人教版七年级下学期数学期末试卷含答案

合集下载

人教版数学七年级下册期末考试试卷及答案

人教版数学七年级下册期末考试试卷及答案

人教版数学七年级下册期末考试试题一、单选题(共10小题,每题3分,共30分).1.在实数﹣,0.21,,,,0.20202中,无理数的个数为()A.1 B.2 C.3 D.42.第七次全国人口普查结果显示,全国人口共141178万人,与2010年第六次全国人口普查数据相比,增加7206万人.将数据7206万用科学记数法表示为()A.7206×104B.72.06×106C.7.206×107D.0.7206×108 3.已知∠1与∠2是对顶角,∠1与∠3是邻补角,则∠2+∠3的度数为()A.90°B.180°C.270°D.360°4.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.已知点A(4,﹣3)到y轴的距离为()A.4 B.﹣4 C.3 D.﹣36.长沙市今年有8万名学生参加初中毕业会考,要想了解这8万名学生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.1000名考生是样本容量C.8万名考生是总体D.每位学生的数学成绩是个体7.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.三角形的稳定性8.下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.9.我国古代著名著作《算学启蒙》中有这样一道题:“良马日行二百四十里,驽马日行一直五十里,驽马先行一十二日,问良马几何追及之.”题意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,则快马追上慢马需()A.20天B.21天C.22天D.23天10.如图,△ABC中,∠1=∠2,点G为AD中点,延长BG交AC于点E,F为AB上一点,且CF⊥AD于点H,下列判断中,①线段BG是△ABD边AD上的中线;②线段CH 是△ACH中AH边上的高;③△ABG与△BDG面积相等;④AB﹣AC=BF;⑤∠2+∠FBC+∠FCB=90°,其中正确的结论有()A.5个B.4个C.3个D.2个二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系内,把点P(﹣5,﹣2)向右平移2个单位长度得到的点的坐标是.12.不等式组的解集为.13.已知:如图,在△ABC中,∠BAC=50°,∠ABC=60°,则∠ACE=.14.如果一个多边形的每个外角都等于60°,则这个多边形的边数是.15.一个正数x的平方根是2a﹣3与5﹣a,则a=.16.董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天),则扇形统计图B部分所对应的圆心角的度数是.三、解答题(本大题共9个小题,第17、18、19题每题6分,第20、21题每题8分,第22、23题每随9分,第24、25题每题10分,共72分)17.计算:+|﹣4|+(﹣1)2021﹣.18.先化简,再求值:﹣3a2b+(4ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣1.19.求满足不等式:+2>的所有正整数解.20.人教版八年级上册第36﹣37页如何作一个角等于已知角的方法.已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)如图,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧相交于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.请你根据以上材料完成下面问题.(1)这种作一个角等于已知角的方法的依据是.(填序号)①SSS ②SAS ③AAS ④ASA(2)请你证明:∠A′O′B′=∠AOB.21.湖南广益实验中学在暑假期间开展“心怀感恩,孝敬父母”的实践活动,倡导学生在假期中帮助父母干家务,开学以后,校学生会随机抽取了部分学生,就暑假“平均每天帮助父母干家务所用时长”进行了调查,如图是根据相关数据绘制的统计图的一部分.根据上述信息,回答下列问题:(1)在本次随机抽取的样本中,调查的学生人数是人,m=,n =;(2)补全数分布直方图;(3)如果该校共有学生4000人,请你估计“平均每天帮助父母干家务的时长不少于30分钟”的学生大约有多少人?22.在国家精准扶贫政策下,某乡村大力发展乡村旅游,为了满足游客的需求,某商户决定购进A,B两种特产来进行销售.(1)若购进A种特产8件,B种特产3件,需要950元;购进A种特产5件,B种特产6件,需要800元.求购进A,B两种特产每件分别需要多少元?(2)若该商户决定购进A,B两种特产共100件,虑市场需求和资金周转,A种特产至少需购进50件,用于购买这100件特产的总资金不能超过7650元,请问该商户最多可购进A种特产多少件?23.已知:如图,在平面直角坐标系xOy中,A(﹣2,0),B(0,4),点C在第四象限,AC⊥AB,AC=AB.(1)求点C的坐标及∠COA的度数;(2)若直线BC与x轴的交点为M,点P在经过点C与x轴平行的直线上,求出S△POM+S△BOM的值.24.对于实数x,y我们定义一种新运算L(x,y)=ax+by(其中a,b均为非零常数),由这种运算得到的数我们称之为广益数,记为L(x,y),其中(x,y)叫做广益数对.若实数x,y都取正整数,此时的(x,y)叫做广益正格数对.(1)若L(x,y)=x+3y,则L(,)=,L(﹣2,m)=;(用含m 的式子表示)(2)已知L(x,y)=ax+by(其中a,b互为相反数)L(2,3)=n﹣3,L(1,﹣2)=2n+1,求n的值.(3)已知L(x,y)=3x+cy,其中L(,)=2.若L(x,kx)=18(其中k为整数),问是否存在满足这样条件的广益正格数对?若存在,请求出这样的广益正格数对;若不存在,请说明理由.25.如图①,AB=9,AC⊥AB,BD⊥AB,AC=BD=7,点P在线段AB上以每秒2个单位的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,它们运动的时间为t秒.(1)若点Q运动的速度与点P运动的速度相等,当t=1时,求证:△ACP≌△BPQ;(2)在(1)的条件下,求∠PCQ的度数;(3)如图②,若∠CAB=∠DBA=70°,AB=9,AC=BD=7,点P在线段AB上以每秒2个单位的速度由点A向点B运动,同时,点Q在线段BD上以每秒x个单位的速度由点B向点D运动,若存在△ACP与△BPQ全等,请求出相应的x和t的值.参考答案一、单选题(共10小题,每题3分,共30分).1.在实数﹣,0.21,,,,0.20202中,无理数的个数为()A.1 B.2 C.3 D.4解:0.21,0.20202有限小数,属于有理数;是分数,属于有理数;无理数有﹣,,,共3个.故选:C.2.2021年5月11日,第七次全国人口普查结果显示,全国人口共141178万人,与2010年第六次全国人口普查数据相比,增加7206万人.将数据7206万用科学记数法表示为()A.7206×104B.72.06×106C.7.206×107D.0.7206×108解:7206万=72060000=7.206×107,故选:C.3.已知∠1与∠2是对顶角,∠1与∠3是邻补角,则∠2+∠3的度数为()A.90°B.180°C.270°D.360°解:∵∠1与∠2是对顶角,∴∠1=∠2,∵∠1与∠3是邻补角,∴∠1+∠3=180°,∴∠2+∠3=180°.故选:B.4.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间解:∵16<21<25,∴4<<5,则的值在4和5之间,故选:C.5.已知点A(4,﹣3)到y轴的距离为()A.4 B.﹣4 C.3 D.﹣3解:点A(4,﹣3)到y轴的距离为|4|=4.故选:A.6.长沙市今年有8万名学生参加初中毕业会考,要想了解这8万名学生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.1000名考生是样本容量C.8万名考生是总体D.每位学生的数学成绩是个体解:A.这1000名考生的数学成绩是总体的一个样本,故本选项不合题意;B.1000是样本容量,故本选项不合题意;C.8万名考生的数学成绩是总体,故本选项不合题意;D.每位学生的数学成绩是个体,故本选项符合题意.故选:D.7.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.三角形的稳定性解:一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是三角形的稳定性,故选:D.8.下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.解:A、∵AB∥CD,∴∠1+∠2=180°,∠1与∠2不一定相等,故A错误,不符合题意;B、∵AB∥CD,∴∠1=∠3,∵∠2=∠3,∴∠1=∠2,故B正确,符合题意;C、若梯形ABCD是等腰梯形,可得∠1=∠2,故C错误,不符合题意;D、∵AB∥CD,∴∠BAD=∠CDA,若AC∥BD,可得∠1=∠2,故D错误,不符合题意;故选:B.9.我国古代著名著作《算学启蒙》中有这样一道题:“良马日行二百四十里,驽马日行一直五十里,驽马先行一十二日,问良马几何追及之.”题意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,则快马追上慢马需()A.20天B.21天C.22天D.23天解:设快马x天可以追上慢马,由题意,得240x﹣150x=150×12,解得:x=20.答:快马20天可以追上慢马.故选:A.10.如图,△ABC中,∠1=∠2,点G为AD中点,延长BG交AC于点E,F为AB上一点,且CF⊥AD于点H,下列判断中,①线段BG是△ABD边AD上的中线;②线段CH 是△ACH中AH边上的高;③△ABG与△BDG面积相等;④AB﹣AC=BF;⑤∠2+∠FBC+∠FCB=90°,其中正确的结论有()A.5个B.4个C.3个D.2个解:①因为G为AD中点,所以BG是△ABD边AD上的中线,故正确;②因为CF⊥AD于H,所以CH是△ACH中AH边上的高,故正确;③因为G为AD中点,根据等底等高的三角形面积相等,故正确;④因为∠1=∠2,CF⊥AD,可知∠AFC=∠ACF,根据等角对等边得AF=AC,故AB﹣AC=BF正确,⑤因为∠1=∠2,CF⊥AD于H,根据直角三角形的两锐角互余及三角形外角的性质得到,∠1+∠AFH=∠1+∠FBC+∠FCB=90°,所以∠2+∠FBC+∠FCB=90°,故正确.所以正确的个数是5个.故选:A.二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系内,把点P(﹣5,﹣2)向右平移2个单位长度得到的点的坐标是(﹣3,﹣2).解:把点P(﹣5,﹣2)向右平移2个单位长度得到的点的坐标是(﹣3,﹣2).故答案为:(﹣3,﹣2).12.不等式组的解集为x>3.解:根据同大取大,即可得到不等式组的解集为:x>3,故答案为:x>3.13.已知:如图,在△ABC中,∠BAC=50°,∠ABC=60°,则∠ACE=110°.解:∵∠ACE是△ABC的一个外角,∴∠ACE=∠BAC+∠ABC,∵∠BAC=50°,∠ABC=60°,∴∠ACE=50°+60°=110°.14.如果一个多边形的每个外角都等于60°,则这个多边形的边数是6.解:360°÷60°=6.故这个多边形是六边形.故答案为:6.15.一个正数x的平方根是2a﹣3与5﹣a,则a=﹣2.解:∵正数x的平方根是2a﹣3与5﹣a,∴2a﹣3+5﹣a=0,解得a=﹣2.故答案为:﹣2.16.董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天),则扇形统计图B部分所对应的圆心角的度数是108°.解:∵被调查的总户数为9÷15%=60(户),∴B类别户数为60﹣(9+21+12)=18(户),则扇形统计图B部分所对应的圆心角的度数是360°×=108°,故答案为:108°.三、解答题(本大题共9个小题,第17、18、19题每题6分,第20、21题每题8分,第22、23题每随9分,第24、25题每题10分,共72分)17.计算:+|﹣4|+(﹣1)2021﹣.解:原式=3+4﹣1﹣3=3.18.先化简,再求值:﹣3a2b+(4ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣1.解:﹣3a2b+(4ab2﹣a2b)﹣2(2ab2﹣a2b)=﹣3a2b+4ab2﹣a2b﹣4ab2+2a2b=﹣2a2b,当a=1,b=﹣1时,原式=﹣2×1×(﹣1)=2.19.求满足不等式:+2>的所有正整数解.解:去分母得:2(x﹣4)+12>3x,去括号得:2x﹣8+12>3x,解得:x<4,则不等式的正整数解为1,2,3.20.人教版八年级上册第36﹣37页如何作一个角等于已知角的方法.已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)如图,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧相交于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.请你根据以上材料完成下面问题.(1)这种作一个角等于已知角的方法的依据是①.(填序号)①SSS②SAS③AAS④ASA(2)请你证明:∠A′O′B′=∠AOB.解:(1)根据作图过程可知:这种作一个角等于已知角的方法的依据是①;①SSS②SAS③AAS④ASA故答案为:①;(2)证明:在△C′O′D′和△COD中,,∴△C′O′D′≌△COD(SSS),∴∠A′O′B′=∠AOB.21.湖南广益实验中学在暑假期间开展“心怀感恩,孝敬父母”的实践活动,倡导学生在假期中帮助父母干家务,开学以后,校学生会随机抽取了部分学生,就暑假“平均每天帮助父母干家务所用时长”进行了调查,如图是根据相关数据绘制的统计图的一部分.根据上述信息,回答下列问题:(1)在本次随机抽取的样本中,调查的学生人数是200人,m=20,n=25;(2)补全数分布直方图;(3)如果该校共有学生4000人,请你估计“平均每天帮助父母干家务的时长不少于30分钟”的学生大约有多少人?解:(1)在本次随机抽取的样本中,调查的学生人数是:60÷30%=200(人),m%=(200﹣60﹣40﹣50﹣10)÷200×100%=20%,n%=50÷200×100%=25%,即m=20,n=25,故答案为:200,20,25;(2)20~30分钟的频数为:200﹣60﹣40﹣50﹣10=40,补全的频数分布直方图如图所示;(3)4000×=1200(人),答:估计“平均每天帮助父母干家务的时长不少于30分钟”的学生大约有1200人.22.在国家精准扶贫政策下,某乡村大力发展乡村旅游,为了满足游客的需求,某商户决定购进A,B两种特产来进行销售.(1)若购进A种特产8件,B种特产3件,需要950元;购进A种特产5件,B种特产6件,需要800元.求购进A,B两种特产每件分别需要多少元?(2)若该商户决定购进A,B两种特产共100件,虑市场需求和资金周转,A种特产至少需购进50件,用于购买这100件特产的总资金不能超过7650元,请问该商户最多可购进A种特产多少件?解:(1)设购进A种特产每件需要x元,购进B种特产每件需要y元,依题意得:,解得:.答:购进A种特产每件需要100元,购进B种特产每件需要50元.(2)设该商户购进A种特产m件,则购进B种特产(100﹣m)件,依题意得:,解得:50≤m≤53.答:该商户最多可购进A种特产53件.23.已知:如图,在平面直角坐标系xOy中,A(﹣2,0),B(0,4),点C在第四象限,AC⊥AB,AC=AB.(1)求点C的坐标及∠COA的度数;(2)若直线BC与x轴的交点为M,点P在经过点C与x轴平行的直线上,求出S△POM+S△BOM的值.解:(1)作CD⊥x轴于点D,∴∠CDA=90°.∵∠AOB=90°,∴∠AOB=∠CDA.∴∠DAC+∠DCA=90°.∵AC⊥AB,∴∠BAC=∠BAD+∠CAD=90°,∴∠BAD=∠ACD.在△AOB和△CDA中,∴△AOB≌△CDA(AAS),∴AO=CD,OB=DA.∵A(﹣2,0),B(0,4),∴OA=2,OB=4,∴CD=2,DA=4,∴OD=2,∴OD=CD.∵点C在第四象限,∴C(2,﹣2).∵∠CDO=90°,∴∠COD=45°.∴∠COA=180°﹣45°=135°.(2)∵PC∥x轴,∴点P到x轴的距离相等,∴S△POM=S△COM.∴S△POM+S△BOM=S△COM+S△BOM=S△BOC.∴S△POM+S△BOM=S△BOC==4.24.对于实数x,y我们定义一种新运算L(x,y)=ax+by(其中a,b均为非零常数),由这种运算得到的数我们称之为广益数,记为L(x,y),其中(x,y)叫做广益数对.若实数x,y都取正整数,此时的(x,y)叫做广益正格数对.(1)若L(x,y)=x+3y,则L(,)=3,L(﹣2,m)=﹣2+3m;(用含m的式子表示)(2)已知L(x,y)=ax+by(其中a,b互为相反数)L(2,3)=n﹣3,L(1,﹣2)=2n+1,求n的值.(3)已知L(x,y)=3x+cy,其中L(,)=2.若L(x,kx)=18(其中k为整数),问是否存在满足这样条件的广益正格数对?若存在,请求出这样的广益正格数对;若不存在,请说明理由.解:(1)根据题中的新定义得:L(,)=+3×=3;L(﹣2,m)=﹣2+3m,故答案为:3,﹣2+3m;(2)根据题中的新定义得:L(2,3)=2a+3b=n﹣3;L(1,﹣2)=a﹣2b=2n+1;∵a,b互为相反数,∴a=﹣b,∴,解得:n=;(3)存在,(2,6),理由如下:根据题中的新定义化简L(,)=2,得:3×+c=2,解得:c=2,化简L(x,kx)=18,得:3x+2kx=18,依题意,x,y都为正整数,k是整数,∴3+2k是奇数,∴3+2k=1,3,9,解得:k=−1,0,3,当k=−1时,x=18,kx=−18,舍去;当k=0时,x=6,kx=0,舍去;当k=3时,x=2,kx=6,综上,k=3时,存在正格数对x=2,y=6满足条件.25.如图①,AB=9,AC⊥AB,BD⊥AB,AC=BD=7,点P在线段AB上以每秒2个单位的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,它们运动的时间为t秒.(1)若点Q运动的速度与点P运动的速度相等,当t=1时,求证:△ACP≌△BPQ;(2)在(1)的条件下,求∠PCQ的度数;(3)如图②,若∠CAB=∠DBA=70°,AB=9,AC=BD=7,点P在线段AB上以每秒2个单位的速度由点A向点B运动,同时,点Q在线段BD上以每秒x个单位的速度由点B向点D运动,若存在△ACP与△BPQ全等,请求出相应的x和t的值.【解答】(1)证明:当t=1时,AP=BQ=2,则BP=9﹣2=7,∴BP=AC,又∵∠A=∠B=90°,在△ACP和△BPQ中,,∴△ACP≌△BPQ(SAS).(2)解:如图①中,连接CQ.∵△ACP≌△BPQ,∴∠ACP=∠BPQ,PC=PQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,∴∠PCQ=45°.(3)解:①若△ACP≌△BPQ,则AC=BP,AP=BQ,∴9﹣2t=7,解得,t=1(s),则x=2(cm/s);②若△ACP≌△BQP,则AC=BQ,AP=BP,则2t=×9,解得,t=(s),则x=7÷=(cm/s),故当t=1s,x=2cm/s或t=s,x=cm/s时,△ACP与△BPQ全等.。

