单片机按键程序设计及电路设计

合集下载

51单片机按键控制电路设计内容总结

51单片机按键控制电路设计内容总结

51单片机按键控制电路设计内容总结一、引言在现代电子产品中,按键控制是一种常见的操作方式。

通过按下不同的按键,可以实现不同的功能。

而在电子设备的控制电路中,需要一种可靠的方式来检测按键的状态,并根据按键的状态来进行相应的操作。

本文将介绍基于51单片机的按键控制电路设计。

二、按键控制电路的基本原理按键控制电路的基本原理是通过检测按键的状态来确定按键是否被按下。

当按键被按下时,按键的状态会发生改变,通过检测这种状态的改变,可以触发相应的操作。

在51单片机中,可以通过外部中断来实现对按键状态的检测。

当按键被按下时,会触发外部中断,从而通知单片机按键的状态发生了改变。

三、按键控制电路的设计步骤1. 硬件设计在按键控制电路的硬件设计中,需要确定使用的按键数量,并选择合适的按键类型。

常见的按键类型有机械按键和触摸按键。

根据实际需求,选择合适的按键类型,并将其连接到51单片机的外部中断引脚上。

2. 软件设计在按键控制电路的软件设计中,需要编写相应的程序来实现对按键状态的检测和相应操作的执行。

在51单片机中,可以通过中断服务程序来实现对外部中断的响应。

当外部中断触发时,中断服务程序会被执行,并根据按键的状态来执行相应的操作。

四、案例分析下面以一个简单的案例来说明按键控制电路的设计。

假设我们需要设计一个LED灯的开关控制电路,通过按下按键可以控制LED灯的开关状态。

1. 硬件设计选择一个机械按键作为控制按键,并将其连接到51单片机的外部中断引脚上。

同时,将一个LED灯连接到51单片机的IO口上。

2. 软件设计编写相应的程序来实现按键状态的检测和LED灯开关状态的控制。

当按键被按下时,外部中断触发,中断服务程序被执行。

在中断服务程序中,通过读取按键的状态来确定按键是否被按下,并根据按键的状态来控制LED灯的开关状态。

五、总结通过本文的介绍,我们了解了按键控制电路的基本原理和设计步骤。

在51单片机中,可以通过外部中断来实现对按键状态的检测。

单片机按键程序设计

单片机按键程序设计

单片机按键程序设计单片机按键的基本原理其实并不复杂。

通常,按键就是一个简单的开关,当按键按下时,电路接通,对应的引脚电平发生变化;当按键松开时,电路断开,引脚电平恢复到初始状态。

在程序设计中,我们需要不断检测引脚的电平变化,从而判断按键是否被按下。

在实际的按键程序设计中,有多种方式可以实现按键检测。

其中一种常见的方法是查询法。

这种方法是通过不断地读取按键对应的引脚状态来判断按键是否被按下。

以下是一个简单的查询法示例代码:```cinclude <reg51h> //包含 51 单片机的头文件sbit key = P1^0; //定义按键连接的引脚void main(){while(1) //无限循环{if(key == 0) //如果按键按下,引脚为低电平{//执行按键按下的操作//比如点亮一个 LED 灯P2 = 0xfe;while(key == 0);//等待按键松开}}}```上述代码中,我们首先定义了按键连接的引脚`key`,然后在主函数的无限循环中不断检测按键引脚的状态。

