钢筋混凝土原理和分析08约束混凝土(上)
钢筋混凝土原理
钢筋混凝土原理多轴强度1.研究背景◆钢筋混凝土结构中,混凝土几乎不存在单一轴压或轴拉应力状态;◆梁、板、柱构件,混凝土事实上处于二维或三维应力状态;◆双向板、墙板、剪力墙和折板、壳体,重大的特殊结构,如核反应堆的压力容器和安全壳、水坝、设备基础、重型水压机等,都是典型的二维和三维结构,其中混凝土的多轴应力状态更是确定无疑;◆设计时,如采用混凝土单轴压或拉强度,其结果是:过低地给出二轴和三轴抗压强度,造成材料浪费,却又过高地估计多轴拉-压应力状态的强度,埋下不安全的隐患,显然都不合理。
2. 试验设备和方法所有的混凝土多轴试验装置,按试件的应力状态分为两大类:2.1 常规三轴试验机一般利用已有的大型材料试验机,配备一个带活塞的高压油缸和独立的油泵、油路系统。
试验时将试件置于油缸内的活塞之下,试件的横向由油泵施加液压,纵向由试验机通过活塞加压。
试件在加载前外包橡胶薄膜,防止高压油进入试件裂缝,胀裂试件,降低其强度。
试验采用圆柱体或棱柱体试件,当试件三轴受压(C/C/C )时,必有两方向应力相等,称为常规三轴受压,以区别真三轴受压试验。
2.2 真三轴试验装置三轴分离试验装置:由三个独立的互不相连的机架组成,在水平方向的两个机架,一个用缆绳悬挂起来,另一个放置在滚动轴承上。
垂直机架用平衡重物悬挂起来,能适应试件在水平方向和垂直方向上受应力而产生的变形。
共同特点是:在3个相互垂直的方向都设有独立的活塞、液压缸、供油管路和控制系统。
但主要机械构造差异很大,有的在3个方向分设丝杠和横梁等组成的加载架,有的则利用试验机施加纵向应力,横向(水平)的两对活塞和油缸置于一刚性承载框内,以减小设备占用空间,方便试验。
在设计混凝土的三轴试验方法和试验装置时,有些试验技术问题需要研究解决,否则影响试验结果的可靠性和准确性,决定三轴试验的成败。
主要的技术难点和其解决措施有:(1) 消减试件表面的摩擦混凝土多轴试验中,行之有效的减摩措施有4类:①在试件和加压板之间设置减摩垫层;②刷形加载板;③柔性加载板;④金属箔液压垫。
钢筋混凝土原理和分析--ppt课件精选全文完整版
• 混凝土结构作为结构工程的一个分支,亦
服从上述规律。
PPT课件
21
参考教材
[1] 钢筋混凝土原理和分析 过镇海 时旭东主编 清
华大学出版社 2003 [2] 混凝土结构基本原理 蓝宗建主编 东南大学出
版社 2002 [3] 混凝土结构设计规范理解与应用 徐有邻 周氐编 著 中国建筑工业出版社 2002 [4] 钢筋混凝土结构理论 王传志、藤智明主编 中 国建筑工业出版社 1985
混凝土一直被认为是“脆性”,材料,无论是受压还是受
拉状态,它的破坏过程都短暂、急骤,肉眼不可能仔细地观察到
其内部的破坏过程。现代科学技术的高度发展,为材料和结构试
验提供了先进的加载和量测手段。现在已经可以比较容易地获得
塑性变形: 在外力作用下由凝胶、孔隙、微裂缝产生。
破坏起源: 孔隙、微裂缝等原因造成。
PH值:
由于水泥石中的氢氧化钙存在,混凝土 偏碱性。
由于水泥凝胶体的硬化过程需要若干年才能完成,所
以,混凝土的强度、变形也会在较长时间内发生变化,
强度逐渐增长,变形逐渐加大。
PPT课件
26
由于混凝土材料的非均匀微构造、局部缺陷和离散性较大 而极难获得精确的计算结果。因此,主要讨论混凝土结构的 宏观力学反应,即混凝土结构在一定尺度范围内的平均值。 宏观结构中混凝土的两个基本构成部分,即粗骨料和水泥砂 浆的随机分布,以及两者的物理和力学性能的差异是其非匀 质、不等向性质的根本原因。
存在复杂的微观应力、应变和裂缝,受力后更
有剧烈的变化。
PPT课件
30
拉力
压力
在混凝土的凝固过程中,水泥的水化作用在表面形
钢筋混凝土原理和分析08约束混凝土(上)
t
fc (3 Ac 2 Acor ) f yt As 4 fc Acor
(12 9)
• 以上两式给出了螺旋箍筋柱约束指标上下限的理论值。
• 在各国的设计规范中,对约束指标t的具体规定又有所不同,如下限 取为:
•
•
中国:
t Acor 0.25 As
Ac fc t 0.45 1 Acor fy
• 约束混凝土处于三轴受压应力状态,提高了混凝土的强度和变形能力, 成为工程中改善受压构件或结构中受压部分的力学性能的重要措施。
第8章
• • • •
约束混凝土
8.1 螺旋箍筋柱 8.2 矩形箍筋柱 8.3 钢管混凝土 8.4 局部受压
8.1 螺旋箍筋柱
8.1.1 受力机理和破坏过程
受压柱内配设连续的螺旋形箍筋或者单独的焊接圆形箍筋,且箍筋沿柱轴线的 间距较小( s<80mm且s<dcor/5),对其包围的的核心混凝土构成有效的约束, 使其性能有较大的改善和提高。 素混凝土柱和普通钢筋混凝土柱受轴压力后的轴力-应变曲线和截面应力状态见 第7章ey < ep的情况。柱内的纵向钢筋虽能增强柱的抗压承载力,但对峰值应变和下 降段曲线的影响很小。
对Sargin 模型和Sheikh模型的评价
• 上述两个约束混凝土本构模型基于力学分析原理,考虑了箍筋约束作 用的主要影响因素,是其特点。
