博弈论经典案例

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

博弈论经典案例:
案例一
囚徒困境
在博弈论中,含有占优战略均衡的一个著名例子是由塔克给出的“囚徒困境”(prisoner's dilemma)博弈模型。

该模型用一种特别的方式为我们讲述了一个警察与小偷的故事。

假设有两个小偷A和B联合犯事、私入民宅被警察抓住。

警方将两人分别置于不同的两个房间内进行审讯,对每一个犯罪嫌疑人,警方给出的政策是:如果两个犯罪嫌疑人都坦白了罪行,交出了赃物,于是证据确凿,两人都被判有罪,各被判刑8年;如果只有一个犯罪嫌疑人坦白,另一个人没有坦白而是抵赖,则以妨碍公务罪(因已有证据表明其有罪)再加刑2年,而坦白者有功被减刑8年,立即释放。

如果两人都抵赖,则警方因证据不足不能判两人的偷窃罪,但可以私入民宅的罪名将两人各判入狱1年。

下表给出了这个博弈的支付矩阵。

对A来说,尽管他不知道B作何选择,但他知道无论B选择什么,他选择“坦白”总是最优的。

显然,根据对称性,B也会选择“坦白”,结果是两人都被判刑8年。

但是,倘若他们都选择“抵赖”,每人只被判刑1年。

在表2.2中的四种行动选择组合中,(抵赖、抵赖)是帕累托最优的,因为偏离这个行动选择组合的任何其他行动选择组合都至少会使一个人的境况变差。

不难看出,“坦白”是任一犯罪嫌疑人的占优战略,而(坦白,坦白)是一个占优战略均衡。

案例二
智猪博弈
一、经济学中的“智猪博弈”(Pigs’payoffs)这个例子讲的是:
假设猪圈里有一头大猪、一头小猪。

猪圈的一头有猪食槽,另一头安装着控制猪食供应的按钮,按一下按钮会有10个单位的猪食进槽,但是谁按按钮就会首先付出2个单位的成本,若大猪先到槽边,大小猪吃到食物的收益比是9∶1;同时行动(去按按钮),收益比是7∶3;小猪先到槽边,收益比是6∶4。

那么,在两头猪都有智慧的前提下,最终结果是小猪选择等待。

"智猪博弈"由约翰·纳什(JohnFNash),1950年提出。

实际上小猪选择等待,让大猪去按控制按钮,而自己选择“坐船”(或称为搭便车)的原因很简单:在大猪选择行动的前提下,小猪选择等待的话,小猪可得到4个单位的纯收益,而小猪行动的话,则仅仅可以获得大猪吃剩的1个单位的纯收益,所以等待优于行动;在大猪选择等待的前提下,小猪如果行动的话,小猪的收入将不抵成本,纯收益为-1单位,如果小猪也选择等待的话,那么小猪的收益为零,成本也为零,总之,等待还是要优于行动。

用博弈论中的报酬矩阵可以更清晰的刻画出小猪的选择:
从矩阵中可以看出,当大猪选择行动的时候,小猪如果行动,其收益是1,而小猪等待的话,收益是4,所以小猪选择等待;当大猪选择等待的时候,小猪如果行动的话,其收益是-1,而小猪等待的话,收益是0,所以小猪也选择等待。

综合来看,无论大猪是选择行动还是等待,小猪的选择都将是等待,即等待是小猪的占优策略。

在小企业经营中,学会如何“搭便车”是一个精明的职业经理人最为基本的素质。

在某些时候,如果能够注意等待,让其他大的企业首先开发市场,是一种明智的选择。

这时候有所不为才能有所为!
高明的管理者善于利用各种有利的条件来为自己服务。

“搭便车”实际上是提供给职业经理人面对每一项花费的另一种选择,对它的留意和研究可以给企业节省很多不必要的费用,从而使企业的管理和发展走上一个新的台阶。

这种现象在经济生活中十分常见,却很少为小企业的经理人所熟识。

在智猪博弈中,虽然小猪的“捡现成”的行为从道义上来讲令人不齿,但是博弈策略的主要目的不正是使用谋略最大化自己的利益吗?
案例三
美女的硬币[4]
一位陌生美女主动过来和你搭讪,并要求和你一起玩个游戏。

美女提议:“让我们各自亮出硬币的一面,或正或反。

如果我们都是正面,那么我给你3元,如果我们都是反面,我给你1元,剩下的情况你给我2元就可以了。

”听起来不错的提议。

如果我是男性,无论如何我是要玩的,不过经济学考虑就是另外一回事了,这个游戏真的够公平吗?
假设我们出正面的概率是x,反面的概率是1-x。

为了使利益最大化,应该在对手出正面或反面的时候我们的收益都相等,不然对手总是可以改变正反面出现的概率让我们的总收入减少,由此列出方程就是3x+(-2)*(1-x)=(-2)*x+1*(1-x)
这个方程通俗的说就是在对手一直出正面你得到的利益,和你对手一直出反面得到利益是一样的且最大。

