电磁感应典型例题和练习

合集下载

电磁感应练习50题

电磁感应练习50题

电磁感应练习50题(含答案)1、如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L=0.2m,长为2d,d=0.5m,上半段d导轨光滑,下半段d导轨的动摩擦因素为μ=,导轨平面与水平面的夹角为θ=30°.匀强磁场的磁感应强度大小为B=5T,方向与导轨平面垂直.质量为m=0.2kg的导体棒从导轨的顶端由静止释放,在粗糙的下半段一直做匀速运动,导体棒始终与导轨垂直,接在两导轨间的电阻为R=3Ω,导体棒的电阻为r=1Ω,其他部分的电阻均不计,重力加速度取g=10m/s2,求:(1)导体棒到达轨道底端时的速度大小;(2)导体棒进入粗糙轨道前,通过电阻R上的电量q;(3)整个运动过程中,电阻R产生的焦耳热Q.答案分析:(1)研究导体棒在粗糙轨道上匀速运动过程,受力平衡,根据平衡条件即可求解速度大小.(2)进入粗糙导轨前,由法拉第电磁感应定律、欧姆定律和电量公式结合求解电量.(3)导体棒在滑动时摩擦生热为Q f=2μmgdcosθ,再根据能量守恒定律求解电阻产生的焦耳热Q.解答:解:(1)导体棒在粗糙轨道上受力平衡:由 mgsin θ=μmgcos θ+BIL得:I=0.5A由BLv=I(R+r)代入数据得:v=2m/s(2)进入粗糙导轨前,导体棒中的平均电动势为: ==导体棒中的平均电流为: ==所以,通过导体棒的电量为:q=△t==0.125C(3)由能量守恒定律得:2mgdsin θ=Q电+μmgdcos θ+mv2得回路中产生的焦耳热为:Q电=0.35J所以,电阻R上产生的焦耳热为:Q=Q电=0.2625J答:(1)导体棒到达轨道底端时的速度大小是2m/s;(2)导体棒进入粗糙轨道前,通过电阻R上的电量q是0.35C;(3)整个运动过程中,电阻R产生的焦耳热Q是0.2625J.点评:本题实质是力学的共点力平衡与电磁感应的综合,都要求正确分析受力情况,运用平衡条件列方程,关键要正确推导出安培力与速度的关系式,分析出能量是怎样转化的.2、如图所示,两平行金属导轨间的距离L=0.40m,金属导轨所在的平面与水平面夹角θ=37º,在导轨所在平面内,分布着磁感应强度B=0.50T、方向垂直于导轨所在平面的匀强磁场。

电磁感应典型例题和练习.

电磁感应典型例题和练习.

电磁感应课标导航第1课时电磁感应现象、楞次定律1、高考解读真题品析知识:安培力的大小与方向例1. (09年上海物理)13.如图,金属棒ab置于水平放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B,磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef内有一半径很小的金属圆环L,圆环与导轨在同一平面内当金属棒ab在水平恒力F作用下从磁场左边界ef处由静止开始向右运动后,圆环L有__________(填收缩、扩张)趋势,圆环内产生的感应电流_______________(填变大、变小、不变)。

解析:由于金属棒ab在恒力F的作用下向右运动,则abcd回路中产生逆时针方向的感应电流,则在圆环处产生垂直于只面向外的磁场,随着金属棒向右加速运动,圆环的磁通量将增大,依据楞次定律可知,圆环将有收缩的趋势以阻碍圆环的磁通量将增大;又由于金属棒向右运动的加速度减小,单位时间内磁通量的变化率减小,所以在圆环中产生的感应电流不断减小。

答案:收缩,变小点评:深刻领会楞次定律的内涵热点关注知识:电磁感应中的感应再感应问题例8、如图所示水平放置的两条光滑轨道上有可自由移动的金属棒PQ、MN,当PQ在外力作用下运动时,MN在磁场力作用下向右运动.则PQ所做的运动可能是A.向右匀速运动B.向右加速运动C.向左加速运动D.向左减速运动解析:当MN在磁场力作用下向右运动,根据左手定则可在通过MN的电流方向为M → N,故线圈B中感应电流的磁场方向向上;要产生该方向的磁场,则线圈A中的磁场方向向上,磁场感应强度则减弱;磁场方向向下,磁场强度则增加.若是第一种情况,则PQ中感应电流方向Q→P,且减速运动,所以PQ应向右减速运动;同理,则向右加速运动.故BC项正确.答案:BC点评:二次感应问题是两次利用楞次定律进行分析的问题,能够有效考查对楞次定律的理解是准确、清晰。

要注意:B线圈中感应电流的方向决定A线圈中磁场的方向,B线圈中电流的变化情况决定A线圈中磁通量的变化情况,把握好这两点即可结合楞次定律顺利解决此类问题2、知识网络考点1:磁通量考点2.电磁感应现象穿过闭合回路的磁通量发生变化,回路中就有感应电流产生.考点3.楞次定律1.内容:感应电流的磁场总是要阻碍引起感应电流的磁场的变化.2.对“阻碍”意义的理解:增反减同,来斥去吸(1)阻碍原磁场的变化。

法拉第电磁感应定律 典例与练习

法拉第电磁感应定律 典例与练习

法拉第电磁感应定律典例与练习【典型例题】类型一、法拉第电磁感应定律的应用例1、(2015 安徽) 如图所示,abcd为水平放置的平行“匚”形光滑金属导轨,间距为l。

导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B,导轨电阻不计。

已知金属杆MN倾斜放置,与导轨成θ角,单位长度的电阻为r,保持金属杆以速度v沿平行于cd的方向滑动(金属杆滑动过程中与导轨接触良好)。

则A.电路中感应电动势的大小为sinBlvθB.电路中感应电流的大小为sinBvrθC.金属杆所受安培力的大小为2sinlvrBθD.金属杆的热功率为22sinlrvBθ【答案】B【解析】导体棒切割磁力线产生感应电动势E=Blv,故A错误;感应电流的大小sinsinE BvIl rrθθ==,故B正确;所受的安培力为2sinl B lvF BIrθ==,故C错误;金属杆的热功率222sinsinl B vQ I rrθθ==,故D错误。

【考点】考查电磁感应知识。

举一反三【变式】如图所示,水平放置的平行金属导轨,相距L=0.50 m,左端接一电阻R =0. 20n,磁感应强度B=0.40 T,方向垂直于导轨平面的匀强磁场,导体棒a b垂直放在导轨上,并能无摩擦地沿导轨滑动,导轨和导体棒的电阻均可忽略不计,当a b以v=4.0 m/s的速度水平向右匀速滑动时,求:(1)a b棒中感应电动势的大小,并指出a、b哪端电势高?(2)回路中感应电流的大小;(3)维持a b 棒做匀速运动的水平外力F 的大小。

【答案】(1)0.8V ;a 端电势高;(2)4.0A ;(3)0. 8 N 。

【解析】(1)根据法拉第电磁感应定律,a b 棒中的感应电动势为0.40.5 4.00.8E BLv V V ==⨯⨯= 根据右手定则可判定感应电动势的方向由b a →,所以a 端电势高。

(2)导轨和导体棒的电阻均可忽略不计,感应电流大小为 0.8 4.00.2E I A A R === (3)由于a b 棒受安培力,棒做匀速运动,故外力等于安培力 4.00.50.40.8F BIL N N ==⨯⨯=, 故外力的大小为0. 8 N 。