当检测到按键按下时,执行相应的操作,并通过`while(key == 0)`等待按键松开。

除了查询法,还有中断法可以用于按键检测。

中断法的优点是能够及时响应按键动作,不会因为程序的其他操作而导致按键响应延迟。

```cinclude <reg51h> //包含 51 单片机的头文件sbit key = P1^0; //定义按键连接的引脚void int0_init()//中断初始化函数{IT0 = 1; //下降沿触发中断EX0 = 1; //使能外部中断 0EA = 1; //开总中断}void int0() interrupt 0 //外部中断 0 服务函数{//执行按键按下的操作//比如点亮一个 LED 灯P2 = 0xfe;}void main(){int0_init();//初始化中断while(1);//无限循环,保持程序运行}```在上述代码中,我们首先在`int0_init` 函数中对中断进行了初始化设置,然后在`int0` 函数中编写了按键按下时的处理代码。

按键显示电路实验报告(3篇)

按键显示电路实验报告(3篇)

第1篇一、实验目的1. 熟悉按键电路的基本原理和设计方法。

2. 掌握按键电路的搭建和调试方法。

3. 了解按键电路在实际应用中的重要性。

4. 提高动手实践能力和电路分析能力。

二、实验原理按键显示电路是一种将按键输入转换为数字信号,并通过显示设备进行显示的电路。

本实验主要涉及以下原理:1. 按键原理:按键通过机械触点实现电路的通断,当按键被按下时,电路接通,产生一个低电平信号;当按键释放时,电路断开,产生一个高电平信号。

2. 译码电路:将按键输入的信号转换为相应的数字信号,以便后续处理。

3. 显示电路:将数字信号转换为可视化的信息,如LED灯、数码管等。

三、实验器材1. 电路板2. 按键3. 电阻4. LED灯5. 数码管6. 电源7. 基本工具四、实验步骤1. 按键电路搭建(1)根据电路原理图,在电路板上焊接按键、电阻、LED灯等元器件。

(2)连接电源,确保电路板供电正常。

2. 译码电路搭建(1)根据电路原理图,在电路板上焊接译码电路所需的元器件。

(2)连接译码电路与按键电路,确保信号传输正常。

3. 显示电路搭建(1)根据电路原理图,在电路板上焊接显示电路所需的元器件。

(2)连接显示电路与译码电路,确保信号传输正常。

4. 电路调试(1)检查电路连接是否正确,确保无短路、断路等问题。

(2)按下按键,观察LED灯或数码管显示是否正常。

(3)根据需要调整电路参数,如电阻阻值、电源电压等,以达到最佳显示效果。

五、实验结果与分析1. 实验结果通过实验,成功搭建了一个按键显示电路,按下按键后,LED灯或数码管能够正确显示数字信号。

2. 结果分析(1)按键电路能够正常工作,实现电路通断。

(2)译码电路能够将按键输入转换为相应的数字信号。

(3)显示电路能够将数字信号转换为可视化的信息。

六、实验总结1. 通过本次实验,掌握了按键电路的基本原理和设计方法。

2. 提高了动手实践能力和电路分析能力。

3. 了解了按键电路在实际应用中的重要性。

1-单片机键盘与显示电路设计

1-单片机键盘与显示电路设计

独立式按键 单片机控制系统中,往往只需要几个 功能键,此时,可采用独立式按键结构。 1.独立式按键结构 独立式按键是直接用I/O口线构成的单 个按键电路,其特点是每个按键单独占 用一根I/O口线,每个按键的工作不会影 响其它I/O口线的状态。独立式按键的典 型应用如图9-3所示。
V CC
P 1.0 P 1.1 P 1.2 P 1.3 P 1.4 P 1.5 P 1.6 P 1.7
P1口某位结构

P1口电路中包含有一个数据输出锁存器、一个三态数据输入缓冲器 、一个数据输出的驱动电路。 P1口的功能和驱动能力

P1口只可以作为通用的I/O口使用;
P1可以驱动4个标准的TTL负载电路; 注意在P1口作为通用的I/O口使用时,在从I/O端口读入数据时,应 该首先向相应的I/O口内部锁存器写“1”。 举例:从P1口的低四位输入数据 MOV MOV P1,#00001111b ;;先给P1口底四位写1 A,P1 ;;再读P1口的底四位
依此规律循环,即可使各位数码管显 示将要显示的字符。虽然这些字符是在不 同的时刻分别显示,但由于人眼存在视觉 暂留效应,只要每位显示间隔足够短就可 以给人以同时显示的感觉。 采用动态显示方式比较节省I/O口,硬 件电路也较静态显示方式简单,但其亮度 不如静态显示方式,而且在显示位数较多 时,CPU要依次扫描,占用CPU较多的时 间。
矩阵式按键 单片机系统中,若使用按键较多时,通 常采用矩阵式(也称行列式)键盘 1.矩阵式键盘的结构及原理 矩阵式键盘由行线和列线组成,按键位 于行、列线的交叉点上,其结构如下图9-4 所示。
+5 V 0 4 8 12 0 1 5 9 13 1 2 6 10 14 2 3 7 11 15 3 0 1 2 3

使用按键控制LED灯亮—按键控制LED灯亮灭程序编写

使用按键控制LED灯亮—按键控制LED灯亮灭程序编写

9课Βιβλιοθήκη 任务编写由一个按键按制一个 LED 灯,当 按键按下时,LED 灯亮再按时 LED 灯 灭的 C 语言程序。
单片机技术及应用
单片机技术及应用
1
工作任务
任务要求:
当独立按
键 key 按下时, 发光二极管
LED 点亮,松 开按键 key 时 发光二极管
LED 熄灭。
任务分析:
按下
P3.0端口为“0”


按键Key
序 控
松开
P3.0端口为“0”


2
程序设计流程
一、流程图
二、按键软件延时消抖
1.延时程序编写
void delay(uint x)//ms延时函数 { uchar i; while(x--) for(i=0;0<i<123;i++)
下载程序及硬件调试
1.下载程序
2.连接电路
电路连接表
控制端口
连接位置
P1.0
VD26
P3.0
KEY1
3.硬件调试
7
成果展示及评价
•学生进行作品展示
8
任务小结
•学生小结:小组代表总结本组的学习心得,学会了什么, 还有什么没有理解等等。 •教师小结:教师对每组的成果进行点评,并对本节课的知识 点进行总结。
while(1) {
if(key==0) { delay(10); if(key==0) { 灯亮;} } } else {灯灭;} }
4 程序仿真调试
一、利用Proteuse软件绘制电路图
步骤: 打开Protues 软件 创建工程 创建文件 放置元件 连接电路 保存
二、装载Hex文件并仿真

单片机按键电容消抖电路

单片机按键电容消抖电路

单片机按键电容消抖电路1.引言1.1 概述概述部分的内容:在许多电子设备中,按键电路常常被使用来实现用户与设备之间的交互。