解方程得x=3/8,也就是说平均每八次出示3次正面,5次反面是我们的最优策略。

而将x=3/8代入到收益表达式3*x+(-2)*(1-x)中就可得到每次的期望收入,计算结果是-1/8元。

同样,设美女出正面的概率是y,反面的概率是1-y,列方程-3y+2(1-y)=2y+(-1)*(1-y)
解得y也等于3/8,而美女每次的期望收益则是2(1-y)-3y=1/8元。

这告诉我们,在双方都采取最优策略的情况下,平均每次美女赢1/8元。

其实只要美女采取了(3/8,5/8)这个方案,不论你再采用什么方案,都是不能改变局面的。

如果全部出正面,每次的期望收益是
(3+3+3-2-2-2-2-2)/8=-1/8元
如果全部出反面,每次的期望收益也是(-2-2-2+1+1+1+1+1)/8=-1/8元。

而任何策略无非只是上面两种策略的线性组合,所以期望还是-1/8元。

但是当你也采用最佳策略时,至少可以保证自己输得最少。

否则,你肯定就会被美女采用的策略针对,从而赔掉更多。

看起来这个博弈模型似乎没有什么用处,但是其实这可能牵涉了金融市场定价中最重要的一个模型了。

定价权重模型了。

总的来说“博弈论”其本质是将日常生活中的竞争矛盾以游戏的形式表现出来,并使用数学和逻辑学的方法来分析事物的运作规律。

既然有游戏的参与者那么也必然存在游戏规则的制定者。

深入的了解竞争行为的本质,有助于我们分析和掌握竞争中事物之间的关系,更方便我们对规则进行制定和调整,使其最终按照我们所预期的目的进行运作。

案例四
我们知道这个世界大部分的石油是来自少部分国家的,以中东最为集中,而中东这个国家为了让自己的利益最大化形成一个价格联盟组织---OPEC----这里包括:伊朗,伊拉克,科威特,沙特,委内瑞拉,后来在1973又加入了卡塔尔,印度尼西亚,利比亚,阿联酋,阿尔及利亚,尼日利亚,厄瓜多尔,加蓬。

这些国家石油储备总和大约是全世界的四分之三左右,试想这个价格联盟是否能操控价格让这个整体利益最大化呢?答案是否定的。

(当然
弹性供需理论也部分解释了这个问题)。

不过这里主要讲成员国自身的问题。

举例,比如当你已知石油需求表格。

作为价格联盟成员,为了整体获得最大利益,显然把产量定在70至80万桶之间是合理的。

75万桶下的利润为5625万。

假设12个成员国为2个利益集团,(中东,和非中东集团)。

中东集团生产40万桶,非中东集团生产35万桶。

这样市场利益最大化,利润分成为,中东集团获得3000万,非中东集团2625万。

但是事实是,非中东集团如果擅自扩大产量至50万桶,让总供应达到90万桶,那么中东集团获得利润2400万,而非中东集团利润则为3000万。

对于非中东集团,扩大产量这个违约激励是提高利润的方式。

对于中东集团也是如此,如果中东集团擅自把产量提高至45万桶,那么80万桶的总量对应价格为70美元,其获得总利润为3150万,双方都存在违约激励,那么获得利润,那么双方都会擅自增加产量来提高自身利润。

但是事实双方也不无限增加产量。

因为依然根据利己角度研究。

在双方都生产45万的情况下,每桶油价格为60元。

这样双方的利润都2800万。

但是双方的考虑基点已经变化。

比如中东集团再增加10万桶的供给,50元*55万桶=2750万,利润没有增加,因此维持45万桶的产量是更好的选择。

因此均衡的供应量就此出现了。

博弈论里称局中人在这种没有做出不同决策的激励的情况下处于的状态为均衡。

经济学里的定义为:相互作用的经济主体在假定所有其他主体所选策略为既定的情况下选择自己最优策略的状态。

因此在OPEC期望的最优的高效率价格往往是难以维持的。

事实上历史最成功的
时段就是OPEC开始阶段,即1973至1985阶段,这段时间OPEC比较成功的维持了石油的高价,但是到上世纪80年代中期,这种合作变的无效率起来,各个成员国因为产量(即利润分配)发生争执,原油价格也回落至13美元每桶。

之后OPEC再也没有成功的把最高效的价格保持很久。

囚徒困境的还成功的解释了,美苏冷战,公共资源博弈等问题。

该研究思路对矿产出产供给的研究有非常重要的指导意义。

同时大家也知道达到均衡点的时候,那个个体最优策略不是整体最优策略。

因此设计投资理财不是追求每个个体最优,而是达成整体最优即可。

相关文档
最新文档