电磁感应现象的练习题+答案

电磁感应现象的练习题+答案

一、电磁感应现象的练习题一、选择题:1.闭合电路的一部分导线ab处于匀强磁场中,图1中各情况下导线都在纸面内运动,那么下列判断中正确的是( C )A.都会产生感应电流B.都不会产生感应电流C.甲、乙不会产生感应电流,丙、丁会产生感应电流D.甲、丙会产生感应电流,乙、丁不会产生感应电流2.如图2所示,矩形线框abcd的一边ad恰与长直导线重合(互相绝缘).现使线框绕不同的轴转动,能使框中产生感应电流的是(BCD )A.绕ad边为轴转动B.绕oo′为轴转动C.绕bc边为轴转动D.绕ab边为轴转动3.关于产生感应电流的条件,以下说法中错误的是(ABC )A.闭合电路在磁场中运动,闭合电路中就一定会有感应电流B.闭合电路在磁场中作切割磁感线运动,闭合电路中一定会有感应电流C.穿过闭合电路的磁通为零的瞬间,闭合电路中一定不会产生感应电流D.无论用什么方法,只要穿过闭合电路的磁感线条数发生了变化,闭合电路中一定会有感应电流4.垂直恒定的匀强磁场方向放置一个闭合圆线圈,能使线圈中产生感应电流的运动是(CD )A.线圈沿自身所在的平面匀速运动B.线圈沿自身所在的平面加速运动C.线圈绕任意一条直径匀速转动D.线圈绕任意一条直径变速转动5.一均匀扁平条形磁铁与一线圈共面,磁铁中心与圆心O重合(图3).下列运动中能使线圈中产生感应电流的是(AB )A.N极向外、S极向里绕O点转动B.N极向里、S极向外,绕O点转动C.在线圈平面内磁铁绕O点顺时针向转动D.垂直线圈平面磁铁向纸外运动6.如图5所示,绕在铁芯上的线圈与电源、滑动变阻器和电键组成闭合回路,在铁芯的右端套有一个表面绝缘的铜环A,下列各种情况中铜环A中没有感应电流的是(A )A.线圈中通以恒定的电流B.通电时,使变阻器的滑片P作匀速移动C.通电时,使变阻器的滑片P作加速移动D.将电键突然断开的瞬间7.如图6所示,一有限范围的匀强磁场宽度为d,若将一个边长为l的正方形导线框以速度v匀速地通过磁场区域,已知d>l,则导线框中无感应电流的时间等于(C )A.d/v B.1/v C.(d-1)/v D.(d-2l)/v8.条形磁铁竖直放置,闭合圆环水平放置,条形磁铁中心线穿过圆环中心,如图7所示。

高一物理电磁感应现象练习题及答案

高一物理电磁感应现象练习题及答案

高一物理电磁感应现象练习题及答案练习题一:1. 一根导线以速度v穿过磁感应强度为B的均匀磁场,导线长度为L,角度θ为导线与磁场方向的夹角。

求导线在时间Δt内所受到的感应电动势。

答案:感应电动势E = B * v * L * sinθ2. 一根导线以速度v进入磁感应强度为B的均匀磁场,导线的长度为L。

当导线完全进入磁场后,突然停止不动。

求此过程中导线两端之间的电势差。

答案:电势差V = B * v * L3. 一个长度为L的导线以速度v匀速通过磁感应强度为B的均匀磁场,当导线通过时间Δt后,磁场方向突然发生改变。

求导线两端之间产生的感应电动势。

答案:感应电动势E = 2 * B * v * L4. 一根长度为L的导线以速度v与磁感应强度为B的均匀磁场垂直相交,导线所受到的感应电动势大小为E,如果将导线切成长度为L/2的两段导线,两段导线所受感应电动势的大小分别是多少?答案:每段导线所受感应电动势的大小都是E练习题二:1. 一台电动机的转子有60个磁极,额定转速为3000转/分钟。

求转子在额定转速下的转子导线所受的感应电动势大小。

答案:转子导线所受感应电动势的大小为ω * Magnetic Flux,其中ω为角速度,Magnetic Flux为磁通量。

转速为3000转/分钟,转速ω =2π * 3000 / 60。

由于转子有60个磁极,每转所经过的磁通量为60 * Magnetic Flux。

因此,转子导线所受感应电动势的大小为60 * 2π * 3000 / 60 * Magnetic Flux。

2. 一根长度为L的导线以角速度ω绕通过导线轴线的磁感应强度为B的磁场旋转。

求导线两端之间的电势差大小。

答案:电势差V = B * ω * L3. 一根输电线路的电阻为R,长度为L,电流为I。

如果在电力系统中,磁感应强度为B的磁场垂直于导线方向,求输电线路两端之间的感应电动势。

答案:感应电动势E = B * L * I4. 一块矩形线圈有N匝,每匝的边长为a和b,磁通量为Φ,求矩形线圈所受到的感应电动势。

初三电磁感应练习题及答案

初三电磁感应练习题及答案

初三电磁感应练习题及答案练习题1:1. 一个导线以2.0m/s的速度从一个均匀磁场中通过,磁感应强度为0.4T,导线长度为0.5m。

求导线所受的感应电动势大小。

2. 一个长度为3.0m的导线以10m/s的速度垂直通过一个磁感应强度为1.5T的磁场,求导线两端之间的感应电势差。

3. 一个矩形导线框架的长边长度为2.0m,短边长度为0.5m,框架的整体电阻为6.0Ω。

当磁感应强度为0.8T时,框架被拉动,导线切割磁力线的速度恒定为3.0m/s。

求在导线上出现的电动势大小。

答案:1. 感应电动势的大小与磁感应强度、导线长度和导线在磁场中的速度有关。

根据公式E = B*d*l*v,其中B为磁感应强度,d为导线长度,l为导线在磁场中的速度,v为导线长度。

将已知值代入计算,得到E = 0.4T * 0.5m * 2.0m/s = 0.4V。

故导线所受的感应电动势大小为0.4V。

2. 感应电势差的大小取决于磁感应强度、导线长度和导线在磁场中的速度之积。

根据公式∆V = B*l*v,其中B为磁感应强度,l为导线长度,v为导线在磁场中的速度。

将已知值代入计算,得到∆V = 1.5T * 3.0m * 10m/s = 45V。

导线两端之间的感应电势差为45V。

3. 在导线上出现的电动势大小取决于磁感应强度、导线长度、导线在磁场中的速度和导线的电阻之积。

根据公式E = B*d*l*v/R,其中B为磁感应强度,d为导线长度,l为导线在磁场中的速度,R为导线的电阻。

将已知值代入计算,得到E = 0.8T * 3.0m * 2.0m * 0.5m/s / 6.0Ω = 0.8V。

在导线上出现的电动势大小为0.8V。

练习题2:1. 一个磁感应强度为0.5T的磁场垂直于一个半径为0.2m的圆环,圆环的电阻为2.0Ω。

圆环以5rad/s的角速度绕垂直磁场线旋转,求圆环上出现的感应电动势大小。

2. 一个长度为4.0m的直导线绕过一个半径为2.0m的圆形电感线圈,电感线圈中有100个匝。

高考物理:带你攻克电磁感应中的典型例题(附解析)

高考物理:带你攻克电磁感应中的典型例题(附解析)

高考物理:带你攻克电磁感应中的典型例题(附解析)例1、如图所示,有一个弹性的轻质金属圆环,放在光滑的水平桌面上,环中央插着一根条形磁铁.突然将条形磁铁迅速向上拔出,则此时金属圆环将()A. 圆环高度不变,但圆环缩小B. 圆环高度不变,但圆环扩张C. 圆环向上跳起,同时圆环缩小D. 圆环向上跳起,同时圆环扩张解析:在金属环中磁通量有变化,所以金属环中有感应电流产生,按照楞次定律解决问题的步骤一步一步进行分析,分析出感应电流的情况后再根据受力情况考虑其运动与形变的问题.也可以根据感应电流的磁场总阻碍线圈和磁体间的相对运动来解答。

当磁铁远离线圈时,线圈和磁体间的作用力为引力,由于金属圆环很轻,受的重力较小,因此所受合力方向向上,产生向上的加速度.同时由于线圈所在处磁场减弱,穿过线圈的磁通量减少,感应电流的磁场阻碍磁通量减少,故线圈有扩张的趋势。

所以D选项正确。

一、电磁感应中的力学问题导体切割磁感线产生感应电动势的过程中,导体的运动与导体的受力情况紧密相连,所以,电磁感应现象往往跟力学问题联系在一起。

解决这类电磁感应中的力学问题,一方面要考虑电磁学中的有关规律,如安培力的计算公式、左右手定则、法拉第电磁感应定律、楞次定律等;另一方面还要考虑力学中的有关规律,如牛顿运动定律、动量定理、动能定理、动量守恒定律等。