fc 4 2 (1 2t ) fc
1 t fc 2
(12 5)
(12 6)
(12 7)
N 2 (1 2t ) f c Acor f y As f c Acor 2 f yt t Acor f y As
第2项是横向螺旋箍筋对柱子极限承载力的贡献。系数2表明,在同样的钢材体积和强度下,箍 筋比纵筋的承载效率高出1倍。根据对试验结果分析,实测为1.7~2.9,平均约为2.0。
钢筋混凝土原理和分析
产生强烈的塑性变形; 金属晶粒的变形和位移很大; 大大提高了钢材的强度; 极限延伸率有较大下降
(5-12)
5.5 徐变和松弛
钢筋与混凝土的粘结
6.1 粘结力的作用和组成
6.1.1作用和分类
根据混凝土构件中钢筋受力状态不同,粘结应力状态可分作 两类问题:
1、钢筋端部的锚固粘结 钢筋端头应力为零, 在经过不长的粘结距 离后,钢筋的应力能 达到其设计强度。故 钢筋的应力差大,粘 结应力值高,分布变 化大。若因锚固不足 而发生滑动,不仅强 度不能充分利用且将 导致构件开裂和承载 力下降,甚至提前失 效。这称为粘结破坏, 属严重的脆性破坏。
6.2.2
光圆钢筋
钢筋混凝土原理和分析
(章节5.4.2至6.2.2)
主讲人: 土木建筑学院
5.4.2 冷拔
将钢筋强力拉过硬质合金的拔丝模,由于模子内径小于原钢筋的直径, 使钢筋在拉力和横向挤压力的共同作用下缩小直径(面积),长度延长,总 体积略有损失。原钢材一般为直径6mm或8mm的盘条,每拔一次直径减少 0.5~2.0mm,经数次拉拔后成为直径3~5mm的钢丝,称作冷拔低碳钢丝。 冷拔低碳钢丝的应力-应变曲土发生收缩或者荷载和反力等对钢 筋的径向压力,以及二者间的摩擦系数等
机械咬合力:其极限值受混凝土的抗剪强度控制
其实,粘结力的三部分都与钢筋表面的粗糙程度和锈蚀程度密切 相关,在试验中很难单独测量或严格区分。
6.2 试验方法和粘结机理
6.2.1 试验方法
1、拉式试验
试件一般为棱柱形,钢筋埋设在其中心,水平方向浇注混凝土。试验时,一端 支承在带孔的垫板上,试验机夹持外露钢筋端施加压力,直至钢筋被拔出或者屈服。 上述试件的加载段混凝土受到局部挤压,与结构中钢筋端部附近的应力状态差 别大影响结果的真实性。后来改为试件加载端的局部钢筋与周围混凝土脱空的试件。
混凝土原理与设计08约束混凝土
/ MPa
20
0.32
10
v=0.0
0.17
10
20
30
40
50
e / 10-3
2. 当t > 0.36时,应力应变曲线 上升段斜率反而降低,原因是 密布箍筋影响了混凝土的浇捣 质量及箍筋两侧混凝土的结合。 约束混凝土到达峰值应力前, 箍筋已屈服;其混凝土强度可 提高1倍,峰值应变可提高10倍 以上。
3. 极限承载力分析
(1). 极限承载力 N2 只适用于短柱(H/d ≤12);
Ac Acor (2). 欲使 N2 > N1 ,即 v 2 Acor
我国规范取:v Acor≥ 0.25 As
Nc N2 N1
Ac Acor f c 美国规范取:v 0.45 2 Acor fy
(3). 箍筋的构造和形式:当 v 相等时,复合箍筋的fcc与epc比 简单箍筋稍高,下降段平缓。焊接箍筋与绑扎箍筋无明显差异。 8.2.3 应力-应变全曲线方程 1. Sargin模型 基于半无限弹性体理论,得到约束混凝土强度计算式
f cc f c 16.4
v f yv
1
2 1 2 3
3
2. 主要影响因素 (1). 配箍特值 v
2.5 2.0 1.5 1.0
f cc 0.55 1.9v fc f cc 1.0 0.5v fc
fcc /fc
epc /ep
20 15 10 5.0
e pc 1.0 2.5v ep
e pc 6.2 25v ep
Ab
aaa
Ab= Al Al
螺旋式
2. 受力特点及破坏机理
2a A
混凝土自由收缩与束缚收缩原理
混凝土自由收缩与束缚收缩原理一、介绍混凝土是一种广泛应用于建筑工程中的材料,其主要成分为水泥、砂、石和水,在混合后经过固化形成结构强度较高的建筑构件。
在混凝土的使用过程中,其存在自由收缩和束缚收缩两种收缩现象,对于混凝土的使用和维护具有重要意义。
因此,本文将从混凝土自由收缩和束缚收缩原理两方面进行详细介绍。
二、混凝土自由收缩原理混凝土在硬化过程中,由于水泥水化反应所释放的水分向混凝土孔隙中渗透,同时由于混凝土的固结,使得水分分子之间的结构发生改变,从而导致混凝土体积发生变化。
这种体积变化就是混凝土自由收缩。
混凝土自由收缩的主要原因包括以下几个方面:1. 水泥水化产物的生成混凝土中的水泥在水化反应过程中会产生大量的水化产物,这些产物会向混凝土孔隙中渗透,并与孔隙中的水分子形成水化产物的凝胶体系,从而使得混凝土体积发生变化。
2. 水分向混凝土孔隙渗透在混凝土的固结过程中,水分子在混凝土孔隙中的运动受到混凝土内部的阻力,但是由于水分子的渗透压力,其仍然会向混凝土孔隙中渗透,从而导致混凝土体积发生变化。
3. 水泥胶体的收缩水泥胶体在水化反应过程中会发生收缩,这种收缩会导致混凝土体积发生变化。
4. 水分蒸发混凝土中的水分在施工过程中会逐渐蒸发,这种蒸发也会导致混凝土体积发生变化。