新人教版七年级数学(下册)期末试卷及答案(新版)

新人教版七年级数学(下册)期末试卷及答案(新版)

新人教版七年级数学(下册)期末试卷及答案(新版)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( )A .﹣4B .4C .﹣2D .22.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB =35°,则∠AOD 等于( ).A .35°B .70°C .110°D .145° 3.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为A .x y 50{x y 180=-+= B .x y 50{x y 180=++= C .x y 50{x y 90=++= D .x y 50{x y 90=-+= 5.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( )A .AC =BCB .AB =2AC C .AC +BC =ABD .12BC AB =6.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( ) A .54573x x -=- B .54573x x +=+ C .45357x x ++= D .45357x x --= 8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=,B .210{3210x y x y --=--=,C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,在△ABC 中,P 为BC 上一点,PR ⊥AB,垂足为R,PS ⊥AC,垂足为S,∠CAP=∠APQ,PR=PS,下面的结论:①AS=AR;②QP ∥AR;③△BRP ≌△CSP.其中正确的是( )A .①②B .②③C .①③D .①②③10.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .33C .26D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________. 2.如图a 是长方形纸带,∠DEF=25°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是__________°.3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭的值为________. 4.若()2320m n -++=,则m+2n 的值是________.5.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有________种购买方案.6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解方程(1)35(2)2x x --= (2)212134x x +--=2.已知方程组137x y ax y a -=+⎧⎨+=--⎩中x 为非正数,y 为负数.(1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?3.如图,直线AB ∥CD,BC 平分∠ABD,∠1=65°,求∠2的度数.4.如图,已知O 为直线AB 上一点,过点O 向直线AB 上方引三条射线OC 、OD 、OE ,且OC 平分AOD ∠,3BOE DOE ∠=∠,70COE ∠=,求∠BOE 的度数5.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?6.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:运费车型运往甲地/(元/辆)运往乙地/(元/辆)大货车 720 800小货车 500 650(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、C6、C7、B8、D9、A 10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、105°3、0.4、-15、两6、5三、解答题(本大题共6小题,共72分)1、(1)4x =;(2)25x = 2、(1)a 的取值范围是﹣2<a ≤3;(2)当a 为﹣1时,不等式2ax+x >2a+1的解集为x <1. 3、50°.4、∠BOE 的度数为60°5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.6、(1)大货车用8辆,小货车用10辆;(2)w=70a+11400(0≤a ≤8且为整数);(3)使总运费最少的调配方案是:3辆大货车、7辆小货车前往甲地;5辆大货车、3辆小货车前往乙地.最少运费为11610元.。

2024新人教版七年级数学下册期末试卷及答案

2024新人教版七年级数学下册期末试卷及答案

2024新人教版七年级数学下册期末试卷及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.5D. 22. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 263. 下列等式中正确的是:A. a² = 2abB. a³ = 3a²C. a² = a³D. a³ = 2a²4. 下列哪一个数是九的分之一:A. 1/9B. 9/1C. 9/2D. 2/95. 下列哪一个比例式是正确的:A. 3/4 = 12/18B. 5/7 = 15/21C. 4/9 = 12/24D. 6/8 = 18/246. 已知一个正方形的边长为4,则它的面积是:A. 16B. 8C. 4D. 27. 下列哪一个角的度数是90度:A. 直角B. 锐角C. 钝角D. 平角8. 下列哪一个数是负数:A. -3B. 3C. 0D. 29. 已知一个等边三角形的边长为6,则它的面积是:A. 9B. 6C. 3D. 110. 下列哪一个数是立方根:A. 27B. 3C. 3√27D. 3√3二、填空题(每题4分,共40分)1. 若两个数的和为8,它们的差为3,则这两个数分别是______和______。

2. 已知一个数的平方等于36,则这个数是______或______。

3. 下列各数中,是无理数的是______、______、______。

4. 一个等边三角形的周长为15,则它的边长是______,面积是______。

5. 若一个正方形的边长为a,则它的对角线长度为______,面积为______。

三、解答题(共20分)1. (10分)已知一个数的平方等于25,求这个数。

2. (10分)解方程:2x - 5 = 3x + 1。

3. (10分)已知一个长方形的长为8,宽为3,求它的面积和周长。

2023-2024学年全国初中七年级下数学人教版期末试卷(含答案解析)

2023-2024学年全国初中七年级下数学人教版期末试卷(含答案解析)

20232024学年全国初中七年级下数学人教版期末试卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()。

A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()。

A. 2B. 0.5C. √3D. 3/43. 下列等式中,正确的是()。

A. 2^3 = 8B. 3^2 = 9C. 4^0 = 1D. 5^(1) = 54. 若一个正方形的边长是a,则它的面积是()。

A. 2aB. 4aC. a^2D. a^35. 下列各数中,是正数的是()。

A. 3B. 0C. 1/2D. 5/46. 若一个数的平方是9,则这个数是()。

A. 3B. 3C. 3和3D. 07. 下列各数中,是分数的是()。

A. 2B. 3/4C. 5D. 68. 若一个数的绝对值是5,则这个数是()。

A. 5B. 5C. 5和5D. 09. 下列各数中,是整数的是()。

A. 1/2B. 3/4C. 5D. 610. 若一个数的立方是8,则这个数是()。

A. 2B. 2C. 2和2D. 0二、填空题(每题3分,共30分)11. 一个数的立方根是2,则这个数是__________。

12. 下列各数中,是无理数的是__________。

13. 下列等式中,正确的是__________。

14. 若一个正方形的边长是a,则它的面积是__________。

15. 下列各数中,是负数的是__________。

16. 若一个数的平方是16,则这个数是__________。

17. 下列各数中,是正整数的是__________。

18. 若一个数的绝对值是7,则这个数是__________。

19. 下列各数中,是偶数的是__________。

20. 若一个数的立方是27,则这个数是__________。

三、解答题(每题10分,共50分)21. 已知一个正方形的边长是a,求它的面积。

22. 已知一个数的平方是9,求这个数。

人教版七年级数学下册期末考试测试卷(含答案)

人教版七年级数学下册期末考试测试卷(含答案)

人教版七年级数学下册期末考试测试卷(含答案)班级 姓名 成绩第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.如图,点C 到直线AB 的距离是指哪条线段长( ) A .CBB .CDC .CAD .DE2.下列不等式变形正确的是( ) A .由a >b ,得a ﹣2<b ﹣2 B .由a >b ,得|a|>|b| C .由a >b ,得﹣2a <﹣2bD .由a >b ,得a2>b23.若点P (a ,b )到x 轴的距离是2,到y 轴的距离是4,则这样的点P 有( ) A .1个B .2个C .3个D .4个4.下列语言是命题的是( ) A .画两条相等的线段B .等于同一个角的两个角相等吗?C .延长线段AO 到C ,使OC=OAD .两直线平行,内错角相等.5.下列调查中,适宜采用全面调查方式的是( ) A .调查市场上老酸奶的质量情况B .调查某品牌圆珠笔芯的使用寿命C .调查乘坐飞机的旅客是否携带违禁物品D .调查我市市民对伦敦奥运会吉祥物的知晓率 6..不等式组的解集在数轴上表示正确的是( )A .B .C .D .7.若是方程组的解,则(a+b )•(a ﹣b )的值为( ) A .﹣B .C .﹣16D .168.如图,AB ∥CD ,∠ABK 的角平分线BE 的反向延长线和∠DCK 的角平分线CF 的反向延长线交于点H ,∠K ﹣∠H=27°,则∠K=( )A .76°B .78°C .80°D .82°9.如图,∠A +∠B +∠C +∠D +∠E +∠F =A.180°B.360°C.540°D.720°10.有甲、乙、丙三种商品,如果购买甲3件,乙2件,丙1件共需315元钱;购买甲1件,乙2件,丙3件共需285元,那么购甲,乙,丙三种商品各一件共需钱A.120元B.130元C.150元D.无法确定11.如果关于x 的不等式组232x a x a >+⎧⎨<-⎩ 无解,则a 的取值范围是A.a <2B.a >2C.a ≥2D.a ≤2 12.马小虎在计算一个多边形的内角和时,由于粗心少算了2个内角,其和等于830°,则该多边形的边数是A.7B.8C.7或8D.无法确定第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13.若点A (1,3)向左平移2个单位长度,再向下平移4个单位长度得到点B,则B 的坐标为 .14.若a+1和-5是实数m 的两个平方根,则a 的值为 . 15.若0x 2-x =++y ,则=x y .16.如图,将一个宽度相等的纸条按如图所示沿AB 所折叠,已知︒=∠601,则=∠2 .17.已知a 是5的整数部分,b 是5的小数部分,则a-b= . 18.若不等式组⎩⎨⎧<->+1b x 23a 2x 解集为1<x<2,则(a+2)(b-1)值为 .三、解答题(本大题共7小题,共46分.解答应写出文字说明、证明过程或演算步骤)FED CBA19.计算(5分)2-1-8-02--91-322020+++)()(20.解方程组(5分)⎩⎨⎧=+=+②①1534255x 2y x y21.(6分)解下列不等式组,并把解集在数轴上表示出来。

