石墨烯拉曼测试解析分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1 石墨烯AFM测试详解

单层石墨烯的厚度为0.335nm,在垂直方向上有约1nm的起伏,且不同工艺制备的石墨烯在形貌上差异较大,层数和结构也有所不同,但无论通过哪种方法得到的最终产物都或多或少混有多层石墨烯片,这会对单层石墨烯的识别产生干扰,如何有效地鉴定石墨烯的层数和结构是获得高质量石墨烯的关键步骤之一。

石墨烯的表征主要分为图像类和图谱类图像类以光学显微镜透射电镜TEM 扫描电子显微镜、SEM和原子力显微分析AFM为主而图谱类则以拉曼光谱Raman红外光谱IRX射线光电子能谱、XPS和紫外光谱UV为代表其中TEM、SEM、Raman、AFM和光学显微镜一般用来判断石墨烯的层数而IRX、XPS和UV则可对石墨烯的结构进行表征,用来监控石墨烯的合成过程。且看“材料+”小编为您一一解答。

3.1.1 AFM表征

图1 AFM的工作原理图

图3.1 AFM工作的三种模式

关于AFM的原理这里就不多说了,目前常用的AFM工作模式主要有三种:接触模式,轻敲模式以及非接触模式。这三种工作模式各有特点,分别适用于不同的实验需求。

石墨烯的原子力表征一般采用轻敲模式(TappingMode):敲击模式介于接触模式和非接触模式之间,是一个杂化的概念。悬臂在试样表面上方以其共振频率振荡,针尖仅仅是周期性地短暂地接触/敲击样品表面。这就意味着针尖接触样品时所产生的侧向力被明显地减小了。因此当检测柔嫩的样品时,AFM的敲击模式是最好的选择之一。【材料+】微信平台,内容不错,欢迎关注。一旦AFM开始对样品进行成像扫描,装置随即将有关数据输入系统,如表面粗糙度、平均高度、峰谷峰顶之间的最大距离等,用于物体表面分析。

优点:很好的消除了横向力的影响。降低了由吸附液层引起的力,图像分辨率高,适于观测软、易碎、或胶粘性样品,不会损伤其表面。

缺点:比ContactModeAFM的扫描速度慢。

3.1.2 AFM表征石墨烯原理

AFM可用于了解石墨烯细微的形貌和确切的厚度信息,属于扫描探针显微镜,它利用针尖和样品之间的相互作用力传感到微悬臂上,进而由激光反射系统

检测悬臂弯曲形变,这样就间接测量了针尖样品间的作用力从而反映出样品表面形貌。因此,表征方法主要表征片层的厚度、表面起伏和台阶等形貌,及层间高度差测量。

原子力显微技术是判定是否是石墨烯的最好的表征方法,因为能够直接用它就能观察到石墨烯的表面形貌,同时还能测出此石墨烯的厚薄程度,然后再与单层的石墨烯的厚度进行对比,从而确定是否存在单层石墨烯。做测试,就上e 测试网。但是AFM也有缺点,就是它的效率很低。这是因为在石墨烯的表面常会有一些吸附物存在,这会使所测出的石墨烯的厚度会略大于它的实际厚度。

图3.2 石墨烯的结构图和其AFM图像[1,2]

图3.2中a显示的是单层的碳原子进行紧密排列而构成的二维的点阵结构;图b显示的是石墨烯的AFM图像,扫描探针显微结构中,AFM可以直接观测到其表面形貌,并测出厚度,但是最大的缺点就是效率低,而且由于表面不纯净,常会有吸附物存在,导致测出的厚度要稍大于实际厚度。

3.1.3 AFM表征及图像分析举例

3.1.3.1 不同基底对厚度的影响

AFM 表征是鉴别石墨烯最直观的证据,可以通过表面形貌及厚度而确定其存在。缺点是效率低,同时由于基底的影响和表面吸附物的存在,测得的实际厚

度往往比石墨单原子层的理论厚度(0.34 nm)要大。做测试,就上e测试网。

如 HOPG 上单层石墨烯的厚度约为 0.4 nm,云母表面的单层石墨烯厚度往往在 0.5~1 nm,而氧化物基底上单层石墨烯的厚度约为0.8~1.2 nm之间,伴随着0.35 nm左右的叠加层(图3.3),这与范德华力层间距是一致的。