例2、如图1所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻。

一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。

整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略。

让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦。

(1)由b向a方向看到的装置如图2所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab 杆中的电流及其加速度的大小;(3)求在下滑过程中,ab杆可以达到的速度最大值。

初中电磁感应专题练习(含详细答案)

初中电磁感应专题练习(含详细答案)

初中电磁感应专题练习(含详细答案)
一、选择题
1. 一个导线在磁场中匀速向右移动,感应电动势的方向如何?
A. 由左向右
B. 由右向左
C. 没有感应电动势
D. 无法确定
答案:B
2. 带电粒子在磁场中匀速运动,运动轨迹如何?
A. 直线运动
B. 圆形运动
C. 抛物线运动
D. 双曲线运动
答案:B
二、计算题
1. 一个弯曲的导线长为10cm,导线中有一个电流I=2A,若在
导线处有一个磁感应强度为B=3T的磁场,求电动势的大小为多少?
解答:
$\mathcal{E}=Blv=\frac{1}{2}Blv=\frac{1}{2}Blsin\theta=\frac{1}{2} \times 3 \times 0.1 \times 2=\frac{3}{20}$V。

三、简答题
1. 什么是电磁感应?
电磁感应是指导体中的电子受到磁场的作用从而在导体两端产
生的电动势。

2. 什么是法拉第电磁感应定律?
法拉第电磁感应定律指出,当导体中的磁力线发生变化时,沿
着导体的任意闭合回路中就会产生感应电动势,其大小与磁通量的
变化率成正比,方向满足楞次定律。

3. 什么是楞次定律?
楞次定律指出,当导体内有感应电流时,该电流所发出的磁场的方向是这样的,即它所引起的磁通量的变化总是阻碍引起这种变化的原因。

4. 什么情况下会产生感应电流?
当导体在磁场中发生运动或被磁场线穿过而发生变化时,就会在导体中产生感应电流。

高中物理必修三第十三章电磁感应与电磁波初步典型例题(带答案)

高中物理必修三第十三章电磁感应与电磁波初步典型例题(带答案)

高中物理必修三第十三章电磁感应与电磁波初步典型例题单选题1、下列说法正确的是()A.电荷在电场中某处不受电场力的作用,则该处的电场强度不一定为零B.一小段通电导线在某处不受安培力的作用,则该处磁感应强度一定为零C.把一个试探电荷放在电场中的某点,它受到的电场力与所带电荷量的比值表示该点电场的强弱D.把一小段通电导线放在磁场中某处,它所受到的磁场力与该小段通电导线的长度和电流的乘积的比值表示该处磁场的强弱答案:CAC.在定义电场强度和磁感应强度时,都是在场中放一个小物体,使场对它有力的作用。

在电场中放入的是试探电荷,电场强度E用E=Fq 来定义,但E与F、q无关,由E=Fq可得F=qE,故E=0时,F=0,故A错误,C正确;BD.在磁场中放入一小段通电导线在磁场中的受力大小与导线放置的方向有关,平行于磁场方向放置时,磁场力F=0,垂直于磁场方向放置时,磁场力F最大。

在定义式B=FIl中,通电导线必须垂直磁场方向放置,故BD错误。

故选C。

2、为了演示“感应电流的磁场总要阻碍引起感应电流的磁通量的变化”的现象,老师做了这样的演示实验:如图所示,铝制水平横梁两端各固定一个铝环,其中A环是闭合的,B环是断开的,横梁可以绕中间的支点在水平面内转动。

当装置静止不动时,用一磁铁的N极去接近A环,发现横梁绕支点沿顺时针(俯视)方向转动。

若不考虑空气流动对实验结果的影响,关于该实验,下列说法中正确的是()A.若其他条件相同,磁铁接近A环越快,A环中产生的感应电动势就越大B.若其他条件相同,而将磁铁的N极接近B环,则横梁将绕支点沿逆时针(俯视)方向转动C.无论磁铁靠近A环或B环,相应环中都有焦耳热产生D.若磁铁N极靠近A环,沿磁铁运动方向观察,A环会有沿环顺时针方向的感应电流答案:AA.A环闭合,磁铁接近A环越快,A环中磁通量的变化率越大,根据法拉第电磁感应定律可知产生的感应电动势越大,故A正确;B.B环不闭合,磁铁接近B环时,环内不产生感应电流,因此B环不受磁场的作用力,横杆不转动,故B错误;C.磁铁靠近A环时,在A环内会产生感应电流,从而产生焦耳热,当磁铁靠近B环时,会产生感应电动势,但不会形成感应电流,不会产生焦耳热,故C错误;D.磁铁N极靠近A环时,A环垂直于纸面向里的磁通量增大,所以A环中感应电流的磁场方向垂直于纸面向外,A环中会产生逆时针方向的感应电流,故D错误。

电磁感应定律典型例题

电磁感应定律典型例题

典型例例1: 关于感应电动势,下列说法正确的是( ) A .穿过回路的磁通量越大,回路中的感应电动势就越大 B .穿过回路的磁通量变化量越大,回路中的感应电动势就越大 C .穿过回路的磁通量变化率越大,回路中的感应电动势就越大D .单位时间内穿过回路的磁通量变化量越大,回路中的感应电动势就越大 【解析】感应电动势E 的大小与磁通量变化率t∆∆φ成正比,与磁通量φ、磁通量变化量φ∆无直接联系。

A 选项中磁通量φ很大时,磁通量变化率t∆∆φ可能很小,这样感应电动势E 就会很小,故A 错。

B 选项中φ∆很大时,若经历时间很长,磁通量变化率t∆∆φ仍然会很小,感应电动势E 就很小,故B 错。

D 选项中单位时间内穿过回路的磁通量变化量即磁通量变化率t∆∆φ,它越大感应电动势E 就越大,故D 对。

答案:CD【总结】感应电动势的有无由磁通量变化量φ∆决定,φ∆≠0是回路中存在感应电动势的前提,感应电动势的大小由磁通量变化率t ∆∆φ决定,t∆∆φ越大,回路中的感应电动势越大,与φ、φ∆无关。

例2:一个面积S=4×10-2m 2,匝数N=100的线圈,放在匀强磁场中,磁场方向垂直线圈平面,磁场的磁感应强度B 随时间变化规律为△B /△t=2T/s ,则穿过线圈的磁通量变化率t∆∆φ为 Wb/s ,线圈中产生的感应电动势E= V 。

【解析】根据磁通量变化率的定义得t∆∆φ= S △B /△t=4×10-2×2 Wb/s=8×10-2Wb/s 由E=N △φ/△t 得E=100×8×10-2V=8V 答案:8×10-2;8【总结】计算磁通量φ=BScos θ、磁通量变化量△φ=φ2-φ1、磁通量变化率△φ/△t 时不用考虑匝数N ,但在求感应电动势时必须考虑匝数N ,即E=N △φ/△t 。

同样,求安培力时也要考虑匝数N ,即F=NBIL ,因为通电导线越多,它们在磁场中所受安培力就越大,所以安培力也与匝数N 有关。

电磁感应典型题目(含答案)

电磁感应典型题目(含答案)

