随x的增大而减小得:k<0,又kb>0,则b<0,故此函数的图象经过第二、三、四象限,即不经过第一象限.故选A.考点:一次函数图象与系数的关系.7.A【解析】【分析】根据不等式组的解集在数轴上表示的方法即可解答.【详解】∵x≥﹣2,故以﹣2为实心端点向右画,x<1,故以1为空心端点向左画.故选A.【点睛】本题考查了不等式组解集的在数轴上的表示方法,不等式的解集在数轴上表示方法为:>、≥向右画,<、≤向左画,“≤”、“≥”要用实心圆点表示;“<”、“>”要用空心圆点表示.8.B【解析】【分析】先利用抛物线的对称轴方程求出m得到抛物线解析式为y=-x2+4x,配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=-x2+4x与直线y=t在1<x<3的范围内有公共点可确定t的范围.【详解】∵抛物线y=-x2+mx的对称轴为直线x=2,∴222(1)b m a -=-=⨯-, 解之:m=4,∴y=-x 2+4x ,当x=2时,y=-4+8=4,∴顶点坐标为(2,4),∵ 关于x 的-元二次方程-x 2+mx-t=0 (t 为实数)在l<x<3的范围内有解,当x=1时,y=-1+4=3,当x=2时,y=-4+8=4,∴ 3<t≤4,故选:B【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.9.D【解析】【分析】根据众数的定义找出出现次数最多的数,再根据平均数的计算公式求出平均数即可【详解】∵4出现了2次,出现的次数最多,∴众数是4;这组数据的平均数是:(4+8+4+6+3)÷5=5; 故选D .10.B【解析】【分析】根据DE ∥BC 得到△ADE ∽△ABC ,根据相似三角形的性质解答.【详解】 解:∵13AD DB =, ∴14AD AB =, ∵DE ∥BC ,∴△ADE ∽△ABC ,∴14 DE ADBC AB==,故选:B.【点睛】本题考查了相似三角形的判定和性质,掌握相似三角形的对应边的比等于相似比是解题的关键.11.B【解析】试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=41°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=41°,∴BC=BC′=4,根据勾股定理可得22'BC BD+2234+.故选B.12.D【解析】【分析】设y与x之间的函数关系式为y=kπx2,由待定系数法就可以求出解析式,再求出x=6时y的值即可得.【详解】解:根据题意设y=kπx2,∵当x=3时,y=18,∴18=kπ•9,则k=2π,∴y=kπx2=2π•π•x2=2x2,当x=6时,y=2×36=72,故选:D.【点睛】本题考查了二次函数的应用,解答时求出函数的解析式是关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3【解析】试题分析:如图,连接AC 与BD 相交于点O ,∵四边形ABCD 是菱形,∴AC ⊥BD ,BO=12BD ,CO=12AC ,由勾股定理得,AC=2233+=32,BD=2211+=2,所以,BO=122⨯=22,CO=1322⨯=322,所以,tan ∠DBC=CO BO =32222=3.故答案为3.考点:3.菱形的性质;3.解直角三角形;3.网格型.14.(13463+896)π. 【解析】 【分析】由圆弧的弧长公式及正△ABO 翻滚的周期性可得出答案.【详解】解:如图作3B E ⊥x 轴于E, 易知OE=5, 33B E =,33)B =,观察图象可知3三次一个循环,一个循环点M 的运动路径为¼¼¼MNNH HM ++'= 120?·3120?·1120?·1180180πππ++=34()3π, 201736721÷=⋅⋅⋅Q∴翻滚2017次后AB 中点M 经过的路径长为2342313463672?()(896)333ππ+=+, 故答案:13463896)π 【点睛】本题主要考查圆弧的弧长公式及三角形翻滚的周期性,熟悉并灵活运用各知识是解题的关键. 15.1或9(1)点E在AC的延长线上时,过点O作OF⊥AC交AC于点F,如图所示∵OD=OA,∴∠OAD=∠ODA,∵AD平分∠BAE,∴∠OAD=∠ODA=∠DAC,∴OD//AE,∵DE是圆的切线,∴DE⊥OD,∴∠ODE=∠E=90o,∴四边形ODEF是矩形,∴OF=DE,EF=OD=5,又∵OF⊥AC,∴AF=2222534-=-=,OA OF∴AE=AF+EF=5+4=9.(2)当点E在CA的线上时,过点O作OF⊥AC交AC于点F,如图所示同(1)可得:EF=OD=5,OF=DE=3,在直角三角形AOF中,AF224-=,OA OF∴AE=EF-AF=5-4=1.16.x<1【解析】根据一次函数的性质得出不等式解答即可. 【详解】因为一次函数y=﹣2(x+1)+4的值是正数, 可得:﹣2(x+1)+4>0, 解得:x <1, 故答案为x <1. 【点睛】本题考查了一次函数与一元一次不等式,根据题意正确列出不等式是解题的关键. 17.【解析】试题分析:如图,过点C 作CF ⊥AD 交AD 的延长线于点F ,可得BE ∥CF ,易证△BGD ≌△CFD ,所以GD=DF ,BG=CF ;又因BE 是△ABC 的角平分线且AD ⊥BE ,BG 是公共边,可证得△ABG ≌△DBG ,所以AG=GD=3;由BE ∥CF 可得△AGE ∽△AFC ,所以,即FC=3GE ;又因BE=BG+GE=3GE+GE=4GE=6,所以GE=,BG=;在Rt △AFC 中,AF=AG+GD+GF=9,CF=BG=,由勾股定理可求得AC=.考点:全等三角形的判定及性质;相似三角形的判定及性质;勾股定理. 18.±4 【解析】 【分析】根据平方差公式展开左边即可得出答案. 【详解】∵(x-ay)(x+ay)=()22222x ay x a y -=-又(x-ay)(x+ay)22x 16y =-∴216a = 解得:a=±4 故答案为:±4. 【点睛】本题考查的平方差公式:22()()a b a b a b -=+-.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)14;(2)116【解析】 【分析】(1)利用概率公式直接计算即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案. 【详解】(1)∵小明准备到西安的大雁塔(记为A )、白鹿原(记为B )、兴庆公园(记为C )、秦岭国家植物园(记为D )中的一个景点去游玩, ∴小明选择去白鹿原游玩的概率=14; (2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有1种, 所以小明和小华都选择去秦岭国家植物园游玩的概率=116. 【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率.20.(1)①y=400x ﹣1.(5<x≤10);②9元或10元;(2)能, 11元. 【解析】 【分析】(1)、根据利润=(售价-进价)×数量-固定支出列出函数表达式;(2)、根据题意得出不等式,从而得出答案;(2)、根据题意得出函数关系式,然后将y=1560代入函数解析式,从而求出x 的值得出答案. 【详解】解:(1)①y=400(x﹣5)﹣2.(5<x≤10),②依题意得:400(x﹣5)﹣2≥800,解得:x≥8.5,∵5<x≤10,且每份套餐的售价x(元)取整数,∴每份套餐的售价应不低于9元.(2)依题意可知:每份套餐售价提高到10元以上时,y=(x﹣5)[400﹣40(x﹣10)]﹣2,当y=1560时,(x﹣5)[400﹣40(x﹣10)]﹣2=1560,解得:x1=11,x2=14,为了保证净收入又能吸引顾客,应取x1=11,即x2=14不符合题意.故该套餐售价应定为11元.【点睛】本题主要考查的是一次函数和二次函数的实际应用问题,属于中等难度的题型.理解题意,列出关系式是解决这个问题的关键.21.(1)7、30%;(2)补图见解析;(3)105人;(3)1 2【解析】试题分析:(1)先根据绘画类人数及其百分比求得总人数,继而可得答案;(2)根据(1)中所求数据即可补全条形图;(3)总人数乘以棋类活动的百分比可得;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.试题解析:解:(1)本次调查的总人数为10÷25%=40(人),∴参加音乐类活动的学生人数为40×17.5%=7人,参加球类活动的人数的百分比为1240×100%=30%,故答案为7,30%;(2)补全条形图如下:(3)该校学生共600人,则参加棋类活动的人数约为600×740=105,故答案为105;(4)画树状图如下:共有12种情况,选中一男一女的有6种,则P (选中一男一女)=612=12. 点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 22. (1)-7;(2)y x y -+ ,13-. 【解析】 【分析】(1)原式第一项利用算术平方根定义计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用乘方的意义化简,计算即可得到结果;(2)原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算,约分得到最简结果,利用非负数的性质求出x 与y 的值,代入计算即可求出值. 【详解】 (1)原式=3−4×12+1−9=−7; (2)原式=1−2x y x y -+ ⋅()()()22x y x y x y ++-=1−2x y x y ++ =2x y x y x y +--+ =−y x y+;∵|x−2|+(2x−y−3)2=1, ∴2023x x y -=⎧⎨-=⎩,解得:x=2,y=1, 当x=2,y=1时,原式=−13. 故答案为(1)-7;(2)−y x y +;−13. 【点睛】本题考查了实数的运算、非负数的性质与分式的化简求值,解题的关键是熟练的掌握实数的运算、非负数的性质与分式的化简求值的运用.23.(1)抛物线的表达式为y=x 2﹣2x ﹣2,B 点的坐标(﹣1,0); (2)y 的取值范围是﹣3≤y <1.(2)b 的取值范围是﹣83<b <25.【解析】 【分析】(1)、将点A 坐标代入求出m 的值,然后根据二次函数的性质求出点B 的坐标;(2)、将二次函数配成顶点式,然后根据二次函数的增减性得出y 的取值范围;(2)、根据函数经过(-1,0)、(3,2)和(0,-2)、(3,2)分别求出两个一次函数的解析式,从而得出b 的取值范围. 【详解】(1)∵将A (2,0)代入,得m=1, ∴抛物线的表达式为y=2x -2x-2. 令2x -2x-2=0,解得:x=2或x=-1, ∴B 点的坐标(-1,0). (2)y=2x -2x-2=()21x --3.∵当-2<x <1时,y 随x 增大而减小,当1≤x <2时,y 随x 增大而增大, ∴当x=1,y 最小=-3. 又∵当x=-2,y=1, ∴y 的取值范围是-3≤y <1. (2)当直线y=kx+b 经过B (-1,0)和点(3,2)时, 解析式为y=25x+25. 当直线y=kx+b 经过(0,-2)和点(3,2)时,解析式为y=54x-2. 由函数图象可知;b 的取值范围是:-2<b <25. 【点睛】本题主要考查的就是二次函数的性质、一次函数的性质以及函数的交点问题.在解决第二个问题的时候,我们首先必须要明确给出x 的取值范围是否是在对称轴的一边还是两边,然后根据函数图形进行求解;对于第三问我们必须能够根据题意画出函数图象,然后根据函数图象求出取值范围.在解决二次函数的题目时,画图是非常关键的基本功. 24.(1)100+200x ;(2)1. 【解析】试题分析:(1)销售量=原来销售量﹣下降销售量,列式即可得到结论; (2)根据销售量×每斤利润=总利润列出方程求解即可得到结论. 试题解析:(1)将这种水果每斤的售价降低x 元,则每天的销售量是100+0.1x ×20=100+200x 斤; (2)根据题意得:(42)(100200)300x x --+=,解得:x=12或x=1,∵每天至少售出260斤,∴100+200x≥260,∴x≥0.8,∴x=1. 答:张阿姨需将每斤的售价降低1元.考点:1.一元二次方程的应用;2.销售问题;3.综合题. 25.(1)13;(2)23.【解析】 【分析】(1)利用概率公式直接计算即可;(2)列举出所有情况,看小明和小亮诵读两个不同材料的情况数占总情况数的多少即可.【详解】(1)∵诵读材料有《论语》,《三字经》,《弟子规》三种,∴小明诵读《论语》的概率=1 3 ,(2)列表得:由表格可知,共有9种等可能性结果,其中小明和小亮诵读两个不同材料结果有6种.所以小明和小亮诵读两个不同材料的概率=62=93.【点睛】本题考查了用列表法或画树形图发球随机事件的概率,用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的易错点.26.(1)证明见解析;(2)EM=4;(3)sin∠【解析】【分析】(1)连接A、C,E、B点,那么只需要求出△AMC和△EMB相似,即可求出结论,根据圆周角定理可推出它们的对应角相等,即可得△AMC∽△EMB;(2)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AM、BM的长度,然后结合(1)的结论,很容易就可求出EM的长度;(3)过点E作EF⊥AB,垂足为点F,通过作辅助线,解直角三角形,结合已知条件和(1)(2)所求的值,可推出Rt△EOF各边的长度,根据锐角三角函数的定义,便可求得sin∠EOB的值.【详解】(1)证明:连接AC、EB,如图1,∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB;(2)解:∵DC是⊙O的直径,∴∠DEC=90°,∴DE2+EC2=DC2,∵DE=15,CD=8,且EC为正数,∴EC=7,∵M为OB的中点,∴BM=2,AM=6,∵AM•BM=EM•CM=EM(EC﹣EM)=EM(7﹣EM)=12,且EM>MC,∴EM=4;(3)解:过点E作EF⊥AB,垂足为点F,如图2,∵OE=4,EM=4,∴OE=EM,∴OF=FM=1,∴224115-=∴sin∠EOB=15 EFOE=.【点睛】本题考查了圆心角、弧、弦、弦心距的关系与相似三角形的判定与性质,解题的关键是熟练的掌握圆心角、弧、弦、弦心距的关系与相似三角形的判定与性质.27.(1)A种品牌计算器50元/个,B种品牌计算器60元/个;(2)y1=45x,y2=60(010) 42180(10)x xx x≤≤⎧⎨+⎩f;(3)详见解析.【解析】【分析】(1)根据题意列出二元一次方程组并求解即可;(2)按照“购买所需费用=折扣×单价×数量”列式即可,注意B品牌计算器的采购要分0≤x≤10和x>10两种情况考虑;(3)根据上问所求关系式,分别计算当x>15时,由y1=y2、y1>y2、y1<y2确定其分别对应的销量范围,从而确定方案.【详解】(Ⅰ)设A、B两种品牌的计算器的单价分别为a元、b元,根据题意得,23280 3210a ba b+=⎧⎨+=⎩,解得:5060 ab=⎧⎨=⎩,答:A种品牌计算器50元/个,B种品牌计算器60元/个;(Ⅱ)A品牌:y1=50x•0.9=45x;B品牌:①当0≤x≤10时,y2=60x,②当x>10时,y2=10×60+60×(x﹣10)×0.7=42x+180,综上所述:y1=45x,y2=()() 60010 4218010x xx x⎧≤≤⎪⎨+⎪⎩>;(Ⅲ)当y1=y2时,45x=42x+180,解得x=60,即购买60个计算器时,两种品牌都一样;当y1>y2时,45x>42x+180,解得x>60,即购买超过60个计算器时,B品牌更合算;当y1<y2时,45x<42x+180,解得x<60,即购买不足60个计算器时,A品牌更合算,当购买数量为15时,显然购买A品牌更划算.【点睛】本题考查了二元一次方程组的应用.。