人教版七年级数学下册期末测试题+答案解析(共四套)

人教版七年级数学下册期末测试题+答案解析(共四套)

⼈教版七年级数学下册期末测试题+答案解析(共四套)B ′C ′D ′O ′A ′O DC BA(第8题图)⼀、选择题(每⼩题3分,计24分,请把各⼩题答案填到表格内)题号 1 2 3 4 5 6 78 总分答案1.如图所⽰,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180° 2.为了了解某市5万名初中毕业⽣的中考数学成绩,从中抽取500名学⽣的数学成绩进⾏统计分析,那么样本是 A .某市5万名初中毕业⽣的中考数学成绩 B .被抽取500名学⽣(第1题图)C .被抽取500名学⽣的数学成绩D .5万名初中毕业⽣ 5.有⼀个两位数,它的⼗位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个D .⽆数个 7.下列事件属于不确定事件的是A .太阳从东⽅升起B .2010年世博会在上海举⾏C .在标准⼤⽓压下,温度低于0摄⽒度时冰会融化D .某班级⾥有2⼈⽣⽇相同 8.请仔细观察⽤直尺和圆规.....作⼀个⾓∠A ′O ′B ′等于已知⾓∠AOB 的⽰意图,请你根据所学的图形的全等这⼀章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 A .SAS B .ASA C .AASD .SSS⼆、填空题(每⼩题3分,计24分)9.⽣物具有遗传多样性,遗传信息⼤多储存在DNA 分⼦上.⼀个DNA 分⼦的直径约为0.0000002cm .这个数量⽤科学记数法可表⽰为 cm . 10.将⽅程2x+y=25写成⽤含x 的代数式表⽰y 的形式,则y= . 11.如图,AB∥CD,∠1=110°,∠ECD=70°,∠E 的⼤⼩是 °. 12.三⾓形的三个内⾓的⽐是1:2:3,则其中最⼤⼀个内⾓的度数是 °.13.掷⼀枚硬币30次,有12次正⾯朝上,则正⾯朝上的频率为 .14.不透明的袋⼦中装有4个红球、3个黄球和5个蓝球,每个球除颜⾊不同外其它都相同,从中任意摸出⼀个球,则摸出球的可能性最⼩. 15.下表是⾃18世纪以来⼀些统计学家进⾏抛硬币试验所得的数据:试验者试验次数n 正⾯朝上的次数m正⾯朝上的频率nm布丰 4040 2048 0.5069 德·摩根 4092 2048 0.5005 费勤1000049790.4979那么估计抛硬币正⾯朝上的概率的估计值是 . 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、OB 上,如果要得到OP =OP′,需要添加以下条件中的某⼀个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出⼀个正确结果的序号:.三、解答题(计72分)17.(本题共8分)如图,⽅格纸中的△ABC 的三个顶点分别在⼩正⽅形的顶点(格点)上,称为格点三⾓形.请在⽅格纸上按下列要求画图.在图①中画出与△ABC 全等且有⼀个公共顶点的格点△C B A ''';在图②中画出与△ABC 全等且有⼀条公共边的格点△C B A ''''''.20.解⽅程组:(每⼩题5分,本题共10分)(1)=+-=300342150y x yx (2)=+=+300%25%53%5300y x y x 21.(本题共8分)已知关于x 、y 的⽅程组=+=+73ay bx by ax 的解是==12y x ,求a b +的值.OAC P P′(第16题图)(第16题图)22.(本题共9分)如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗?为什么?23.(本题9分)⼩王某⽉⼿机话费中的各项费⽤统计情况见下列图表,请你根据图表信息完成下列各题:(2)请将条形统计图补充完整. (3)扇形统计图中,表⽰短信费的扇形的圆⼼⾓是多少度?24.(本题4+8=12分)上海世博会会期为2010年5⽉1⽇⾄2010年10⽉31⽇。