三、混凝土束缚收缩原理混凝土束缚收缩是指混凝土在固定的约束条件下发生收缩,其主要原因是混凝土在固定约束条件下的变形所导致。
混凝土束缚收缩的主要原因包括以下几个方面:1. 混凝土受到约束在混凝土的施工过程中,混凝土常常受到一定的约束,这种约束会使得混凝土在固定约束条件下发生收缩。
2. 混凝土内部的温度变化混凝土内部的温度变化也会导致混凝土束缚收缩。
在混凝土中存在着温度梯度,而这种温度梯度会导致混凝土内部的应力分布产生变化,从而导致混凝土束缚收缩。
3. 混凝土内部的湿度变化混凝土内部的湿度变化也会导致混凝土束缚收缩。
在混凝土中存在着湿度梯度,而这种湿度梯度会导致混凝土内部的应力分布产生变化,从而导致混凝土束缚收缩。
钢筋与混凝土的组合作用
以典型方形柱中心局部受压为例说明其受力特点和破坏过 程。
柱的局部受压端范围内的这种应力状态可以分为3个区段: 荷载面积下的混凝土,在竖向压应力作用下产生横向膨胀变形,
受到周围混凝土的约束而处于三轴受压状态(区段Ⅰ);周围
混凝土则因受向外挤压力而产生沿周边的水平拉应力,处于二 轴或三轴拉压状态(区段Ⅱ);在主应力轨迹线和水平拉压力 范围则为三轴压状态(T/T/C,区段Ⅲ)。 试(构)件高度超过截面宽度(H>=2b)时,随着面积比加
形外凸,箍筋外露并被拉断,在曲线上形成下降段。
8.1.2 极限承载力
螺旋箍筋柱的受力过程中看到,其极限承载力有两个控制值: 1. 纵筋受压屈服,全截面混凝土达棱柱体抗压强度N1
2. 箍筋屈服后,核芯混凝土达约束抗压强度N2
如果横向箍筋的体积率为
d cor Ast t 2
4 sd cor
8.2.3 应力-应变全曲线方程
约束混凝土的应力-应变全曲线已有多种,建立的途径多样, 有纯理论推到、数值计算、半理论半经验和纯经验的。几种典
型模型的要点如下:
Sargin模型 ① 假设矩形箍筋屈服时对核芯 ③相邻箍筋中间截面约束面积最
2 混凝土的约束力 f沿箍筋内侧均匀 ) 小 Ac (b 2u ,u0值根据 0
迪拜龙形拱桥
钢管混凝土的主要参数也是约束指标或称套箍指标,其物
理意义与螺旋箍筋的约束指标相同。
当混凝土的横向变形超过了钢管的相应变形,即对钢管施 当钢管混凝土的总承载力达到最大值时( C点),得试件的
加径向压应力,使钢管在承受纵向压应力的同时还承受均匀的 极限轴力 Nu。往后,混凝土的纵向应力超过其三轴抗压强度而 切向拉应力。但径向压应力很小。 逐渐减小,钢管的切向应力虽有少量增加,但纵向应力减小, 使总承载力逐渐降低。 当钢管在纵向和切
钢筋混凝土原理分析
包络线EV
沿着重复荷载下混 凝土应力-应变曲线的 外轮廓描绘所得的光滑 曲线称为包络线(EV)。
各种重复荷载(b-f) 下的包络线都与单调加 载的全曲线(a)十分接 近。
裂缝与破坏过程
所有试件都是在超过峰值 应力后、总应变达(1.5~3.0) ×10-6时出现第一条可见裂缝。 裂缝细而短,平行于压应力方 向。
p ,e 0.2 1.2 fc p 1 (6e0 / h)
2.3、偏心受拉和弯曲受拉
受拉构件常因受力和施工制作等原因而承受弯矩,截面上 拉应力分布不均匀,受弯构件的拉区应变(力)分布更为不均。 因此需要研究和确定应变(力)梯度对混凝土受拉的影响 。
混凝土偏心受拉性能的已有试验研究较少,且所得结论 不全一致。
1 抗压强度
混凝土的抗压强度在一般情况下随龄期单调增长,但增长速度渐 减并趋向收敛。两种主要水泥制作的混凝土试件,经过普通湿养护后, 在不同龄期的强度变化如表:
混凝土抗压强度随龄期变化的数学描述,经验公式:
lg t f c (t ) f c ( n) lg n t f c (t ) f c ( 28) a bt
式中 fc(t), fc(n)和fc(28)—龄期为t、n和28天时的混凝土抗压强 度; a、b—取决于水泥品种和养护条件的参数。
理论曲线见图,给出的混凝土后期强度一般偏低,适合工程中应用。 当试件应力水平较低(σ<0.8fc)时, 经过长时间后变形的增长 渐趋收敛,达一极限值。 若应力水平很高(σ≥0.8fc),混凝土进入不稳定裂缝发展期,试 件的变形增长不再收敛,在应力持续一定时间后发生破坏,得到强度极 限线。 可见,应力水平越低,发生破坏的应力持续时间越长。
将各次循环所得的稳定点连 以光滑曲线,即为稳定点轨迹线, 以ST表示。这也就是混凝土低周 疲劳的极限包线。
混凝土中的受力原理及分析方法
混凝土中的受力原理及分析方法一、引言混凝土是一种常见的建筑材料,广泛应用于建筑、道路、桥梁等工程领域。
在混凝土结构设计和施工过程中,了解混凝土中的受力原理及分析方法对保证结构的安全性和持久性具有重要的意义。
本文将从混凝土中的受力原理、混凝土的材料性能、混凝土的强度设计和混凝土的受力分析方法等方面进行详细阐述。
二、混凝土中的受力原理混凝土中的受力原理主要是由混凝土的力学性质、材料结构和工作环境等因素决定的。
混凝土的力学性质主要包括强度、刚度和变形特性等。
材料结构是指混凝土中的骨料、水泥和气泡等组成成分。
工作环境是指混凝土所在的环境条件,如温度、湿度、荷载和外力等。