电磁感应的典型计算1 如图所示,一与水平面夹角为θ=37°的倾斜平行金属导轨,两导轨足够长且相距L=0.2m,另外两根水平金属杆MN和PQ的质量均为m=0.01kg,可沿导轨无摩擦地滑动,MN杆和PQ杆的电阻均为R=0.2Ω(倾斜金属导轨电阻不计),MN杆被两个垂直于导轨的绝缘立柱挡住,整个装置处于匀强磁场内,磁场方向垂直于导轨平面向上,磁感应强度B=1.0T.PQ杆在恒定拉力F作用下由静止开始向上加速运动,拉力F垂直PQ杆沿导轨平面向上,当运动位移x=0.1 m时PQ杆达到最大速度,此时MN杆对绝缘立柱的压力恰好为零(g取10m/s2,sin 37°=0.6 ,cos 37°=0.8).求:(1) PQ杆的最大速度v m, (2)当PQ杆加速度时,MN杆对立柱的压力;(3)PQ杆由静止到最大速度过程中回路产生的焦耳热Q.解:(1)PQ达到最大速度时,关于电动势为:E m=BLv m,感应电流为:I m=REm2,根据MN杆受力分析可得:mg sinθ=BI m L,联立解得:v m=22sin2LBRmg=0.6m/s;(2)当PQ的加速度a=2 m/s2 时,对PQ根据牛顿第二定律可得:F-mg sinθ-BIL=ma,对MN根据共点力的平衡可得:BIL+F N-mg sinθ=0,PQ达到最大速度时,有:F-mg sinθ-BI m L=0,联立解得:F N=0.02N,根据牛顿第三定律可得对立柱的压力F N=0.02N;(3)PQ由静止到最大速度的过程中,根据功能关系可得:F x =221mmv+mgx sinθ+Q,解得:Q=4.2×10-3 J.答:(1)PQ杆的最大速度为0.6m/s;(2)当PQ杆加速度a=2m/s2时,MN杆对立柱的压力为0.02N (3)PQ杆由静止到最大速度回路产生的焦耳热为4.2×10-3 J.2 如图所示,平行金属导轨与水平面间夹角均为θ=37°,导轨间距为lm,电阻不计,导轨足够长.两根金属棒 ab 和a′b′的质量都是0.2kg,电阻都是1Ω,与导轨垂直放置且接触良好,金属棒a′b′和导轨之间的动摩擦因数为0.5,设金属棒a′b′受到的最大静摩擦力等于滑动摩擦力.金属棒ab和导轨无摩擦,导轨平面PMKO处存在着垂直轨道平面向上的匀强磁场,导轨平面PMNQ处存在着沿轨道平面向上的匀强磁场,磁感应强度B的大小相同.用外力让a′b′固定不动,将金属棒ab由静止释放,当ab下滑速度达到稳定时,整个回路消耗的电功率为18W.求:(1)ab 棒达到的最大速度;(2)ab棒下落了 30m 高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足什么条件?( g=10m/s2,sin37°=0.6,cos37°=0.8 )解:(1)ab 棒达到最大速度时做匀速运动,其重力功率等于整个回路消耗的电功率,则有:mg sinθ•v m=P电,则得:ab棒的最大速度为:v m==m/s=15m/s;由P电==,得:B==T=0.4T(2)根据能量守恒得:mgh=Q+则得:Q=mgh-=0.2×10×30J-×0.2×152 =37.5 J(3)将a′b′固定解除,为确保a′b′始终保持静止,则对于a′b′垂直于斜面方向有:N=mg cos37°+BIL,平行于斜面方向有:mg sin37°≤f m=μN解得:I ≥2A对于ab棒:E=I•2R,E=BLv,则得:v=≥m/s=10m/s故ab的速度应满足的条件是:10m/s≤v≤15m/s答:(1)ab 棒达到的最大速度是15m/s;(2)ab棒下落了30m 高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q是37.5J;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足的条件是10m/s≤v≤15m/s3 如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角为θ,导轨间距为L,所在平面的正方形区域abcd内存在有界匀强磁场,磁感应强度为B,方向垂直斜面向上.将甲乙两电阻阻值相同、质量均为m的相同金属杆如图放置在导轨上,甲金属杆处在磁场的上边界,甲乙相距L.静止释放两金属杆的同时,在甲金属杆上施加一个沿着导轨向下的外力F,使甲金属杆在运动过程中始终做沿导轨向下的匀加速直线运动,加速度大小g sinθ,乙金属杆刚进入磁场时,发现乙金属杆作匀速运动.(1)求乙刚进入磁场时的速度(2)甲乙的电阻R为多少;(3)乙刚释放时t=0,写出从开始释放到乙金属杆离开磁场,外力F随时间t的变化关系;(4 )若从开始释放到乙金属杆离开磁场,乙金属杆中共产生热量Q,试求此过程中外力F对甲做的功.解:⑴在乙尚未进入磁场中的过程中,甲、乙的加速度相同,设乙刚进入磁场时的速度v乙刚进入磁场时,对乙由根据平衡条件得(2)设乙从释放到刚进入磁场过程中做匀加速直线运动所需要的时间为设乙从进入磁场过程至刚离开磁场的过程中做匀速直线运动所需要的时间为设乙离开磁场时,甲的速度设甲从开始释放至乙离开磁场的过程中的位移为x根据能量转化和守恒定律得:4 如图所示,倾斜角θ=30°的光滑倾斜导体轨道(足够长)与光滑水平导体轨道连接。

电磁感应习题(答案解析)

电磁感应习题(答案解析)

四. 知识要点:第一单元电磁感应现象楞次定律(一)电磁感应现象1. 产生感应电流的条件:穿过闭合电路的磁通量发生变化.2. 磁通量的计算(1)公式Φ=BS此式的适用条件是:①匀强磁场;②磁感线与平面垂直。

(2)如果磁感线与平面不垂直,上式中的S为平面在垂直于磁感线方向上的投影面积.即其中θ为磁场与面积之间的夹角,我们称之为“有效面积”或“正对面积”。

(3)磁通量的方向性:磁通量正向穿过某平面和反向穿过该平面时,磁通量的正负关系不同。

求合磁通时应注意相反方向抵消以后所剩余的磁通量。

(4)磁通量的变化:可能是B发生变化而引起,也可能是S发生变化而引起,还有可能是B和S同时发生变化而引起的,在确定磁通量的变化时应注意。

3. 感应电动势的产生条件:无论电路是否闭合,只要穿过电路的磁通量发生变化,这部分电路就会产生感应电动势。

这部分电路或导体相当于电源。

(二)感应电流的方向1. 右手定则当闭合电路的部分导体切割磁感线时,产生的感应电流的方向可以用右手定则来进行判断。

右手定则:伸开右手,使大拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直穿入手心,大拇指指向导体运动方向,那么伸直四指指向即为感应电流的方向。

说明:伸直四指指向还有另外的一些说法:①感应电动势的方向;②导体的高电势处。

2. 楞次定律(1)内容感应电流具有这样的方向:就是感应电流的磁场总是阻碍引起感应电流的磁通量的变化。

注意:①“阻碍”不是“相反”,原磁通量增大时,感应电流的磁场与原磁通量相反,“反抗”其增加;原磁通量减小时,感应电流的磁场与原磁通量相同,“补偿”其减小,即“增反减同”。

②“阻碍”也不是阻止,电路中的磁通量还是变化的,阻碍只是延缓其变化。

③楞次定律的实质是“能量转化和守恒”,感应电流的磁场阻碍过程,使机械能减少,转化为电能。

(2)应用楞次定律判断感应电流的步骤:①确定原磁场的方向。

②明确回路中磁通量变化情况。

③应用楞次定律的“增反减同”,确定感应电流磁场的方向。

高中物理电磁感应精选练习题及答案

高中物理电磁感应精选练习题及答案

【例1】 (2004,上海综合)发电的基本原理是电磁感应。

发现电磁感应现象的科学家是( )A .安培B .赫兹C .法拉第D .麦克斯韦解析:该题考查有关物理学史的知识,应知道法拉第发现了电磁感应现象。

答案:C【例2】发现电流磁效应现象的科学家是___________,发现通电导线在磁场中受力规律的科学家是__________,发现电磁感应现象的科学家是___________,发现电荷间相互作用力规律的的科学家是___________。

解析:该题考查有关物理学史的知识。

答案:奥斯特 安培 法拉第 库仑☆☆对概念的理解和对物理现象的认识【例3】下列现象中属于电磁感应现象的是( )A .磁场对电流产生力的作用B .变化的磁场使闭合电路中产生电流C .插在通电螺线管中的软铁棒被磁化D .电流周围产生磁场解析:电磁感应现象指的是在磁场产生电流的现象,选项B 是正确的。