然而,由于按键的物理特性,如机械弹性和触点接触的不稳定性,会导致按键的震荡现象,即按键在按下或释放时会产生多次跳变。

这种跳变会导致单片机误读按键的信号,可能引发系统错误操作或不稳定的现象。

因此,为了保证按键信号的可靠性和稳定性,需要对按键进行消抖处理。

本篇文章将详细介绍单片机按键电容消抖电路的设计和实现原理。

通过在按键电路中引入电容元件,可以达到消抖的效果。

电容元件具有快速充放电的特性,可以有效地过滤掉按键震荡带来的干扰信号,确保单片机正确读取按键状态。

文章将首先介绍单片机按键的工作原理,包括按键的接口电路和输入电平变化的检测方式。

接着,将深入探讨按键消抖的必要性,分析不进行消抖处理所带来的潜在问题。

在这之后,将详细介绍按键电容消抖电路的设计原理,包括电容的连接方式和参数的选择。

最后,将给出经过实际测试的电路实现结果和相关性能指标的评估。

通过本文的阅读,读者将能够了解单片机按键的基本原理和消抖处理的必要性,掌握按键电容消抖电路的设计和实现方法,以及了解该电路的性能表现。

这对于开发单片机应用的工程师和爱好者来说,具有一定的指导意义和实践价值。

文章结构部分的内容是对整篇文章的组织和布局进行描述。

它向读者展示了文章的章节和主题,并指导读者理解和阅读文章的内容。

在本文中,文章结构如下:1. 引言1.1 概述1.2 文章结构1.3 目的2. 正文2.1 单片机按键原理2.2 按键消抖的必要性3. 结论3.1 按键电容消抖电路的设计原理3.2 电路实现与测试结果文章的结构分为引言、正文和结论三个主要部分。

在引言部分,概述简要介绍了单片机按键电容消抖电路的背景和重要性;文章结构部分指出了本文的章节组成和布局,为读者提供了阅读指南;目的阐明了文章的目标和意图。

正文部分主要包括单片机按键原理和按键消抖的必要性。

单片机c语言程序设计---矩阵式键盘实验报告

单片机c语言程序设计---矩阵式键盘实验报告

单片机c语言程序设计---矩阵式键盘实验报告课程名称:单片机c语言设计实验类型:设计型实验实验项目名称:矩阵式键盘实验一、实验目的和要求1.掌握矩阵式键盘结构2.掌握矩阵式键盘工作原理3.掌握矩阵式键盘的两种常用编程方法,即扫描法和反转法二、实验内容和原理实验1.矩阵式键盘实验功能:用数码管显示4*4矩阵式键盘的按键值,当K1按下后,数码管显示数字0,当K2按下后,显示为1,以此类推,当按下K16,显示F。

(1)硬件设计电路原理图如下仿真所需元器件(2)proteus仿真通过Keil编译后,利用protues软件进行仿真。

在protues ISIS 编译环境中绘制仿真电路图,将编译好的“xxx.hex”文件加入AT89C51。

启动仿真,观察仿真结果。

操作方完成矩阵式键盘实验。

具体包括绘制仿真电路图、编写c源程序(反转法和扫描法)、进行仿真并观察仿真结果,需要保存原理图截图,保存c源程序,总结观察的仿真结果。

完成思考题。

三、实验方法与实验步骤1.按照硬件设计在protues上按照所给硬件设计绘制电路图。

2.在keil上进行编译后生成“xxx.hex”文件。

3.编译好的“xxx.hex”文件加入AT89C51。

启动仿真,观察仿真结果。

四、实验结果与分析void Scan_line()//扫描行{Delay(10);//消抖switch ( P1 ){case 0x0e: i=1;break;case 0x0d: i=2;break;case 0x0b: i=3;break;case 0x07: i=4;break;default: i=0;//未按下break;}}void Scan_list()//扫描列{Delay(10);//消抖switch ( P1 ){case 0x70: j=1;break;case 0xb0: j=2;break;case 0xd0: j=3;break;case 0xe0: j=4;break;default: j=0;//未按下break;}}void Show_Key(){if( i != 0 && j != 0 ) P0=table[ ( i - 1 ) * 4 + j - 1 ];else P0=0xff;}五、讨论和心得。

4.3 单片机键盘接口电路设计

4.3 单片机键盘接口电路设计
}
//函数功能:键盘扫描 //检测到有键按下 //延时10ms再去检测 //按键k1被按下 //按键k2被按下 //按键k3被按下 //按键k4被按下
▲▲▲
独立式键盘接口设计案例
void forward(void) { P3=0xfe; led_delay(); P3=0xfd; led_delay(); P3=0xfb; led_delay(); P3=0xf7; led_delay(); P3=0xef; led_delay(); P3=0xdf; led_delay(); P3=0xbf; led_delay(); P3=0x7f; led_delay(); }
break;
}
}
}
▲▲▲
独立式键盘接口设计案例
void key_scan(void) { P1=0xff; if((P1&0x0f )!=0x0f ) { delay10ms(); if(S1==0) keyval=1; if(S2==0) keyval=2; if(S3==0) keyval=3; if(S4==0) keyval=4; }
//处理按下的k1键,“……”为处理程序 //跳出switch语句 //处理按下的k2键 //跳出switch语句 //处理按下的k3键 //跳出switch语句 //处理按下的k4键 //跳出switch语句 //处理按下的k5键 //跳出switch语句
独立式键盘接口设计案例
1.独立式键盘的查询工作方式
{
case 1:forward(); //键值为1,调用正向流水点亮函数
break;
case 2:backward(); //键值为2,调用反向流水点亮函数
break;
case 3:Alter(); //键值为3,调用高、低4位交替点亮函数

单片机外围电路设计

单片机外围电路设计

单片机外围电路设计单片机外围电路设计是嵌入式系统开发中的重要环节,它关乎到整个系统的稳定性和性能。

在本文中,我们将探讨单片机外围电路设计的基本原理和要点,以及一些常见的设计方案。

一、单片机外围电路的作用单片机外围电路的作用主要有三个方面:供电、信号输入与输出、与其他外部设备的通信。

首先,供电电路提供稳定的电源给单片机,确保其正常工作;其次,信号输入与输出电路将外部信号转化为单片机可以处理的电信号,或将单片机处理后的信号输出给外部设备;最后,通信电路用于单片机与其他外部设备的数据交互,例如串口通信、SPI通信等。

二、单片机外围电路的基本原理1.供电电路设计供电电路设计要求提供稳定、可靠的电源给单片机,通常采用稳压电路。

常见的稳压电路有线性稳压电路和开关稳压电路。