1.混凝土的力学性质混凝土的力学性质包括强度、刚度和变形特性等。
在混凝土中,应力和应变之间的关系是非线性的,即在应力达到一定值之后,应变的增长速度会加快。
混凝土的强度可以分为抗压强度、抗拉强度、剪切强度和弯曲强度。
其中,抗压强度是混凝土最重要的强度指标,一般用于混凝土的强度设计。
混凝土的刚度是指在受力作用下,混凝土的形变与受力之间的关系。
刚度高的混凝土在受力作用下能够更好地保持形状和稳定性。
混凝土的变形特性是指在受力作用下,混凝土的形变与受力之间的关系。
混凝土的变形特性主要包括弹性变形和塑性变形。
在受力作用下,混凝土会发生一定程度的弹性变形,即在荷载作用下,混凝土会发生一定程度的形变,但在荷载消失后能够恢复原状。
与此同时,混凝土还会发生一定程度的塑性变形,即在荷载作用下,混凝土会发生不可恢复的形变。
2.材料结构混凝土的材料结构主要包括骨料、水泥和气泡等组成成分。
骨料是指用于混凝土中的石子、沙子等颗粒状物质。
骨料的种类和大小会直接影响混凝土的强度和耐久性。
水泥是指用于混凝土中的粉状物质,主要负责混凝土的硬化过程。
气泡是指混凝土中的空气孔隙,对混凝土的强度和耐久性也有一定的影响。
3.工作环境混凝土所处的工作环境也会对混凝土的受力产生一定的影响。
钢筋混凝土原理
(1) 包络线、抗压强度、峰值应变、裂缝出现和 开展、以及破坏形态与单调加载的全曲线基 本一致
(2) 卸载时存在恢复变形滞后现象,再加载起点 应变不同,再加载曲线形状有所变化
(3) 共同点以后再加载曲线斜率减小,纵向裂 缝扩张,损伤积累加大,共同点轨迹线与 包络线相似,应力比值为0.86—0.93
但应考虑偏心距对峰值应力和峰值应变的影响 (3) 简化计算:式2-5
2.3 偏心受拉和弯曲受拉
2.3.1 主要试验结果
(1) 破坏形态与轴心受拉相同,偏心距影响不大 (2) 极限抗拉强度随偏心距增大而降低;受拉塑
性变形的发展有限,随截面高度增大,塑性 影响系数减小 (3) 最大拉应变随偏心距增大,回归为式2-10 (4) 截面应变符合平截面假定,中和轴位置取决 于偏心距
2.6.4 徐变度(单位徐变)和徐变系数
(1) 单位应力下的徐变值---徐变度 (2) 徐变和起始应变的比值---徐变系数 (3) 两者关系(P60式2-27)
2.6.5 徐变的主要影响因素
应力水平(线性徐变、非线性徐变、 不收敛徐变)、加载时龄期、原材料及 配合比、制作和养护条件、使用环境、 构件尺寸等
2.6.6 徐变的定量分析
(1) 有效模量法、老化理论、弹性徐变理论、 弹性老化理论、继效流动理论等
(2) 我国规范给出综合经验值或应力松弛系数 (3) 模式规范CEB-FIP MC90公式
( P63式2-31~33)
4 多轴强度和本构关系
4.1 强度和变形的一般规律
(参见P87~96图4-3~4-11) (1) 多轴受压(C/C,C/C/C)强度显著大于
6.3.2 特征值计算(试验回归分析)
(1) 劈裂应力(P160式6-6) (2) 极限粘结强度(P161式6-7)
建筑结构设计中的钢筋混凝土原理
建筑结构设计中的钢筋混凝土原理钢筋混凝土是一种广泛应用于建筑结构中的材料,具有高强度、良好的韧性和耐久性等特点。
它由水泥、沙子、骨料和钢筋等组成,其设计原理涉及了多个方面,包括结构力学、材料力学和施工工艺等。
本文将分析和探讨建筑结构设计中的钢筋混凝土原理。
一、材料组成及性质分析钢筋混凝土的主要组成部分是水泥、沙子、骨料和钢筋。
水泥是这种混凝土的胶凝材料,通过与水发生化学反应形成胶体状物质,粘结着沙子和骨料。
沙子和骨料是钢筋混凝土的骨架材料,提供了强度和刚度。
钢筋则增加了混凝土的抗拉强度,使其具有更好的抗震和抗变形性能。
二、梁与柱的设计原理在建筑结构中,梁和柱承担着承载和传递荷载的重要作用。
梁的设计原理是基于梁的受力分析和截面设计。
通常情况下,梁主要受到弯曲和剪切力的作用。
通过对荷载和受力分析,可以确定梁的截面尺寸以及所需的钢筋数量和布置。
梁的截面设计应满足强度、刚度和变形的要求。
柱的设计原理与梁类似,主要考虑受力分析、截面设计以及纵向和箍筋的布置。
柱主要承受纵向荷载和弯矩,在设计中需要满足强度和稳定性要求。
柱截面的尺寸和钢筋的布置应能够抵抗荷载引起的弯曲和压缩变形,同时提供足够的刚度。
三、板、墙的设计原理在建筑设计中,除了梁和柱之外,板和墙也是重要的结构组成部分。
板的设计原理主要考虑弯曲、剪切和扭转等力学性能。
通过合理的截面设计和钢筋布置,板可以满足强度和刚度的要求,同时保证变形的控制。
墙的设计原理与板类似,需要考虑墙体受力特点和设计目标。
墙面临的主要力是压力,在设计中应保证墙的强度、稳定性和刚度。
钢筋的布置在墙的设计中起到关键作用,可以增加墙的抗拉和抗剪强度,提高整体结构的安全性。
四、施工工艺在建筑结构设计中,施工工艺对于钢筋混凝土的质量和性能具有重要影响。
施工工艺包括模板安装、混凝土浇筑、钢筋安装和固定等。
在施工过程中,需要确保混凝土的浇筑均匀,并保证钢筋的完整性和正确的位置。
此外,施工中还需要注意养护工作。
钢筋混凝土原理和分析