2020年辽宁省盘锦市中考数学试卷[1]

2020年辽宁省盘锦市中考数学试卷[1]

2020年辽宁省盘锦市中考数学试卷一、单选题(下列各题的备选答案中.只有一个是正确的,请将正确答案的序号涂在答题卡上,每小题3分,共30分)1.(3分)在有理数1,,﹣1,0中,最小的数是()A.1B.C.﹣1D.02.(3分)如图中的几何体是由六个完全相同的小正方体组成的,它的主视图是()A.B.C.D.3.(3分)下列运算正确的是()A.a3•a3=a9B.a6÷a3=a2C.a3+a3=2a6D.(a2)3=a64.(3分)不等式4x+1>x+7的解集在数轴上表示正确的是()A.B.C.D.5.(3分)下列命题正确的是()A.圆内接四边形的对角互补B.平行四边形的对角线相等C.菱形的四个角都相等D.等边三角形是中心对称图形6.(3分)为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下:身高x/cm x<160160≤x<170170≤x<180x≥180人数60260550130根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是()A.0.32B.0.55C.0.68D.0.877.(3分)在市运动会射击比赛选拔赛中,某校射击队甲、乙、丙、丁四名队员的10次射击成绩如图所示.他们的平均成绩均是9.0环,若选一名射击成绩稳定的队员参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁8.(3分)我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是x尺.根据题意,可列方程为()A.x2+102=(x+1)2B.(x﹣1)2+52=x2C.x2+52=(x+1)2D.(x﹣1)2+102=x29.(3分)如图,在△ABC中,AB=BC,∠ABC=90°,以AB为直径的⊙O交AC于点D,点E为线段OB上的一点,OE:EB=1:,连接DE并延长交CB的延长线于点F,连接OF交⊙O于点G,若BF=2,则的长是()A.B.C.D.10.(3分)如图,四边形ABCD是边长为1的正方形,点E是射线AB上的动点(点E不与点A,点B重合),点F在线段DA的延长线上,且AF=AE,连接ED,将ED绕点E顺时针旋转90°得到EG,连接EF,FB,BG.设AE=x,四边形EFBG的面积为y,下列图象能正确反映出y与x的函数关系的是()A.B.C.D.二、填空题(每小题3分,共18分)11.(3分)《2019年中国国土绿化状况公报》表明,全国保护修复湿地93000公顷,将数据93000用科学记数法表示为.12.(3分)若关于x的方程x2+2x+m=0有两个不相等的实数根,则m的取值范围是.13.(3分)如图,直线a∥b,△ABC的顶点A和C分别落在直线a和b上,若∠1=60°,∠ACB=40°,则∠2的度数是.14.(3分)如图,△AOB三个顶点的坐标分别为A(5,0),O(0,0),B(3,6),以点O为位似中心,相似比为,将△AOB缩小,则点B的对应点B'的坐标是.15.(3分)如图,菱形ABCD的边长为4,∠A=45°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M,N两点,直线MN交AD于点E,连接CE,则CE的长为.16.(3分)如图,在矩形ABCD中,AB=1,BC=2,点E和点F分别为AD,CD上的点,将△DEF沿EF翻折,使点D落在BC上的点M处,过点E作EH∥AB交BC于点H,过点F作FG∥BC交AB于点G.若四边形ABHE 与四边形BCFG的面积相等,则CF的长为.三、解答题(本大题9个小题,共102分)17.先化简,再求值:,其中a=+1.18.有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外无其他差别,现将它们背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是奇数的概率为.(2)随机抽取一张卡片,然后放回洗匀,再随机抽取一张卡片,请用列表或画树状图的方法,求两次抽取的卡片上的数字和等于6的概率.19.某校为了解学生课外阅读时间情况,随机抽取了m名学生,根据平均每天课外阅读时间的长短,将他们分为A,B,C,D四个组别,并绘制了如图不完整的频数分布表和扇形统计图.频数分布表组别时间/(小时)频数/人数A0≤t<0.52nB0≤t<120C1≤t<1.5n+10D t≥1.55请根据图表中的信息解答下列问题:(1)求m与n的值,并补全扇形统计图;(2)直接写出所抽取的m名学生平均每天课外阅读时间的中位数落在的组别;(3)该校现有1500名学生,请你估计该校有多少名学生平均每天课外阅读时间不少于1小时.20.如图,A、B两点的坐标分别为(﹣2,0),(0,3),将线段AB绕点B逆时针旋转90°得到线段BC,过点C 作CD⊥OB,垂足为D,反比例函数y=的图象经过点C.(1)直接写出点C的坐标,并求反比例函数的解析式;(2)点P在反比例函数y=的图象上,当△PCD的面积为3时,求点P的坐标.21.如图,某数学活动小组要测量建筑物AB的高度,他们借助测角仪和皮尺进行了实地测量,测量结果如下表.测量项目测量数据测角仪到地面的距离CD=1.6m点D到建筑物的距离BD=4m从C处观测建筑物顶部A的仰角∠ACE=67°从C处观测建筑物底部B的俯角∠BCE=22°请根据需要,从上面表格中选择3个测量数据,并利用你选择的数据计算出建筑物AB的高度.(结果精确到0.1米,参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36.sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)(选择一种方法解答即可)22.如图,BC是⊙O的直径,AD是⊙O的弦,AD交BC于点E,连接AB,CD,过点E作EF⊥AB,垂足为F,∠AEF=∠D.(1)求证:AD⊥BC;(2)点G在BC的延长线上,连接AG,∠DAG=2∠D.①求证:AG与⊙O相切;②当,CE=4时,直接写出CG的长.23.某服装厂生产A品种服装,每件成本为71元,零售商到此服装厂一次性批发A品牌服装x件时,批发单价为y元,y与x之间满足如图所示的函数关系,其中批发件数x为10的正整数倍.(1)当100≤x≤300时,y与x的函数关系式为.(2)某零售商到此服装厂一次性批发A品牌服装200件,需要支付多少元?(3)零售商到此服装厂一次性批发A品牌服装x(100≤x≤400)件,服装厂的利润为w元,问:x为何值时,w最大?最大值是多少?24.如图,四边形ABCD是正方形,点F是射线AD上的动点,连接CF,以CF为对角线作正方形CGFE(C,G,F,E按逆时针排列),连接BE,DG.(1)当点F在线段AD上时.①求证:BE=DG;②求证:CD﹣FD=BE;(2)设正方形ABCD的面积为S1,正方形CGFE的面积为S2,以C,G,D,F为顶点的四边形的面积为S3,当时,请直接写出的值.25.如图1,直线y=x﹣4与x轴交于点B,与y轴交于点A,抛物线y=﹣x2+bx+c经过点B和点C(0,4),△ABO沿射线AB方向以每秒个单位长度的速度平移,平移后的三角形记为△DEF(点A,B,O的对应点分别为点D,E,F),平移时间为t(0<t<4)秒,射线DF交x轴于点G,交抛物线于点M,连接ME.(1)求抛物线的解析式;(2)当tan∠EMF=时,请直接写出t的值;(3)如图2,点N在抛物线上,点N的横坐标是点M的横坐标的,连接OM,NF,OM与NF相交于点P,当NP=FP时,求t的值.。