答案:B★巩固练习 1. )A .磁感应强度越大的地方,磁通量越大B .穿过某线圈的磁通量为零时,由B =SΦ可知磁通密度为零 C .磁通密度越大,磁感应强度越大D .磁感应强度在数值上等于1 m 2的面积上穿过的最大磁通量解析:B 答案中“磁通量为零”的原因可能是磁感应强度(磁通密度)为零,也可能是线圈平面与磁感应强度平行。

答案:CD 2. )A .Wb/m 2B .N/A ·mC .kg/A ·s 2D .kg/C ·m解析:物理量间的公式关系,不仅代表数值关系,同时也代表单位.答案:ABC 3. )A .只要穿过线圈的磁通量发生变化,线圈中就一定有感应电流B .只要闭合导线做切割磁感线运动,导线中就一定有感应电流C .若闭合电路的一部分导体不做切割磁感线运动,闭合电路中一定没有感应电流D .当穿过闭合电路的磁通量发生变化时,闭合电路中一定有感应 电流答案:D4.在一长直导线中通以如图所示的恒定电流时,套在长直导线上的闭合线环(环面与导线垂直,长直导线通过环的中心),当发生以 )A .保持电流不变,使导线环上下移动B .保持导线环不变,使长直导线中的电流增大或减小C .保持电流不变,使导线在竖直平面内顺时针(或逆时针)转动D .保持电流不变,环在与导线垂直的水平面内左右水平移动解析:画出电流周围的磁感线分布情况。

电磁感应经典例题及解析

电磁感应经典例题及解析

电磁感应经典例题及解析电磁感应是电磁学中的重要概念,也是我们日常生活中常常会遇到的现象。

在电磁感应的过程中,磁场的变化会导致电场的产生,进而引发电流的产生。

这一原理广泛应用于发电机、变压器等电磁设备中。

下面我们来看一些经典的电磁感应例题,并对其进行解析。

例题1:一个磁感强度为0.2 T的匀强磁场,以2 m/s的速度向垂直于磁场的方向移动,求导体中感应电动势的大小。

解析:根据电磁感应的原理,导体中感应电动势的大小等于磁感强度与导体的速度的乘积,即E = Bv。

将已知数据代入计算,E = 0.2 T × 2 m/s = 0.4 V。

例题2:一个圆形线圈的半径为10 cm,磁感强度为0.5 T的磁场垂直于线圈的平面,在0.2 s内磁场的强度从0.2 T增加到0.6 T,求线圈中感应电流的大小。

解析:根据电磁感应的原理,感应电流的大小等于感应电动势与电阻的比值,即I = ε/R。

感应电动势可以通过磁场的变化率来计算,即ε = -dφ/dt。

其中,φ表示磁通量。

磁通量的大小等于磁感强度与线圈面积的乘积,即φ = Bπr^2。

将已知数据代入计算,φ = 0.2 T ×π× (0.1 m)^2 = 0.02π Tm^2。

对磁通量关于时间的导数,即dφ/dt,可以计算为(0.6 T - 0.2 T)/0.2 s = 2 T/s。

因此,感应电动势的大小为ε = -2 T/s。

线圈的电阻需要另外给定,才能计算感应电流的大小。

通过以上例题的解析,我们可以看到,在电磁感应问题中,需要根据已知条件来计算磁通量的变化率,从而得到感应电动势的大小。

最后,根据电路中的电阻情况,可以计算出感应电流的大小。

电磁感应是电磁学中的重要概念,掌握电磁感应的原理和应用,对于理解和应用电磁学的知识具有重要意义。

通过解析经典的电磁感应例题,可以加深对电磁感应原理的理解,提高解决实际问题的能力。

高中物理电磁感应基础练习题(含答案)

高中物理电磁感应基础练习题(含答案)

高中物理电磁感应基础练习题(含答案)一、单选题1.如图所示,导体ab是金属线框的一个可动边,ab边长L=0.4m,磁场的磁感应强度B=0.1T,当ab边以速度v=5m/s向右匀速移动时,下列判断正确的是()A.感应电流的方向由a到b,感应电动势的大小为0.2VB.感应电流的方向由a到b,感应电动势的大小为0.4VC.感应电流的方向由b到a,感应电动势的大小为0.2VD.感应电流的方向由b到a,感应电动势的大小为0.4V2.某同学用粗细均匀的金属丝弯成如图所示的图形,两个正方形的边长均为L,A、B t∆223.如图所示,在水平桌面上有一金属圆环,在它圆心正上方有一条形磁铁(极性不明),当条形磁铁下落时,可以判定()A.环中将产生俯视顺时针的感应电流B.环对桌面的压力将增大C.环有面积增大的趋势D.磁铁将受到竖直向下的电磁作用力4.如图所示,闭合线圈abcd 在磁场中运动到如图所示位置时,bc 边的电流方向由b →c ,此线圈的运动情况是( )A .向右进入磁场B .向左移出磁场C .向上移动D .向下移动5.如图所示,通电导线旁边同一平面有矩形线圈abcd ,则( )A .当线圈向导线靠近时,其中感应电流方向是a →b →c →dB .若线圈竖直向下平动,有感应电流产生C .若线圈向右平动,其中感应电流方向是a →b →c →dD .当线圈以导线边为轴转动时,其中感应电流方向是a →b →c →d6.如图所示,在磁感应强度大小为B 、方向垂直纸面向里的匀强磁场中,长为L 的金属杆MN 在平行金属导轨上以速度v 向右匀速滑动。

金属导轨电阻不计,金属杆与导轨的夹角为θ,电阻为2R ,ab 间电阻为R ,M 、N 两点间电势差为U ,则M 、N 两点电势BLv7.如图所示,先后以速度1v 和2v 匀速把一矩形线圈水平拉出有界匀强磁场区域,122v v =,则在先后两种情况下( )A .线圈中的感应电动势之比为21:1:2E E =B .线圈中的感应电流之比为12:1:2I I =C .线圈中产生的焦耳热之比12:2:1Q Q =D .通过线圈某截面的电荷量之比122:1q q =:8.粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行。

电磁感应大题题型总结

电磁感应大题题型总结

电磁感应大题题型总结一、导体棒切割磁感线产生感应电动势类1. 单棒平动切割磁感线- 题目示例:- 如图所示,在一磁感应强度B = 0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h = 0.1m的平行金属导轨MN与PQ,导轨的电阻忽略不计。

在两根导轨的端点N、Q之间连接一阻值R=0.3Ω的电阻。

导轨上跨放着一根长为L =0.2m,每米长电阻r = 2.5Ω/m的金属棒ab,金属棒与导轨正交,交点为c、d。

当金属棒以速度v = 4.0m/s向左做匀速运动时,求:- (1)金属棒ab中感应电动势的大小;- (2)通过金属棒ab的电流大小;- (3)金属棒ab两端的电压大小。

- 解析:- (1)根据E = BLv,这里L = h = 0.1m(有效切割长度),B = 0.5T,v = 4.0m/s,则E=Bh v = 0.5×0.1×4.0 = 0.2V。