线性稳压电路简单易用,但效率低,散热大;开关稳压电路效率高,但设计和调试难度较大。

2.信号输入与输出电路设计信号输入电路通常需要考虑防抖和信号变换。

防抖电路用于消除开关输入引脚的抖动,常用的方法有RC电路、Schmitt触发器等。

信号变换电路用于将外部信号转化为单片机可以处理的电信号,例如模拟信号的AD转换和数字信号的电平转换。

信号输出电路一般需要考虑电流放大和电平转换。

电流放大电路用于驱动外部设备,例如LED、继电器等,常用的方法有三极管、MOS管等。

电平转换电路用于将单片机处理后的信号转化为外部设备可以接受的电平,例如TTL与RS232之间的电平转换。

3.通信电路设计通信电路设计要根据具体通信接口的特点来选择合适的电路方案。

例如,串口通信常用的电路方案有MAX232芯片、电容耦合等;SPI通信常用的电路方案有74HC595移位寄存器、74HC165移位寄存器等。

1.按键输入电路设计按键输入电路设计要考虑按键防抖和按键电平转换。

防抖电路可以采用RC电路或Schmitt触发器,电平转换电路可以采用三极管或MOS管。

2.数码管驱动电路设计数码管驱动电路设计要考虑数码管的电流和电压需求,常用的驱动芯片有74HC595移位寄存器。

单片机独立按键实验报告总结

单片机独立按键实验报告总结

单片机独立按键实验报告总结本次实验我们使用了单片机进行了独立按键实验,通过学习掌握了单片机输入输出口的基本使用方法以及独立按键的使用方法和技巧。

以下是本次实验的总结:一、实验内容本次实验的主要内容是独立按键的使用方法和技巧。

通过学习,我们掌握了独立按键的接法原理和基本应用方法。

在实验中,我们首先通过理论学习了按键的工作原理,了解了按键在电路中的应用和接法方法,然后实际动手进行了按键电路的搭建和单片机程序的编写,最后进行了按键测试和实验结果分析。

二、实验步骤1.理论学习:首先,我们学习了独立按键的工作原理和接法原理,了解按键在电路中的应用和接法方法,掌握了按键接口的输入输出方式,并对具体实现过程和技巧进行了分析和探讨。

2.电路搭建:根据学习到的按键接法原理和电路图,我们使用面包板和导线搭建了独立按键电路,将按键连接到单片机的输入端口上,并设置相应的电阻来保护电路和单片机芯片。

3.程序编写:通过阅读单片机说明书和参考其他资料,我们学习了单片机输入输出口的基本使用方法和指令,编写了程序代码,实现了独立按键操作的功能。

我们实现了多种按键操作方式,包括单击、长按等方式,并添加了相应的提示和保护措施,以确保程序的可靠性和稳定性。

4.测试实验:最后,我们进行了独立按键测试实验,通过按键操作,观察测试实验结果,进行了数据分析和结论汇总。

实验结果表明,我们的按键电路和程序代码都实现了预期的功能和效果,证明了我们在实验中掌握的独立按键技巧和方法是正确和有效的。

三、实验结论通过本次实验,我们掌握了单片机输入输出口的基本使用方法和独立按键的使用方法和技巧,了解了按键在电路中的应用和接法方法,探索了独立按键实现的多种方式和技巧,提高了我们的电路设计能力和程序设计能力。

同时,本次实验还加强了我们的实验动手操作能力,增强了我们的实际应用能力和创新思维能力,为我们以后的学习和工作打下了坚实的基础。

智能家居单片机控制系统实例讲解课件-按键控制的霓虹灯

智能家居单片机控制系统实例讲解课件-按键控制的霓虹灯

P0.0/AD0 P0.1/AD1 P0.2/AD2 P0.3/AD3 P0.4/AD4 P0.5/AD5 P0.6/AD6 P0.7/AD7
39 38 37 36 35 34 33 32
R9
4k7
P2.0/A8 P2.1/A9 P2.2/A10 P2.3/A11 P2.4/A12 P2.5/A13 P2.6/A14 P2.7/A15
D8
LED-RED
D7
LED-RED
D6
LED-RED
D5
LED-RED
D4
LED-RED
D3
LED-RED
D2
LED-RED
29
30
D1
31
LED-RED
PSEN ALE EA
1 2 3 4 5 6 7 8
P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7
AT89C51
21 22 23 24 25 26 27 28
P3.0/RXD P3.1/TXD P3.2/INT0 P3.3/INT1
P3.4/T0 P3.5/T1 P3.6/WR P3.7/RD
10 11 12 13 14 15 16 17
10/ 4
二、电路设计
在电路中,采用51单片机的P1口控制8个发光二极管,P2口的P2.0引脚控 制按键S。 P2.0引脚通过上拉电阻R9与+5V电源连接,当S没有按下时,P2.0引脚保持 高电平,当S按下时,P2.0引脚接地,因此通过读取P2.0引脚的状态,就可 以得知按键S是否按下。
{
delay(1200); //延时10ms左右去抖动
ቤተ መጻሕፍቲ ባይዱ
if(S==0)

单片机按键模块设计(二)

单片机按键模块设计(二)

单片机按键模块设计(二)引言概述:本文将介绍单片机按键模块设计的相关内容。

按键模块在嵌入式系统中被广泛应用,能够方便地实现对系统的控制和操作。

本文将从五个大点进行阐述,包括按键模块原理介绍、按键类型选择、按键电路设计、按键功能实现和按键模块调试。

通过详细介绍和分析,将帮助读者更好地理解和使用单片机按键模块。

正文:1. 按键模块原理介绍- 按键模块是通过触发按键开关来产生不同信号的模块。

它由按键开关和其它电路组成,可以实现按键信号的检测和处理。

- 常见的按键模块原理包括矩阵式按键、独立式按键和编码式按键。

每种原理都有其适用的场景和特点。

2. 按键类型选择- 按键的类型包括机械按键和触摸按键。

机械按键通常使用弹簧结构,稳定可靠,适用于精确操作。

触摸按键使用电容或电阻感应原理,触摸灵敏,外观简洁。

- 在选择按键类型时,需要根据具体应用场景和用户需求,综合考虑按键的性能、可靠性、成本等因素。

3. 按键电路设计- 按键电路设计要考虑按键的接入、滤波、去抖动等问题。

接入问题包括按键引脚的连接和布局。

滤波问题可以通过外部电容电路实现,防止因按键抖动引起的干扰。

去抖动问题可以通过软件或硬件的方式解决,确保按键信号的稳定和准确。

4. 按键功能实现- 按键的功能实现可以通过编程来完成。

根据按键的不同组合或按下时间等条件,可以触发不同的功能操作。

- 常见的按键功能包括开关控制、菜单选择、模式切换等。

通过编程,可以灵活地定制按键功能,满足不同应用的需求。

5. 按键模块调试- 按键模块的调试主要包括按键动作测试、按键信号检测和按键功能验证。

通过合理的测试和验证,可以确保按键模块的正常工作。

- 调试可以通过示波器、调试工具等设备来实现。