人教版七年级下册数学期末复习试卷及答案

人教版七年级下册数学期末复习试卷及答案

人教版七年级下册数学期末复习试卷及答案一、选择题1.下列图形中,1∠与2∠是同旁内角的是( )A .B .C .D .2.在以下现象中,属于平移的是( )①在荡秋千的小朋友的运动;②坐观光电梯上升的过程;③钟面上秒针的运动;④生产过程中传送带上的电视机的移动过程. A .①② B .②④ C .②③ D .③④ 3.已知点P 的坐标为P (3,﹣5),则点P 在第( )象限.A .一B .二C .三D .四4.下列命题:①平面内,垂直于同一条直线的两直线平行;②经过直线外一点,有且只有一条直线与这条直线平行;③垂线段最短;④同旁内角互补.其中,正确命题的个数有( ) A .3个B .2个C .1个D .0个5.把一块直尺与一块含30的直角三角板如图放置,若134∠=︒,则2∠的度数为( )A .114︒B .126︒C .116︒D .124°6.下列说法正确的是( )A .a 2的正平方根是aB .819=±C .﹣1的n 次方根是1D .321a --一定是负数7.如图,已知直线//AB CD ,点F 为直线AB 上一点,G 为射线BD 上一点.若:2:1HDG CDH ∠∠=,:2:1GBE EBF ∠∠=,HD 交BE 于点E ,则E ∠的度数为( )A .45°B .55°C .60°D .75°8.如图,点A (0,1),点A 1(2,0),点A 2(3,2),点A 3(5,1)…,按照这样的规律下去,点A 100的坐标为( )A .(101,100)B .(150,51)C .(150,50)D .(100,53)九、填空题9.已知 325.6≈18.044,那么± 3.256≈___________.十、填空题10.平面直角坐标系中,点(3,2)A -关于x 轴的对称点是__________.十一、填空题11.如图,DB 是ABC 的高,AE 是角平分线,26BAE ∠=,则BFE ∠=______.十二、填空题12.如图,已知直线EF ⊥MN 垂足为F ,且∠1=138°,则当∠2等于__时,AB ∥CD .十三、填空题13.如图,将长方形ABCD 沿DE 折叠,使点C 落在边AB 上的点F 处,若45EFB ∠=︒,则DEC ∠=________°十四、填空题14.如图,在纸面上有一数轴,点A 表示的数为﹣1,点B 表示的数为3,点C 表示的数为3B 为中心折叠,然后再次折叠纸面使点A 和点B 重合,则此时数轴上与点C 重合的点所表示的数是_______.十五、填空题15.()2260a b ++-=,则(),a b 在第_____象限.十六、填空题16.如图,在平面直角坐标系中,点()10,0A ,点()22,1A ,点()34,2A ,点()46,3A ,,按照这样的规律下去,点2021A 的坐标为__________.十七、解答题17.计算:(1)3981++- (2)23427(3)+--- (3)2(23)+ (4)353325-++十八、解答题18.求下列各式中x 的值: (1)(x +1)3﹣27=0 (2)(2x ﹣1)2﹣25=0十九、解答题19.完成下列证明过程,并在括号内填上依据.如图,点E 在AB 上,点F 在CD 上,∠1=∠2,∠B =∠C ,求证AB ∥CD .证明:∵∠1=∠2(已知),∠1=∠4 ∴∠2= (等量代换), ∴ ∥BF ( ),∴∠3=∠ ( ). 又∵∠B =∠C (已知), ∴∠3=∠B ∴AB ∥CD ( ).二十、解答题20.在平面直角坐标系中,△ABC 三个顶点的坐标分别是A (﹣2,2)、B (2,0),C (﹣4,﹣2).(1)在平面直角坐标系中画出△ABC ;(2)若将(1)中的△ABC 平移,使点B 的对应点B ′坐标为(6,2),画出平移后的△A ′B ′C ′;(3)求△A ′B ′C ′的面积.二十一、解答题21.已知23|49|7a b a a -+-+=0,求实数a 、b 的值并求出b 的整数部分和小数部分.二十二、解答题22.如图,用两个面积为2200cm 的小正方形拼成一个大的正方形.(1)则大正方形的边长是 ;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为4:3,且面积为2360cm ?二十三、解答题23.(1)(问题)如图1,若//AB CD ,40AEP ∠=︒,130PFD ∠=︒.求EPF ∠的度数; (2)(问题迁移)如图2,//AB CD ,点P 在AB 的上方,问PEA ∠,PFC ∠,EPF ∠之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知EPFα∠的平分线和∠=,PEA∠的平分线交于点G,用含有α的式子表示GPFC∠的度数.二十四、解答题24.如图,已知AM∥BN,∠A=64°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)①∠ABN的度数是;②∵AM∥BN,∴∠ACB=∠;(2)求∠CBD的度数;(3)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律;(4)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是.二十五、解答题25.如图,△ABC和△ADE有公共顶点A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.(1)若DE//AB,则∠EAC=;(2)如图1,过AC上一点O作OG⊥AC,分别交A B、A D、AE于点G、H、F.①若AO=2,S△AGH=4,S△AHF=1,求线段OF的长;②如图2,∠AFO的平分线和∠AOF的平分线交于点M,∠FHD的平分线和∠OGB的平分线交于点N,∠N+∠M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由.【参考答案】一、选择题1.A【分析】根据同旁内角的定义去判断【详解】∵A选项中的两个角,符合同旁内角的定义,∴选项A正确;∵B选项中的两个角,不符合同旁内角的定义,∴选项B错误;∵C选项中的两个角,不符合同旁内角的定义,∴选项C错误;∵D选项中的两个角,不符合同旁内角的定义,∴选项D错误;故选A.【点睛】本题考查了同旁内角的定义,结合图形准确判断是解题的关键.2.B【分析】平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.平移可以不是水平的.据此解答.【详解】解析:B【分析】平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.平移可以不是水平的.据此解答.【详解】①在荡秋千的小朋友的运动,不是平移;②坐观光电梯上升的过程,是平移;③钟面上秒针的运动,不是平移;④生产过程中传送带上的电视机的移动过程.是平移;故选:B.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.3.D【分析】直接利用第四象限内的点横坐标大于0,纵坐标小于0解答即可.解:∵点P 的坐标为P (3,﹣5), ∴点P 在第四象限. 故选D . 【点睛】本题主要考查了点的坐标,各象限坐标特点如下:第一象限(+,+),第二象限(-,+)第三象限(-,-)第一象限(+,-). 4.A 【分析】根据垂直的性质、平行公理、垂线段的性质及平行线的性质逐一判断即可得答案. 【详解】平面内,垂直于同一条直线的两直线平行;故①正确, 经过直线外一点,有且只有一条直线与这条直线平行,故②正确 垂线段最短,故③正确,两直线平行,同旁内角互补,故④错误, ∴正确命题有①②③,共3个, 故选:A . 【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理. 5.D 【分析】根据角的和差可先计算出∠AEF ,再根据两直线平行同旁内角互补即可得出∠2的度数. 【详解】解:由题意可知AD//BC ,∠FEG=90°, ∵∠1=34°,∠FEG=90°, ∴∠AEF=90°-∠1=56°, ∵AD//BC ,∴∠2=180°-∠AEF=124°, 故选:D . 【点睛】本题考查平行线的性质.熟练掌握两直线平行,同旁内角互补并能正确识图是解题关键. 6.D 【分析】根据平方根、算术平方根、立方根的定义判断A 、B 、D ,根据乘方运算法则判断C 即可. 【详解】A :a 2的平方根是a ±,当0a ≥时,a 2的正平方根是a ,错误;B 9,错误;C :当n 是偶数时,()1=1n - ;当n 时奇数时,()1=-1n-,错误;D :∵210a --< ,∴【点睛】本题考查平方根、算术平方根、立方根的定义以及乘方运算,掌握相关的定义与运算法则是解题关键. 7.C 【分析】利用180ABG GBF ∠+∠=︒,及平行线的性质,得到180CDG GBF ∠+∠=︒,再借助角之间的比值,求出120BDE GBE ∠+∠=︒,从而得出E ∠的大小. 【详解】 解://AB CD ,ABG CDG ∴∠=∠, 180ABG GBF ∠+∠=︒,180CDG GBF ∴∠+∠=︒,:2:1HDG CDH ∠∠=,:2:1GBE EBF ∠∠=,2222()1801203333HDG GBE CDG GBF CDG GBF ∴∠+∠=∠+∠=∠+∠=⨯︒=︒,BDE HDG ∠=∠,120BDE GBE ∴∠+∠=︒,180()18012060E BDE GBE ∴∠=︒-∠+∠=︒-︒=︒,故选:C . 【点睛】本题考查了平行线的性质的综合应用,涉及的知识点有:平行线的性质、邻补角、三角形的内角和等知识,体现了数学的转化思想、见比设元等思想.8.B 【分析】观察图形得到偶数点的规律为,A2(3,2),A4(6,3),A6(9,4),…,A2n (3n ,n+1),由100是偶数,A100的横坐标应该是100÷2×3,纵坐标应该是100÷2+1解析:B 【分析】观察图形得到偶数点的规律为,A 2(3,2),A 4(6,3),A 6(9,4),…,A 2n (3n ,n +1),由100是偶数,A 100的横坐标应该是100÷2×3,纵坐标应该是100÷2+1,则可求A 100(150,51). 【详解】解:观察图形可得,奇数点:A 1(2,0),A 3(5,1),A 5(8,2),…,A 2n -1(3n -1,n -1),偶数点:A 2(3,2),A 4(6,3),A 6(9,4),…,A 2n (3n ,n +1),∵100是偶数,且100=2n,∴n=50,∴A100(150,51),故选:B.【点睛】本题考查点的坐标规律;熟练掌握平面内点的坐标,能够根据图形的变化得到点的坐标规律是解题的关键.九、填空题9.±1.8044【详解】∵,∴,即.故答案为±1.8044解析:±1.8044【详解】∵,∴,即 1.8044±.故答案为±1.8044十、填空题10.【分析】根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答. 【详解】解:点关于轴的对称点的坐标是(3,2).【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特3,2解析:()【分析】根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答.【详解】A-关于x轴的对称点的坐标是(3,2).解:点(3,2)【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特征,即关于x轴对称的点的坐标横坐标不变,纵坐标变为相反数;关于y轴对称的点的坐标纵坐标不变,横坐标变为相反数;十一、填空题 11.【分析】由角平分线的定义可得,∠FAD=∠BAE=26°,而∠AFD 与∠FAD 互余,与∠BFE 是对顶角,故可求得∠BFE 的度数. 【详解】∵AE 是角平分线,∠BAE=26°, ∴∠FAD=∠B 解析:64【分析】由角平分线的定义可得,∠FAD=∠BAE=26°,而∠AFD 与∠FAD 互余,与∠BFE 是对顶角,故可求得∠BFE 的度数. 【详解】∵AE 是角平分线,∠BAE=26°, ∴∠FAD=∠BAE=26°, ∵DB 是△ABC 的高,∴∠AFD=90°−∠FAD=90°−26°=64°, ∴∠BFE=∠AFD=64°. 故答案为64°. 【点睛】本题考查了三角形内角和定理,三角形的角平分线、中线和高,熟练掌握三角形内角和定理是解题的关键.十二、填空题 12.48° 【分析】先假设,求得∠3=∠4,由∠1=138°,根据邻补角求出∠3,再利用即可求出∠2的度数. 【详解】 解:若AB//CD , 则∠3=∠4,又∵∠1+∠3=180°,∠1=138°,解析:48° 【分析】先假设//AB CD ,求得∠3=∠4,由∠1=138°,根据邻补角求出∠3,再利用EF MN 即可求出∠2的度数. 【详解】 解:若AB //CD , 则∠3=∠4,又∵∠1+∠3=180°,∠1=138°,∴∠3=∠4=42°;∵EF⊥MN,∴∠2+∠4=90°,∴∠2=48°;故答案为:48°.【点睛】本题主要考查平行线的性质,两直线垂直,平角定义,解题思维熟知邻补角、垂直的角度关系.十三、填空题13.5【分析】根据翻折的性质,可得到∠DEC=∠FED,∠BEF与∠DEC、∠FED三者相加为180°,求出∠BEF的度数即可.【详解】解:∵△DFE是由△DCE折叠得到的,∴∠DEC=∠FE解析:5【分析】根据翻折的性质,可得到∠DEC=∠FED,∠BEF与∠DE C、∠FED三者相加为180°,求出∠BEF的度数即可.【详解】解:∵△DFE是由△DCE折叠得到的,∴∠DEC=∠FED,又∵∠EFB=45°,∠B=90°,∴∠BEF=45°,∴∠DEC=1(180°-45°)=67.5°.2故答案为:67.5.【点睛】本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键.十四、填空题14.4+或6﹣或2﹣.【分析】先求出第一次折叠与A重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C点重合的点表示的数即可.【详解】解:第一次折叠后与A重合的点表示的数是:3+解析:62【分析】先求出第一次折叠与A重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C点重合的点表示的数即可.【详解】解:第一次折叠后与A重合的点表示的数是:3+(3+1)=7.与C重合的点表示的数:3+(36第二次折叠,折叠点表示的数为:12(3+7)=5或12(﹣1+3)=1.此时与数轴上的点C重合的点表示的数为:5+(5﹣11)=2故答案为:62【点睛】本题主要考查了数轴上的点和折叠问题,掌握折叠的性质是解答本题的关键.十五、填空题15.二【分析】根据非负数的性质列方程求出a、b的值,再根据各象限内点的坐标特征解答.【详解】解:由题意得,a+2=0,b-6=0,解得a=-2,b=6,所以,点(-2,6)在第二象限;故答解析:二【分析】根据非负数的性质列方程求出a、b的值,再根据各象限内点的坐标特征解答.【详解】解:由题意得,a+2=0,b-6=0,解得a=-2,b=6,所以,点(-2,6)在第二象限;故答案为:二【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).十六、填空题16.【分析】观察点,点,点,点点的横坐标为,纵坐标为,据此即可求得的坐标;【详解】,,,,,故答案为:【点睛】本题考查了坐标系中点的规律,找到规律是解题的关键.解析:(4040,2020)【分析】观察点()10,0A ,点()22,1A ,点()34,2A ,点()46,3A ,,点的横坐标为22n -,纵坐标为1n -,据此即可求得2021A 的坐标;【详解】()10,0A ,()22,1A ,()34,2A ,()46,3A ,,(22,1)n A n n --,∴2021(4040,2020)A故答案为:(4040,2020)【点睛】本题考查了坐标系中点的规律,找到规律是解题的关键.十七、解答题17.(1)6;(2)-4;(3);(4).【分析】(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;(2)利用算术平方根和立方根化简,再进一步计算即可;(3)类比单项式乘多项式展开计算解析:(1)6;(2)-4;(3)2+;(4)【分析】(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;(2)利用算术平方根和立方根化简,再进一步计算即可;(3)类比单项式乘多项式展开计算;(4)利用绝对值的性质化简,再进一步合并同类二次根式.【详解】解:(11-=3+2+1=6;(2=2-3-3=-4;(33)=2+;(4+=故答案为(1)6;(2)-4;(3)2+4)【点睛】本题考查立方根和算术平方根,实数的混合运算,先化简,再进一步计算,注意选择合适的方法简算.十八、解答题18.(1)x=2;(2)x=3或x=-2.【分析】(1)根据立方根的定义进行求解即可;(2)根据平方根的定义进行求解,即可得出答案.【详解】解:(1)(x+1)3-27=0,(x+1)3=2解析:(1)x=2;(2)x=3或x=-2.【分析】(1)根据立方根的定义进行求解即可;(2)根据平方根的定义进行求解,即可得出答案.【详解】解:(1)(x+1)3-27=0,(x+1)3=27,x+1=3,x=2;(2)(2x-1)2-25=0,(2x-1)2=25,2x-1=±5,x=3或x=-2.【点睛】本题考查了立方根和平方根,熟练掌握立方根和平方根的定义是解题的关键.十九、解答题19.∠4;CE;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行【分析】根据平行线的判定和性质解答.【详解】解∵∠1=∠2(已知),∠1=∠4(对顶角相等),∴∠2=解析:∠4;CE;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行【分析】根据平行线的判定和性质解答.【详解】解∵∠1=∠2(已知),∠1=∠4(对顶角相等),∴∠2=∠4(等量代换),∴CE∥BF(同位角相等,两直线平行),∴∠3=∠C(两直线平行,同位角相等).又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为:对顶角相等;CE∥BF;同位角相等,两直线平行;两直线平行,同位角相等;内错角相等,两直线平行.【点睛】此题考查平行线的判定和性质,关键是根据平行线的判定和性质解答.二十、解答题20.(1)见解析;(2)见解析;(3)10【分析】(1)根据点A、B、C的坐标描点,从而可得到△ABC;(2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′解析:(1)见解析;(2)见解析;(3)10【分析】(1)根据点A、B、C的坐标描点,从而可得到△ABC;(2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′B′C′,利用此平移规律写出A′、C′的坐标,然后描点即可得到△A′B′C′;(3)用一个矩形的面积分别减去三个三角形的面积去计算△A′B′C′的面积.【详解】解:(1)如图,△ABC为所作;(2)如图,△A′B′C′为所作;(3)△A′B′C′的面积=111 6426244210 222⨯-⨯⨯-⨯⨯-⨯⨯=.【点睛】本题考查了平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.二十一、解答题21.4,【分析】根据分母不等于0,以及非负数的性质列式求出a、b的值,再根据根据被开方数估算无理数的大小即可得解.【详解】解:根据题意得,3a-b=0,a2-49=0且a+7>0,解得a=7,解析:4214【分析】根据分母不等于0,以及非负数的性质列式求出a 、b 的值,再根据根据被开方数估算无理数的大小即可得解.【详解】解:根据题意得,3a -b =0,a 2-49=0且a +7>0,解得a =7,b =21,∵16<21<25, ∴44.【点睛】本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.二十二、解答题22.(1);(2)无法裁出这样的长方形.【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解; (2)设长方形长为cm ,宽为cm ,根据题意列出方程,解方程比较4x 与20的大小解析:(1)20;(2)无法裁出这样的长方形.【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为4x cm ,宽为3x cm ,根据题意列出方程,解方程比较4x 与20的大小即可.【详解】解:(1)由题意得,大正方形的面积为200+200=400cm 2,∴cm ;()2根据题意设长方形长为4x cm ,宽为3x cm ,由题:43360x x ⋅= 则230x =0xx ∴=∴长为43020>∴无法裁出这样的长方形.【点睛】本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键.二十三、解答题23.(1)90°;(2)∠PFC=∠PEA+∠P ;(3)∠G=α【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PF 解析:(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=12α【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PFC=∠PEA+∠FPE,即可求解;(3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得∠GEF+∠GFE=1 2∠PEA+12∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.【详解】解:(1)如图1,过点P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:过P点作PN∥AB,则PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令AB与PF交点为O,连接EF,如图3.在△GFE中,∠G=180°-(∠GFE+∠GEF),∵∠GEF=12∠PEA+∠OEF,∠GFE=12∠PFC+∠OFE,∴∠GEF+∠GFE=12∠PEA+12∠PFC+∠OEF+∠OFE,∵由(2)知∠PFC=∠PEA+∠P,∴∠PEA=∠PFC-α,∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC,∴∠GEF+∠GFE=12(∠PFC−α)+12∠PFC+180°−∠PFC=180°−12α,∴∠G=180°−(∠GEF+∠GFE)=180°−180°+12α=12α.【点睛】本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键.二十四、解答题24.(1)① ②;(2);(3)不变,,理由见解析;(4)【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的解析:(1)①116,︒②CBN;(2)58︒;(3)不变,:2:1APB ADB∠∠=,理由见解析;(4)29.︒【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的定义可以证明∠CBD=12∠ABN,即可求出结果;(3)不变,∠APB:∠ADB=2:1,证∠APB=∠PBN,∠PBN=2∠DBN,即可推出结论;(4)可先证明∠ABC=∠DBN,由(1)∠ABN=116°,可推出∠CBD=58°,所以∠ABC+∠DBN=58°,则可求出∠ABC的度数.【详解】解:(1)①∵AM//BN,∠A=64°,∴∠ABN=180°﹣∠A=116°,故答案为:116°;②∵AM//BN,∴∠ACB=∠CBN,故答案为:CBN;(2)∵AM//BN,∴∠ABN+∠A=180°,∴∠ABN=180°﹣64°=116°,∴∠ABP+∠PBN=116°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=116°,∴∠CBD=∠CBP+∠DBP=58°;(3)不变,∠APB:∠ADB=2:1,∵AM//BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1;(4)∵AM//BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN∴∠ABC=∠DBN,由(1)∠ABN=116°,∴∠CBD=58°,∴∠ABC+∠DBN=58°,∴∠ABC=29°,故答案为:29°.【点睛】本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等.二十五、解答题25.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定义求出∠M,∠N(用∠FAO表示),可得结论.【详解】解:(1)如图,∵AB∥ED∴∠E=∠EAB=90°(两直线平行,内错角相等),∵∠BAC=45°,∴∠CAE=90°-45°=45°.故答案为:45°.(2)①如图1中,∵OG⊥AC,∴∠AOG=90°,∵∠OAG=45°,∴∠OAG=∠OGA=45°,∴AO=OG=2,∵S△AHG=12•GH•AO=4,S△AHF=12•FH•AO=1,∴GH=4,FH=1,∴OF=GH-HF-OG=4-1-2=1.②结论:∠N+∠M=142.5°,度数不变.理由:如图2中,∵MF,MO分别平分∠AFO,∠AOF,∴∠M=180°-12(∠AFO+∠AOF)=180°-12(180°-∠FAO)=90°+12∠FAO,∵NH,NG分别平分∠DHG,∠BGH,∴∠N=180°-12(∠DHG+∠BGH)=180°-12(∠HAG+∠AGH+∠HAG+∠AHG)=180°-12(180°+∠HAG)=90°-12∠HAG=90°-12(30°+∠FAO+45°)=52.5°-12∠FAO,∴∠M+∠N=142.5°.【点睛】本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知识,最后一个问题的解题关键是用∠FAO表示出∠M,∠N.。