辽宁省盘锦市2020年中考数学模拟试卷 (含答案解析)

辽宁省盘锦市2020年中考数学模拟试卷 (含答案解析)

辽宁省盘锦市2020年中考数学模拟试卷一、选择题(本大题共10小题,共30.0分)1.在数1,−9,−5,0中,最小的数是()10B. −9C. −5D. 0A. 1102.如图,由5个完全一样的小正方体组成的几何体的主视图是()A. B. C. D.3.下列运算结果为a6的是()A. a2+a3B. a2⋅a3C. (−a2)3D. a8÷a24.不等式3x+2<2x+3的解集在数轴上表示正确的是()A. B.C. D.5.下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相垂直且平分的四边形是菱形;③一个角为90°且一组邻边相等的四边形是正方形;④对角线相等的平行四边形是矩形.其中真命题的个数是()A. 1B. 2C. 3D. 46.某种幼树在相同条件下移植实验的结果如表:移植总数n400750150035007000900014000成活数m369662133532036335807312628成活的频率m0.9230.88290.8900.9150.9050.8970.902nA. 由于移植总数最大时成活的频率是0.902,所以这种条件下幼树成活的概率为0.902B. 由于表中成活的频率的平均数约为0.89,所以这种条件下幼树成活的概率为0.89C. 由于表中移植总数为1500时,成活数为1335,所以当植树3000时,成活数为2670D. 从表中可以发现,随着移植数的增加,幼树移植成活的频率越来越稳定在0.90左右,于是可以估计幼树成活的概率为0.907.甲、乙两位同学连续五次的数学成绩如图所示,下列关于S甲2与S乙2的大小关系说法正确的是()A. S甲2=S乙2.B. S甲2<S乙2C. S甲2>S乙2D. 无法比较S甲2与S乙2的大小8.如图,有一个池塘,其底面是边长为10尺的正方形,一个芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′.则这根芦苇的长度是()A. 10尺B. 11尺C. 12尺D. 13尺9.如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则BD⏜的长为()A. 23π B. 43π C. 2πD. 83π10.如图,已知边长为4的正方形ABCD,E是BC边上一动点(与B、C不重合),连结AE,作EF⊥AE交∠BCD的外角平分线于F,设BE=x,△ECF的面积为y,下列图象中,能表示y与x的函数关系的图象大致是()A. B.C. D.二、填空题(本大题共6小题,共18.0分)11.2016年第四季度全国网上商品零售额6310亿元,将6310亿元用科学记数法表示应为______ 元.12.已知一元二次方程x2+3x−m=0有两个实数根,则m的取值范围是______.13.如图,已知直线a//b,△ABC的顶点B在直线b上,∠C=90°,∠1=36°,则∠2的度数是______.14.△OAB三个顶点的坐标分别为O(0,0)、A(4,6)、B(3,0),以点O为位似中心,将△OAB缩小为原,得到△OA′B′,则点A的对应点A′的坐标为.来的1215.如图,在Rt△ABC中,∠C=90°,AC=4,BC=8,分别以点AB的长为半径画弧,两弧交点分别为点P、A,B为圆心,大于12Q.过P、Q两点作直线交BC于点D,则CD的长是______.16.将矩形纸片ABCD,按如图所示的方式折叠,点A、点C恰好落在对角线BD上,得到菱形BEDF.若BC=6,则AB的长为______.三、解答题(本大题共9小题,共72.0分)17.先化简,再求值:(1−xx2+x )÷x2−1x2+2x+1,其中x=√3+1.18.有4张背面完全相同的卡片,正面分别标上数字−1,0,1,2,背面朝上放置在桌子上,搅匀后,从中随机的摸出一张卡片,记录数字然后放回,再随机地摸出一张卡片记录数字.用列表法求:两次的数字和等于0的概率.19.2019年3月30日,四川省凉山州木里县境内发生森林火灾,30名左右的扑火英雄牺牲,让人感到痛心,也再次给我们的防火安全意识敲响警钟.为了加强学生的防火安全意识,某校举行了一次“防火安全知识竞赛”(满分100分),赛后从中抽取了部分学生的成绩进行整理,并制作了如下不完整的统计图表:请根据图表提供的信息,解答下列各题:(1)补全频数分布直方图和扇形统计图;(2)分数段80≤x<90对应扇形的圆心角的度数是______°,所抽取的学生竞赛成绩的中位数落在______区间内;(3)若将每组的组中值(各组两个端点的数的平均数)代表各组每位学生的竞赛成绩,请你估计该校参赛学生的平均成绩.20.如图所示,在平面直角坐标系中,A是反比例函数y=k(x>0)图象上一点;作AB垂直x轴于xB点,AC垂直y轴于C点,正方形OBAC的面积为16.(1)求该反比例函数的解析式;(2)若点P在反比例函数的图象上,连PO、PC且S△PCO=6.求P点的坐标.21.如图,为测量建筑物CD的高度,在A点测得建筑物顶部D点的仰角为22°,再向建筑物CD前进30米到达B点,测得建筑物顶部D点的仰角为58°(A,B,C三点在一条直线上),求建筑物CD的高度.(结果保留整数.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)22.如图,四边形ABCD为⊙O的内接四边形,且对角线AC为直径,AD=BC,过点D作DG⊥AC,垂足为E,DG分别与AB,⊙O及CB延长线交于点F、G、M.(1)求证:四边形ABCD为矩形;(2)若N为MF中点,求证:NB是⊙O的切线;(3)若F为GE中点,且DE=6,求⊙O的半径.23.一种成本为20元/件的新型商品经过40天试销售,发现销售量p(件)、销售单价q(元/件)与销售时间x(天)都满足一次函数关系,相关信息如图所示.(1)试求销售量p(件)与销售时间x(天)的函数关系式;(2)设第x天获得的利润为y元,求y关于x的函数关系式;(3)求这40天试销售过程中何时利润最大⋅并求出最大值.24.问题情境(1)如图1,已知AB//CD,∠PBA=125°,∠PCD=155°,求∠BPC的度数.佩佩同学的思路:过点P作PG//AB,进而PG//CD,由平行线的性质来求∠BPC,求得∠BPC=________°.问题迁移(2)图2,图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,∠ACB=90°,DF//CG,AB与FD相交于点E,有一动点P在边BC上运动,连接PE,PA,记∠PED=∠α,∠PAC=∠β.①如图2,当点P在C,D两点之间运动时,请直接写出∠APE与∠α,∠β之间的数量关系;②如图3,当点P在B,D两点之间运动时,∠APE与∠α,∠β之间有何数量关系?请判断并说明理由;拓展延伸(3)当点P在C,D两点之间运动时,若∠PED,∠PAC的角平分线EN,AN相交于点N,请直接写出∠ANE与∠α,∠β之间的数量关系.25.在平面直角坐标系xOy(如图)中,抛物线y=ax2+bx+2经过点A(4,0)、B(2,2),与y轴的交点为C.(1)试求这个抛物线的表达式;(2)如果这个抛物线的顶点为M,求△AMC的面积;(3)如果这个抛物线的对称轴与直线BC交于点D,点E在线段AB上,且∠DOE=45°,求点E的坐标.。