通过观察按键信号的波形和分析按键功能的实现情况,可以排查和解决可能存在的问题。

总结:本文从按键模块原理介绍、按键类型选择、按键电路设计、按键功能实现和按键模块调试五个大点进行了详细阐述。

通过本文的介绍,读者可以了解到单片机按键模块设计的基本原理和实现方法,从而能够更好地应用于具体的嵌入式系统中。

单片机实验五报告_单片机键盘实验

单片机实验五报告_单片机键盘实验

单片机实验五报告_单片机键盘实验一、实验目的本次单片机键盘实验的主要目的是让我们深入了解单片机与键盘的接口技术,掌握如何通过编程实现对键盘输入的检测和响应,从而提高我们在单片机应用开发中的实际操作能力。

二、实验原理在单片机系统中,键盘通常是作为输入设备使用的。

常见的键盘有独立式键盘和矩阵式键盘两种类型。

独立式键盘是每个按键单独占用一根 I/O 线,其优点是电路简单,编程容易,但缺点是占用较多的 I/O 口资源。

矩阵式键盘则是将按键排列成矩阵形式,通过行线和列线的交叉来识别按键。

这种方式可以有效地节省 I/O 口资源,但电路和编程相对复杂一些。

在本次实验中,我们采用了矩阵式键盘。

其工作原理是通过逐行扫描或者逐列扫描的方式,检测行线和列线的电平状态,从而确定按下的按键。

三、实验设备及材料1、单片机开发板一块2、计算机一台3、编程软件(如 Keil C51)4、下载工具(如 STCISP)四、实验步骤1、硬件连接将矩阵式键盘与单片机的 I/O 口进行连接,注意行线和列线的对应关系。

连接好电源和地线,确保硬件电路正常工作。

2、软件编程打开编程软件,创建一个新的工程。

编写初始化程序,包括设置 I/O 口的工作模式、中断等。

编写键盘扫描程序,通过循环扫描行线和列线的电平状态,判断是否有按键按下。

当检测到按键按下时,根据按键的编码执行相应的操作,如在数码管上显示按键值、控制 LED 灯的亮灭等。

3、编译和下载对编写好的程序进行编译,检查是否有语法错误。

如果编译成功,使用下载工具将程序下载到单片机中。

4、实验调试观察硬件电路的工作状态,看是否有异常现象。

按下不同的按键,检查程序的响应是否正确。

如果出现问题,通过调试工具(如单步调试、断点调试等)查找并解决问题。

五、实验代码以下是本次实验的部分关键代码:```cinclude <reg51h>//定义键盘的行和列define ROW_NUM 4define COL_NUM 4//定义行线和列线的端口sbit ROW1 = P1^0;sbit ROW2 = P1^1;sbit ROW3 = P1^2;sbit ROW4 = P1^3;sbit COL1 = P1^4;sbit COL2 = P1^5;sbit COL3 = P1^6;sbit COL4 = P1^7;//定义按键值的编码unsigned char code KeyCodeMapROW_NUMCOL_NUM ={{'1','2','3','A'},{'4','5','6','B'},{'7','8','9','C'},{'','0','','D'}};//键盘扫描函数void KeyScan(){unsigned char i, j, temp;unsigned char keyValue = 0;//逐行扫描for (i = 0; i < ROW_NUM; i++){//先将所有行线置高电平ROW1 = ROW2 = ROW3 = ROW4 = 1;//将当前行线置低电平switch (i){case 0: ROW1 = 0; break;case 1: ROW2 = 0; break;case 2: ROW3 = 0; break;case 3: ROW4 = 0; break;}//读取列线的电平状态temp = COL1 | COL2 | COL3 | COL4;//如果有列线为低电平,则表示有按键按下if (temp!= 0xF0){//延迟去抖动delay_ms(10);//再次读取列线的电平状态temp = COL1 | COL2 | COL3 | COL4; if (temp!= 0xF0){//确定按下的按键for (j = 0; j < COL_NUM; j++){if ((temp &(1 << j))== 0){keyValue = KeyCodeMapij;break;}}//执行相应的操作switch (keyValue){case '1'://具体操作break;case '2':break;//其他按键的操作}}}}}//主函数void main(){while (1){KeyScan();}}```六、实验结果及分析在实验过程中,我们成功地实现了对矩阵式键盘的输入检测,并能够根据不同的按键执行相应的操作。

单片机课程实验二: 独立按键电路设计

单片机课程实验二: 独立按键电路设计

单片机课程实验二:独立按键电路设计专业:通信工程学号:1610111183 姓名:石万里一、实验步骤:在实验一STC89C52单片机控制8个流水灯的实验的基础上进行此实验。

本次实验目标:通过两个独立按键控制流水灯的变化,使得8个流水灯代表的8进制数,在按下K1键后自动加一,按下K2键后,自动减一,采用下降沿外部中断触发。

电路图在实验一的基础上进行改装,让P32与P33各自通过一个独立按键接地,手绘电路图如图1.1所示:图1.1独立按键电路图1.2独立按键电路焊接成果实验程序编写烧录后,在keil软件中生产hex文件,再烧录到单片机芯片中,再给电路板上电即可。

之后是实验程序的编写,流水灯程序编写好并在学习板上测试成功后,即可把芯片放到自己焊接的电路板上上电测试电路板,如果成功即可找老师验收,不成功需要用万用表对电路板进行测试,测试时先把万用表档位调到欧姆档,测试本实验焊接的独立按键电路是否存在开路,并检查是否存在有未焊接的部分,是否有虚焊漏焊的情况,是否上电测试时晶振未安装,电路板检查后继续进行测试,然后再检查、测试,直到自己焊接的电路板功能正常。

若是在学习板上程序未成功,则需要对程序进行修改,重新编译、烧录,不断测试。