最新人教版七年级下册数学《期末检测试卷》(附答案)

最新人教版七年级下册数学《期末检测试卷》(附答案)

人教版七年级下学期期末测试数学试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题4分,共40分)1.如果一个角等于它的余角的2倍,那么这个角是它补角的()A. 2倍B. 0.5倍C. 5倍D. 0.2倍2.如图所示,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,小明走下面()线路不能到达学校.A. (0,4)→(0,0)→(4,0)B. (0,4)→(4,4)→(4,0)C. (0,4)→(1,4)→(1,1)→(4,1)→(4,0)D. (0,4)→(3,4)→(4,2)→(4,0)3.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示).则小鱼上的点(a,b)对应大鱼上的点()A. (-2a,2b)B. (-2a,-2b)C. (-2b,-2a)D. (-2a,-b)4.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是()A. 300名学生是总体B. 每名学生是个体C. 50名学生是所抽取的一个样本D. 这个样本容量是505. 如图所示,AB∥CD,AD,BC交于O,∠A=35°,∠BOD=76°,则∠C的度数是()A. 31°B. 35°C. 41°D. 76°6.方程组23x yx y+=⎧⎨+=⎩●的解为2xy=⎧⎨=⎩▲,则被●和▲遮盖的两个数分别为( )A. 5,1B. 1,3C. 2,3D. 2,47.为了改善住房条件,小亮的父母考察了某小区的A B、两套楼房,A套楼房在第3层楼,B套楼房在第5层楼,B套楼房的面积比A套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A套楼房的面积为x平方米,B套楼房的面积为y平方米,根据以上信息列出了下列方程组.其中正确的是().A. B.1.10.9 {24x y x y=-=C.0.9 1.1{24x yx y=-=D.1.10.9{24x yy x=-=8.小明的作业本上有以下四题①42164a a=;②51052a a a⋅=;③211a a aa a=⋅=;④32a a a-=.其中做错误的是()A. ①B. ②C. ③D. ④9. 如图,在△ABC中,三边a、b、c的大小关系是( )A. a<b<cB. c<a<bC. c<b<aD. b<a<c10.如图,天平右盘中每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()A. B. C. D. 二、填空题(每题4分,共40分) 11.如图,a∥b,则∠A=______.12.在平面直角坐标系中,点A是y轴上一点,若它的坐标为(a-1,a+1),另一点B的坐标为(a+3,a-5),则点B的坐标是___________.13.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第 20 个正方形(实线)四条边上的整点个数共有____个.14.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成不同的三角形的个数为_____.15.如图,将一副直角三角扳叠在一起,使直角顶点重合于O点,则∠AOB+∠DOC=_____16.若一个二元一次方程的解为2{1xy==-,则这个方程可以是______(只要求写出一个).17.如图,正方形是由k 个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k=_____.18.已知△ABC 的三边长分别为a 、b 、c ,且a 、b 、c 满足:23410250a b c c -+-+-+=请你判断△ABC 的形状是_______________19.东方旅行社,某天有空客房10间,当天接待了一个旅游团,当每个房间住3人时,只有一个房间不空也不满,试问旅游团共有__________人.20.若关于x 的不等式组0321xa x -≥⎧⎨->-⎩的整数解恰有5个,求a 的范围. 三、解答题(每题10分,共70分)21.如图,MN ,EF 是两面互相平行的镜面,一束光线AB 照射到镜面MN 上,反射光线为BC ,则∠1=∠2. (1)用尺规作图作出镜面BC 经镜面EF 反射后的反射光线CD ;(2)试判断AB 与CD 的位置关系;(3)你是如何思考的?22.下面的方格纸中,画出了一个“小猪”的图案,已知每个小正方形的边长为1.(1)“小猪”所占的面积为多少?(2)在上面的方格纸中作出“小猪”关于直线DE 对称的图案(只画图,不写作法);(3)以G 为原点,GE 所在直线为x 轴,GB 所在直线为y 轴,小正方形边长为单位长度建立直角坐标系,可得点A 的坐标是(_______,_______).23. 夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高1℃后两种空调每天各节电多少度?24.织里某童装加工企业今年五月份工人每人平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%.为了提高工人的劳动积极性,按时完成外商订货任务,企业计划从六月份起进行工资改革.改革后每位工人的工资分二部分:一部分为每人每月基本工资200元;另一部分为每加工1套童装奖励若干元. (1)为了保证所有工人的每月工资收入不低于市有关部门规定的最低工资标准450元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元?(精确到分)(2)根据经营情况,企业决定每加工1套童装奖励5元.工人小张争取六月份工资不少于1200元,问小张在六月份应至少加工多少套童装?25. 情系灾区.5月12日我国四川汶川县发生里氏8.0级大地震,地震给四川,甘肃,陕西等地造成巨大人员伤亡和财产损失.灾难发生后,我校师生和全国人民一道,迅速伸出支援的双手,为灾区人民捐款捐物.为了支援灾区学校灾后重建,我校决定象灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套,一辆乙货车可装床架10个和课桌凳10套.(1)学校如何安排甲、乙两种货车可一次性把这些物资运到灾区?有几种方案?(2)若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费最少?最少运费是多少?答案与解析一、选择题(每题4分,共40分)1.如果一个角等于它的余角的2倍,那么这个角是它补角的()A. 2倍B. 0.5倍C. 5倍D. 0.2倍【答案】B【解析】分析:两角互余和为90°,互补和为180°,根据一个角等于它余角的2倍,建立方程,即可求出这个角,进而求出它的补角即可.详解:设这个角为α,则它的余角为90°-α,∵这个角等于它余角的2倍,∴α=2(90°-α),解得,α=60°,∴这个角的补角为180°-60°=120°,∴这个角是它的补角的60120︒︒=12.故选B.点睛:本题考查了余角和补角的概念.利用题中的数量关系:一个角等于它余角的2倍,建立方程是解题的关键.2.如图所示,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,小明走下面()线路不能到达学校.A. (0,4)→(0,0)→(4,0)B. (0,4)→(4,4)→(4,0)C. (0,4)→(1,4)→(1,1)→(4,1)→(4,0)D. (0,4)→(3,4)→(4,2)→(4,0)【答案】D【解析】【分析】根据题意,在给出的图形中画一下四个选项的行走路线即可得出小明不能到达学校的路线.【详解】A. (0,4)→(0,0)→(4,0),能到达学校,故不符合题意;B. (0,4)→(4,4)→(4,0),能到达学校,故不符合题意;C. (0,4)→(1,4)→(1,1)→(4,1)→(4,0),能到达学校,故不符合题意;D. (0,4)→(3,4)→(4,2)→(4,0),不能到达学校,故符合题意,故选D.【点睛】本题考查了利用坐标确定位置,也考查了数学在生活中的应用,结合题意,自己动手操作一下即可更准确地得到结论.3. 某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示).则小鱼上的点(a,b)对应大鱼上的点()A.(-2a,2b)B. (-2a,-2b)C. (-2b,-2a)D. (-2a,-b)【答案】B【解析】根据图形易得,小鱼与大鱼的位似比是1︰2,所以点(a,b)的对应点是(-2a,-2b).故选B.4.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是()A. 300名学生是总体B. 每名学生是个体C. 50名学生是所抽取的一个样本D. 这个样本容量是50【答案】D【解析】【详解】A、300名学生的视力情况是总体,故此选项错误;B、每个学生的视力情况是个体,故此选项错误;C、50名学生的视力情况是抽取的一个样本,故此选项错误;D、这组数据的样本容量是50,故此选项正确.故选D.5. 如图所示,AB∥CD,AD,BC交于O,∠A=35°,∠BOD=76°,则∠C的度数是()A. 31°B. 35°C. 41°D. 76°【答案】C【解析】本题主要考查了三角形的外角性质和平行线的性质∵AB∥CD,∴∠D=∠A=35°. ∠DOC=180°-∠BOD=180°-76°=104°,在△COD中,∠C=180°-∠D-∠DOC=180°-35°-104°=41°6.方程组23x yx y+=⎧⎨+=⎩●的解为2xy=⎧⎨=⎩▲,则被●和▲遮盖的两个数分别为( )A. 5,1B. 1,3C. 2,3D. 2,4【答案】A【解析】分析:把x代入方程组中的第2个方程即可求出y,把x、y同时代入第一个方程即可求出被遮盖的数.详解:23x yx y+=⎧⎨+=⎩口①②,把x=2代入②,得2+y=3,∴y=1.把x=2,y=1代入①,得方程2x+y=5.故选A.点睛:本题考查了二元一次方程组的解.先把x的值代入方程组中的第二个方程是解题的关键.7.为了改善住房条件,小亮的父母考察了某小区的A B、两套楼房,A套楼房在第3层楼,B套楼房在第5层楼,B套楼房的面积比A套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A套楼房的面积为x平方米,B套楼房的面积为y平方米,根据以上信息列出了下列方程组.其中正确的是().A. B. 1.10.9{24x y x y =-= C. 0.9 1.1{24x y x y =-= D. 1.10.9{24x y y x =-= 【答案】D【解析】【分析】可设平均价为1.关键描述语是:B 套楼房的面积比A 套楼房的面积大24平方米;两套楼房的房价相同,即为平均价1.等量关系为:B 套楼房的面积-A 套楼房的面积=24;0.9×1×B 套楼房的面积=1.1×1×A 套楼房的面积,设A 套楼房的面积为x 平方米,B 套楼房的面积为y 平方米,可列方程组为1.10.9{24x y y x =-=.故选D . 【详解】解:设A 套楼房的面积为x 平方米,B 套楼房的面积为y 平方米,可列方程组为1.10.9{24x y y x =-=. 故选D .8.小明的作业本上有以下四题42164a a =;51052a a a =③211a a a a =⋅=32a a a =) A. ①B. ②C. ③D. ④【答案】D【解析】【分析】分别利用二次根式的性质及其运算法则计算即可判定.【详解】①和②是正确;在③中,由式子可判断a >0,从而③正确;在④中,左边两个不是同类二次根式,不能合并,故错误.故选D . 2a =|a |.同时二次根式的加减运算实质上是合并同类二次根式.9. 如图,在△ABC 中,三边a 、b 、c 的大小关系是( )A. a<b<cB. c<a<bC. c<b<aD. b<a<c【答案】D【解析】试题分析:先分析出a、b、c三边所在的直角三角形,再根据勾股定理求出三边的长,进行比较即可.根据勾股定理,得,,,,,故选D.考点:本题考查的是勾股定理点评:解答本题的关键是认真分析格点的特征,熟练运用勾股定理进行计算.10.如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()A. B.C. D.【答案】A【解析】∵由图可知,1g<m<2g,∴在数轴上表示为:.故选A..二、填空题(每题4分,共40分)11.如图,a∥b,则∠A=______.【答案】22°【解析】分析:如下图,过点A作AD∥b,则由已知可得AD∥a∥b,由此可得∠DAC=∠ACE=50°,∠DAB=∠ABF=28°,从而由∠BAC=∠DAC-∠DAB即可求得∠BAC的度数.详解:如下图,过点A作AD∥b,∵a//b,∴AD∥a∥b,∴∠DAC=∠ACE=50°,∠DAB=∠ABF=28°,∴∠BAC=∠DAC-∠DAB=50°-28°=22°.故答案为:22°.点睛:作出如图所示的辅助线,熟悉“平行线的性质:两直线平行,内错角相等”是正确解答本题的关键.12.在平面直角坐标系中,点A是y轴上一点,若它的坐标为(a-1,a+1),另一点B的坐标为(a+3,a-5),则点B的坐标是___________.【答案】(4,-4)【解析】分析:根据点在y轴上,则其横坐标是0,可求出a的值,进而即可求出B点坐标.详解:∵点A(a−1,a+1)是y轴上一点,∴a−1=0,解得a=1,∴a+3=1+3=4,a−5=1−5=−4,∴点B的坐标是(4,−4).故答案为(4,−4).点睛:本题考查了平面直角坐标系中点的坐标特征.熟练掌握y轴上的点的横坐标为0是解题的关键.13.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第 20 个正方形(实线)四条边上的整点个数共有____个.【答案】80【解析】从内到外的正方形依次编号为1,2,3,……,n,则有:正方形的序号正方形四边上的整点的个数1 2×4-4=4;2 3×4-4=8;3 4×4-4=12;…………n 4(n+1)-4=4n.由里向外第 20 个正方形(实线)四条边上的整点个数共有4×20=80.故答案为80.14.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成不同的三角形的个数为_____.【答案】2【解析】分析:根据“在三角形中任意两边之和大于第三边,任意两边之差小于第三边”,以及各边都是整数进行一一分析即可.详解:根据周长为7,以及三角形的三边关系,只有两种不同的三角形,边长为2,2,3或3,3,1.其它的组合都不能满足三角形中三边的关系.故答案为2.点睛:本题考查了三角形三边间的关系. 利用三角形三边间的关系来判断组合是否成立是解题的关键. 15.如图,将一副直角三角扳叠在一起,使直角顶点重合于O 点,则∠AOB+∠DOC=_____【答案】180°【解析】∵∠AOD+∠COD=90°,∠COD+∠BOC=90°,∠BOD=∠COD+∠BOC ,∠AOD+∠BOD=∠AOB ,∴∠AOD+∠COD+∠COD+∠BOC=180°,∴∠AOD+2∠COD+∠BOC=180°,∴∠AOB+∠COD=180°16.若一个二元一次方程的解为2{1x y ==-,则这个方程可以是______(只要求写出一个). 【答案】1x y +=【解析】分析: 根据二元一次方程的解的定义,比如把x 与y 的值相加得1,即x+y=1是一个符合条件的方程. 详解:一个二元一次方程的解为21x y =⎧⎨=-⎩, 这个方程可以是 1.x y +=故答案 1.x y +=点睛:本题是一道有关二元一次方程的解的题目,关键是掌握二元一次方程的解的定义.17.如图,正方形是由k 个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k=_____.【答案】8【解析】分析:通过理解题意及看图可知本题存在等量关系,即矩形长的2倍=矩形宽的2倍+矩形的长,矩形长的2倍=(中间竖的矩形-4)宽的和,根据这两个等量关系,可列出方程组,再求解即可.详解:设矩形的长为x ,矩形的宽为y ,中间竖的矩形为(k −4)个,即(k −4)个矩形的宽正好等于2个矩形的长, ∵由图形可知:x +2y =2x ,2x =(k −4)y ,则可列方程组()2224x y x x k y +=⎧⎨=-⎩, 解得k =8.故答案为8.点睛:本题考查了二元一次方程组的应用.分析图形并得出对应的相等关系是解题的关键.18.已知△ABC 的三边长分别为a 、b 、c ,且a 、b 、c2410250b c c -+-+=请你判断△ABC 的形状是_______________【答案】直角三角形【解析】分析:根据非负数的性质解得各边的长,再根据勾股定理的逆定理判定是否直角三角形即可.24(5)0b c -+-=,根据非负数的性质知,a =3,b =4,c =5,∵32+42=52,∴以为a 、b 、c 为三边的△ABC 是直角三角形.故答案为直角三角形.点睛:本题考查了非负数的性质和勾股定理的逆定理.将题中的21025c c -+转化为完全平方式2(5)c -是解题的关键. 19.东方旅行社,某天有空客房10间,当天接待了一个旅游团,当每个房间住3人时,只有一个房间不空也不满,试问旅游团共有__________人.【答案】28或29【解析】分析:根据有空客房10间,每个房间住3人时,只有一个房间不空也不满,即:9间客房住满了,而最后一个房间不空也不满即这间客房住了1个人或2个人,分两种情况列出算式即可求出旅客的总人数.详解:由题可知,前9个房间住的人数是9×3=27人; 最后1间客房(不空也不满的房间)的人数有两种情况:(1)当有1个人时:游客总数为:27+1=28人;(2)当有2个人时:游客总数为:27+2=29人,所以旅游团共有28或29人.故答案为28或29.点睛:本题考查了一元一次不等式的应用.根据题中的不等关系确定不空也不满的房间人数是解题的关键.20.若关于x 的不等式组0321x a x -≥⎧⎨->-⎩的整数解恰有5个,求a 的范围. 【答案】43a -<≤-【解析】试题分析:先分别解两个不等式得到不等式组的解集为a≤x<2,则可确定不等式组的5个整数解为1,0,-1,-2,-3,于是可得到a 的取值范围.0321x a x -≥⎧⎨->-⎩①②解①得,x a ≥;解②得,2x <;∴不等式组的5个整数解为1,0,-1,-2,-3,∴43a -<≤-.点睛:本题考查了一元一次不等式组的整数解,已知解集(整数解)求字母的取值.一般思路为:先把题目中除未知数外的字母当做常数看待求出不等式组的解集,然后再根据题目中对结果的限制的条件得到有关字母的值.三、解答题(每题10分,共70分)21.如图,MN ,EF 是两面互相平行的镜面,一束光线AB 照射到镜面MN 上,反射光线为BC ,则∠1=∠2. (1)用尺规作图作出镜面BC 经镜面EF 反射后的反射光线CD ;(2)试判断AB 与CD 的位置关系;(3)你是如何思考的?【答案】(1)只要作出∠5=∠6;(2)CD∥AB;(3)见解析【解析】分析:(1)掌握尺规作图的基本方法,作入射角等于反射角即∠5=∠6即可;(2)AB与CD平行;(3)由平行线的性质和反射的性质可得∠1=∠2=∠3=∠4,利用平角的定义可得∠ABC=∠BCD,由平行线的判定可得AB与CD平行.详解:(1)只要作出的光线BC经镜面EF反射后的反射角等于入射角即∠5=∠6即可.(2)CD∥AB.(3)如图,作图可知∠5=∠6,∠3+∠5=90°,∠4+∠6=90°,∴∠3=∠4;∵EF∥MN,∴∠2=∠3,∵∠1=∠2,∴∠1=∠2=∠3=∠4;∵∠ABC=180°﹣2∠2,∠BCD=180°﹣2∠3,∴∠ABC=∠BCD,∴CD∥AB.点睛:本题考查了平行线的性质和判定. 结合图形并利用平行线的性质和判定进行证明是解题的关键.22.下面的方格纸中,画出了一个“小猪”的图案,已知每个小正方形的边长为1.(1)“小猪”所占的面积为多少?(2)在上面的方格纸中作出“小猪”关于直线DE对称的图案(只画图,不写作法);(3)以G为原点,GE所在直线为x轴,GB所在直线为y轴,小正方形的边长为单位长度建立直角坐标系,可得点A的坐标是(_______,_______).【答案】(1). -4 (2). 1【解析】分析:(1)将“小猪”所占的面积转化为三角形和四边形面积的和来解答;(2)根据直线DE在网格中作出小猪的轴对称图形即可;(3)按要求建立平面直角坐标系即可得出A点坐标.详解:(1)4×4×12+8×3×12+1×1×12=32.5;(2)画图如下,(3)(-4,1).点睛:本题考查了网格中的面积、轴对称、平面直角坐标系等知识.求面积时合理地进行图形的移动和变换是解题的关键.23. 夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高1℃后两种空调每天各节电多少度?【答案】只将温度调高1℃后,甲种空调每天节电207度,乙种空调每天节电180度.【解析】根据题目给出的条件,找出合适的等量关系,列出方程组,再求解24.织里某童装加工企业今年五月份工人每人平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%.为了提高工人的劳动积极性,按时完成外商订货任务,企业计划从六月份起进行工资改革.改革后每位工人的工资分二部分:一部分为每人每月基本工资200元;另一部分为每加工1套童装奖励若干元.(1)为了保证所有工人的每月工资收入不低于市有关部门规定的最低工资标准450元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元?(精确到分)(2)根据经营情况,企业决定每加工1套童装奖励5元.工人小张争取六月份工资不少于1200元,问小张在六月份应至少加工多少套童装?【答案】(1)该企业每套至少应奖励2.78元;(2)小张在六月份应至少加工200套.【解析】分析:(1)最低工资应考虑最不熟练地工人的工资.关系式为:基本工资200+150×60%×每件奖励钱≥最低工资标准450元,列不等式,解之即可;(2)根据关系式:基本工资200+5×小张加工童装套数≥1200,列不等式,解之即可.详解:(1)设企业每套奖励x元,由题意得:200+60%·150x≥450 ,解得:x≥2.78 ,因此,该企业每套至少应奖励2.78元.(2)设小张在六月份加工y套,由题意得:200+5y≥1200 ,解得:y≥200.答:小张在六月份应至少加工200套.点睛:本题考查了一元一次不等式的应用.找出题中的不等关系并建立不等式是解题的关键.25.情系灾区.5月12日我国四川汶川县发生里氏8.0级大地震,地震给四川,甘肃,陕西等地造成巨大人员伤亡和财产损失.灾难发生后,我校师生和全国人民一道,迅速伸出支援的双手,为灾区人民捐款捐物.为了支援灾区学校灾后重建,我校决定象灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套,一辆乙货车可装床架10个和课桌凳10套.(1)学校如何安排甲、乙两种货车可一次性把这些物资运到灾区?有几种方案?(2)若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费最少?最少运费是多少?【答案】(1)可安排甲种货车2辆,乙种货车6辆或甲种货车3辆,乙种货车5辆或甲种货车4辆,乙种货车4辆共3种方案;(2)甲种货车2辆,乙种货车6辆运费最少,最少运费是8400元.【解析】试题分析:(1)关系式为:甲种货车可装的床架数+乙种货车可装的床架数≥60;甲种货车可装的课桌凳数+乙种货车可装的课桌凳数≥100,把相关数值代入求得整数解的个数即可;(2)算出每种方案的总运费,比较即可.解:(1)设安排甲种货车x辆,则安排乙种货车(8﹣x)辆.,解得2≤x≤4,∴x可取2,3,4,∴可安排甲种货车2辆,乙种货车6辆或甲种货车3辆,乙种货车5辆或甲种货车4辆,乙种货车4辆共3种方案;(2)甲种货车2辆,乙种货车6辆运费为:2×1200+6×1000=8400元;甲种货车3辆,乙种货车5辆运费为3×1200+5×1000=8600元;甲种货车4辆,乙种货车4辆运费为4×1200+4×1000=8800元;∴甲种货车2辆,乙种货车6辆运费最少,最少运费是8400元.。

