材料力学第8章组合变形强度计算

合集下载

材料力学组合变形

材料力学组合变形
第八章 组合变形
组合变形和叠加原理 拉伸或压缩与弯曲旳组合 扭转与弯曲旳组合
目录
§8-1 组合变形和叠加原理
一、组合变形旳概念
构件在荷载作用下发生两种或两种以上旳基本变形,则构件 旳变形称为组合变形.
l 基本变形 u 拉伸、压缩
u 剪切
u 扭转
u 弯曲
二、处理组合变形问题旳基本措施-叠加法
叠加原理旳成立要求:内力、应力、应变、变形等与外力之 间成线性关系.
M A(F) 0
F 42 kN
H 40 kN, V 12.8 kN
l 内力图 l 危险截面
C 截面
M C 12 kNm, N 40 kN
l 设计截面旳一般环节
u 先根据弯曲正应力选择工字钢型号; u 再按组合变形旳最大正应力校核强度,必要时选择大一号或 大二号旳工字钢; u 若剪力较大时,还需校核剪切强度。
按第四强度理论
Qy My T
r4
1 W
Mz Qz
M 2 0.75T 2 47.4 MPa [ ]
(3) 曲柄旳强度计算
l 危险截面 III-III截面
l 计算内力 u 取下半部分
Qx Qz
N R2 C1 13 kN Mx m H2 d /2
765 Nm
M z R2 (a b / 2) 660 Nm
横截面上任意一点 ( z, y) 处旳正应 力计算公式为
1.拉伸正应力
FN
A
2.弯曲正应力
Mz y
Iz
FN Mz y
A Iz
( z,y)
Mz
z
O
x
FN
y
3.危险截面旳拟定
作内力图
F1
轴力

《材料力学》课程讲解课件第八章组合变形

《材料力学》课程讲解课件第八章组合变形

强度条件(简单应力状态)——
max
对有棱角的截面,最大的正应力发生在棱角点处,且处于单向应力状态。
max
N A
M zmax Wz
M ymax Wy
x
对于无棱角的截面如何进行强度计算——
1、确定中性轴的位置;
y
F z
M z F ey M y F ez
ez F ey z
y
zk yk z
y
x
1、荷载的分解
F
Fy F cos
Fz F sin
z
2、任意横截面任意点的“σ”
x
F
y
(1)内力: M z (x) Fy x F cos x
M y (x) Fz x F sin x
(2)应力:
Mz k
M z yk Iz
My k
M y zk Iy
(应力的 “+”、“-” 由变形判断)
F
1, 首先将斜弯曲分解
为两个平面弯曲的叠加 Fy F cos
z
L2
L2
Fz F sin
z
2, 确定两个平面弯曲的最大弯矩
y
Mz
Fy L 4
M
y
Fz L 4
3, 计算最大正应力并校核强度
max
My Wy
Mz Wz
217.8MPa
查表: Wy 692.2cm3
4, 讨论 0
y
Wz 70.758cm3
的直径为d3,用第四强度理论设计的直径为d4,则d3 ___=__ d4。
(填“>”、“<”或“=”)
因受拉弯组合变形的杆件,危险点上只有正应力,而无切应力,
r3 1 3 2 4 2
r4

材料力学第八章组合变形

材料力学第八章组合变形

例题: 图示吊车大梁,由32a热轧普通工字钢制成,许 用应力 [σ]=160MPa ,L=4m 。起吊的重物重量F =80kN,且作用在梁的中点,作用线与y轴之间的夹角α =5°,试校核吊车大梁的强度是否安全。
F
Fy F cos 50
L2
L2
解:1. 外力分解
Fy F cos 80 cos 50 79.7kN Fz F sin 80 sin 50 6.96kN
材料力学
Mechanics of Materials
例:图示梁,已知F1=800N,F2=1650N,截面宽度 b=90mm,高度h=180mm。求:
1、梁上的max及所在位置; 2、若改为a=130mm的正方形截面,梁上的max; 3、若改为d=130mm圆形截面,梁上的max。
F2
F1 z
32
32 6
d3
72.6mm
取 d 73mm
构件在荷载的作用 下如发生两种或两种以 上基本形式的变形,且 几种变形所对应的应力 (和变形)属于同一数 量级,则构件的变形称 为组合变形。
❖组合变形的分析方法 线弹性小变形范围内,采用叠加原理
材料力学
Mechanics of Materials
二.组合变形分析方法 条件:线弹性小变形
组合 变形
0.642q 106 31.5 103
0.266q 106 237 103
160MPa
q 7.44kN / m
材料力学
Mechanics of Materials
M zD 0.456q
M zA 0.266q
z
M yD 0.444q
M yA 0.642q
A截面
y
max