二、流水灯程序:org 0000Hljmp mainorg 0003hljmp jiayiorg 0013hljmp jianyiorg 100h main:setb ex0setb IT0setb ex1setb IT1setb eamov r4,#07hmov r3,#07hmov r2,#02hmov a,#0fehmov p1,aloop2:acall delay next: rl aacall delaymov p1,adjnz r4,next here: acall delay//mov a,p1rr amov p1,adjnz r3,heremov r4,#07hmov r3,#07hdjnz r2,loop2acall delay loop1:mov a,#07chmov p1,asjmp loop1 delay:mov r5,#19h delay1:mov r6,#19h delay2:mov r7,#0ffhdjnz r7,$djnz r6,delay2djnz r5,delay1 retjiayi:mov a,p1dec aacall delaymov p1,asjmp jiayiretijianyi:mov a,p1inc aacall delaymov p1,asjmp jianyiretiend三、实验总结:实验结果如下图所示:前五张图片是加一结果,最后两张图片是减一结果因为拍照速度太慢,故加一减一在图中看起来可能不连续,但程序完全正确,已经过实验验证,本人建议最好录视频作为作业上交此实验是建立在实验一的基础上进行的,故相对较为简单,只需要P32与P33各自加独立按键接地即可。

单片机按键实验报告

单片机按键实验报告

单片机按键实验报告篇一:单片机按键扫描实验报告键盘扫描一.实验目的(1)掌握矩阵键盘接口电路和键盘扫描编程方法。

(2)掌握按键值处理与显示电路设计。

二.实验任务(1)设计4*4键盘,编写各个键的特征码和对应的键值(0~F);(2)编程扫描按键,将按键对应的数字值使用数码管显示出来。

三.实验电路及连线方法1.采用动态显示连线方法:电路由2 片74LS573,1 个六字一体的共阴数码管组成。

由U15 输出段选码,U16 做位选码,与单片机的采用I/O 口连接方式,短路片J22 连接P2.0,J23 连接P2.3,做输出信号锁存。

(实际电路连接是d7-d6-d5-d4-d3-d2-d1-d0?h-c-d-e-g-b-a-f)。

PW12 是电源端。

2.键盘电路连线方法:电路由16 个按键组成,用P1 口扩展4×4 行列式键盘。

J20 是键盘连接端,连接到P1 口。

J21 是行列键盘、独立键盘选择端,当J21 的短路片连接2-3脚时,构成4×4 行列式键盘;当J21 的短路片连接2-1 脚时,可形成3×4 行列式键盘,4 个独立式按键S4、S8、S12、S16,这4 个独立按键分别连接P1.4~P1.7;其他12 个键3×4 行列式键盘。

PW15 是电源端。

四.编程思路1.采用反转法识别按键的闭合。

2.采用动态显示将键值显示出来。

五.算法流程图六.资源分配1.用P1口进行查找按键2.用R3做键值指针3.用R1做动态显示为选码指针。

4.R5为延时指针。

七.程序设计KPIN:ORG MOV MOV ANL MOV 0000H P1,#0F0H A,P1 A,#0F0H B,AMOVP1,#0FHMOVA,P1ANLA,#0FHORLA,BCJNE A,#0FFH,KPIN1AJMP EXITKPIN1: MOVB,AMOVDPTR,#TABKPMOVR3,#0KPIN2: MOVA,R3MOVC A,@A+DPTRCJNE A,B,KPIN3MOVA,R3LOOP: MOVR1,#0FEH;键盘动态显示 LOOP1: MOVA,R3ANLA,#0FHMOV DPTR,#TABMOVC A,@A+DPTRCLRP2.0CLRP2.1MOVP0,ASETB P2.0NOPCLRP2.0LOOP2: MOVA,R1;位选码MOVP0,ASETB P2.1MOVR5,#250LOOP3: DJNZ R5,LOOP3CLRP2.1SJMP LOOPKPIN3: INCR3CJNE A,#0FFH,KPIN2EXIT: RETTABKP: DB0EEH,0DEH,0BEH,7EH,0EDH,0DDH,0BDH,7DH,0EBHDB 0DBH,0BBH,7BH,0E7H,0D7H,0B7H,77H,67H,0FFHTAB: DB77H,44H,3EH,6EH,4DH,6BH,7BH,46H,7FH,6FH,5FHDB 79H,33H,7CH,3BH,1BHEND八.调试出现的问题及解决问题1:程序正常运行,但按键显示出现乱码解决:动态显示笔形码错误,并改正。

单片机与键盘输入的接口设计与应用解析

单片机与键盘输入的接口设计与应用解析

单片机与键盘输入的接口设计与应用解析引言:单片机是一种集成电路芯片,具有处理器核、存储器和输入输出引脚等组成部分,可以控制各种外部设备。

键盘是计算机和其他电子设备的常用输入设备,通过按下不同的按键来输入信息。

在许多应用中,需要将键盘与单片机相连接,以实现键盘输入的功能。

本文将深入探讨单片机与键盘输入的接口设计与应用,包括接口电路的设计原理、接口方式的选择以及相关应用案例的分析。

一、接口电路设计原理1. 键盘扫描原理键盘通常是由一系列按键按排成矩阵状的结构,每个按键都有两个触点,当按键按下时,两个触点短接,形成闭合电路。

为了检测到具体按下的按键,需要通过扫描的方式来逐个检测。

2. 电路连接方式通常,键盘与单片机之间可以通过行列式和矩阵式两种方式实现连接。

行列式连接方式即将键盘的行和列通过引脚分别连接到单片机的IO口,通过单片机的输入输出控制来检测按键信号。

矩阵式连接方式则是采用矩阵键盘的形式,将所有的按键都连接到行和列的交叉点上,通过扫描的方式来检测按键信号。

二、接口方式的选择1. 行列式连接方式的优势和劣势行列式连接方式相对简单,常用于按键较少的情况下。

它的优势在于节省IO 口的使用,通过编写简单的行列扫描程序即可实现对按键的检测。

然而,它的劣势在于不能同时检测多个按键,当同时有多个按键按下时,只能检测到其中一个。

2. 矩阵式连接方式的优势和劣势矩阵式连接方式可以同时检测多个按键,因为所有的按键都连接到行和列的交叉点上。

它的优势在于可以通过编写复杂的扫描程序,实现同时检测多个按键,并且可以检测到按键的精确位置。

然而,它的劣势在于需要占用较多的IO口,且对于按键较多的情况下,编写扫描程序较为复杂。

三、相关应用案例的分析1. 数字密码锁数字密码锁是常见的应用之一,通过将键盘与单片机连接,可以实现输入密码的功能,比如开启或关闭某个装置。

在设计中,可以选择行列式连接方式,通过扫描程序来检测按键,进而判断输入的密码是否匹配。

单片机键盘显示接口电路设计

单片机键盘显示接口电路设计

单片机键盘显示接口电路设计设计单片机键盘显示接口电路,需要考虑到键盘输入与显示输出两个方面。

以下是一个简单的设计示例,供参考:键盘通常采用矩阵键盘连接电路的方式,通过扫描矩阵的方式读取键盘输入信息。

以下是矩阵键盘接口电路的设计流程:1.确定键盘的规格和类型:键盘一般有正方形、矩形、圆形等几种形状,需要根据键盘的规格和类型选择适合的扫描方式。

2.确定键盘的逻辑矩阵大小:根据键盘的布局和规格,确定键盘的逻辑矩阵的行和列数,例如4行4列。

3.确定键盘的连接方式:键盘的连接方式一般有行列扫描、列行扫描、行列+列行扫描等几种方式,需要根据键盘的输出信号特点和单片机的输入要求进行适当的选择。