- (2)金属棒的电阻R_ab=Lr = 0.2×2.5 = 0.5Ω。

电路总电阻R_总=R +R_ab=0.3+0.5 = 0.8Ω。

根据I=(E)/(R_总),可得I=(0.2)/(0.8)=0.25A。

- (3)金属棒ab两端的电压U = E - IR_ab=0.2 - 0.25×0.5 = 0.075V。

2. 双棒切割磁感线- 题目示例:- 如图所示,两根足够长的平行金属导轨固定在倾角θ = 30^∘的斜面上,导轨电阻不计,间距L = 0.4m。

导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B = 0.5T。

在区域Ⅰ中,将质量m_1=0.1kg,电阻R_1=0.1Ω的金属条ab放在导轨上,ab刚好不下滑。

然后,在区域Ⅱ中将质量m_2=0.4kg,电阻R_2=0.1Ω的光滑导体棒cd置于导轨上,由静止开始下滑。

电磁感应练习题及

电磁感应练习题及

电磁感应练习题及解答电磁感应练习题及解答电磁感应是物理学中的一个重要概念,涉及到电磁场的变化过程中电场和磁场相互作用产生的现象。

它在日常生活和科学研究中都有广泛的应用。

下面是一些电磁感应练习题及解答,供大家进行练习。

1. 一根长导线以速度v从北向南方向通过均匀磁场B,该导线的两端分别连接一个电阻为R的电灯泡。

求当导线通过磁场过程中,电灯泡亮起的时间。

解答:根据法拉第电磁感应定律,导线通过磁场时产生感应电动势,导致电流流过电灯泡。

所以,在导线通过磁场期间,电灯泡会一直亮起。

因此,电灯泡亮起的时间等于导线通过磁场的时间。

2. 一个长方形线圈的边长为a和b,放置在匀强磁场B中,使得长方形线圈的法线与磁场方向垂直。

求长方形线圈在匀强磁场中的磁通量。

解答:根据法拉第电磁感应定律,在匀强磁场中,线圈的磁通量可以通过以下公式计算:Φ = B * A * cosθ,其中B表示磁场强度,A表示线圈的面积,θ表示磁场方向与线圈法线方向之间的夹角。

由于线圈的法线与磁场方向垂直,θ为0,所以磁通量Φ = B * A。

3. 在一个闭合导线中有一个直径为d的圆环,该圆环的电阻为R。

当一个恒定的磁场B垂直于圆环平面时,求圆环上感应的电动势。

解答:根据法拉第电磁感应定律,当磁场的变化导致一个闭合回路中的磁通量发生改变时,会在回路中产生感应电动势。

在这个问题中,磁场是恒定的,所以不会产生感应电动势。

4. 一个导线带有电流I,在该导线旁边有另一条导线,它们平行。

第二条导线的长度为L,并且距离第一条导线的距离为d。

求第二条导线中感应的电动势。

解答:当电流从第一条导线中流过时,会在周围产生磁场。

第二条导线因为位于磁场中,所以会感受到这个磁场产生的磁通量的改变。

根据法拉第电磁感应定律,第二条导线中的感应电动势可以通过以下公式计算:ε = -dΦ/dt,其中Φ表示磁通量的变化率。

在这个问题中,需要计算第二条导线中的磁通量的变化率,并由此得出感应电动势。

高二物理《电磁感应定律-单杆模型》练习题(教师版)

高二物理《电磁感应定律-单杆模型》练习题(教师版)

3.3、电磁感应定律--单杆模型Ⅰ、无动力典型例题1:如图所示,除导体棒ab 可动外,其余部分均固定不动。

设导体棒、导轨的电阻均可忽略,导体棒和导轨间的摩擦也不计。

图中装置均在水平面内,且都处于方向垂直水平面(即纸面)向下的匀强磁场中,导轨足够长。

今给导体棒ab 一个向右的初速度v 0,分析导体棒ab 的最终运动状态感应电路中的功能关系分析①安培力的特点:22B L vF BIL R==②功是能量转化的量度:“外力”克服安培力做多少功,就有多少其他形式的能转化为电能.同理,安培力做功的过程是电能转化为其他形式的能的过程,安培力做多少功就有多少电能转化为其他形式的能. Ⅱ、恒力驱动典型例题2:如图所示,两足够长的光滑金属导轨竖直放置,相距为L ,一理想电流表与两导轨相连,匀强磁场方向垂直纸面向里,磁感应强度大小为B 。

一质量为m 、有效电阻为R 的导体棒在距磁场上边界h 处静止释放。

导体棒进入磁场后,流经电流表的电流逐渐变化,最终稳定。

整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻。

分析导体棒可能的运动过程变式题:如图所示,水平放置的两平行导轨左侧连接电阻,其它电阻不计。

导轨MN 放在导轨上,在水平恒力F 的作用下,沿导轨向右运动,并将穿过方向竖直向下的有界匀强磁场,磁场边界PQ 与MN 平行,从MN 进入磁场开始计时,通过MN 的感应电流i 随时间t 的变化可能是下图中的:ACD× × × × × ×RbV 0Bai A 0 i B 0tiDt i CN R M PQFⅢ、恒定电源驱动典型例题3:如图所示,除导体棒ab 可动外,其余部分均固定不动。

设导体棒、导轨和直流电源的电阻均可忽略,导体棒和导轨间的摩擦也不计。

图中装置均在水平面内,且都处于方向垂直水平面(即纸面)向下的匀强磁场中,导轨足够长。

今给导体棒ab 一个向右的初速度v 0,分析导体棒ab 的最终运动状态变式题:如图所示,两平行光滑金属导轨间的距离L =0.40m ,金属导轨所在的平面与水平面夹角θ=37°,在导轨所在平面内,分布着磁感应强度B=0.50T 、方向垂直于导轨所在平面的匀强磁场.金属导轨的一端接有电动势E =4.5V 、内阻r =0.50Ω的直流电源.现把一个质量m =0.04kg 、电阻R 0=2.5Ω的导体棒ab 放在金属导轨上,由静止释放.导体棒与金属导轨垂直、且接触良好,导体棒与金属导轨接触点间的电阻、金属导轨电阻均不计,g 取10m/s 2.已知sin37°=0.60,cos37°=0.80,求导体棒最终稳定时的速度大小和方向. 解:最终稳定时mg sinα=BIL解得:I =1.2A4.5/IR E BLv v m s =-⇒= 沿斜面向上 Ⅳ、含容电路典型例题4(无动力时的情况):如图所示,除导体棒ab 可动外,其余部分均固定不动,甲图中的电容器C 原来不带电。

电磁感应规律及题型练习题题(含答案)

电磁感应规律及题型练习题题(含答案)