钢筋混凝土原理和分析钢筋混凝土是由钢筋和混凝土两种物理—力学性能完全不同的材料所组成。
混凝土的抗压能力较强而抗拉能力却很弱。
钢材的抗拉和抗压能力都很强。
为了充分利用材料的件能,把混凝土和钢筋这两种材料结合在一起共同工作,使混凝土主要承受压力,钢筋上要承受拉力,以满足工程结构的使用要求。
一混凝土结构的发展简况及其应用钢筋混凝土是在19世纪中叶开始得到应用的,由于当时水泥和混凝土的质量都很差,同时设计计算理论尚未建立,所以发展比较缓慢。
直到19世纪末,随着生产及建设的发展需要.钢筋混凝土的试验工作、计算理论、材料及施工技术均得到了较快的发展。
目前已成为现代工程建设中应用最广泛的建筑材料之一。
在工程应用方面,钢筋混凝土最初仅在最简单的结构物如拱、板等中使用,随着水泥和钢铁工业的发展.混凝土和钢材的质量不断改进,强度逐步提高。
20世纪20年代以后,混凝土和钢筋的强度有了提高,出现了装配式钢筋混凝土结构、预应力混凝土结构和壳体空间结构,构件承载力开始按破坏阶段计算,计算理论开始考虑材料的塑性。
20世纪50年代以后,高强混凝土和高强钢筋的出现使钢筋混凝土结构有了飞速的发展。
装配式混凝土、泵送商品混凝土等工业化的生产结构,使钢筋混凝土结构的应用范围不断扩大。
近20年来,随着生产水平的提高,试验的深入,计算理论研究的发展,材料及施工技术的改进,新型结构的开发研究,混凝土结构的应用范围在不断的扩大,已经从工业与民用建筑、交通设施、水利水电建筑和基础工程扩大到近海工程、海底建筑、地下建筑、核电站安全壳等领域,并已开始构思和实验用于月面建筑。
随着轻质高强材料的使用,在大跨度、高层建筑中的混凝土结构越来越多。
近年来,随着高强度钢筋、高强度高性能混凝土以及高性能外加剂和混合材料的研制使用,高强高性能混凝土的应用范围不断扩大,钢纤维混凝土和聚合物混凝土的研究和应用有了很大的发展。
还有,轻质混凝土、加气混凝土、陶粒混凝土以及利用工业废渣的“绿色混凝土”,不但改善了混凝土的性能而且对节能和保护环境具有重要的意义。
钢筋混凝土原理和分析第三版课后答案
思考与练习1.基本力学性能1-1混凝土凝固后承受外力作用时,由于粗骨料和水泥砂浆旳体积比、形状、排列旳随机性,弹性模量值不同,界面接触条件各异等因素,虽然作用旳应力完全均匀,混凝土内也将产生不均匀旳空间微观应力场。
在应力旳长期作用下,水泥砂浆和粗骨料旳徐变差使混凝土内部发生应力重分布,粗骨料将承受更大旳压应力。
在水泥旳水化作用进行时,水泥浆失水收缩变形远大于粗骨料,此收缩变形差使粗骨料受压,砂浆受拉,和其他应力分布。
这些应力场在截面上旳合力为零,但局部应力也许很大,以至在骨料界面产生微裂缝。
粗骨料和水泥砂浆旳热工性能(如线膨胀系数)旳差别,使得当混凝土中水泥产生水化热或环境温度变化时,两者旳温度变形差受到互相约束而形成温度应力场。
由于混凝土是热惰性材料,温度梯度大而加重了温度应力。
环境温度和湿度旳变化,在混凝土内部形成变化旳不均匀旳温度场和湿度场,影响水泥水化作用旳速度和水分旳散发速度,产生相应旳应力场和变形场,促使内部微裂缝旳发展,甚至形成表面宏观裂缝。
混凝土在应力旳持续作用下,因水泥凝胶体旳粘性流动和内部微裂缝旳开展而产生旳徐变与时俱增,使混凝土旳变形加大,长期强度减少。
此外,混凝土内部有不可避免旳初始气孔和缝隙,其尖端附近因收缩、温湿度变化、徐变或应力作用都会形成局部应力集中区,其应力分布更复杂,应力值更高。
1-2解:若要获得受压应力-应变全曲线旳下降段,实验装置旳总线刚度应超过试件下降段旳最大线刚度。
采用式(1-6)旳分段曲线方程,则下降段旳方程为:20.8(1)xy x x=-+ ,其中c y f σ= p x εε= ,1x ≥ 混凝土旳切线模量d d d d cct pf y E x σεε==⋅ 考虑切线模量旳最大值,即d d yx旳最大值: 222222d 0.8(1)(1.60.6)0.8(1) , 1d [0.8(1)][0.8(1)]y x x x x x x x x x x x -+----==≥-+-+令22d 0d yx =,即:223221.6(1)(1.60.6) 1.60[0.8(1)][0.8(1)]x x x x x x x ---=-+-+ 221.6(1)(1.60.6) 1.6[0.8(1)]x x x x x ∴--=-+整顿得:30.8 2.40.60 , 1x x x -+=≥ ;解得: 1.59x ≈222max 1.59d d 0.8(1.591)0.35d d [0.8(1.591) 1.59]x y y x x =-⨯-⎛⎫===- ⎪⨯-+⎝⎭ 2,max 3max max d d 260.355687.5N/mm d d 1.610c ct p f y E x σεε-⎛⎫⎛⎫∴==⋅=⨯= ⎪ ⎪⨯⎝⎭⎝⎭ 试件下降段旳最大线刚度为:222,max 100mm 5687.5N/mm 189.58kN/mm >150kN/mm 300mmct A E L ⋅=⨯= 因此试件下降段最大线刚度超过装置旳总线刚度,因而不能获得受压应力-应变全曲线(下降段)。
钢筋混凝土原理和分析第三版课后答案