材料力学 第八章 组合变形

材料力学 第八章 组合变形

度理论校核此杆的强度。 解:①外力分析
y ZC
Mx z P2z
P2y 400N YA 457N Z A 20.1N
P2Z 70.5N YC 257N Z C 90.6N
YA A 150
T M x 120Nm
B 200
C YC D 100
P2y
x
y
M Z (Nm) M (Nm)
建立图示杆件的强度条件
解:①外力向形心
x A 150 P1 T A 150 B 200 C T B 200 C 100 D 简化并分解
z
z P2z D P2y x 弯扭组合变形 y
100
M Z (Nm) M (Nm)
y
②每个外力分量对应 x 的内力方程和内力图 X
(Nm) My (Nm) Mz
x X
125 37.8 162.8MPa
孔移至板中间时
N 100 103 2 A 631.9mm 10(100 x) x 36.8mm 6 σ max 162.8 10
偏心拉伸或压缩:
CL11TU11
任意横截面上的内力: N P,M y Pa,M z Pb
第八章 组合变形
§8–1 组合变形和叠加原理
§8–2 拉(压)弯组合 §8–4 偏心压缩 截面核心 §8-4 弯曲与扭转
§8–1组合变形和叠加原理
一、组合变形 :在复杂外载作用下,构件的变形会包含几种简
单变形,当几种变形所对应的应力属同一量级时,不能忽略
之,这类构件的变形称为组合变形。 P P
弯曲与扭转
P1
80ºP2 z
x A 150 B 200 C 100 D
y

第八章 组合变形

第八章 组合变形

(cm)
max 22 100MPa [ c ]
木柱不安全。
讨论:木柱是否可用 ?怎样用 ? 作业 :8-7,-9,-11
第8章 复杂内力时杆件应力计算
8-3 弯扭组合变形
l
y
F
危险点处的主应力
x
z
M


'
D
32
3
mห้องสมุดไป่ตู้
M Z Fl W W Z Z T m Wt Wt
y
My
z
(a y 0)
iz2 z0 0, y0 a y yF
y0 0, z0 az
2 iy
( yF z F ) y
中性轴
(0 az)
zF
第8章 复杂内力时杆件应力计算
8-2 偏心压缩
F
x
z
(三)中性轴 zF yF 1 2 z0 2 y0 0 中性轴方程 iy iz
( yF z F ) y
z
中性轴4
3 4 5
中性轴3
1 2
y
iz2 ay yF
az i
2 y
中性轴1 中性轴2
zF
第8章 复杂内力时杆件应力计算
8-2 偏心压缩
F
x
z
iz2 ( yF z F ) a y yF
(三)中性轴 (四)截面核心
对于钢筋混凝土偏心受压柱,为避免出 现拉应力须控制荷载作用点位置,使中 性轴离开截面或仅与截面相切。这些点 位于截面的一区域内,这个区域称为截 面核心。
第8章 复杂内力时杆件应力计算
一、组合变形
在复杂外载作用下,构件的变形可以看成几种