4.设计按键输入的译码电路:将键盘的输出信号通过译码电路解码成易于读取的二进制数,以便单片机的输入端口读取。

显示输出接口电路设计一般有两种方式:数码管和液晶显示。

1.数码管显示电路设计:数码管是通过控制各个数码管的段选和位选,实现数字或字符的显示。

以下是数码管显示电路的设计流程:a.确定显示的数字或字符类型:根据设计需求,确定要显示的数字或字符类型,例如整数、小数、字母等。

b.确定数码管的位数和类型:根据显示需求,确定数码管的位数和类型,有共阴数码管和共阳数码管两种类型,需要选择适合的数码管。

c.设计数码管的译码电路:根据数码管的类型和位数,设计数码管的译码电路,将输入的数字或字符转换为控制各个数码管的段选和位选的电信号。

2.液晶显示电路设计:液晶显示器是一种常见的显示设备,通过控制液晶的极性来实现图形和字符的显示。

以下是液晶显示电路设计的流程:a.确定显示的内容类型:根据设计需求,确定要显示的内容,例如字符、图像等。

b.选择适合的液晶显示器:根据显示的内容和要求,选择适合的液晶显示器,有字符型液晶显示器和图形型液晶显示器两种类型。

c.设计液晶的驱动电路:根据液晶显示器的类型和特性,设计液晶的驱动电路,将输入的数字或字符转换为控制液晶的电信号。

利用51单片机,8个按键,8路发光二级管构成一个独立式键盘系统,按下8个按键,点亮对应的灯。

利用51单片机,8个按键,8路发光二级管构成一个独立式键盘系统,按下8个按键,点亮对应的灯。

电子信息工程学院电子设计应用软件训练任务【训练任务】:1、熟练掌握PROTEUS软件的使用;2、按照设计要求绘制电路原理图;3、能够按要求对所设计的电路进行仿真;【基本要求及说明】:1、按照设计要求自行定义电路图纸尺寸;2、设计任务如下:利用51单片机,8个按键,8路发光二级管构成一个独立式键盘系统,按下8个按键,点亮对应的灯。

3、按照设计任务在Proteus 6 Professional中绘制电路原理图;4、根据设计任务的要求编写程序,在Proteus下进行仿真,实现相应功能。

【按照要求撰写总结报告】指导教师年月日负责教师年月日学生签字年月日成绩评定表电子设计应用软件训练总结报告一.任务说明本次任务是利用51单片机、按键以及发光二极管设计一个独立式键盘系统,要求独立简单可控。

首先要明确51单片机的工作原理,在此基础上编写单片机程序,再载入到所连电路原理图中实现按键控制二极管亮灭。

此次任务需要完成电路原理图的绘制、单片机汇编语言的编程。

目的是通过本次设计熟悉Proteus软件的工作环境,掌握基本的操作及流程以及对单片机汇编语言的进一步学习,使之前的学习得到巩固。

二.原理图绘制说明总体而言,一个完善的系统最重要的是稳定,精确,设计简单,修护容易,成本低,体积小。

满足以上条件的系统我们都可以说是完善的系统。

因此,我在设计中选用了一些比较成熟的器件,这些器件都经过时间的考验,能稳定的工作,同时,价格也相对便宜。

下面对原理图中主要的硬件进行简单介绍。

2.1 AT89C51的基本概述AT89C5l单片机,是一种低功耗、高性能的、片内含有4KB Flash ROM的8位CMOS 单片机,工作电压范围为2.7~6V(实际使用+5V供电),8位数据总线。

它有—个可编程的全双工串行通信接口,能同时进行串行发送和接收。

AT89C51具有4K并行可编程的非易失性FLASH程序存储器,可实现对器件串行在系统编程ISP和在应用中编程(IAP)。

按键功能实验报告总结(3篇)

按键功能实验报告总结(3篇)

第1篇一、实验背景按键作为电子设备中常见的输入装置,其功能丰富,应用广泛。

本实验旨在通过设计和实现一系列按键功能,加深对按键工作原理的理解,并提高电子设计实践能力。

二、实验目的1. 掌握按键的基本原理和电路设计方法。

2. 熟悉按键在不同应用场景下的功能实现。

3. 培养电子设计实践能力,提高问题解决能力。

三、实验内容1. 实验器材:51单片机最小核心电路、按键、LED灯、电阻、电容、面包板等。

2. 实验内容:(1)单按键控制LED灯闪烁(2)按键控制LED灯点亮与熄灭(3)按键控制LED灯亮度调节(4)按键实现数字时钟调整(5)按键实现多功能计数器(6)按键实现密码输入与验证四、实验步骤1. 根据实验要求,设计电路图,并选择合适的元器件。

2. 使用面包板搭建实验电路,包括单片机、按键、LED灯、电阻、电容等。

3. 编写程序,实现按键功能。

4. 对程序进行调试,确保按键功能正常。

5. 实验完成后,撰写实验报告。

五、实验结果与分析1. 单按键控制LED灯闪烁实验结果:按下按键,LED灯闪烁;松开按键,LED灯停止闪烁。

分析:本实验通过单片机定时器实现LED灯的闪烁。

当按键按下时,定时器开始计时;当定时器达到设定时间后,LED灯点亮;定时器继续计时,当达到设定时间后,LED灯熄灭。

如此循环,实现LED灯的闪烁。

2. 按键控制LED灯点亮与熄灭实验结果:按下按键,LED灯点亮;再次按下按键,LED灯熄灭。

分析:本实验通过单片机的I/O口控制LED灯的点亮与熄灭。

当按键按下时,单片机将I/O口置为高电平,LED灯点亮;当按键再次按下时,单片机将I/O口置为低电平,LED灯熄灭。

3. 按键控制LED灯亮度调节实验结果:按下按键,LED灯亮度逐渐增加;松开按键,LED灯亮度保持不变。

分析:本实验通过单片机的PWM(脉宽调制)功能实现LED灯亮度的调节。

当按键按下时,单片机调整PWM占空比,使LED灯亮度逐渐增加;松开按键后,PWM占空比保持不变,LED灯亮度保持不变。

单片机课程设计—8个按键控制8个LED自动设定控制流水灯

单片机课程设计—8个按键控制8个LED自动设定控制流水灯

实用标准东北石油大学实习总结报告实习类型生产实习实习单位东北石油大学实习基地实习起止时间 2018 年 7 月 7 日至 2018 年 7 月 16 日指导教师刘东明、孙鉴所在院(系) 电子科学学院班 级 电子科学与技术 15-2学生姓名学号1509012402文案大全2018 年 7 月 16 日实用标准目录第 1 章 按键控制流水灯设计 ........................................ 1 1.1 实习目的 ................................. 错误!未定义书签。

1.2 实习要求 ................................. 错误!未定义书签。