钢筋混凝土原理和分析第三版课后答案(总57页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--思考与练习1.基本力学性能1-1混凝土凝固后承受外力作用时,由于粗骨料和水泥砂浆的体积比、形状、排列的随机性,弹性模量值不同,界面接触条件各异等原因,即使作用的应力完全均匀,混凝土内也将产生不均匀的空间微观应力场。
在应力的长期作用下,水泥砂浆和粗骨料的徐变差使混凝土内部发生应力重分布,粗骨料将承受更大的压应力。
在水泥的水化作用进行时,水泥浆失水收缩变形远大于粗骨料,此收缩变形差使粗骨料受压,砂浆受拉,和其它应力分布。
这些应力场在截面上的合力为零,但局部应力可能很大,以至在骨料界面产生微裂缝。
粗骨料和水泥砂浆的热工性能(如线膨胀系数)的差别,使得当混凝土中水泥产生水化热或环境温度变化时,两者的温度变形差受到相互约束而形成温度应力场。
由于混凝土是热惰性材料,温度梯度大而加重了温度应力。
环境温度和湿度的变化,在混凝土内部形成变化的不均匀的温度场和湿度场,影响水泥水化作用的速度和水分的散发速度,产生相应的应力场和变形场,促使内部微裂缝的发展,甚至形成表面宏观裂缝。
混凝土在应力的持续作用下,因水泥凝胶体的粘性流动和内部微裂缝的开展而产生的徐变与时俱增,使混凝土的变形加大,长期强度降低。
另外,混凝土内部有不可避免的初始气孔和缝隙,其尖端附近因收缩、温湿度变化、徐变或应力作用都会形成局部应力集中区,其应力分布更复杂,应力值更高。
1-2解:若要获得受压应力-应变全曲线的下降段,试验装置的总线刚度应超过试件下降段的最大线刚度。
采用式(1-6)的分段曲线方程,则下降段的方程为:20.8(1)xy x x=-+ ,其中c y f σ= p x εε= ,1x ≥ 混凝土的切线模量d d d d cct pf y E x σεε==⋅ 考虑切线模量的最大值,即d d yx的最大值: 222222d 0.8(1)(1.60.6)0.8(1) , 1d [0.8(1)][0.8(1)]y x x x x x x x x x x x -+----==≥-+-+令22d 0d yx =,即:223221.6(1)(1.60.6) 1.60[0.8(1)][0.8(1)]x x x x x x x ---=-+-+ 221.6(1)(1.60.6) 1.6[0.8(1)]x x x x x ∴--=-+整理得:30.8 2.40.60 , 1x x x -+=≥ ;解得: 1.59x ≈222max 1.59d d 0.8(1.591)0.35d d [0.8(1.591) 1.59]x y y x x =-⨯-⎛⎫===- ⎪⨯-+⎝⎭ 2,max 3max max d d 260.355687.5N/mm d d 1.610c ct p f y E x σεε-⎛⎫⎛⎫∴==⋅=⨯= ⎪ ⎪⨯⎝⎭⎝⎭ 试件下降段的最大线刚度为:222,max 100mm 5687.5N/mm 189.58kN/mm >150kN/mm 300mmct A E L ⋅=⨯= 所以试件下降段最大线刚度超过装置的总线刚度,因而不能获得受压应力-应变全曲线(下降段)。
混凝土钢筋设计原理
混凝土钢筋设计原理一、引言混凝土结构是建筑工程中常用的一种结构形式,而钢筋混凝土结构则是混凝土结构的一种重要类型。
混凝土钢筋设计原理是指钢筋混凝土结构设计时需要遵循的一些基本原理和规定。
本文将从力学原理、设计基础、构造形式、受力特点、设计方法、施工工艺等多个方面进行详细介绍。
二、力学原理(一)受力状态钢筋混凝土结构在使用过程中所受到的主要力有弯矩、剪力和轴力等,这些力通常同时作用于结构中的某一截面上。
在设计时,需要确定结构截面的受力状态,以便对其进行合理的尺寸和配筋设计。
(二)材料力学性能混凝土的强度与其配合的钢筋的强度相比较来说较低,因此在混凝土中加入钢筋可以增强其抗拉性能和剪力承载能力。
钢筋的强度和弹性模量等力学性能对钢筋混凝土结构的设计和施工具有重要影响。
(三)受力分析钢筋混凝土结构受力分析是确定其受力状态和设计尺寸的关键,其中包括截面受力状态分析和构件受力状态分析两个方面。
截面受力状态分析是指根据混凝土强度和钢筋配筋设计规范,确定结构截面内各点的受力状态和受力大小,以便进行钢筋配筋设计。
构件受力状态分析是指根据钢筋混凝土结构的受力情况,确定构件的受力状态和受力大小,以便进行结构尺寸设计。
三、设计基础(一)设计载荷钢筋混凝土结构的设计载荷是指设计时所考虑的各种荷载,包括常见的自重、活载、风荷载、地震荷载和温度荷载等。
在设计时需要根据实际情况确定合理的设计载荷。
(二)设计规范钢筋混凝土结构的设计依据是国家规范,在设计过程中需要遵循相关规范的要求,包括《混凝土结构设计规范》、《钢筋混凝土结构设计规范》等。
(三)设计目标和要求钢筋混凝土结构的设计目标是保证结构的安全可靠、经济合理和美观实用。
在设计时需要考虑到结构的使用性能和施工工艺等方面的要求,以保证设计方案的科学性和实用性。
四、构造形式(一)梁柱结构梁柱结构是钢筋混凝土结构中最常见的一种形式,其结构由梁和柱两部分组成。
