国内外高速线材轧制技术发展

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

国内外高速线材轧制技术发展

1 国内外高速线材轧制技术发展及现状

1.1 70年代前后高速线材轧机简况(简单介绍)

自1966年8月第一套高速无扭轧机在加拿大钢铁公司投产,直至70年代末,精轧机设计速度为50~70m/s,钢坯断面为80~130mm方,盘重800~2000kg。1976年以后,出现了原西得得马克型,意大利达涅利型,得英财团的阿希洛型等高速轧机,单摩根侧交45°轧机占有绝对优势,在1966~1979年世界各国已建成投产的137套机组中占80%。

高速无扭精轧机组是高线生产的关键设备,它集中了当代线材生产工艺和设备的新成就。该阶段的高速无扭轧机实现了高速、单线、连续无扭和微张轧制,采用∅150~∅210mm碳化钨辊环,采用了快速换辊和换导卫装置。

高速无扭轧机机架数量的选择和工艺布置特点如下:

(1) 本阶段的轧制速度一般为60m/s,最大为75m/s。为提高生产能力,一般采用粗、中轧机组多线轧制,精轧机组分线布置的方式。在1978年前建成或改造的66家高线轧机中,24家为4线轧制,6家为3线轧制,二者约占总量的45%。

(2) 机架数随钢坯断面和成品尺寸不同而有所不同,但基本模式是粗轧7架、中轧8架、精轧10架布置方式,全线25架轧机,仅在精轧入口前有一活套,成品尺寸精度受连轧张力影响较大。

1.280年代高速线材轧制技术的发展(重点讲)

80年代后,由于以连铸坯作为坯料的比例增加,连铸坯的断面尺寸趋于增大,及用户对小规格、大盘重线材需求量的日益增加,因而线材尺寸范围已扩大到∅5~∅25mm,精度要求也越来越高。为适应这一发展,线材终轧速度已达到100m/s,设计速度达到120m/s,相应的钢坯断面尺寸均在∅130~∅160mm。其技术进步表现在以下方面:

(1)为实现无扭精轧机增速,原侧交45°轧机改为顶交45°V型轧机,向下旋转90°,设备重心下降,两根传动轴接近底面基础,机组重量较轻,倾动力矩减小。同时轧线标高下降450mm,使设备重心下降,因而具有刚性增大,振动减小,运行稳定,噪音低,视野开阔,换辊检修方便等优点[1]。

1981~1990年摩根公司提供精轧速度超过100m/s(包括90m/s保证速度)的高速精轧机28套,其中1986年以后提供的100m/s 10套无扭精轧机均为V型结构。其中较为典型的使1990年8月投产的巴西贝尔戈厂高速线材轧机,该套轧机共28道次,使用150mm×150mm ×12800mm坯料、轧制∅5.5mm线材时,终轧速度120m/s,单线年设计产量达60万t[2]。

与此同时,德马克由原侧交45°改为75°/15°,向下旋转30°,如酒钢、唐钢高线轧机;克虏伯公司将原侧交45°改为平-立交替,向下旋转45°,均向原阿希洛、达涅利公司的低重心方向发展。

(2) 为实现控温轧制和生产高硬度合金钢产品,轧机承载能力逐步提高,超重型轧机(VHD)被应用。此时的摩根V型轧机除有重心降低的优点外,还将同架次的轧辊中心距增加(∅200mm机架增14mm,∅150mm机架增6.4mm),从而增加了轴颈尺寸,辊轴抗弯强度提高25%,减少了辊跳和断轴次数,轧机向重型化发展,新型超重型轧机的承受能力时普通型的1.8倍。

(3) 为提高线材的综合力学性能,除日益完善轧后控冷外,开始采用控温轧制技术,一是降低开轧温度,二是精轧前强迫水冷,降低轧件进入精轧机温度。

对于高、低碳钢,粗轧开轧温度分别为900、850℃,精轧机入口温度分别为925、870℃,出口轧件温度分别为900、850℃。

为降低精轧机开轧温度,国外新建轧机分别在中轧机组前后增设水冷箱,以保证精轧温度为900℃;在无扭精轧机架之间设水冷导管,以使线材终轧温度为800℃,超重型轧机可以满足700~750℃的轧制要求。国外较为典型的控冷生产线为日本君津厂、巴西贝尔戈厂和韩国浦项线材厂。