辽宁省盘锦市2019-2020学年中考第三次质量检测数学试题含解析

辽宁省盘锦市2019-2020学年中考第三次质量检测数学试题含解析

辽宁省盘锦市2019-2020学年中考第三次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是()A.B.C.D.2.老师在微信群发了这样一个图:以线段AB为边作正五边形ABCDE和正三角形ABG,连接AC、DG,交点为F,下列四位同学的说法不正确的是( )A.甲B.乙C.丙D.丁3.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为40km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法不正确的是( )A.甲的速度是10km/h B.乙的速度是20km/hC.乙出发13h后与甲相遇D.甲比乙晚到B地2h4.如果k<0,b>0,那么一次函数y=kx+b的图象经过( )A.第一、二、三象限B.第二、三、四象限C.第一、三、四象限D.第一、二、四象限5.如图,网格中的每个小正方形的边长是1,点M,N,O均为格点,点N在⊙O上,若过点M作⊙O 的一条切线MK,切点为K,则MK=()A.2B.5C.5 D346.如图,下列条件不能判定△ADB ∽△ABC 的是( )A .∠ABD=∠ACBB .∠ADB=∠ABC C .AB 2=AD•ACD . AD AB AB BC= 7.如图,AB//CD ,130∠=o ,则2∠的大小是( )A .30oB .120oC .130oD .150o8.下列计算正确的是( )A .(a 2)3=a 6B .a 2•a 3=a 6C .a 3+a 4=a 7D .(ab )3=ab 39.如图,右侧立体图形的俯视图是( )A .B .C .D .10.九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是( )A .B .C .D .11.在平面直角坐标系中,正方形A 1B 1C 1D 1、D 1 E 1E 2B 2、A 2B 2 C 2D 2、D 2E 3E4B 3…按如图所示的方式放置,其中点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3…在x 轴上,已知正方形A 1B 1C 1D 1的边长为l ,∠B 1C 1O=60°,B 1C 1∥B 2C 2∥B 3C 3…,则正方形A 2017B 2017C 2017 D 2017的边长是( )A.()2016B.()2017C.()2016D.()201712.估计7+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,∠1,∠2是四边形ABCD的两个外角,且∠1+∠2=210°,则∠A+∠D=____度.14.若正多边形的一个内角等于120°,则这个正多边形的边数是_____.15.如图,在△ABC中,AB≠AC.D,E分别为边AB,AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:______,可以使得△FDB与△ADE相似.(只需写出一个)x 有意义,则x 的取值范围是.16.若817.如图,中,AC=3,BC=4,,P为AB上一点,且AP=2BP,若点A绕点C 顺时针旋转60°,则点P随之运动的路径长是_________18.抛物线y=2x2+3x+k﹣2经过点(﹣1,0),那么k=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.20.(6分)某蔬菜加工公司先后两次收购某时令蔬菜200吨,第一批蔬菜价格为2000元/吨,因蔬菜大量上市,第二批收购时价格变为500元/吨,这两批蔬菜共用去16万元.(1)求两批次购蔬菜各购进多少吨?(2)公司收购后对蔬菜进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润800元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?21.(6分)如图,把两个边长相等的等边△ABC和△ACD拼成菱形ABCD,点E、F分别是CB、DC延长上的动点,且始终保持BE=CF,连结AE、AF、EF.求证:AEF是等边三角形.22.(8分)某商店老板准备购买A、B两种型号的足球共100只,已知A型号足球进价每只40元,B型号足球进价每只60元.(1)若该店老板共花费了5200元,那么A、B型号足球各进了多少只;(2)若B型号足球数量不少于A型号足球数量的23,那么进多少只A型号足球,可以让该老板所用的进货款最少?23.(8分)解不等式313212xx+->-,并把解集在数轴上表示出来.24.(10分)(1)计算:|﹣3|+5)0﹣(﹣12)﹣2﹣2cos60°;(2)先化简,再求值:(1111a a--+)+2421aa+-,其中a=﹣225.(10分)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,求购买A型和B型公交车每辆各需多少万元?预计在该条线路上A 型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?26.(12分)先化简,再求值:a b a -÷(a ﹣22ab b a-),其中a=3tan30°+1,b=2cos45°. 27.(12分)如图1,已知抛物线y=﹣3x 2+23x+与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,点D 是点C 关于抛物线对称轴的对称点,连接CD ,过点D 作DH ⊥x 轴于点H ,过点A 作AE ⊥AC 交DH 的延长线于点E .(1)求线段DE 的长度;(2)如图2,试在线段AE 上找一点F ,在线段DE 上找一点P ,且点M 为直线PF 上方抛物线上的一点,求当△CPF 的周长最小时,△MPF 面积的最大值是多少;(3)在(2)问的条件下,将得到的△CFP 沿直线AE 平移得到△C′F′P′,将△C′F′P′沿C′P′翻折得到△C′P′F″,记在平移过称中,直线F′P′与x 轴交于点K ,则是否存在这样的点K ,使得△F′F″K 为等腰三角形?若存在求出OK 的值;若不存在,说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】A ,B ,C 只能通过旋转得到,D 既可经过平移,又可经过旋转得到,故选D.2.B【解析】【分析】利用对称性可知直线DG 是正五边形ABCDE 和正三角形ABG 的对称轴,再利用正五边形、等边三角形的性质一一判断即可;【详解】∵五边形ABCDE是正五边形,△ABG是等边三角形,∴直线DG是正五边形ABCDE和正三角形ABG的对称轴,∴DG垂直平分线段AB,∵∠BCD=∠BAE=∠EDC=108°,∴∠BCA=∠BAC=36°,∴∠DCA=72°,∴∠CDE+∠DCA=180°,∴DE∥AC,∴∠CDF=∠EDF=∠CFD=72°,∴△CDF是等腰三角形.故丁、甲、丙正确.故选B.【点睛】本题考查正多边形的性质、等边三角形的性质、轴对称图形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3.B【解析】由图可知,甲用4小时走完全程40km,可得速度为10km/h;乙比甲晚出发一小时,用1小时走完全程,可得速度为40km/h.故选B4.D【解析】【分析】根据k、b的符号来求确定一次函数y=kx+b的图象所经过的象限.【详解】∵k<0,∴一次函数y=kx+b的图象经过第二、四象限.又∵b>0时,∴一次函数y=kx+b的图象与y轴交与正半轴.综上所述,该一次函数图象经过第一、二、四象限.故选D.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b >0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.5.B【解析】【分析】以OM为直径作圆交⊙O于K,利用圆周角定理得到∠MKO=90°.从而得到KM⊥OK,进而利用勾股定理求解.【详解】如图所示:MK222425+=故选:B.【点睛】考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.6.D【解析】【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【详解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴AC ABAB AD=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、ADAB=ABBC不能判定△ADB∽△ABC,故此选项符合题意.故选D.【点睛】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.7.D【解析】【分析】依据AB//CD ,即可得到1CEF 30∠∠==o ,再根据2CEF 180∠∠+=o ,即可得到218030150∠=-=o o o .【详解】解:如图,AB//CD Q ,1CEF 30∠∠∴==o ,又2CEF 180∠∠+=o Q ,218030150∠∴=-=o o o ,故选:D .【点睛】本题主要考查了平行线的性质,两直线平行,同位角相等.8.A【解析】分析:根据幂的乘方、同底数幂的乘法、积的乘方公式即可得出答案.详解:A 、幂的乘方法则,底数不变,指数相乘,原式计算正确;B 、同底数幂的乘法,底数不变,指数相加,原式=5a ,故错误;C 、不是同类项,无法进行加法计算;D 、积的乘方等于乘方的积,原式=33a b ,计算错误;故选A .点睛:本题主要考查的是幂的乘方、同底数幂的乘法、积的乘方计算法则,属于基础题型.理解各种计算法则是解题的关键.9.A【解析】 试题分析:从上边看立体图形得到俯视图即可得右侧立体图形的俯视图是,故选A.考点:简单组合体的三视图.10.C【解析】试题分析:由题意可得,第一小组对应的圆心角度数是:×360°=72°,故选C.考点:1.扇形统计图;2.条形统计图.11.C【解析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,则B2C2===()1,同理可得:B3C3==()2,故正方形A n B n C n D n的边长是:()n﹣1.则正方形A2017B2017C2017D2017的边长是:()2.故选C.“点睛”此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.12.B【解析】分析:直接利用27<3,进而得出答案.详解:∵27<3,∴37+1<4,故选B.7的取值范围是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.210.【解析】【分析】利用邻补角的定义求出∠ABC+∠BCD,再利用四边形内角和定理求得∠A+∠D.【详解】∵∠1+∠2=210°,∴∠ABC+∠BCD=180°×2﹣210°=150°,∴∠A+∠D=360°﹣150°=210°.故答案为:210.