梁柱结构的设计需要考虑梁和柱的受力性能和配筋设计,以保证结构的可靠性和经济性。
钢筋混凝土原理-08
本章要点定义:构件中的扭矩可以直接由荷载静力平衡求出,且与扭转刚度无关;受扭构件必须提供足够的抗扭承载力,否则不能与作用扭矩相平衡而引起破坏。
■定义:在超静定系统中,扭矩是根据相邻构件的变形协调条件来确定,扭矩大小与受扭构件的扭转刚度有关。
如相邻构件的弯曲转动引起的支承梁的转动。
■扭矩由于支承梁的开裂产生内力重分布而减小,不是定值,扭矩的计算需考虑内力重分布。
支承边梁的协调扭转何时应该考虑扭转效应?■矩形截面梁:长边中点。
τmax τmax由前述主拉应力方向可见,受扭构件最有效的配筋应形式是沿主拉应力迹线成螺旋形布置。
但螺旋形配筋施工复杂,且不能适应变号扭矩的作实际受扭构件的配筋是采用箍筋与抗扭纵筋形成的空开裂前,T-θ关系基本呈直线关系。
开裂后,由于部分混凝土退出受拉工作,构件的抗扭刚度明显降低,T关系曲线上出现一不大的水平段。
对配筋适量的构件,开裂后受扭钢筋将承担扭矩产生的拉应力,荷载可以继续增大,T-θ关系沿斜线上升,裂缝不断向构件内部和沿主压应力迹线发展延伸,在构件表面裂缝呈螺旋2. 应力状态■■■当接近极限扭矩时,在构件长边上有一条裂缝发展成为临界裂缝,并向短边延伸,与这条空间裂缝相交的箍筋和纵筋达到屈服,T-θ关系曲线趋于水平。
最后在另一个长边上的混凝土受压破坏,达到极限扭矩。
受扭钢筋=箍筋+纵筋三、破坏类别■适筋破坏:对于箍筋和纵筋配置都合适的情况,与临界(斜)裂缝相交的钢筋都能先达到屈服,然后混凝土压坏,与受弯适筋梁的破坏类似,具有一定的延性。
■完全超筋破坏:箍筋和纵筋配置都过多,在受扭钢筋屈服前混凝土就压坏,为受压脆性破坏。
■部分超筋破坏*:箍筋和受扭纵筋两者配筋量相差过大时,会出现一个未达到屈服、另一个达到屈服的部分超筋破坏情况。
■少筋破坏:当配筋数量过少时,配筋不足以承担混凝土开裂后释放的拉应力,一旦开裂,将导致扭转角迅速增大,与受弯少筋梁类似,呈受拉脆性破坏特征。
按照配筋情况不同,受扭构件的破坏形态也可分为适筋破坏、完全超筋破坏、部分超筋破坏和少筋破坏。
简述钢筋与混凝土能够共同工作的原理
简述钢筋与混凝土能够共同工作的原理钢筋和混凝土是建筑学中最常用的两种建筑材料。
钢筋和混凝土能够共同工作,并共同构成我们生活中许多建筑结构。
钢筋混凝土共同工作的原理是什么?首先,钢筋和混凝土是两种不同的材料,具有不同的性质,他们之间的作用是非常重要的。
钢筋的强度、韧性和弹性是优于混凝土的,因此具有抗拉强度和抗压强度,能够抵抗外力的作用;混凝土的物理强度较低,但具有隔热、隔声、防水等优点,能够抵抗内部的作用。
其次,钢筋和混凝土之间的互相作用是关键因素。
钢筋与混凝土之间,由于受到力学作用,钢筋会被拉伸或折断,而混凝土会变形或被损坏,但是钢筋与混凝土之间,它们存在着一种抑制作用,这种抑制作用就是传统建筑中经常用到的“套筒”结构。
最后,在施工中,施工者会根据建筑的要求和力学分析的结果,安排合理的钢筋混凝土工作组合。
由于钢筋的强度和韧性远远高于混凝土,所以钢筋可以承受主要的受力,而混凝土可以承受次要的受力,从而达到结构的最佳性能。
综上所述,钢筋和混凝土建筑材料之间的共同工作原理是:因具有不同的性质,钢筋和混凝土之间存在着一定的互相抑制作用;在施工中,施工者会根据结构的要求和力学分析结果,安排合理的钢筋和混凝土工作组合。
以达到结构的最佳性能。
由于钢筋与混凝土的共同工作,使得大量的建筑得以安全、稳定、节省资源和长期使用。
钢筋和混凝土共同工作的原理是一种重要的结构原理,在建筑工程中,更多运用到这种原理,提高了我们建筑工程的质量和安全性。
总之,钢筋和混凝土共同工作的原理是一种重要的结构原理,其作用是安全、稳定、节省资源和提高我们建筑工程的质量和安全性。
在未来的发展中,钢筋和混凝土的共同工作会得到更多的运用,进而提高我们建筑结构的安全性和可持续性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(12 7)
第2项是横向螺旋箍筋对柱子极限承载力的贡献。系数2表明,在同样的钢材体积和强度下,箍
筋比纵筋的承载效率高出1倍。根据对试验结果分析,实测为1.7~2.9,平均约为2.0。
3 极限承载力分析
• 极限承载力 N2 只适用于轴心受压的短柱(H/d ≤12)。更长的柱因
压屈失稳而破坏,偏心受压柱截面上应力不均匀分布,甚至为受拉区 控制的破坏。
• 螺旋箍筋柱的两个特征值的差值(N2 -N1 )取决于约束指标λt。配
筋过少时出现N2 ﹤N1 ,表明箍筋约束作用对柱承载力的提高还不足
以补偿保护层混凝土强度的损失。故要求,N2 ≥N1 ,即
t
Ac Acor 2 Acor
(12 8)
• 另一方面,若(N2-N1)差值过大,按N2设计的柱子在使用荷载作用下, 外围混凝土已经接近或超过其应力峰值,可能发生纵向裂缝,甚至剥
s2
2 f yt Ast fcdcor s
1 2
t
fc
(12 3) (12 5)
三轴抗压强度近似取为 fcc B fc 4s 2 (1 2t ) fc