图 3.3 SiO2基底上单层石墨烯的 AFM 高度图。图中比例尺为 1 μm[3]。

图 3.4 a 单层石墨烯在SiO2衬底上的AFM图。b单层石墨烯在云母衬底上的AFM图。c单层石墨烯在云母衬底上、云母衬底、石墨烯片层在SiO2衬底上以及SiO2衬底的高度

统计分布图[4]。

对于 GO (氧化石墨烯或石墨氧化物)和 rGO(还原的氧化石墨烯),由于

其表面含有大量的含氧官能团,AFM 下单层的厚度和表面粗糙度都要大于原始石墨烯(pristine graphene),如单层 GO 的厚度在云母表面上约

为 0.8 ~ 1.0 nm,而在 SiO2表面上为 2 nm 左右。Lui 等研究者[4]发现沉积在基底表面的石墨烯为了维持自身稳定性会在表面形成波纹状的起伏,而当沉积在云母表面时具有最小的表面粗糙度,是最“平”的石墨烯(图 3.4)。

GO、rGO与Graphene的AFM图区别

石墨经过氧化后,层间距会增大到0.77nm左右。剥离后的氧化石墨烯吸附在云母片等基底上,会增加0.35nm左右的附加层,所以单层氧化石墨烯在AFM下观测到的厚度一般在0.7-1.2nm左右。将氧化石墨烯沉积在云母片上,利用蔗糖溶液还原后进行AFM表征,如图3.5所示,图中的高度剖面图(ΔZ)对应着图中两点(Z1、Z2)的高度差即石墨烯的厚度,同时若将直线上测量点选择在石墨烯片层的两端,还可以粗略测量石墨烯片层的横向尺寸(distance)。

图3.5 石墨烯的AFM图像和高度剖面图[5]

3.1.3.2 不同还原方法得到的GO、rGO的AFM区别

Si 等[6]进行了硼氢化钠为还原剂制备RGO 的研究。通过观察AFM 图像,

他们发现GO 的横向尺寸为几个微米,厚度为1 nm,但是经过化学还原为RGO 后,其横向尺寸从几百纳米到几个微米变动,厚度大约为1.2 nm。实验过程中的超声处理可能会使GO 引入一些小孔状的缺陷,这也是AFM 显示RGO 厚度增加到10 μm 的原因。

Chen 等[7]还采用微波还原GO 得到RGO。AFM分析表明,对于厚度为0.8 nm 的GO,微波还原的产物GNS 厚度约为0.45 nm,接近于GNS 的理论厚度(大约为0.35 nm)。而当GO 边缘有环氧基、羟基、羧基存在时,GNS 片层的厚度就会增加。说明微波处理后,GO 被还原为单层GNS。这种方法可以制备微米尺寸的GNS。

Williams 等[8]用UV 处理GO 得到RGO。AFM 图显示,GO 的厚度为1.7nm,而经UV 处理后厚度仅为0.9 nm,横向尺寸为几百纳米到几个微米。做测试,就上e测试网。RGO 比GNS 理论厚度要大得多,这主要归因于RGO 纳米片边缘的一些溶剂分子和残余氧的存在。

3.1.4 AFM表征石墨烯的优缺点

由于单层石墨烯理论厚度很小,在扫描电镜中很难观察到。原子力显微镜是表征石墨烯片层结构的最有力、最直接有效的工具。它可以清晰的反映出石墨烯的横向尺寸、面积和厚度等方面的信息,但一般只能用来分辨单层或双层的石墨烯。

原子力显微镜可以表征单层石墨烯,但也存在缺点:耗时且在表征过程中容易损坏样品;此外,由于C键之间的相互作用,表征误差达0.5nm甚至更大,这远大于单层石墨烯的厚度,使得表征精度大大降低。

相关文档
最新文档