【点睛】本题考查了四边形的内角和定理以及邻补角的定义,利用邻补角的定义求出∠ABC+∠BCD 是关键. 14.6【解析】试题分析:设所求正n 边形边数为n ,则120°n=(n ﹣2)•180°,解得n=6; 考点:多边形内角与外角.15.//DF AC 或BFD A ∠=∠【解析】因为3AC AD =,3AB AE =,A A ∠=∠ ,所以ADE ∆ACB ~∆ ,欲使FDB ∆与ADE ∆相似,只需要FDB ∆与ACB ∆相似即可,则可以添加的条件有:∠A=∠BDF ,或者∠C=∠BDF,等等,答案不唯一.【方法点睛】在解决本题目,直接处理FDB ∆与ADE ∆,无从下手,没有公共边或者公共角,稍作转化,通过ADE ∆ACB ~∆,FDB ∆得与ACB ∆相似.这时,柳暗花明,迎刃而解.16.x≥8【解析】略17.【解析】【分析】作PD ⊥BC ,则点P 运动的路径长是以点D 为圆心,以PD 为半径,圆心角为60°的一段圆弧,根据相似三角形的判定与性质求出PD 的长,然后根据弧长公式求解即可.【详解】作PD ⊥BC ,则PD ∥AC,∴△PBD ~△ABC, ∴ .∵AC=3,BC=4,∴AB=,∵AP=2BP ,∴BP=,∴,∴点P 运动的路径长=. 故答案为:.【点睛】本题考查了相似三角形的判定与性质,弧长的计算,根据相似三角形的判定与性质求出PD 的长是解答本题的关键.18.3.【解析】试题解析:把(-1,0)代入2232y x x k =++-得:2-3+k-2=0,解得:k=3.故答案为3.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)13;(2)13. 【解析】【分析】(1)直接根据概率公式求解即可;(2)根据题意先画出树状图,得出所有情况数和甲、乙两位嘉宾能分为同队的结果数,再根据概率公式即可得出答案.【详解】解:(1)∵共有三根细绳,且抽出每根细绳的可能性相同,∴甲嘉宾从中任意选择一根细绳拉出,恰好抽出细绳AA 1的概率是=13; (2)画树状图:共有9种等可能的结果数,其中甲、乙两位嘉宾能分为同队的结果数为3种情况, 则甲、乙两位嘉宾能分为同队的概率是3193=. 20.(1)第一次购进40吨,第二次购进160吨;(2)为获得最大利润,精加工数量应为150吨,最大利润是1.【解析】【分析】(1)设第一批购进蒜薹a 吨,第二批购进蒜薹b 吨.构建方程组即可解决问题.(2)设精加工x 吨,利润为w 元,则粗加工(100-x )吨.利润w=800x+400(200﹣x )=400x+80000,再由x≤3(100-x ),解得x≤150,即可解决问题.【详解】(1)设第一次购进a 吨,第二次购进b 吨,2002000500160000a b a b +=⎧⎨+=⎩, 解得40160a b =⎧⎨=⎩, 答:第一次购进40吨,第二次购进160吨;(2)设精加工x 吨,利润为w 元,w=800x+400(200﹣x )=400x+80000,∵x≤3(200﹣x ),解得,x≤150,∴当x=150时,w 取得最大值,此时w=1,答:为获得最大利润,精加工数量应为150吨,最大利润是1.【点睛】本题考查了二元一次方程组的应用与一次函数的应用,解题的关键是熟练的掌握二元一次方程组的应用与一次函数的应用.21.见解析【解析】分析:由等边三角形的性质即可得出∠ABE=∠ACF ,由全等三角形的性质即可得出结论.详解:证明:∵△ABC 和△ACD 均为等边三角形∴AB=AC ,∠ABC=∠ACD=60°,∴∠ABE=∠ACF=120°,∴△ABE≌△ACF,∴AE=AF,∴∠EAB=∠FAC,∴∠EAF=∠BAC=60°,∴△AEF是等边三角形.点睛:此题是四边形综合题,主要考查了等边三角形的性质和全等三角形的判定和性质,直角三角形的性质,相似三角形的判定和性质,解题关键是判断出△ABE≌△ACF.22.(1)A型足球进了40个,B型足球进了60个;(2)当x=60时,y最小=4800元.【解析】【分析】(1)设A型足球x个,则B型足球(100-x)个,根据该店老板共花费了5200元列方程求解即可;(2)设进货款为y元,根据题意列出函数关系式,根据B型号足球数量不少于A型号足球数量的23求出x的取值范围,然后根据一次函数的性质求解即可. 【详解】解:(1)设A型足球x个,则B型足球(100-x)个, ∴ 40x +60(100-x)=5200 ,解得:x=40 ,∴100-x=100-40=60个,答:A型足球进了40个,B型足球进了60个.(2)设A型足球x个,则B型足球(100-x)个,100-x≥23 x,解得:x≤60 ,设进货款为y元,则y=40x+60(100-x)=-20x+6000 ,∵k=-20,∴y随x的增大而减小,∴当x=60时,y最小=4800元.【点睛】本题考查了一元一次方程的应用,一次函数的应用,仔细审题,找出解决问题所需的数量关系是解答本题的关键.23.见解析【解析】【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得解集.在数轴上【详解】解:去分母,得 3x +1-6>4x -2,移项,得:3x -4x >-2+5,合并同类项,得-x >3,系数化为1,得 x <-3,不等式的解集在数轴上表示如下:【点睛】此题考查解一元一次不等式,在数轴上表示不等式的解集,解题关键在于掌握运算顺序.24.(1)-1;(2)26182+【解析】【分析】(1)根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;(2)先化简原式,然后将a 的值代入即可求出答案.【详解】(1)原式=3+1﹣(﹣2)2﹣2×12=4﹣4﹣1=﹣1;(2)原式=211a a -+()()+4211a a a ++-()() =2621a a +- 当a=﹣2时,原式22542-=2627+-. 【点睛】 本题考查了学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.25.(1)购买A 型公交车每辆需100万元,购买B 型公交车每辆需150万元.(2)购买A 型公交车8辆,则B 型公交车2辆费用最少,最少总费用为1100万元.【解析】【分析】(1)设购买A 型公交车每辆需x 万元,购买B 型公交车每辆需y 万元,根据“A 型公交车1辆,B 型公交车2辆,共需400万元;A 型公交车2辆,B 型公交车1辆,共需350万元”列出方程组解决问题; (2)设购买A 型公交车a 辆,则B 型公交车(10-a )辆,由“购买A 型和B 型公交车的总费用不超过1220万元”和“10辆公交车在该线路的年均载客总和不少于650万人次”列出不等式组探讨得出答案即可.【详解】(1)设购买A 型公交车每辆需x 万元,购买B 型公交车每辆需y 万元,由题意得24002350x y x y +=⎧⎨+=⎩, 解得100150x y =⎧⎨=⎩, 答:购买A 型公交车每辆需100万元,购买B 型公交车每辆需150万元.(2)设购买A 型公交车a 辆,则B 型公交车(10﹣a )辆,由题意得100150(10)122060100(10)650a a a a +-⎧⎨+-⎩„…, 解得:283554a ≤≤, 因为a 是整数,所以a =6,7,8;则(10﹣a )=4,3,2;三种方案:①购买A 型公交车6辆,则B 型公交车4辆:100×6+150×4=1200万元;②购买A 型公交车7辆,则B 型公交车3辆:100×7+150×3=1150万元;③购买A 型公交车8辆,则B 型公交车2辆:100×8+150×2=1100万元;购买A 型公交车8辆,则B 型公交车2辆费用最少,最少总费用为1100万元.【点睛】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.26.1a b -,33【解析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,利用-1的偶次幂为1及特殊角的三角函数值求出a 的值,代入计算即可求出值.解:原式=,当,原式=.“点睛”此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.27.(1)23;(2) 17312;(3)见解析.【解析】分析:(1)根据解析式求得C的坐标,进而求得D的坐标,即可求得DH的长度,令y=0,求得A,B的坐标,然后证得△ACO∽△EAH,根据对应边成比例求得EH的长,进继而求得DE的长;(2)找点C关于DE的对称点N(4,3),找点C关于AE的对称点G(-2,-3),连接GN,交AE 于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN最小,根据点的坐标求得直线GN的解析式:y=3x-3;直线AE的解析式:y= -3x-3,过点M作y轴的平行线交FH于点Q,设点M(m,-3m²+23m+3),则Q(m,3m-3),根据S△MFP=S△MQF+S△MQP,得出S△MFP= -33m²+33m+43,根据解析式即可求得,△MPF面积的最大值;(3)由(2)可知C(0,3),F(0,33),P(2,33),求得CF=433,CP=433,进而得出△CFP为等边三角形,边长为43,翻折之后形成边长为43的菱形C′F′P′F″,且F′F″=4,然后分三种情况讨论求得即可.本题解析:(1)对于抛物线y=﹣x2+x+,令x=0,得y=,即C(0,),D(2,),∴DH=,令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵AE⊥AC,EH⊥AH,∴△ACO∽△EAH,∴=,即=,解得:EH=,则DE=2;(2)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(﹣2,﹣),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN最小,直线GN的解析式:y=x﹣;直线AE的解析式:y=﹣x﹣,联立得:F (0,﹣),P(2,),过点M作y轴的平行线交FH于点Q,设点M(m,﹣m2+m+),则Q(m,m﹣),(0<m<2);∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=﹣m2+m+,∵对称轴为:直线m=<2,开口向下,∴m=时,△MPF面积有最大值:;(3)由(2)可知C(0,),F(0,),P(2,),∴CF=,CP==,∵OC=,OA=1,∴∠OCA=30°,∵FC=FG,∴∠OCA=∠FGA=30°,∴∠CFP=60°,∴△CFP为等边三角形,边长为,翻折之后形成边长为的菱形C′F′P′F″,且F′F″=4,1)当K F′=KF″时,如图3,点K在F′F″的垂直平分线上,所以K与B重合,坐标为(3,0),∴OK=3;2)当F′F″=F′K时,如图4,∴F′F″=F′K=4,∵FP的解析式为:y=x﹣,∴在平移过程中,F′K与x轴的夹角为30°,∵∠OAF=30°,∴F′K=F′A∴AK=4∴OK=4﹣1或者4+1;3)当F″F′=F″K时,如图5,∵在平移过程中,F″F′始终与x轴夹角为60°,∵∠OAF=30°,∴∠AF′F″=90°,∵F″F′=F″K=4,∴AF″=8,∴AK=12,∴OK=1,综上所述:OK=3,4﹣1,4+1或者1.点睛:本题是二次函数的综合题,考查了二次函数的交点和待定系数法求二次函数的解析式以及最值问题,考查了三角形相似的判定与性质,等边三角形的判定与性质,等腰三角形的性质等,分类讨论的思想是解题的关键.。