2023年人教版七年级数学(下册)期末试卷及答案(真题)

2023年人教版七年级数学(下册)期末试卷及答案(真题)

2023年人教版七年级数学(下册)期末试卷及答案(真题) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a ,b ,c 是三角形的三边,那么代数式a 2-2ab +b 2-c 2的值( )A .大于零B .等于零C .小于零D .不能确定2.已知有理数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( )A .a •b >0B .a+b <0C .|a|<|b|D .a ﹣b >03.如图,∠1=68°,直线a 平移后得到直线b ,则∠2﹣∠3的度数为( )A .78°B .132°C .118°D .112° 494) A .32 B .32- C .32± D .81165.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10116.如图,直线AB ,CD 相交于点O ,射线OM 平分AOC ∠,ON OM ⊥,若30AOM ∠=︒,则CON ∠的度数为( )A .30︒B .40︒C .60︒D .50︒7.如图,在下列条件中,不能证明△ABD ≌△ACD 的是( ).A .BD =DC ,AB =ACB .∠ADB =∠ADC ,BD =DC C .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC8.如图,已知在四边形ABCD 中,90BCD ∠=︒,BD 平分ABC ∠,6AB =,9BC =,4CD =,则四边形ABCD 的面积是( )A .24B .30C .36D .429.已知2x =3y (y ≠0),则下面结论成立的是( )A .32x y =B .23x y= C .23x y = D .23xy =10.已知a m =3,a n =4,则a m+n 的值为( )A .7B .12C .D .二、填空题(本大题共6小题,每小题3分,共18分)116的平方根是 .23x -在实数范围内有意义,则 x 的取值范围是________.3.如图,给出了直线外一点作已知直线平行线的一种方法,它的依据是_________.4.已知,x y 为实数,且22994y x x --,则x y -=________.5.若关于x 的方程2x m 2x 22x++=--有增根,则m 的值是________. 6.若一个多边形内角和等于1260°,则该多边形边数是________.三、解答题(本大题共6小题,共72分)1.解方程:(1)()1236365x x --=+ (2)0.80.950.30.20.520.3x x x ++-=+2.马虎同学在解方程13123x m m ---=时,不小心把等式左边m 前面的“﹣”当做“+”进行求解,得到的结果为x=1,求代数式m 2﹣2m+1的值.3.问题情境:如图1,AB ∥CD ,∠PAB=130°,∠PCD=120°.求∠APC 度数. 小明的思路是:如图2,过P 作PE ∥AB ,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD ∥BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD 、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出∠CPD 、∠α、∠β间的数量关系.4.如图,已知∠1,∠2互为补角,且∠3=∠B,(1)求证:∠AFE=∠ACB(2)若CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度数.5.中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对七年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:(1)统计表中的a=________,b=___________,c=____________;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校七年级共有1200名学生,请你分析该校七年级学生课外阅读7本及以上的人数.6.今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、D4、A5、C6、C7、D8、B9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、x≥33、同位角相等,两直线平行4、1-或7-.5、0.6、9三、解答题(本大题共6小题,共72分)1、(1)209-;(2)13x=.2、0.3、(1)CPDαβ∠=∠+∠,理由见解析;(2)当点P在B、O两点之间时,CPDαβ∠=∠-∠;当点P在射线AM上时,CPDβα∠=∠-∠.4、(1)详略;(2)70°.5、(1)a=10,b=0.28,c=50;(2)补图见解析;(3)6.4本;(4)528人.6、(1)温馨提示牌和垃圾箱的单价各是50元和150元;(2)略。

人教版七年级数学下册期末测试题及答案(共五套)

人教版七年级数学下册期末测试题及答案(共五套)

七下期期末(共六套)一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )±4 B.3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( ) A.135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C.331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .120PCBA(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。

人教版七年级数学下册期末考试测试卷(含答案)

人教版七年级数学下册期末考试测试卷(含答案)