第 2 章 电路工作原理 .............................................. 2 2.1 STC89C52 单片机工作原理 ................................... 2 2.2 LED 工作原理 .............................................. 3 2.3 按键工作原理 .............................................. 3 2.4 整体电路图 ................................................ 5 2.5 本章小结 .................................................. 6第 3 章 C 程序设计 ................................................. 7 3.1 程序设计流程图 ............................................ 7 3.2 实验结果 .................................................. 8 3.3 本章小结 .................................................. 9总结及体会 ...................................................... 10 参考文献 ........................................................ 11 附录 ............................................................ 12文案大全实用标准第1章 按键控制流水灯设计1.1 实习目的本次实习以 STC89C52 单片机为控制核心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单片机按键程序设计及电路设计
在单片机应用系统中,按键主要有两种形式:1、直接按键; 2、矩阵编码键盘。

直接按键的每个按键都单独接到单片机的一个I/O口上,直接按键则通过判断按键端口的电位即可识别按键操作;而矩阵键盘通过行列交叉按键编码进行识别。

下面我们以S51增强型单片机实验板的直接按键来学习单片机轻触按键在单片机系统中的应用。

S51增强型单片机实验板的4个轻触按键原理图。

S51增强型单片机轻触按键原理图
图 1
一、按键时序分析
通常所用的按键为轻触机械开关,正常情况下按键
的接点是断开的,当我们按压按钮时,由于机械触点的
弹性作用,一个按键开关在闭合时不会马上稳定地接通,在断开时也不会一下子断开。

因而机械触点在闭合及断
开的瞬间均伴随有一连串的抖动,按键的时序如下图2
所示,抖动时间的长短由按键的机械特性及操作人员按
键动作决定,一般为5ms~20ms;按键稳定闭合时间的
长短是由操作人员的按键按压时间长短决定的,一般为
零点几秒至数秒不等。

轻触按键操作时序示意图
图 2
从上面图2中我们可以看到,一次完整的击键过程,包含以下5个阶段:
1. 等待阶段:此时按键尚未按下,处于空闲阶段。

2. 前沿(闭合)抖动阶段:此时按键刚刚按下,但按键信号还处于抖动状态,这个时间一般为5~20ms。


了确保按键操作不会误动作,此时必须有个前沿消抖动
延时。

3. 键稳定阶段:此时抖动已经结束,一个有效的按键动作已经产生。

系统应该在此时执行按键功能;或将
按键所对应的键值记录下来,待按键释放时再执行。

4. 后沿(释放)抖动阶段:一般来说,考究一点的程序应该在这里再做一次消抖延时,以防误动作。

但是,如果前面“前沿抖动阶段”的消抖延时时间取值合适的话,可以忽略此阶段。

5. 按键释放阶段:此时后沿抖动已经结束,按键已经处于完全释放状态,如果按键是采用释放后再执行功能,则可以在这个阶段进行按键操作的相关处理。

二、按键实验例程
下面我们通过几个实验例程来学习按键扫描编程及
按键软件消抖动的编程,通过这些对比实验,给大家一个更加感性的认识。

1、按键K1控制LED指示灯实验:本程序通过实验板上的按键K1控制P1.0上的LED亮灭。

程序功能如下:当K1按下开关时指示灯亮,再次按下时指示灯灭。

轻触按键K1控制指示灯的实验例程(没有软件消抖动处理)
实验结果分析:
ORG
0000H
AJMP
START
;跳转到初始化程序
ORG
0033HSTART:MOV
SP,#60H
;SP初始化
MOV
P3,#0FFH
;端口初始化
MAIN: JB
P3.2,MAIN
;检测按键K1有没有按下
CPL
P1.0
;执行按键命令,改变P1.0指示灯状态
JNB
P3.2,$
;等待按键K1释放
AJMP
MAIN
;返回重新检测按键
END
由于本实验程序中没有进行软件消抖动延时处理,我们把程序烧写到单片机上运行时,多次按压K1控制LED的亮灭,发控制不太稳定,大约按十次,LED发光二极管的输出状态有2到3次是错误的。

这就是因为没有软件去抖动的原因,在按键的前沿抖动或后沿抖动期间,抖动脉冲均有可能被程序检测而错误执行,此时相当于按键被按压和松开了N次,LED的输出状态也已经改变了N次,故松开按键后LED的状态是一个随机结果。

2、改进的按键K1控制LED指示灯实验:本程序通过实验板上的按键K1控制P1.0上的LED亮灭。

程序功能如下:当K1按下开关时指示灯亮,再次按下时指示灯灭。

改进的轻触按键K1控制指示灯的实验例程(经过软件消抖动处理)
实验结果分析:
ORG
0000H
AJMP
START
;跳转到初始化程序
ORG
0033HSTART:MOV
SP,#60H
;SP初始化
MOV
P3,#0FFH
;端口初始化
MAIN: JB
P3.2,MAIN
;检测按键K1有没有按下
ACALL
YS20ms
;消前沿抖动延时,实现软件去抖动
JB
P3.2,MAIN
;再次检测按键,如果为高电平,则是抖动 CPL
P1.0
;执行按键命令,改变P1.0指示灯状态 JNB
P3.2,$
;等待按键K1释放
AJMP
MAIN
;返回重新检测按键YS20ms:
MOV
R7,#40
;延时20ms子程序YS1: MOV
R6,#229
DJNZ
R6,$
DJNZ
R7,YS1
RET
END
由于本实验程序中对按键的前沿抖动进行20ms的软件消抖动延时处理,我们把程序烧写到单片机上运行,多次按压K1控制LED的亮灭,发控制就很稳定了,不会出现控制错误的现象。

通过本实验,可以看出软件去抖动延时还是很重要的,消抖动延时时间一般在5~20ms之间,实际应用时
候根据实验取得最佳延时。

本程序没有对按键松开时的后沿抖动进行消抖动,
如果在要求很严格的系统中,建议增加后沿消抖动延时
处理,这样可以确保按钮不会产生误动作。

3、带按键音效的按键扫描实验例程:下面的按键扫描实验例程除了有软件消抖动功能外,还具有按键音效,当按压按键K1~K4时候,按键号码会显示在实验板的数码管上,同时可以听到按键音。

相关文档
最新文档