为实现无扭机架之间水冷,摩根轧机间距由710/630mm逐步改为800/750mM,V型轧机有的增至1200/820mm,摩根机组总长分别为5895、6850和10100mm,这与超重型精轧机结构的改进是一致的。

(4) 随着轧制速度的提高和单线生产能力的增大,不仅新建长淘汰了多线轧制方案,而且一些多线生产厂家,也改为双线或单线方式,以获取更好的产品质量和效益。例如,1991年乌克兰Maeewka冶金公司建成了双线、年产120万t的高线厂;澳大利亚BHP公司,与1988年将1975年建成的4线50m/s轧机,改为双线100m/s轧机,钢坯断面由90mm×90mm 方增加到120mm×120mm方,最高机时产量达140t/h;“七五”期间,我国首钢第二线材厂、鞍钢股份有限公司引进的4线轧机,也分别改成双线和3线轧机。

(5) 为减小连轧张力对成品尺寸精度的影响,减少精轧工艺故障,出现了单线悬臂式平-立交替的4架活套轧制的预精轧机组,使全线的活套数量由1个增至5个,实现了无扭无张轧制;为减少预精轧占地,90年代摩根公司又将精轧顶交无扭轧制技术用于预精轧机,以取代平-立交替轧机。该技术特别适用于现有高线轧机改造(鞍钢已应用了该技术)。

(6) 为使双线轧制的粗中轧机组生产高碳合金钢产品时,也实现无扭轧制,摩根公司为浦项3#轧机设计了平-立可转换机架,即生产普通产品时,全部水平机架双线轧制;生产合金钢产品时,采用平-立全无扭单线轧制,增加了生产的灵活性。

此外,为提高成品精度,粗中轧机组张力的闭环调节、成品热定径机和测径仪等技术也被应用于线材生产线中。

1.3 90年代高线轧制新技术(重点)

1.3.1双机架台克森高精度轧机

为满足老式摩根轧机现代化改造的要求,近年摩根公司推出双机架台克森(Tekisun)高精度轧机,该轧机安装在无扭精轧机和夹送辊之间,与现有无扭轧机配合使用。可将轧制速度有70m/s增加到100m/s,同时成品尺寸公差可达到±0.1mm。该技术已于1991年在西班牙和日本大同钢厂应用并获成功。我国天津高线厂、首钢三线材厂筹建,鞍钢高线厂改造时,都曾考虑过采用该技术;张家港、湘潭高线厂预留了安装此轧机的位置。

1.3.2 双模块靠素精轧机组

为进一步提高轧机利用率,降低金属消耗,简化操作,实现以最低成本生产出高质量的产品,达涅利公司最新推出了双模块高速精轧机组,将高速线材生产技术推向新阶段。七主要设计思想为:

(1) 工艺布置:160mm×160mm方坯→粗中轧机组12架→预精轧机组5架,其中后3架为大压下定径轧机→8+4双模块精轧机组(T.M.B)→夹送辊吐丝机→控冷线。

(2) 3架大压下定径轧机的压下量,变化范围大,可以通过调整辊缝(±5mm)和快速换机架(约4min)来实现,以满足“T.M.B”机组前导孔型所需要的变形量,使1#~14#轧机仅用1套孔型。

(3)“T.M.B”机组由2个相续的模块组成,第一模块由8架组成,共有3个孔型系统;第二模块由4架组成,共有5个套孔型,覆盖了∅5~∅20mm成品所有规格。

(4) 可将双模块分开布置,如将第二模块设在水冷段后,可达到下列效果:

①第一模块轧出的轧件均大于∅8mm,可实现水冷箱常开操作,消除轧件头部无水冷带来的缺陷。

②在双模块机组之间配备高速切头尾飞剪,可取消盘卷人工切头切尾。

(5) 借助大压下定径机组,“T.M.B”机组可采用小压下量(约12%~16%),成品精度达到±(0.08~0.10)mm。

双模块高速精轧机组的出现,给优质特殊刚线材生产带来巨大效益,具体表现在:

(1)产品规格大,尺寸精度高,产品通常范围为∅5.5~∅20mm,使∅4.5~∅5.0mm和∅24~∅25mm的成品生产成为可能。

(2) 精轧速度高达120m/s,可提高小规格机时产量,单线达规格机时产量可达120t。

(3) 轧机利用系数≥90%,成材率≥97%,分别比传统轧机提高5%和0.5%。

相关文档
最新文档