辽宁省盘锦市2019-2020学年中考第五次质量检测数学试题含解析

辽宁省盘锦市2019-2020学年中考第五次质量检测数学试题含解析

辽宁省盘锦市2019-2020学年中考第五次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②1014043n n++=;③1014043n n--=;④40m+10=43m+1,其中正确的是()A.①②B.②④C.②③D.③④2.把不等式组24030xx-≥⎧⎨->⎩的解集表示在数轴上,正确的是()A.B.C.D.3.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12 B.11 C.10 D.94.某校航模小分队年龄情况如表所示,则这12名队员年龄的众数、中位数分别是()年龄(岁)12 13 14 15 16人数 1 2 2 5 2A.2,14岁B.2,15岁C.19岁,20岁D.15岁,15岁5.若()292mm--=1,则符合条件的m有()A.1个B.2个C.3个D.4个6.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.9米,则梯子顶端A下落了()A.0.9米B.1.3米C.1.5米D.2米7.计算33xx x-+的结果是()A.6xx+B.6xx-C.12D.18.改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误的是( ) A .2017年第二季度环比有所提高 B .2017年第三季度环比有所提高 C .2018年第一季度同比有所提高 D .2018年第四季度同比有所提高9.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( )A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.10.如图,在Rt △ABC 中,∠ACB=90°,AC=BC=1,将绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积是( )A .6πB .3π C .2π-12D .1211.在实数0,2-,15 ) A .0B .2-C .1D 512.学校小组5名同学的身高(单位:cm )分别为:147,156,151,152,159,则这组数据的中位数是( ). A .147B .151C .152D .156二、填空题:(本大题共6个小题,每小题4分,共24分.)13.方程6x x-=+的解是_________.14.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°,CD是⊙O 的切线:若⊙O的半径为2,则图中阴影部分的面积为_____.15.如图,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F,若AD=1,BD=2,BC=4,则EF=________.16.如图,在▱ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S△AEF=1,则S△ADF的值为_____.17.计算(2a)3的结果等于__.18.已知a2+1=3a,则代数式a+1a的值为.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?20.(6分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=1.若以C为圆心,R为半径所作的圆与斜边AB只有一个公共点,则R的取值范围是多少?21.(6分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.(1)求一次至少购买多少只计算器,才能以最低价购买?(2)求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?22.(8分)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、点B、点C均落在格点上.(I)计算△ABC的边AC的长为_____.(II)点P、Q分别为边AB、AC上的动点,连接PQ、QB.当PQ+QB取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段PQ、QB,并简要说明点P、Q的位置是如何找到的_____(不要求证明).23.(8分)如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作☉O,交BD于点E,连接CE,过D作DF AB于点F,∠BCD=2∠ABD.(1)求证:AB是☉O的切线;(2)若∠A=60°,DF=,求☉O的直径BC的长.24.(10分)先化简,再求值:(x2x2+-+24x4x4-+)÷xx2-,其中x=1225.(10分)如图,在△ABC中,∠ABC=90°,D,E分别为AB,AC的中点,延长DE到点F,使EF=2DE.(1)求证:四边形BCFE是平行四边形;(2)当∠ACB=60°时,求证:四边形BCFE是菱形.26.(12分)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:这项被调查的总人数是多少人?试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.27.(12分)列方程解应用题:某地2016年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1600万元.从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】试题分析:首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.解:根据总人数列方程,应是40m+10=43m+1,①错误,④正确;根据客车数列方程,应该为,②错误,③正确;所以正确的是③④.故选D.考点:由实际问题抽象出一元一次方程. 2.A 【解析】 【分析】分别求出各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可. 【详解】2x 4030x -≥⎧⎨-⎩①>② 由①,得x≥2, 由②,得x <1,所以不等式组的解集是:2≤x <1. 不等式组的解集在数轴上表示为:.故选A . 【点睛】本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 3.A 【解析】 【分析】根据正多边形的外角与它对应的内角互补,得到这个正多边形的每个外角=180°﹣150°=30°,再根据多边形外角和为360度即可求出边数. 【详解】∵一个正多边形的每个内角为150°,∴这个正多边形的每个外角=180°﹣150°=30°,∴这个正多边形的边数=36030︒︒=1.故选:A . 【点睛】本题考查了正多边形的外角与它对应的内角互补的性质;也考查了多边形外角和为360度以及正多边形的性质. 4.D 【解析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】解:数据1出现了5次,最多,故为众数为1;按大小排列第6和第7个数均是1,所以中位数是1.故选D.【点睛】本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.5.C【解析】【分析】根据有理数的乘方及解一元二次方程-直接开平方法得出两个有关m的等式,即可得出.【详解】Q()29-=1m-2m∴m2-9=0或m-2= ±1即m= ±3或m=3,m=1∴m有3个值故答案选C.【点睛】本题考查的知识点是有理数的乘方及解一元二次方程-直接开平方法,解题的关键是熟练的掌握有理数的乘方及解一元二次方程-直接开平方法.6.B【解析】试题分析:要求下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得AC和CE的长即可.解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=1,∴AC=2,∵BD=0.9,∴CD=2.1.在Rt△ECD中,EC2=ED2﹣CD2=2.52﹣2.12=0.19,∴AE=AC ﹣EC=2﹣0.7=1.2. 故选B .考点:勾股定理的应用. 7.D 【解析】 【分析】根据同分母分式的加法法则计算可得结论. 【详解】33x x x -+=33x x -+=xx=1. 故选D . 【点睛】本题考查了分式的加减法,解题的关键是掌握同分母分式的加减运算法则. 8.C 【解析】 【分析】根据环比和同比的比较方法,验证每一个选项即可. 【详解】2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A 正确; 2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B 正确; 2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C 错误;2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D 正确; 故选C . 【点睛】本题考查折线统计图,同比和环比的意义;能够从统计图中获取数据,按要求对比数据是解题的关键. 9.A 【解析】 【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可. 【详解】由题意得:m ﹣1≠0,故选A . 【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程. 10.A 【解析】 【分析】先根据勾股定理得到,再根据扇形的面积公式计算出S 扇形ABD ,由旋转的性质得到Rt △ADE ≌Rt △ACB ,于是S 阴影部分=S △ADE +S 扇形ABD -S △ABC =S 扇形ABD . 【详解】∵∠ACB=90°,AC=BC=1,∴,∴S 扇形ABD =230=3606ππ⨯,又∵Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE , ∴Rt △ADE ≌Rt △ACB ,∴S 阴影部分=S △ADE +S 扇形ABD −S △ABC =S 扇形ABD =6π, 故选A. 【点睛】本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键. 11.B 【解析】 【分析】由正数大于一切负数,负数小于0,正数大于0,两个负数绝对值大的反而小,把这四个数从小到大排列,即可求解. 【详解】解:∵0,-2,1-2<0<1, ∴其中最小的实数为-2; 故选:B . 【点睛】本题考查了实数的大小比较,关键是掌握:正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小. 12.C 【解析】 【分析】根据中位数的定义进行解答 【详解】将5名同学的身高按从高到矮的顺序排列:159、156、152、151、147,因此这组数据的中位数是152.故选C. 【点睛】本题主要考查中位数,解题的关键是熟练掌握中位数的定义:一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数)称为中位数. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.x=-2 【解析】 方程6x x -=+两边同时平方得:26x x =+,解得:1232x x ==-,,检验:(1)当x=3时,方程左边=-3,右边=3,左边≠右边,因此3不是原方程的解; (2)当x=-2时,方程左边=2,右边=2,左边=右边,因此-2是方程的解. ∴原方程的解为:x=-2. 故答案为:-2.点睛:(1)根号下含有未知数的方程叫无理方程,解无理方程的基本思想是化“无理方程”为“有理方程”;(2)解无理方程和解分式方程相似,求得未知数的值之后要检验,看所得结果是原方程的解还是增根. 14.2233π- 【解析】试题分析:连接OC ,求出∠D 和∠COD ,求出边DC 长,分别求出三角形OCD 的面积和扇形COB 的面积,即可求出答案.连接OC ,∵AC=CD ,∠ACD=120°,∴∠CAD=∠D=30°,∵DC 切⊙O 于C ,∴OC ⊥CD ,∴∠OCD=90°,∴∠COD=60°,在Rt △OCD 中,∠OCD=90°,∠D=30°,OC=2,∴CD=23,∴阴影部分的面积是S △OCD ﹣S 扇形COB =12×2×23﹣2602360π⨯=23﹣23π,故答案为23﹣23π.考点:1.等腰三角形性质;2.三角形的内角和定理;3.切线的性质;4.扇形的面积.15.2 3【解析】【分析】由DE∥BC可得出△ADE∽△ABC,根据相似三角形的性质和平行线的性质解答即可.【详解】∵DE∥BC,∴∠F=∠FBC,∵BF平分∠ABC,∴∠DBF=∠FBC,∴∠F=∠DBF,∴DB=DF,∵DE∥BC,∴△ADE∽△ABC,∴AD DEAD DB BC=+,即1124DE=+,解得:DE=43,∵DF=DB=2,∴EF=DF-DE=2-43=23,故答案为2 3 .【点睛】此题考查相似三角形的判定和性质,关键是由DE∥BC可得出△ADE∽△ABC.16.【解析】【分析】由3AE=2EB,和EF∥BC,证明△AEF∽△ABC,得=,结合S△AEF=1,可知再由==,得==,再根据S△ADF=S△ADC即可求解.【详解】解:∵3AE=2EB,设AE=2a,BE=3a,∵EF∥BC,∴△AEF∽△ABC,∴=()2=()2=,∵S△AEF=1,∴S△ABC=,∵四边形ABCD为平行四边形,∴∵EF∥BC,∴===,∴==,∴S△ADF=S△ADC=,故答案是:【点睛】本题考查了图形的相似和平行线分线段成比例定理,中等难度,找到相似比是解题关键. 17.8【解析】试题分析:根据幂的乘方与积的乘方运算法则进行计算即可考点:(1)、幂的乘方;(2)、积的乘方18.1【解析】【分析】根据题意a2+1=1a,整体代入所求的式子即可求解.【详解】∵a2+1=1a,∴a+1a=2aa+1a=2a1a=3aa=1.故答案为1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)20%;(2)12.1.【解析】试题分析:(1)经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果.设这两年的年平均增长率为x,则经过两次增长以后图书馆有书7100(1+x)2本,即可列方程求解;(2)先求出2017年图书借阅总量的最小值,再求出2016年的人均借阅量,2017年的人均借阅量,进一步求得a的值至少是多少.试题解析:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x,根据题意得7100(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去).答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%;(2)10800(1+0.2)=12960(本)10800÷1310=8(本)12960÷1440=9(本)(9﹣8)÷8×100%=12.1%.故a的值至少是12.1.考点:一元二次方程的应用;一元一次不等式的应用;最值问题;增长率问题.20.R=或R=【解析】【分析】【详解】解:当圆与斜边相切时,则R=,即圆与斜边有且只有一个公共点,当R=时,点A在圆内,点B在圆外或圆上,则圆与斜边有且只有一个公共点.考点:圆与直线的位置关系.21.(1)1;(3);(3)理由见解析,店家一次应卖45只,最低售价为16.5元,此时利润最大.【解析】试题分析:(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到30﹣0.1(x﹣10)=16,解方程即可求解;(3)由于根据(1)得到x≤1,又一次销售x(x>10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;(3)首先把函数变为y==,然后可以得到函数的增减性,再结合已知条件即可解决问题.试题解析:(1)设一次购买x只,则30﹣0.1(x﹣10)=16,解得:x=1.答:一次至少买1只,才能以最低价购买;(3)当10<x≤1时,y=[30﹣0.1(x﹣10)﹣13]x=,当x>1时,y=(16﹣13)x=4x;综上所述:;(3)y==,①当10<x≤45时,y随x的增大而增大,即当卖的只数越多时,利润更大.②当45<x≤1时,y随x的增大而减小,即当卖的只数越多时,利润变小.且当x=46时,y1=303.4,当x=1时,y3=3.∴y1>y3.即出现了卖46只赚的钱比卖1只赚的钱多的现象.当x=45时,最低售价为30﹣0.1(45﹣10)=16.5(元),此时利润最大.故店家一次应卖45只,最低售价为16.5元,此时利润最大.考点:二次函数的应用;二次函数的最值;最值问题;分段函数;分类讨论.22.5作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB的值最小【解析】【分析】(1)利用勾股定理计算即可;(2)作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB 的值最小.【详解】解:(1)AC=221+2=5.故答案为5.(2)作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB 的值最小.故答案为作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB的值最小.【点睛】本题考查作图-应用与设计,勾股定理,轴对称-最短问题,垂线段最短等知识,解题的关键是学会利用轴对称,根据垂线段最短解决最短问题,属于中考常考题型.23.(1)证明过程见解析;(2)【解析】【分析】(1)根据CB=CD得出∠CBD=∠CDB,然后结合∠BCD=2∠ABD得出∠ABD=∠BCE,从而得出∠CBD+∠ABD=∠CBD+∠BCE=90°,然后得出切线;(2)根据Rt△AFD和Rt△BFD的性质得出AF和DF的长度,然后根据△ADF和△ACB相似得出相似比,从而得出BC的长度.【详解】(1)∵CB=CD∴∠CBD=∠CDB又∵∠CEB=90°∴∠CBD+∠BCE=∠CDE+∠DCE∴∠BCE=∠DCE且∠BCD=2∠ABD∴∠ABD=∠BCE∴∠CBD+∠ABD=∠CBD+∠BCE=90°∴CB⊥AB垂足为B又∵CB为直径∴AB是⊙O的切线.(2)∵∠A=60°,∴在Rt△AFD中得出AF=1在Rt△BFD中得出DF=3∵∠ADF=∠ACB ∠A=∠A∴△ADF∽△ACB∴AF DF AB CB=即14CB =解得:CB=考点:(1)圆的切线的判定;(2)三角函数;(3)三角形相似的判定24.-1 3【解析】【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【详解】原式=[x2x2+-+()24x2-]÷xx2-=[()22x4x2---+()24x2-]÷xx2-=()22xx2-·x2x-=xx2-,当x=12时,原式=12122-=-13.【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.25.(1)见解析;(2)见解析【解析】【分析】(1)由题意易得,EF与BC平行且相等,利用四边形BCFE是平行四边形.(2)根据菱形的判定证明即可.【详解】(1)证明::∵D.E为AB,AC中点∴DE为△ABC的中位线,DE=BC,∴DE∥BC,即EF∥BC,∵EF=BC,∴四边形BCEF为平行四边形.(2)∵四边形BCEF为平行四边形,∵∠ACB=60°,∴BC=CE=BE,∴四边形BCFE是菱形.【点睛】本题考查平行四边形的判定和性质、菱形的判定、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.26.(1)50;(2)108°;(3)12.【解析】分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C 组的人数;(2)画出树状图,由概率公式即可得出答案.本题解析:解:(1)调查的总人数是:19÷38%=50(人).C组的人数有50-15-19-4=12(人),补全条形图如图所示.(2)画树状图如下.共有12种等可能的结果,恰好选中甲的结果有6种,∴P(恰好选中甲)=61 122.点睛:本题考查了列表法与树状图、条形统计图的综合运用.熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键.27.从2015年到2017年,该地投入异地安置资金的年平均增长率为50%.【解析】【分析】设年平均增长率为x,根据:2016年投入资金×(1+增长率)2=2018年投入资金,列出方程求解可得. 【详解】解:设该地投入异地安置资金的年平均增长率为x.根据题意得:1280(1+x)2=1280+1600.解得x1=0.5=50%,x2=-2.5(舍去),答:从2016年到2018年,该地投入异地安置资金的年平均增长率为50%.【点睛】本题考查了一元二次方程的应用,由题意准确找出相等关系并据此列出方程是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