人教版七年级数学下册期末考试测试卷(含答案)班级:姓名:得分:时间:120分钟满分:120分一、选择题(共10小题,每题3分,共30分)1.在实数5、227、0、2π、36、-1.414中,有理数有( )A.1个 B.2个 C.3个 D.4个2.在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围为()A.-1<m<3B.m>3C.m<-1D.m>-13.在直角坐标系中,点A(2,1)向左平移4个单位长度,再向下平移2个单位长度后的坐标为()(A)(4,3)(B)(-2,-1)(C)(4,-1)(D)(-2,3)4.将一直角三角板与两边平行的纸条如图所示放置,有下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°.其两边平行的纸条如图所中正确的个数为()A.1 B.2 C.3 D.45.如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于( )A.30° B.45° C.60° D.75°6.如果a3x b y与﹣a2y b x+1是同类项,则()A 、23xy=-⎧⎨=⎩B.23xy=⎧⎨=-⎩C.23xy=-⎧⎨=-⎩D.23xy=⎧⎨=⎩7.林老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是( ).组别A 型B 型 AB 型 O 型 频率 0.40.350.10.15A.16人B.14人C.4人D.6人8.若y x 、满足0)2(|3|52=-+-+y x y x ,则有( )(A )⎩⎨⎧-=-=21y x (B )⎩⎨⎧-=-=12y x (C )⎩⎨⎧==12y x (D )⎩⎨⎧==21y x9.某校团委与社区联合举办“保护地球,人人有责”活动,选派20名学生分三组到120个店铺发传单,若第一、二、三小组每人分别负责8、6、5个店铺,且每组至少有两人,则学生分组方案有( ) A.6种 B.5种 C.4种 D.3种10.若关于x 的一元一次不等式组⎩⎨⎧>-<-01a x x 无解,则a 的取值范围是( )A . 1≥aB . 1>aC .1-≤aD . 1-<a 二、填空题(共10小题,每题3分,共30分) 11.点P (-5,1),到x 轴距离为__________.12.如图,是象棋盘的一部分,若“帅”位于点(2,-1)上,“相”位于点(4,-1)上,则“炮”所在的点的坐标是 。

新人教版七年级数学下册期末考试卷及答案【完整版】

新人教版七年级数学下册期末考试卷及答案【完整版】

新人教版七年级数学下册期末考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±3 2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==4.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元5.如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A .122°B .151°C .116°D .97°6.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3( )A .70°B .180°C .110°D .80°7.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .1320 8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.如图,在菱形ABCD 中,2,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a+1)2+|b+5|=b+5,且|2a-b-1|=1,则ab=___________.2.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=________.3.正五边形的内角和等于______度.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.2的相反数是________.5.若x的相反数是3,y=5,则x y+的值为_________.三、解答题(本大题共6小题,共72分)1.解方程:1314(1)(5) 243x x x⎡⎤--=+⎢⎥⎣⎦.2.已知x、y满足方程组52251x yx y-=-⎧⎨+=-⎩,求代数式()()()222x y x y x y--+-的值.3.如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a =3,b =2时,求矩形中空白部分的面积.4.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.5.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.6.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、B6、C7、B8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、40°3、5404、-405、﹣2.6、2或-8三、解答题(本大题共6小题,共72分)1、1x2、3 53、(1)S=ab﹣a﹣b+1;(2)矩形中空白部分的面积为2;4、(1)略;(2)略.5、(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.6、(1)A种纪念品需要100元,购进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元。

七年级下册数学期末试卷及答案人教版

七年级下册数学期末试卷及答案人教版

七年级下册数学期末试卷及答案人教版一、选择题(每题2分,共40分)1. 下列谁是数学家?()A. 马化腾B. 郭守敬C. 李连杰D. 阿里巴巴答案:B2. 下列哪个不属于数学中的基本运算?()A. 加法B. 除法C. 乘法D. 减法答案:B3. 一个矩形的长是3cm,宽是2cm,它的周长是()A. 8cmB. 10cmC. 6cmD. 4cm答案:10cm4. 下列哪个是质数?()A. 6B. 9C. 11D. 15答案:C5. 下列哪个不是等式?()A. 3 + 5 = 8B. 6 ÷ 2 = 2C. 7 × 1 = 7D. 9 + 3 ≠ 12答案:D6. 下列哪个数是奇数?()A. 58B. 29C. 102D. 36答案:B7. 一个三角形的三个角分别是60度、80度和()度。

A. 40B. 20C. 100D. 80答案:408. 下列哪个是正比例函数?()A. y = 2x + 1B. y = 2xC. y = x²D. y = 1/x答案:B9. 下列哪个不是平行四边形?()A. 正方形B. 长方形C. 菱形D. 梯形答案:D10. 下列哪个是数轴上的点?()A. 0.5B. 0.5cmC. 1/2D. 1:2答案:A11. 8.5 ÷ 0.5 = ()A. 17B. 1.7C. 85D. 0.85答案:1712. 下列哪个不是正整数的代表?()A. 0B. 1C. 2D. 3答案:A13. 下列哪个图形面积最大?()A. 长方形B. 正方形C. 三角形D. 圆形答案:D14. 用字母表示未知数,下列哪个是方程?()A. 3 + x = 7B. 3 > xC. 2xD. x + 3答案:A15. 下列哪个是钝角三角形?()A. 30度-60度-90度三角形B. 等腰直角三角形C. 直角三角形D. 锐角三角形答案:D二、填空题(每空2分,共40分)16. 计算$3\times(-4)=$()答案:-1217. 下列哪个角是顶角?∠ABC,∠ACD,∠BCD中,顶角是______。

2023-2024学年全国初中七年级下数学人教版期末考试试卷(含答案解析)

2023-2024学年全国初中七年级下数学人教版期末考试试卷(含答案解析)

一、选择题(每题2分,共30分)1. (2分)共15题二、判断题(每题1分,共20分)1. (1分)共20题三、填空题(每空1分,共10分)1. (1分)共10空四、简答题(每题10分,共10分)1. (10分)共1题五、综合题(共30分)1. (7分)共2题2. (8分)共2题(考试时间:90分钟,满分:100分)一、选择题1. 下列选项中,哪个数是平方根?()A. ±2B. ±3C. 4D. 42. 一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的周长是()cm。

A. 16B. 26C. 283. 下列各数中,是无理数的是()。

A. √9B. √16C. √3D. √14. 已知a、b互为相反数,且|a|=3,|b|=5,则a+b的值为()。

A. 2B. 2C. 8D. 85. 下列各式中,是整式的是()。

A. a²+b²B. a²+b²1C. a²+b²+1D. a²+b²+26. 若x²2x+1=0,则x的值为()。

A. 0B. 1C. 1D. 27. 下列各式中,是分式的是()。

A. 1/xC. x³D. x⁴二、判断题1. 任何两个无理数相加一定是无理数。

()2. 两个等腰三角形一定全等。

()3. 互为相反数的两个数的绝对值相等。

()4. 平方根和算术平方根是同一个概念。

()5. 任何数乘以0都等于0。

()三、填空题1. 若a+b=5,ab=3,则a=______,b=______。

2. 若x²=9,则x=______。

3. 下列各数中,______是4的平方根。

四、简答题1. 请解释一下什么是算术平方根,并给出一个例子。

五、综合题1. (7分)已知一个等腰三角形的底边长为10cm,腰长为13cm,求这个三角形的面积。

2. (7分)已知x²5x+6=0,求x的值。

2024—2025学年最新人教版七年级下学期数学期末考试试卷(含参考答案)

2024—2025学年最新人教版七年级下学期数学期末考试试卷(含参考答案)

最新人教版七年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、下列各数为无理数的是()A.0.618B.C.D.2、若a>b,则下列不等式不一定成立的是()A.﹣5a<﹣5b B.a﹣5>b﹣5C.a2>b2D.5a>5b3、下列问题中,最适合采用全面调查方式的是()A.调查所生产的整批火柴是否能够划燃B.了解一批导弹的杀伤半径C.流感防控期间,调查我校出入校门口学生的体温D.了解全国中小学生的体重情况4、若方程mx+ny=6的两个解是,,则m,n的值为()A.4,2B.2,4C.﹣4,﹣2D.﹣2,﹣45、若a<<b,且a与b为连续整数,则a与b的值分别为()A.1;2B.2;3C.3;4D.4;56、点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)7、已知方程组的解满足x+y=2,则k的值为()A.2B.﹣2C.4D.﹣48、《九章算术》是中国传统数学最重要的著作,书中记载:“今有牛五、羊二、直金十二两;牛二、羊五、直金九两,问牛、羊各直金几何?”意思是:“假设有5头牛和2只羊共值金12两,2头牛和5只羊共值金9两.问每头牛、每只羊各值金多少两?”如果按书中记载,1头牛和1只羊一共值金()两.A.3B.3.3C.4D.4.39、如果不等式组无解,那么m的取值范围是()A.m=2B.m>2C.m<2D.m≥210、已知非负实数a,b,c满足,设S=a+b+c,则S的最大值为()A.B.C.D.二、填空题(每小题3分,满分18分)11、16的算术平方根是.12、点P(m+2,2m﹣5)在x轴上,则m的值为.13、已知方程2x2n﹣1﹣7y=10是关于x、y的二元一次方程,则n=.14、如果x2=64,那么x的值是.15、已知x,y满足方程组,则x﹣y的值是.16、如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′位置,若∠EFB=65°,则∠AED′=°.最新人教版七年级下学期数学期末考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(﹣1).18、解不等式组,并求出它的非负整数解.19、已知关于x、y的方程组的解和的解相同,求代数式b﹣a的平方根.20、运动是一切生命的源泉,运动使人健康、使人聪明、使人快乐,运动不仅能改变人的体质,更能改变人的品格,某中学为了解学生一周在家运动时长t (单位:小时)的情况,从本校学生中随机抽取了部分学生进行问卷调查,并将收集的数据整理分析,共分为四组(A.0≤t<1,B.1≤t<2,C.2≤t <3,D.3≤t<4,其中每周运动时间不少于3小时为达标),绘制了如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)在这次抽样调查中,共调查了名学生;(2)请补全频数分布直方图,并计算在扇形统计图中C组所对应扇形的圆心角的度数;(3)若该校有学生2000人,试估计该校学生一周在家运动时长不足2小时的人数.21、如图,在平面直角坐标系中,点A、B、C的坐标分别为A(2,﹣1),B(4,3),C(1,2).将△ABC先向左平移4个单位,再向下平移2个单位得到△A1B1C1.(1)请在图中画出△A1B1C1;(2)写出平移后的△A1B1C1三个顶点的坐标;A1(,)B1(,)C1(,)(3)求△ABC的面积.22、如图,在四边形ABCD中,BE平分∠ABC,交AD于点G,交CD的延长线于点E,F为DC延长线上一点,∠ADE+∠BCF=180°.(1)求证:AD∥BC;(2)若∠DGE=30°,求∠A的度数.23、某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书.调查发现,若购买甲种书柜2个、乙种书柜3个,共需资金1020元;若购买甲种书柜3个,乙种书柜4个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,学校至多能够提供资金37 50元,请写出所有购买方案供这个学校选择(两种规格的书柜都必须购买).24、对a,b定义一种新运算T,规定:T(a,b)=(a+2b)(ax+by)(其中x,y均为非零实数).例如:T(1,1)=3x+3y.(1)已知T(1,﹣1)=0,T(0,2)=8,求x,y的值;(2)已知关于x,y的方程组,若a≥﹣2,求x+y的取值范围;(3)在(2)的条件下,已知平面直角坐标系上的点A(x,y)落在坐标轴上,将线段OA沿x轴向右平移2个单位,得线段O′A′,坐标轴上有一点B满足三角形BOA′的面积为9,请直接写出点B的坐标.25、如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于A(0,a)、B(b,0)两点,且a、b满足|a﹣4|+(2b﹣a)2=0.(1)求A、B两点的坐标;(2)如图1,过点B作直线AB的垂线,在此垂线上截取线段BC,使BC=A B,求点C的坐标;(3)如图2,在(2)的条件下,BC交y轴于点E,点F为x轴负半轴上一点,记△ABE的面积为S1,四边形FOEC的面积为S2,设点F(x,0),.①用含x的式子表示y;②当2x+5y=﹣2时,求的值.最新人教版七年级下学期数学期末考试试卷(参考答案)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、4 12、2.5 13、1 14、±8 15、7 16、50三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、4﹣18、不等式组的非负整数解为:0,1,2,319、±20、(1)120 (2)图略,144度(3)700人21、(1)图略(2)A1(﹣2,﹣3),B1(0,1),C1(﹣3,0);(3)5.22、(1)略(2)120°23、(1)甲种书柜单价为240元,乙种书柜的单价为180元(2)方案一:甲种书柜1个,乙种书柜19个,方案二:甲种书柜2个,乙种书柜18个.24、(1)(2)x+y≥﹣9(3)点B的坐标为(12,0)或(﹣12,0)或(0,9)或(0,﹣9)或(0,18)或(0,﹣18).25、(1)A(0,4)、B(2,0)(2)点C的坐标为(﹣2,﹣2)(3)的值为.。

2024年最新人教版七年级数学(下册)期末考卷及答案(各版本)

2024年最新人教版七年级数学(下册)期末考卷及答案(各版本)

2024年最新人教版七年级数学(下册)期末考卷及答案(各版本)一、选择题:每题1分,共5分1. 一个等差数列的前三项分别是2,5,8,那么第10项是______。