电磁感应题型专题一、电磁感应中的电路问题1.如图9-3-1所示,在磁感应强度为0.2 T的匀强磁场中,有一长为0.5 m、电阻为1.0 Ω的导体AB在金属框架上以10 m/s的速度向右滑动,R1=R2=2.0 Ω,其他电阻不计,求流过导体AB的电流I.2、如图9-3-7(a)所示,水平放置的两根平行金属导轨,间距L=0.3 m.导轨左端连接R=0.6 Ω的电阻.区域abcd内存在垂直于导轨平面的B=0.6 T的匀强磁场,磁场区域宽D=0.2 m.细金属棒A1和A2用长为2D=0.4 m的轻质绝缘杆连接,放置在导轨平面上,并与导轨垂直,每根金属棒在导轨间的电阻均为r=0.3 Ω,导轨电阻不计,使金属棒以恒定速度v=1.0 m/s沿导轨向右穿越磁场,计算从金属棒A1进入磁场(t=0)到A2离开磁场的时间内,不同时间段通过电阻R的电流大小,并在图(b)中画出.二、电磁感应中的动力学问题2.在匀强磁场中,磁场垂直于纸面向里,竖直放置的导轨宽0.5 m,导轨中接有电阻为0.2 Ω、额定功率为5 W的小灯泡,如图9-3-2所示.一质量为50 g的金属棒可沿导轨无摩擦下滑(导轨与棒接触良好,导轨和棒的电阻不计),若棒的速度达到稳定后,小灯泡正常发光.求:(g取10 m/s2)(1)匀强磁场的磁感应强度;(2)此时棒的速度.4、如右图所示,两根平行金属导端点P、Q用电阻可忽略的导线相连,两导轨间的距离l=0.20 m.有随时间变化的匀强磁场垂直于桌面,已知磁感应强度B与时间t的关系为B=kt,比例系数k=0.020 T/s.一电阻不计的金属杆可在导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直.在t=0时刻,轨固定在水平桌面上,每根导轨每m的电阻为r0=0.10Ω/m,导轨的金属杆紧靠在P、Q端,在外力作用下,杆恒定的加速度从静止开始向导轨的另一端滑动,求在t=6.0 s时金属杆所受的安培力.5、(10分)如图9-3-9甲所示,一对平行光滑轨道放置在水平面上,两轨道间距l=0.20 m,电阻R=1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻皆可忽略不计,整个装置处于磁感应强度B=0.50 T的匀强磁场中,磁场方向垂直轨道面向下.现用一外力F沿轨道方向拉杆,使之做匀加速运动,测得力F与时间t的关系如图乙所示.求杆的质量m和加速度a.三、电磁感应中的能量问题6.(2009·天津高考)如图9-3-3所示,竖直放置的两根平行金属导轨之间接有定值电阻R,质量不能忽略的金属棒与两导轨始终保持垂直并良好接触且无摩擦,棒与导轨的电阻均不计,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,棒在竖直向上的恒力F作用下加速上升的一段时间内,力F做的功与安培力做的功的代数和等于()A.棒的机械能增加量B.棒的动能增加量C.棒的重力势能增加量D.电阻R上放出的热量7、如图 16-7-2所示,正方形线圈abcd 边长L=0.20m,质量m=0.10kg ,电阻R=0.1Ω,砝码质量M= 0.14kg ,匀强磁场B=0.50T.当M 从某一位置下降,线圈上升到ab 边进入匀强磁场时开始匀速运动,直到线圈全部进入磁场.问线圈运动过程中产生的热量多大?(g=10m/s 2)8、如图9-3-8所示,固定的水平光滑金属导轨,间距为L ,左端接有阻值为R 的电阻,处在方向竖直、磁感应强度为B 的匀强磁场中,质量为m 的导体棒与固定弹簧相连,放在导轨上,导轨与导体棒的电阻均可忽略.初始时刻,弹簧恰处于自然长度,导体棒具有水平向右的初速度v 0.在沿导轨往复运动的过程中,导体棒始终与导轨垂直并保持良好接触.(1)求初始时刻导体棒受到的安培力.(2)若导体棒从初始时刻到速度第一次为零时,弹簧的弹性势能为E p ,则这一过程中安培力所做的功W 1和电阻R 上产生的焦耳热Q 1分别为多少?(3)导体棒往复运动,最终将静止于何处?从导体棒开始运动到最终静止的过程中,电阻R 上产生的焦耳热Q 为多少?四、电磁感应中的图象问题9.单匝线圈在匀强磁场中绕垂直于磁场的轴匀速转动,穿过线圈的磁通 量Φ随时间t 变化的关系如 图9-3-4所示,则( )A .在t =0时刻,线圈中磁通量最大,感应电动势也最大B .在t =1×10-2 s 时刻,感应电动势最大C .在t =2×10-2 s 时刻,感应电动势为零D .在0~2×10-2 s 时间内,线圈中感应电动势的平均值为零图16-7-210、如图9-3-5甲所示,矩形导线框abcd 固定在匀强磁场中,磁感线的方向与导线框所在平面垂直.规定磁场的正方向垂直于纸面向里,磁感应强度B 随时间变化的规律如图9-3-5乙所示,若规定顺时针方向为感应电流i 的正方向,图9-3-6所示的i -t 图中正确的是 ( )五、电磁感应现象中的线框问题11、 如图4所示,匀强磁场的方向垂直纸面向外,而且有理想的边界,用力将长为b ,宽为a 的矩形线框匀速拉出匀强磁场,以下关于拉力做功的说法正确的是()A .拉线圈的速度越大,拉力做功越多B .线圈边长a 越大,拉力做功越多C .线圈的电阻越大,拉力做功越多D .磁感应强度增大,拉力做功越多 12、磁感应强度为B 的匀强磁场仅存在于边长为3L 的正方形范围内,有一个电阻为R 、边长为L 的正方形导线框abcd ,沿垂直于磁感线方向,以速度v 匀速通过磁场,如图所示,从ab 边进入磁场算起,求:(1)画出穿过线框的磁通量随时间变化的图线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁感应典型例题和练习————————————————————————————————作者:————————————————————————————————日期:2电磁感应课标导航课程内容标准:1.收集资料,了解电磁感应现象的发现过程,体会人类探索自然规律的科学态度和科学精神。

2.通过实验,理解感应电流的产生条件,举例说明电磁感应在生活和生产中的应用。

3.通过探究,理解楞次定律。

理解法拉第电磁感应定律。

4.通过实验,了解自感现象和涡流现象。

举例说明自感现象和涡流现象在生活和生产中的应用。

复习导航本章内容是两年来高考的重点和热点,所占分值比重较大,复习时注意把握:1.磁通量、磁通量的变化量、磁通量的变化率的区别与联系。

2.楞次定律的应用和右手定则的应用,理解楞次定律中“阻碍”的具体含义。

3.感应电动势的定量计算,以及与电磁感应现象相联系的电路计算题(如电流、电压、功率等问题)。

4.滑轨类问题是电磁感应的综合问题,涉及力与运动、静电场、电路结构、磁场及能量、动量等知识、要花大力气重点复习。

5.电磁感应中图像分析、要理解E-t、I-t等图像的物理意义和应用。

第1课时电磁感应现象、楞次定律1、高考解读真题品析知识:安培力的大小与方向例1. (09年上海物理)13.如图,金属棒ab置于水平放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B,磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef内有一半径很小的金属圆环L,圆环与导轨在同一平面内当金属棒ab在水平恒力F作用下从磁场左边界ef处由静止开始向右运动后,圆环L有__________(填收缩、扩张)趋势,圆环内产生的感应电流_______________(填变大、变小、不变)。

解析:由于金属棒ab在恒力F的作用下向右运动,则abcd回路中产生逆时针方向的感应电流,则在圆环处产生垂直于只面向外的磁场,随着金属棒向右加速运动,圆环的磁通量将增大,依据楞次定律可知,圆环将有收缩的趋势以阻碍圆环的磁通量将增大;又由于金属棒向右运动的加速度减小,单位时间内磁通量的变化率减小,所以在圆环中产生的感应电流不断减小。

答案:收缩,变小点评:深刻领会楞次定律的内涵热点关注知识:电磁感应中的感应再感应问题例8、如图所示水平放置的两条光滑轨道上有可自由移动的金属棒PQ、MN,当PQ在外力作用下运动时,MN在磁场力作用下向右运动.则PQ所做的运动可能是A.向右匀速运动B.向右加速运动C.向左加速运动D.向左减速运动解析:当MN在磁场力作用下向右运动,根据左手定则可在通过MN的电流方向为M → N,故线圈B中感应电流的磁场方向向上;要产生该方向的磁场,则线圈A中的磁场方向向上,磁场感应强度则减弱;磁场方向向下,磁场强度则增加.若是第一种情况,则PQ中感应电流方向Q→P,且减速运动,所以PQ应向右减速运动;同理,则向右加速运动.故BC项正确.答案:BC点评:二次感应问题是两次利用楞次定律进行分析的问题,能够有效考查对楞次定律的理解是准确、清晰。

要注意:B线圈中感应电流的方向决定A线圈中磁场的方向,B线圈中电流的变化情况决定A线圈中磁通量的变化情况,把握好这两点即可结合楞次定律顺利解决此类问题2、知识网络考点1:磁通量考点2.电磁感应现象穿过闭合回路的磁通量发生变化,回路中就有感应电流产生.考点3.楞次定律1.内容:感应电流的磁场总是要阻碍引起感应电流的磁场的变化.2.对“阻碍”意义的理解:增反减同,来斥去吸(1)阻碍原磁场的变化。

“阻碍”不是阻止,而是“延缓”,感应电流的磁场不会阻止原磁场的变化,只能使原磁场的变化被延缓或者说被迟滞了,如果原磁场不变化,即使它再强,也不会产生感应电流.(2)阻碍不一定是减小.当原磁通减小时,感应电流的磁场与原磁场相同,以阻碍其减小;当原磁通增加时,感应电流的磁场与原磁场相反,以阻碍其增加.(3)楞次定律是能量转化和守恒定律在电磁感应中的体现3.应用楞次定律的步骤⑴确定引起感应电流的原磁通量的方向⑵原磁通量是增加还是减小⑶确定感应电流的磁场方向⑷利用安培定则确定感应电流的方向4.右手定则:用来直接判断导体切割磁感线产生的感应电流的方向.3、复习方案基础过关重难点:感应电流方向的判断(原创)例3.导线框abcd与直导线在同一平面内,直导线中通有恒定电流I,当线框自左向右匀速通过直导线的过程中,线框中感应电流如何流动?解析:画出磁场的分布情况如图示:开始运动到A位置,向外的磁通量增加,I的方向为顺时针,当dc边进入直导线右侧,直到线框在正中间位置B时,向外的磁通量减少到0, I的方向为逆时针, 接着运动到C,向里的磁通量增加, I的方向为逆时针, 当ab边离开直导线后,向里的磁通量减少,I方向为顺时针.答案:感应电流的方向先是顺时针,接着为逆时针,然后又为顺时针。