辽宁省盘锦市2020年中考数学试卷一、选择题(共10题;共20分)1.在有理数1,,-1,0中,最小的数是()A. 1B.C. -1D. 02.下图中的几何体是由六个完全相同的小正方体组成的,它的主视图是()A. B. C. D.3.下列运算正确的是()A. B. C. D.4.不等式的解集在数轴上表示正确的是()A. B.C. D.5.下列命题正确的是()A. 圆内接四边形的对角互补B. 平行四边形的对角线相等C. 菱形的四个角都相等D. 等边三角形是中心对称图形6.为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下.身高人数60260550130根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于的概率是()A. 0.32B. 0.55C. 0.68D. 0.877.在市运动会射击比赛选拔赛中,某校射击队甲、乙、丙、丁四名队员的10次射击成绩如图所示.他们的平均成绩均是9.0环,若选一名射击成绩稳定的队员参加比赛,最合适的人选是()A. 甲B. 乙C. 丙D. 丁8.我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是尺.根据题意,可列方程为()A. B. C. D.9.如图,在中,,,以为直径的⊙O交于点,点为线段上的一点,,连接并延长交的延长线于点,连接交⊙O于点,若,则的长是()A. B. C. D.10.如图,四边形是边长为1的正方形,点是射线上的动点(点不与点,点重合),点在线段的延长线上,且,连接,将绕点顺时针旋转90°得到,连接.设,四边形的面积为,下列图象能正确反映出与的函数关系的是()A. B.C. D.二、填空题(共6题;共6分)11.《2019年中国国土绿化状况公报》表明,全国保护修复湿地93000公顷,将数据93000用科学记数法表示为________.12.若关于的方程有两个不相等的实数根,则的取值范围是________.13.如图,直线,的顶点和分别落在直线和上,若,,则的度数是________.14.如图,三个顶点的坐标分别为,以点为位似中心,相似比为,将缩小,则点的对应点的坐标是________.15.如图,菱形的边长为4,,分别以点和点为圆心,大于的长为半径作弧,两弧相交于两点,直线交于点,连接,则的长为________.16.如图,在矩形中,,点和点分别为上的点,将沿翻折,使点落在上的点处,过点作交于点,过点作交于点.若四边形与四边形的面积相等,则的长为________.三、解答题(共9题;共87分)17.先化简,再求值:,其中.18.有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外无其他差别,现将它们背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是奇数的概率为________.(2)随机抽取一张卡片,然后放回洗匀,再随机抽取一张卡片,请用列表或画树状图的方法,求两次抽取的卡片上的数字和等于6的概率.19.某校为了解学生课外阅读时间情况,随机抽取了名学生,根据平均每天课外阅读时间的长短,将他们分为四个组别,并绘制了如下不完整的频数分布表和扇形统计图.频数分布表组别时间/(小时)频数/人数A2nB20CD5请根据图表中的信息解答下列问题:(1)求与的值,并补全扇形统计图;(2)直接写出所抽取的名学生平均每天课外阅读时间的中位数落在的组别;(3)该校现有1500名学生,请你估计该校有多少名学生平均每天课外阅读时间不少于1小时.20.如图,两点的坐标分别为,将线段绕点逆时针旋转90°得到线段,过点作,垂足为,反比例函数的图象经过点.(1)直接写出点的坐标,并求反比例函数的解析式;(2)点在反比例函数的图象上,当的面积为3时,求点的坐标.21.如图,某数学活动小组要测量建筑物的高度,他们借助测角仪和皮尺进行了实地测量,测量结果如下表.测量项目测量数据测角仪到地面的距离点到建筑物的距离从处观测建筑物顶部的仰角从处观测建筑物底部的俯角请根据需要,从上面表格中选择3个测量数据,并利用你选择的数据计算出建筑物的高度.(结果精确到0.1米,参考数据:.)(选择一种方法解答即可)22.如图,是的直径,是的弦,交于点,连接,过点作,垂足为,.(1)求证:;(2)点在的延长线上,连接.①求证:与相切;②当时,直接写出的长.23.某服装厂生产品种服装,每件成本为71元,零售商到此服装厂一次性批发品牌服装件时,批发单价为元,与之间满足如图所示的函数关系,其中批发件数为10的正整数倍.(1)当时,与的函数关系式为________.(2)某零售商到此服装厂一次性批发品牌服装200件,需要支付多少元?(3)零售商到此服装厂一次性批发品牌服装件,服装厂的利润为元,问:为何值时,最大?最大值是多少?24.如图,四边形是正方形,点是射线上的动点,连接,以为对角线作正方形(按逆时针排列),连接.(1)当点在线段上时.①求证:;②求证:;(2)设正方形的面积为,正方形的面积为,以为原点的四边形的面积为,当时,请直接写出的值.25.如图1 ,直线与轴交于点,与轴交于点,抛物线经过点和点从点,开始沿射线方向以每秒个单位长度的速度平移,平移后的三角形记为(点的对应点分别为点),平移时间为秒,射线交轴于点,交抛物线于点,连接.(1)求抛物线的解析式;(2)当时,请直接写出的值;(3)如图2,点在抛物线上,点的横坐标是点的横坐标的,连接与相交于点,当时,求的值.答案解析部分一、选择题1.【解析】【解答】解:1,,-1,0这四个数中只有-1是负数,所以最小的数是-1,故答案为:C.【分析】根据负数小于0,0小于正数即可得出最小的数.2.【解析】【解答】解:从正面看第一层是三个小正方形,第二层的右边一个小正方形故答案为:B.【分析】根据从正面看得到的图形是主视图即可得出答案.3.【解析】【解答】解:A. ,此选项错误;B. 不是同类项不能合并,此项错误;C. ,此选项错误;D. ,此选项正确.故答案为:D.【分析】根据同底数幂的乘法、合并同类项、幂的乘方计算法则即可得出答案.4.【解析】【解答】解:解不等式:,移项得:合并同类项得:系数化为1得:,数轴上表示如图所示,故答案为:A.【分析】先将不等式移项、合并同类项、系数化为1求得其解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则即可判断答案.5.【解析】【解答】A.圆内接四边形的对角互补,该选项正确;B.平行四边形的对角线互相平分,不一定相等,故该选项错误;C.菱形的四个角不一定相等,故该选项错误;D.等边三角形不是中心对称图形,故该选项错误.故答案为:A.【分析】根据圆内接四边形的性质,平行四边形的性质、菱形的性质、等边三角形的性质依次判断即可.6.【解析】【解答】解:样本中身高不低于170cm的频率,所以估计抽查该地区一名九年级男生的身高不低于170cm的概率是0.68.故答案为:C.【分析】先计算出样本中身高不低于170cm的频率,然后根据利用频率估计概率求解.7.【解析】【解答】解:他们的平均成绩均是9.0环丁的方差最小.故答案为:D.【分析】根据折线统计图找到数据,再根据方差公式即可得出答案.8.【解析】【解答】解:设芦苇的长度是尺,如下图则,,在中,即故答案为:B.【分析】找到题中的直角三角形,设芦苇的长度是尺,根据勾股定理即可得出答案.9.【解析】【解答】连接ODOD为的中位线又即故答案为:C.【分析】连接OD,易知OD为的中位线,可以得出,再根据对等角相等,可以得出,根据相似三角形的性质可以求出半径,再根据特殊角的三角函数值可以得出,最后根据弧长公式即可得出答案.10.【解析】【解答】连接DC,如图所示,由题可得DE=GE,AE=AF,∠DAE=∠BAF=90°,∴△DAE≌△BAF,∴DE=BF,∠EDA=∠FBA,又∵DE=EG,∴GE=BF,∵∠GEB+∠DEA=∠EDA+∠DEA =90°,∴∠GEB=∠EDA,∴∠GEB=∠FBA,∴GE//BF,且GE=BF,∴四边形GEFB是平行四边形,∵,当∴,,,∴,当x>1时,∴,,,∴,故答案为:B.【分析】连接DC,根据已知条件证明所求得四边形是平行四边形,从而可得,再分类讨论即可得到结果;二、填空题11.【解析】【解答】解:93000= ,故答案为:.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.12.【解析】【解答】解:根据题意得,解得.故答案为.【分析】根据关于x的一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,则b2-4ac>0,建立关于m的不等式,解不等式可得到m的取值范围。