(12 6)
代入变换后可得 N2 (1 2t ) fc Acor f y As
fc Acor 2 f yt t Acor f y As
落,不符合使用要求。设计时一般限制N2≤1.5N1,故
t
fc (3Ac 2Acor ) 4 fc Acor
f yt As
(12 9)
• 以上两式给出了螺旋箍筋柱约束指标上下限的理论值。
• 在各国的设计规范中,对约束指标t的具体规定又有所不同,如下限
取为:
•
中国: t Acor 0.25As
增长,一部分跨越裂缝的箍筋达到屈服强度(Y点),不与裂缝相交的箍筋
应力开始下降。此时,试件的纵向应变约为e=(3.0~4.5) ×10-3。箍筋屈服
后,对核芯混凝土的约束作用达最大,约束混凝土超过素混凝土的应力 值也达最大(Δδmax)。
• 当应变达e=(4~6) ×10-3时,纵向短裂缝贯通,形成临界斜裂缝(T点)。跨
• 箍筋的作用:①与纵筋构成骨架;②承受横向应力,防止或减小纵向 裂缝;③减小纵筋压屈的自由长度,保证抗剪承载力;④提高构件的 延性,有利于结构的抗震性能。
8.2.1 受力破坏过程
•
矩形箍筋的约束指标同样是:
t t
f yt fc
(12
1. t ≤0.3
• 当力约接束近混混凝 凝土 土的 的配 抗箍 压量 强不度大时,t 箍≤0筋.3时的,应应变力为应es变t=曲(4线00有~6明00显) ×的1尖0-峰6,。约当束应
第8章 约束混凝土
• 混凝土结构中受力钢筋的配设有两种基本方式。沿构件的轴力或主应 力方向设置纵向钢筋,以保证抗拉承载力或增强抗压承载力,钢筋的 应力与轴力方向一致,称为直接配筋。沿轴压力或最大主压应力的垂 直方向(即横向)配置箍筋,以约束其内部混凝土的横向膨胀变形, 从而提高轴向抗压承载力,这种方式称横向配筋或间接配筋。
过斜裂缝的各个箍筋依次屈服,应力保持常值(fyt ),但应变增大。核芯混 凝土往外鼓胀,挤压箍筋,使箍筋在水平方向弯曲、外鼓,外围混凝土 开始剥落,纵筋和箍筋外露。试件纵向力沿斜裂缝的滑动分力,由箍筋 约束力的分力和裂缝面上残存的抗剪力所抵抗,仍保持一定的残余强度。
• 试件最终破坏时,钢筋已在核芯混凝土的挤压下逐个地且沿箍筋全长屈 服,甚至被拉断,端口有颈缩;外围混凝土严重开裂和成片剥落,核芯 混凝土内部则密布纵向裂缝,沿斜裂缝有碾碎的砂浆碴片,但粗骨料一 般不会破碎。
(12 10a)
•
美国 :
t0.45Ac Acr1fc fy
(12 10b
8.2 矩形箍筋柱
• 螺旋箍筋的形状不太适合工程中的矩形截面,且加工成型费事,故使 用范围受限。矩形截面内箍筋沿截面周边平行布置,矩形组合截面也 可用多个矩形截面组成平行于周边的横向筋。故矩形箍筋是最普遍的 横向筋形式。
继续加大e ,箍筋应力增大至屈服强度fyt时,对混凝土的约束应力达到最大值,柱的承 载力还能增加;再增大e ,直至纵向应力达到混凝土的三轴抗压强度,柱子达到极限承载 力N2。
8.1.2 极限承载力
极限承载力有两个控制值:
1.纵筋受压屈服,全截面混凝土达棱柱体抗压强度,忽略箍筋作用 N1 = fc Ac + fy As
2.箍筋屈服后,核芯混凝土达约束抗压强度fcc,纵筋仍屈服 N2 = fcc Acor + fy As
横向箍筋的体积率取为 t
配箍特征值为 t t
f yt fc
4 f yt Ast fcdcor s
dcor Ast
4
d2 cor
s
4 Ast dcor s
(12 4)
核芯混凝土的最大约束应力为 s1
作用不大,上升段曲线接近。应力增加不多,即达到约束混凝土的峰点P,
箍筋应变为est=(900~1200) ×10-6,尚未屈服。 • 约束混凝土的应力-应变曲线进入下降段前后(e=(0.85~1.11) epc) ,试件出
现第一条可见裂缝(C点)。之后,纵向裂缝扩展,新裂缝又出现,保护层
混凝土的残余强度下降。同时,混凝土的横向应变e’和箍筋应变est加快
• 约束混凝土处于三轴受压应力状态,提高了混凝土的强度和变形能力, 成为工程中改善受压构件或结构中受压部分的力学性能的重要措施。
第8章 约束混凝土
• 8.1 螺旋箍筋柱 • 8.2 矩形箍筋柱 • 8.3 钢管混凝土 • 8.4 局部受压
8.1 螺旋箍筋柱
8.1.1 受力机理和破坏过程
受压柱内配设连续的螺旋形箍筋或者单独的焊接圆形箍筋,且箍筋沿柱轴线的
间距较小( s<80mm且s<dcor/5),对其包围的的核心混凝土构成有效的约束,
使其性能有较大的改善和提高。 素混凝土柱和普通钢筋混凝土柱受轴压力后的轴力-应变曲线和截面应力状态见
第7章ey < ep的情况。柱内的纵向钢筋虽能增强柱的抗压承载力,但对峰值应变和下 降段曲线的影响很小。
• e < ep时,混凝土的横向膨胀变形很小,箍筋拉应力不大,与普通箍筋柱的曲线接近。 • e =ep时,螺旋箍筋柱的轴力N1仍与普通箍筋柱的极限轴力接近。 • e >ep后,箍筋外围的混凝土应力下降,承载力降低;核芯混凝土向外膨胀,处于三轴 受压应力状s1=s2,提高纵向抗压强度。总承载力在柱子应变增大后仍能缓缓上升。