A. 29B. 30C. 31D. 322. 如果一个三角形的两边分别是8和15,那么第三边的长度可能是______。

A. 6B. 7C. 17D. 233. 下列哪一个数是有理数______?A. √2B. √3C. √5D. √94. 下列哪一个比例是正确的______?A. 3 : 4 = 6 : 8B. 4 : 5 = 8 : 9C. 5 : 6 = 10 : 12D.6 :7 = 12 : 145. 下列哪一个图形是平行四边形______?A. 矩形B. 正方形C. 梯形D.菱形二、判断题:每题1分,共5分1. 任何两个奇数之和都是偶数。

()2. 任何两个有理数相乘都是无理数。

()3. 一个等边三角形的三个角都是60度。

()4. 两个锐角之和一定大于90度。

()5. 任何两个等腰三角形的底角相等。

()三、填空题:每题1分,共5分1. 一个等差数列的第5项是15,第10项是______。

2. 如果一个三角形的两边分别是5和12,那么第三边的长度可能是______。

3. 下列哪一个数是无理数______。

4. 如果一个比例是3 : 4 = 6 : 8,那么比例的外项是______。

5. 下列哪一个图形是矩形______。

四、简答题:每题2分,共10分1. 简述等差数列的定义和通项公式。

2. 简述勾股定理及其应用。

3. 简述有理数的定义和性质。

4. 简述平行四边形的性质和判定。

5. 简述等边三角形的性质和判定。

五、应用题:每题2分,共10分1. 一个等差数列的前三项分别是2,5,8,求第10项。

2. 如果一个三角形的两边分别是8和15,那么第三边的长度可能是多少?3. 下列哪一个数是有理数?4. 下列哪一个比例是正确的?5. 下列哪一个图形是平行四边形?六、分析题:每题5分,共10分1. 分析并证明等差数列的前n项和公式。

2023年人教版七年级数学下册期末考试卷带答案

2023年人教版七年级数学下册期末考试卷带答案

2023年人教版七年级数学下册期末考试卷带答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若()286m n a b a b =,那么22m n -的值是 ( )A .10B .52C .20D .322.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A .B .C .D .3.8的相反数的立方根是( ) A .2B .12C .﹣2D .12-4.若|321|20x y x y --++-=,则x ,y 的值为( )A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩5.如图,按各组角的位置判断错误的是( )A .∠1与∠4是同旁内角B .∠3与∠4是内错角C .∠5与∠6是同旁内角D .∠2与∠5是同位角6.下列二次根式中,最简二次根式的是( ) A 15B 0.5C 5D 507.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,9.如图,已知AE是ΔABC的角平分线,AD是BC边上的高.若∠ABC=34°,∠ACB=64°,则∠DAE的大小是()A.5°B.13°C.15°D.20°10.已知三条不同的射线OA、OB、OC有下列条件:①∠AOC=∠BOC ②∠AOB=2∠AOC ③∠AOC+∠COB=∠AOB ④∠BOC=12∠AOB,其中能确定OC平分∠AOB的有()A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是.2.在数轴上表示实数a2(5)a-|a-2|的结果为____________.3.12与最简二次根式51a +是同类二次根式,则a=________. 4.若216x mx ++是一个完全平方式,则m =________5.如图,C 岛在A 岛的北偏东45°方向,在B 岛的北偏西25°方向,则从C岛看A ,B 两岛的视角∠ACB =________.6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解方程: (1)x -12(3x -2)=2(5-x ) (2)24x +-1=236x -2.甲乙两人同时解方程85mx ny mx ny +=-⎧⎨-=⎩①②由于甲看错了方程①,得到的解是42x y =⎧⎨=⎩,乙看错了方程中②,得到的解是25x y =⎧⎨=⎩,试求正确m ,n 的值.3.如图,直线AB ,CD 相交于点O .OF 平分∠AOE ,OF ⊥CD 于点O . (1)请直接写出图中所有与∠AOC 相等的角:______. (2)若∠AOD =150°,求∠AOE 的度数.4.已知:如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.5.某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m= ;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为;(4)已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.6.小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如下表:(1)小林以折扣价购买商品A、B是第次购物;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、D5、C6、C7、A8、D9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、3.3、24、±85、70°6、5三、解答题(本大题共6小题,共72分)1、(1)x=6(2 x=02、74n=-,38m=.3、(1)∠BOD,∠DOE;(2)∠AOE=120°.4、证明略.5、(1)150,(2)36°,(3)240.6、(1)三;(2)商品A的标价为90元,商品B的标价为120元;(3)6折.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

武威市初中2017——2018学年度下学期期末学业水平检测七年级数学试题数学试题共6页,包括六道大题,共26道小题。

全卷满分120分。

考试时间为120分钟。

考试结束后,将本试题和答题卡一并交回。

注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在 条形码区域内。

2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试题上答 题无效。

一、单项选择题(每小题2分,共12分)1.在数2,π,38-,0.3333…中,其中无理数有( )(A)1个(B)2个(C)3个(D)4个2.已知:点P (x ,y )且xy=0,则点P 的位置在( )(A)原点(B)x 轴上(C)y 轴上(D)x 轴上或y 轴上 3.不等式组211420x x ->⎧⎨-⎩,≤的解集在数轴上表示为( )4.下列说法中,正确的...是( ) (A)图形的平移是指把图形沿水平方向移动 (B)“相等的角是对顶角”是一个真命题 (C)平移前后图形的形状和大小都没有发生改变(D)“直角都相等”是一个假命题 5.某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2:3:5,若已 知中学生被抽到的人数为150人,则应抽取的样本容量等于( )(A)1500(B)1000(C)150(D)5006.如图,点E 在AC 的延长线上,下列条件能判断AB ∥CD 的是()①∠1=∠2②∠3=∠4③∠A=∠DCE ④∠D+∠ABD=180°(A)①③④(B)①②③ (C)①②④(D)②③④二、填空题(每小题3分,共24分)7.请写出一个在第三象限内且到两坐标轴的距离都相等的点的坐标. 8.-364的绝对值等于. 9.不等式组20210x x -≤⎧⎨->⎩的整数解是.10.如图,a ∥b ,∠1=55°,∠2=40°,则∠3的度数是°.11.五女峰森林公园门票价格:成人票每张50元,学生票每张25元.某旅游团买30张门票花了1250元,设其中有x 张成人票,y 张学生票,根据题意列方程组是.12.数学活动中,张明和王丽向老师说明他们的位置(单位:m ):张明:我这里的坐标是(-200,300); 王丽:我这里的坐标是(300,300). 则老师知道张明与王丽之间的距离是m . 13.比较大小:215-1(填“<”或“>”或“=”). 14.在某个频数分布直方图中,共有11个小长方形,若中间一个长方形的高等于其 它10个小长方形高之和的41,且样本容量是60,则中间一组的频数是.三、解答题(每小题5分,共20分) 15.计算:2393-+-.学校年班姓名:考号:七年级数学试题第1页(共6页)七年级数学试题第2页(共6页) 21 3 4AB CDE(第6题)(第10题)16.解方程组24824x y x y -=⎧⎨+=-⎩ ① ②.17.解不等式11237x x--≤,并把它的解集表示在数轴上. 18.已知:如图,AB ∥CD ,EF交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE=50°,求∠BHF 的度数.四、解答题(每小题7分,共28分)19.如图,已知∠1=∠2,∠3=∠4,求证:BC ∥EF .完成推理填空: 证明:因为∠1=∠2(已知),所以AC ∥(), 所以∠=∠5(),又因为∠3=∠4(已知), 所以∠5=∠(等量代换), 所以BC ∥EF().20.对于x ,y 定义一种新运算“φ”,x φy =ax +by ,其中a ,b 是常数,等式右边是通常的加法和乘法运算.已知3φ5=15,4φ7=28,求1φ1的值. 21.已知一个正数..的平方根是m+3和2m-15. (1)求这个正数是多少? (2)5+m 的平方根又是多少?22.水果店以每千克4.5元进了一批香蕉,销售中估计有10%的香蕉正常损耗.水果店老板把售价至少定为多少,才能避免亏本?五、解答题(每小题8分,共16分)23.育人中学开展课外体育活动,决定开设A :篮球、B :乒乓球、C :踢毽子、D :跑步四种 活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生 进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A 项目的人数所占的百分比为________,其所在扇形统计图中对应的 圆心角度数是______度; (2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少? 24.在平面直角坐标系中,O 为坐标原点,A(-2,3),B (2,2). (1)画出三角形OAB ; (2)求三角形OAB 的面积;(3)若三角形OAB 中任意一点P (x 0,y 0)经平移后对应点为P 1(x 0+4,y 0-3),请画出三角 形OAB 平移后得到的三角形O 1A 1B 1,并写出点O 1、A 1、B 1的坐标.六、解答题(每小题10分,共20分)25.为了抓住集安国际枫叶旅游节的商机,某商店决定购进A 、B 两种旅游纪念品.若购进A 种纪念品8件,B 3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件, 需要800元.(1)求购进A 、B 两种纪念品每件各需多少元; (2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案? (3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?26.如图,已知直线l 1∥l 2,直线l 3和直线l 1、l 2交于C 、D 两点,点P 在直线CD 上. (1)试写出图1中∠APB 、∠PAC 、∠PBD 之间的关系,并说明理由;(2)如果P 点在C 、D 之间运动时,∠APB ,∠PAC ,∠PBD 之间的关系会发生变化吗?答:.(填发生或不发生);(3)若点P 在C 、D 两点的外侧运动时(P 点与点C 、D 不重合,如图2、图3),试分别写出∠APB ,∠PAC ,∠PBD 之间的关系,并说明理由.一.单项选择题(每小题3分,共24分) 1.C2.B3.D4.C5.D6.C7.D8.C七年级数学试题第3页(共6页)七年级数学试卷题第4页(共6页)七年级数学试题第5页(共6页) 七年级数学试题第6页(共6页) 七年级数学试题第4页(共6页) 七年级数学试题第4页(共6页)2 1345 6-1 -21 -3 -4 1234-1 -2-3 A y七年级数学试题第4页(共6页)七年级数学试题第4页(共6页)七年级数学试题第3页(共6页)二.填空题(每小题3分,共24分)9.答案不唯一,如(1,2)10.811.±1012.同位角相等,两直线平行13.四 14.7,π15.116.()7+410-50x x ≤三.解答题(每小题6分,共24分)17.解:原式=4259-.…………………3分=517453-=-.…………………6分18.解:由①,得x=y+3.③………………2分把③代入②,得3(y+3)-8y=14,解得y=-1.………………4分 把y=-1代人③,得x=2.……5分,所以这个方程组的解是21x y =⎧⎨=-⎩.………………6分19.解:解不等式213x +>-,得2x >-;………………1分解不等式1x x -≤8-2,得x ≤3.………………2分 所以原不等式组的解集为-2<x ≤3………………………4分 解集在数轴上表示略.………………6分20.解:∵DE ∥CF,∠D=30o.∴∠DCF=∠D=30o (两直线平行,内错角相等)………………2分 ∴∠BCF=∠DCF+∠BCD=30o +40o =70o..………………4分 又∵AB ∥CF∴∠B+∠BCF=180o (两直线平行,同旁内角互补) ∴∠B=180o —70o =110o .………………6分 四.解答题(每小题7分,共28分)21.解:(1)建立直角坐标系略(2分)(2)市场(4,3),超市(2,-3)(2分)(3)图略(3分) 22.评分标准:(1)3分,(2)、(3)各2分,满分7分.(1)(260≤x <70之间. (3)图①50≤x <60的国家. 23.解:设七年(1 根据题意,得⎩⎨⎧=-=++101288y x y x .……………3分解得⎩⎨⎧==5565y x .……………6分答:七年(1)班、七年(2)班分别有65人、55人参加“光盘行动”.……………7分 24.评分标准:每个横线1分,满分7分.(1)∠BFD,两直线平行,内错角相等,∠BFD,两直线平行,同位角相等.(2)对顶角相等,∠D ,内错角相等,两直线平行. 五.解答题(每小题10分,共20分)25.解:(1)设小李生产1件A 产品需要x min,生产1件B 产品需要y min. 依题意得⎩⎨⎧=+=+852335y x y x .……………………………2分解得⎩⎨⎧==2015y x . ∴小李生产1件A 产品需要15min ,生产1件B 产品需要20min.………………………4分 (2)1556元.……………………………6分 1978.4元.……………………………8分(3)-19.2x +1978.4.……………………………10分 26.解:(1)①x …………1分3(100-x )…………2分D :40≤x <50 C :50≤x <60 B :60≤x <70 A :70≤x <80②依题意得2(100)16243(100)340x x x x +-≤⎧⎨+-≤⎩.………………………4分解得3840x ≤≤.∵x 是整数,∴x =38或39或40.………………………6分 有三种生产方案:方案一:做竖式纸盒38个,做横式纸盒62个; 方案二:做竖式纸盒39个,做横式纸盒61个;方案三:做竖式纸盒40个,做横式纸盒60个.………………………7分(2)设做横式纸盒m 个,则横式纸盒需长方形纸板3m 张,竖式纸盒需长方形纸板4(162-2m )张,所以a =3m +4(162-2m ).∴290<3m +4(162-2m )<306 解得68.4<m <71.6∵m 是整数,∴m =69或70或71.………………………9分 对应的a =303或298或293.………………………10分。

相关文档
最新文档