13.【解析】【解答】解:∵直线,∴,又∵,,∴,故答案为:20°.【分析】根据两直线平行内错角相等可得到,从而计算出的度数.14.【解析】【解答】解:∵以点为位似中心,相似比为,将缩小,∴点的对应点B′的坐标是(2,4)或(-2,-4).故答案为:(2,4)或(-2,-4).【分析】利用以原点为位似中心,相似比为k,位似图形对应点的坐标的比等于k或-k,把B点的横纵坐标分别乘以或即可得到点B′的坐标.15.【解析】【解答】解:连接BE,如图:由题意可知,MN垂直平分AB,∴AE=BE,∴,则∠AEB=90°,在等腰直角三角形ABE中,AB=4,∴BE=AE= ,∵四边形ABCD为菱形,∴AD∥BC,∴∠EBC=∠AEB=90°,在Rt△BCE中,由勾股定理,则;故答案为:.【分析】连接BE,由垂直平分线的性质和等腰直角三角形的性质,得BE=AE= ,再得∠EBC=90°,利用勾股定理即可求出CE的长度.16.【解析】【解答】解:四边形ABCD为矩形设,则,又四边形ABHE是矩形,同理可得四边形是矩形矩形的面积,矩形ABHE的面积,且四边形与四边形的面积相等由翻折得,,在中,由勾股定理得又,即,化简得解得所以的长为.故答案为:.【分析】设,则,根据矩形的性质易知四边形ABHE和是矩形,由其面积相等可得AE长,由翻折的性质可知ME、MF长,由勾股定理可知MC长,利用的性质可求得x值,即CF长.三、解答题17.【解析】【分析】首先把写成,然后约去公因式(a+1),再与后一项进行通分化简,最后代值计算.18.【解析】【解答】解:(1)四张卡片中奇数有1,3共二张,则P= ;故答案为:【分析】(1)找出四个数中奇数的个数,即可求出所求的概率;(2)将所有情况用列表法或者树状法表示出来,再将符合题意的个数找出来,即可得出概率.19.【解析】【分析】(1)根据D组的人数和所占的百分比即可求得m,然后根据四组的人数和等于m即可求得n;(2)直接根据中位数的概念即可确定;(3)先求得时间不少于1小时的学生所占的百分比,再乘以1500即可得到结果.20.【解析】【分析】(1)由两点的坐标得出的长度,由题意得出,进而得出的长度,从而得出的长度,即可得出点的坐标;进而求出反比例函数的解析式;(2)分点在第一象限、第三象限两种情况分类讨论即可.21.【解析】【分析】第一种选择:选取,解直角三角形ACE求得AE,根据AE+EB即可得到结论;第二种选择:选取,先解直角三角形BCD求出BD的长,再解直角三角形ACE求出AE的长,根据AE+EB即可得到结论;第三种选择:选取,,求出CD和AE的长即可.22.【解析】【分析】(1)由圆周角定理,以及等角的余角相等,得到,即可得到结论成立;(2)①连接AO,先证明,然后证明,即可得到结论成立;②由AC∥EF,得到,然后得到BE=10,得到OA=OC=7,OE=3,然后得到AE的长度,再利用△AOE∽△GAE,即可求出GE,即可得到CG的长度.23.【解析】【解答】解:(1)当100≤x≤300时,设与的函数关系式为y=kx+b,(k≠0),将点(100,100),(300,80)代入y=kx+b ,(k≠0),,解,得故答案填:【分析】(1)将两点(100,100),(300,80)代入到一次函数解析式,利用待定系数法即可求解;(2)将x=200代入到(1)求出y的值,最后求得答案;(3)当时,求得y的最大值,当求得y的最大值,最后作答.24.【解析】【分析】(1)①根据正方形的性质,可以推断出,有和全等,从而根据三角形全等的性质推断出;②在线段上截,连接,设与相交于点,根据正方形的性质,可以证明和全等,可以证明,再利用勾股定理得出,从而可以证明结论;(2)根据题目信息以及第(1)问可以设出各边长,再根据面积公式进行比值即可解答.25.【解析】【分析】(1)求出点B坐标,把点B和点C坐标代入抛物线解析式,利用待定系数法即可求解;(2)设点D坐标为,则点M坐标为,用含m式子表示出DM长,求出DM=7或1,分类讨论即可求解;(3)连接,过点作交于,交于,证明四边形是平行四边形,得到,证明,得到证明,得到,问题得解.。

相关文档
最新文档