典型例题:(原创)例4.如图所示,a、b、c、d为四根相同的铜棒, c、d固定在同一水平面上,a、b对称地放在c、d棒上,它们接触良好,O点为四根棒围成的矩形的几何中心,一条形磁铁沿竖直方向向O点落下,则ab可能发生的情况是:( )(A) 保持静止; (B) 分别远离O点;(C) 分别向O点靠近; (D) 无法判断。

解析:当磁体向下时,穿过矩形的磁通量增加,矩形有缩小的趋势。

答案:C点评:理解好楞次定律的内涵,是解决电磁感应现象的至关因素。

第2课时 法拉第电磁感应定律 自感1、高考解读真题品析知识:楞次定律、安培力、感应电动势、左手定则、右手定则例1. (09年山东卷)21.如图所示,一导线弯成半径为a 的半圆形闭合回路。

虚线MN 右侧有磁感应强度为B 的匀强磁场。

方向垂直于回路所在的平面。

回路以速度v 向右匀速进入磁场,直径CD 始络与MN 垂直。

从D 点到达边界开始到C 点进入磁场为止,下列结论正确的是A .感应电流方向不变B . CD 段直线始终不受安培力C .感应电动势最大值E =BavD .感应电动势平均值14E Bav =π 解析:A 选项在闭合电路进入磁场的过程中,通过闭合电路的磁通量逐渐增大,根据楞次定律可知感应电流的方向为逆时针方向不变,A 正确。

B 选项根据左手定则可以判断,受安培力向下,B 不正确。

C 选项当半圆闭合回路进入磁场一半时,即这时等效长度最大为a ,这时感应电动势最大E=Bav ,C 正确D 选项感应电动势平均值va a B tE 2212π⋅=∆∆Φ=,D 正确。

答案:ACD点评:感应电动势公式E t∆φ=∆只能来计算平均值,利用感应电动势公式E Blv =计算时,l 应是等效长度,即垂直切割磁感线的长度。

热点关注:知识:导体平动切割磁感线的计算公式例2. 水平放置的金属框架abcd ,宽度为0.5m ,匀强磁场与框架平面成30°角,如图所示,磁感应强度为0.5T ,框架电阻不计,金属杆MN 置于框架上可以无摩擦地滑动,MN 的质量0.05kg ,电阻0.2Ω,试求当MN 的水平速度为多大时,它对框架的压力恰为零,此时水平拉力应为多大?解析:点评:请注意1. E=BLV 的适用条件2. 受力图正确3. 力的处理恰当2、知识网络考点1.感应电动势:1. 在电磁感应现象中产生的电动势.产生感应电动势的部分相当于电源.2. 法拉第电磁感应定律:(1)电路中感应电动势的大小,跟穿过这一回路的磁通量的变化率成正比,即tN E ∆∆Φ=, N 为线圈匝数 (2)区别磁通量、磁通量的变化、磁通量的变化率.考点2.自感3、复习方案基础过关重难点:带电粒子在有界磁场中的运动(改编)例3. 彩色电视机的电源输人端装有电源滤波器,其电路图如图所示,元件 L 1 , L 2 是两个电感线圈,它们的自感系数很大, F 是保险丝,R 是压敏电阻(正常情况下阻值很大,但电压超过设定值时,阻值会迅速变小,可以保护与其并联的元件),C 1, C 2 是电容器,S 为电视机开关,在电视机正常工作时,若小明在没有断开开关 S 时,就拔去电源插头,则以下说法正确的是 ( )A. F 可能被熔断B. F 不可能被熔断C. C1可能被损坏D. C2可能被损坏解析:先拔去电源插头,保险丝不形成回路,不会熔断。

开关S 未断开,由于自感作用,L 中电流不会突变,在R 两端产生高电压,R 阻值迅速变小, C 1两端电压迅速变小, C 1不会被损坏,高电压都加在C 2上, C 2可能被损坏。

答案:BD典型例题:(改编)例4.如图,一圆环与外切正方形线框均由相同的绝缘导线制成,并各自形成闭合回路,匀强磁场布满整个方形线框,当磁场均匀变化时,线框和圆环中的感应电动势之比是多大?感应电流之比等于多少?解析:设正方形边长为2a ,则圆环半径为a ,两者面积之比为 S1/S2=4a2/πa2=4/π,电阻之比为 R1/R2=8a/2πa=4/πE =ΔΦ/Δt =S ΔB/Δt ∝SE1 / E2= S1/S2=4a2/ π a2=4/π,1122121=⨯=R R E E I I 答案:电动势之比4/π,电流之比1:1例5.矩形形线框abcd绕OO 轴在磁感强度为0.2T的匀强磁场中以2 r/s的转速匀速转动,已知ab =20cm,bd=40cm,匝数为100匝,当线框从如图示位置开始转过90°,则线圈中磁通量的变化量ΔΦ等于多少?磁通量平均变化率为多少?线圈中产生的平均感应电动势E为多少?解析:转过90°时,线圈中磁通量的变化量ΔΦ=BS – 0 = 0.016 Wb周期为 T=1/2=0.5sΔt =1/4 T=0. 125sΔΦ/Δt =0.016/0.125 =0.128 Wb/s,E=nΔΦ/Δt =12.8V答案:0.128 Wb/s,12.8V点评:第3课时电磁感应规律的综合应用1、高考解读真题品析知识:电磁感应中的电路问题例1. (09年广东物理)18.(15分)如图18(a)所示,一个电阻值为R,匝数为n的圆形金属线与阻值为2R的电阻R1连结成闭合回路。

线圈的半径为r1 . 在线圈中半径为r2的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图18(b)所示。

图线与横、纵轴的截距分别为t0和B0. 导线的电阻不计。

求0至t1时间内(1)通过电阻R1上的电流大小和方向;(2)通过电阻R1上的电量q及电阻R1上产生的热量。

解析:⑴由图象分析可知,0至1t时间内0BBt t∆=∆由法拉第电磁感应定律有BE n n st tφ∆∆==⋅∆∆而22s rπ=由闭合电路欧姆定律有11EIR R=+联立以上各式解得通过电阻1R上的电流大小为20213nB rIRtπ=由楞次定律可判断通过电阻1R上的电流方向为从b到a⑵通过电阻1R上的电量2021113nB r tq I tRtπ==通过电阻1R上产生的热量22242021111229n B r tQ I R tRtπ==答案:(1)20213nB rIRtπ=,电流方向为从b到a(2)2021113nB r tq I tRtπ==,22242021111229n B r tQ I R tRtπ==点评: 热点关注知识:电磁感应中的动力学问题答案:⑴2212L B fRV V -= ⑵L R BLV B f 1<⑶2222212)]([LB R f R V V BL R E P =-==电 ⑷m fR V V L B a --=)(2122 点评:电磁感应中的动力学问题解题步骤: ①受力分析(标上V ,a 方向)、过程分析 ② 交代隐含条件,书写方程2、知识网络考点1.电磁感应中的动力学问题1.电磁感应中产生的感应电流在磁场中将受到安培力的作用,因此,电磁感应问题往往跟力学问题联系在一起,解决这类电磁感应中的力学问题,不仅要应用电磁学中的有关规律,如楞次定律、法拉第电磁感应定律、左右手定则、安培力的计算公式等,还要应用力学中的有关规律,如牛顿运动定律、动量定理、动能定理、动量守恒定律、机械能守恒定律等。

相关文档
最新文档