材料力学课件第8章组合变形zym

材料力学课件第8章组合变形zym

§8—4 扭转与弯曲的组合 一、圆截面杆弯扭组合 实例: (一)实例: 已知:塑性材料轴尺寸,传动力偶Me。 已知:塑性材料轴尺寸,传动力偶 。 试建立轴的强度条件。 试建立轴的强度条件。 解: 1、确定危险点: 、确定危险点: (1)外力分析 ) F 计算简图: ①计算简图: Fτ 由 ∑ M x = 0 得: FD = Me 2 可确定F 由F可确定 τ。 可确定 外力分解: ②外力分解: 变形判断: ③变形判断: AB段扭转变形,BE段弯扭组合变 段扭转变形, 段弯扭组合变 段扭转变形 形,EC段弯曲变形。 段弯曲变形。 段弯曲变形
解: 、确定各边为中性轴时的压力作用点: 1、确定各边为中性轴时的压力作用点: b2 h2 2 iy = , iz2 = 12 12 h az = ∞ AB截距: a y = − , 截距: 截距 2 h2 iz2 12 = h , zF = 0 F作用点 坐标: yF = − = − 作用点a坐标 作用点 坐标: h 6 ay − 2 同样确定b,c,d点。 同样确定 点 2、连线 确定截面核心。 、连线a,b,c,d确定截面核心。 确定截面核心 解:
3 由: W ≥ M max = 12 ×10 N ⋅ m 6
[σ ]
100 × 10 Pa
= 12 × 10−5 m3 = 120cm3
查表选定16号工字钢。 查表选定 号工字钢。 号工字钢 (2)组合变形校核计算: )组合变形校核计算: 16号工字钢:W=141cm3,A=26.1cm3 号工字钢: 号工字钢
2、应力状态分析 、 均为单向应力状态 单向应力状态。 均为单向应力状态。
'' σ A = σ ′ +σ A =
F (0.425m) F × (0.075m) + −3 2 15 ×10 m 5310 ×10−8 m 4

第8章压杆变形与压杆的稳定性

第8章压杆变形与压杆的稳定性

max =u
第8章 组合变形及压杆稳定
强度理论
复杂应力状态下 max =( 1 -3 )/2 简单应力状态下 u =s/2 故有 r3 =1-3=s 强度条件为 1-3[]
第8章 组合变形及压杆稳定
强度理论
4. 畸变能理论(第四强度理论) 材料塑性屈服破坏的主要因素是畸变能密度d。 塑性屈服破坏的条件是
例 题 1
弯矩
轴力
FN=Psin30°=25× sin30°=12.5kN
第8章 组合变形及压杆稳定
拉伸(压缩)与弯曲的组合变形
FAy
A M
18.75 kN· m
例 题 1
FBN P FAx
C
PCx
B
x FN x
12.5 kN
第8章 组合变形及压杆稳定
第8章 组合变形及压杆稳定
第8章 组合变形及压杆稳定
压杆稳定的概念 若受外界干扰后,
杆不能恢复到原来的
直线形状而在弯曲形 状下保持新的平衡, 则杆原来的直线形状 的平衡状态称为非稳 定平衡。
第8章 组合变形及压杆稳定
8.5 临界力的确定
临界力 压杆从稳定平衡过渡到非稳定平衡时 的压力称为临界力或称临界载荷,以Fcr表
组合变形和叠加原理 弯扭组合变形
第8章 组合变形及压杆稳定
组合变形和叠加原理 拉弯扭组合变形
第8章 组合变形及压杆稳定
组合变形强度计算的基本步骤: 1. 外力分析 将作用于杆件的外力沿由杆的轴线及横 截面的两对称轴所组成的直角坐标系分解。
2. 内力分析 并画出内力图。
用截面法计算杆件横截面上的内力,
FN
例 题 2
FN=P=15000 N M =Pe =15000×0.4 =6000 N· m

武汉理工大学材料力学课件8 组合变形及连接部分的计算--JK

武汉理工大学材料力学课件8 组合变形及连接部分的计算--JK
9
若横截面周边具有棱角,则无需确定中性轴的位置,直 接根据梁的变形情况,确定最大拉应力和最大压应力点 的位置。 D D
1 1
z
z D2 y 中性轴
D2
y
中性轴
强度条件:
()若 [ t ] [ c ] [ ], 则 1 (2)若 [ t ] [ c ], 则
t ,max [ t ] ,
z
c ,max
FN M max [ c ] A Wz
(1)若F 的作用点在杆的一对称轴上, F M 则强度条件为: [ t ] t , max A Wz 其中 M Fe
c ,max
F M [ c ] A Wz
23
(2) 若F 的作用点不在杆的任一对称轴上
FN My A Iz
z
c ,max
(2)若 t ] [ c ] [ ] , [

FN M max [ c ] A Wz
max Max { t ,max , c ,max } [ ]
20
[例8-3-1] 最大吊重为 P=20kN的简易吊车,如图所 示,AB为工字A3钢梁,许用应力[σ]=100MPa,试选 T YA 择工字梁型号。 Ty XA D
另外, 和 的正负号可由My和 Mz引起的变形是拉 8 还是压直接判断。
sin cos 则,F引起的应力为: M ( I z I y) y z
二、中性轴的位置 令(y0,z0)是中性轴上任一点,则有: 显然,中性轴是一条通过坐标原点的直线, 设其与z轴的夹角为α,则有:
A Tx
C
B F
A
30° 2m
C
1m

