激光雷达原理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在小角近似情况,激光雷达方程可以表示为:
后 向 散 射 激 光 雷 达 方 程
P ( z ) ( z ) ( z )cr0 2 Et (r , z ) Er (r b, z )d 2 r P0 8
2
r x, y
( z)
z ct 2
激 光 束 的 物 理 描 述
G
2 w0
爱里斑的宽度定义为:第一个暗环(第一个 最小值)的角弦, 光束质量一般定义为 M实际发射机束宽(rad);
Q
M T
T理论衍射极限发射机束宽(rad)
均匀照明时非衍射极限波的发射束宽为 2.44 Q d 高斯分布的非衍射极限波的发射束宽为:
b b,0
在z处散射系数 激光雷达作用距离 激光脉冲发射到接收信号回波的时间 180后向散射分布函数 激光器发射功率 发射激光脉冲宽度 光电探测器光敏面半径 激光发射束散角 接收光学系统视场角 激光发射时或在处归一化振幅
t

P0

r0
2
2
Et , Er
在考虑高斯光束情况下,即:
t

探测目标后向散射函数:
( x, y, r ) d ( x, y, r ) / dr

接收信号光能量:
ES PS T

接收信号光光子数:
NS ES / h

其它参量定义: Ar—光学天线有效接收孔径;R—激光雷达 作用距离;or—接收光学系统效率;t—发
射光学系统效率;T2—双程大气透过率
2 b2 G( z ) exp 2 2 ( 2 2 ) z 2
PR
SNR2eI (1 B)f S
1/ 2
I Ib I d
Ib KOR L(r02 )( 2 )S
二、直接探测理论
光反射角及光束形成示意图
激 光 雷 达 方 程 一 般 形 式
来自百度文库
激光雷达接收的信号功率等于:发射激光功
率分布与目标后向散射系数的卷积,再考虑 光学天线、大气传输衰减等因素。
激光雷达方程一般形式可用下式描述:

激光发射功率归一化函数
激 光 雷 达 方 程 一 般 形 式
J ( x, y)dxdy 1
光电探测器的平方律特性
E (r , t ) 假定入射的光辐射电场为 ˆU (r , t ) exp(it ) E (r , t ) e
直 接 探 测 理 论
ˆ 偏振方向上的单位矢量, e
U S是入射光辐射电场振幅, (r , t ) 是入射光的角频率。根据波印亭
法则,光辐射场平均功率:
2.44 p d
高斯光束的有效束宽定义为e-2(0.1359) 峰值功率处的整个宽度。 衍射极限发射光束的有效束宽为
r G 2 arctan 1 r w 0
0

2

1/ 2
在远场,即时,高斯光束的束宽可以近似
后 向 散 射 激 光 雷 达 方 程
r2 exp exp(z ) (z ) 2 Et ( 2 ) z 2 r2 exp exp(z ) ( z ) 2 Er ( 2 ) z 2
P( z ) (c )r02 G( z) exp(2z) P0 8z 2
激光束归一化函数:在激光雷达设计和分
激 光 束 的 物 理 描 述
析中,经常遇到三种典型的光束形状:
高斯光束
爱里光束
均匀光束(平面波)。
2r 2 I G (r ) U G (r ) I 0 exp w2 ( z)
2
2 2 2 w( z) 2 w0 [1 (r / w0 ) ]
2
2
激 光 束 的 物 理 描 述
-光波波长;
F-光学天线的有效焦距; D-光学天线的有效孔径; F-光学天线系统的“F”数, F=(f/d); J1()-第一类贝塞尔函数, =(r/F); UA(r)-爱里斑振幅分布函数;
I 0 I P (r ) U P (r ) 0
2
r r0 r r0
一、激光雷达方程
相干激光雷达
激 光 雷 达 原 理
信号的幅度和位相 非相干激光雷达 信号的幅度

激 光 雷 达 方 程 物 理 过 程
激光雷达方程描述激光发射和接收的物理
光学过程
它包括以下四个环节:
激光到目标的传输;
目标对激光的反射; 散射光到探测器的传输;
接收机对散射光的收集。
R-光束横截面积的极坐标(圆 对称性); R0-光电探测器光敏面半径; UP(r)-均匀光束振幅分布函数; I0-常数因子
激 光 束 的 物 理 描 述
光束宽度是对发射激光束轮廓角度展幅的 度量。 束宽由光束内光强下降到波束峰值光强所 指定百分比的位置决定,或由内接收功率 达到发射总功率所指定百分比时的角弦来 决定。习惯上使用半宽度代替整个束宽。 当发射光束均匀照明一个圆形输出孔径时, 衍射极限的束宽为
2 2 2 R( z) 2 w0 [1 (r / w0 ) ]
wO-高斯光束的束腰半径; wZ-高斯光束模场半径 ; z-高斯光束波前距束腰距离 R(z)-高斯光束波前曲率半径 UG-高斯光束振幅分布函数
2J ( ) I A (r ) U A (r ) I 0 1
0 r 1 2Q arctan r 0

2

1/ 2
不 同 目 标 的 激 光 雷 达 距 离 方 程
短脉冲/扩展目标:与发射能量和(D/R)2成比例
未截断零深度硬目标:与发射能量和(D/R)2成比例
截断零深度硬目标:与发射能量、(D/R)4和(1/2)成比例
1 1 2 P Re(E E )dA U s dS 2 2S A
相关文档
最新文档