《材料力学》第八章组合变形

《材料力学》第八章组合变形
解 (1)外力分析,确定变形类型—拉弯组合;
(2)内力分析,确定危险截面—整个轴;
M=600(kN·cm) FN=15(kN)
(3)应力计算,确定危险点—a、b点;
P产生拉伸正应力: t
FN AFNd 2源自4FNd 24
M拉产弯生组弯合曲:的正应力:wmax
M Wy
M
d3
32
32M
d3
P M= a Pe
补例8.1 已知: P=2kN,L求=:1mσm,Iazx=628×104mm4,Iy=64×1040mm2740 2844
解:1.分解P力。 Py Pcos φ Pz Psin φ 2.画弯矩图,确定危险截面--固定端截面。 3.画应力分布图,确定危险点—A、 B点
σ” σ’
A
x
y
Pyl
M
z
践中,在计算中,往往忽略轴力的影响。
4.大家考虑扭转、斜弯曲与拉(压)的组合怎么处理?
例8.5 图8.14a是某滚齿机传动轴AB的示意图。轴的直径为35 mm,材料为45钢, [σ]=85 MPa。轴是由P=2.2kW的电动机通过
带轮C带动的,转速为n=966r/min。带轮的直径为D=132 mm,
Mz Py l - x Pcosφ l - x Mcosφ My Pz l - x Psinφ l - x Msinφ
式中的总弯矩为:M Pl- x
3.计算两个平面弯曲的正应力。在x截面上任取一点A(z 、y),
与弯矩Mz、My对应的正应力分别为σ’和σ”,故
- Mz y , - M yz
第八章 组合变形
基本要求: 掌握弯曲与拉伸(或压缩)的组合、扭转与弯曲的组合 的强度计算。
重点: 弯曲与拉伸(或压缩)的组合,扭转与弯曲的组合。

材料力学第八章组合变形及连接部分的计算

材料力学第八章组合变形及连接部分的计算
t . max
Mz 0 FN Iy A
F
350
M
FN
425 10 3 F 0.075 F 5.3110 5 15 10 3 667 F Pa F Mz c. max 1 N Iy A
t .max
c.max
425 10 3 F 0.125 F 5 5.31 10 15 10 3 934 F Pa
50 150
425F 103 N.m
A 15000 mm2 z0 75mm z1 125mm I y 5.31107 mm4
y1
z0
y
z1
150 50 150
(2)立柱横截面的内力 FN F 50 M 425103 F N.m (3)立柱横截面的最大应力
az
中性轴
z0 0 y0 0
i z2 a y yo ey 2 iy a z zo ez
截面核心
y
中性轴
F (e y , e z )
z
求直径为D的圆截面的截面核心.
d a y1 2
i z2 ay ey
a z1
az
2 iy
2 4 d d 64 2 iy i z2 2 A d 4 16
F
1, 首先将斜弯曲分解 为两个平面弯曲的叠加
Fy F cos

L2
L2
Z y
My Wy
Fz F sin
2, 确定两个平面弯曲的最大弯矩
Z y
Wz 70.758cm 3
Mz
Fy L 4
Fz L My 4
查表: W y 692.2cm 3

材料力学-第8章 强度理论

材料力学-第8章 强度理论



2 3 2
材料力学-第8章 强度理论
The end!
材料力学-第8章 强度理论
§9-2 关于断裂的强度理论
根据第二强度理论,无论材料处于什么应力状态, 只要发生脆性断裂,其共同原因都是由于微元的最大 拉应变达到了某个共同的极限值。
2 1 3

max
= b
1 1 v( 2 3 ) E E
max

0 max
材料力学-第8章 强度理论
§9-2 关于断裂的强度理论
第一强度理论(最大拉应力理论) 第二强度理论(最大拉应变理论)
材料力学-第8章 强度理论
§9-2 关于断裂的强度理论
第一强度理论(最大拉应力理论)
第一强度理论又称为最大拉应力理论 (maximum tensile stress criterion),最早由英 国的兰金( Rankine . W . J . M .)提出,他认 为引起材料断裂破坏的原因是由于最大正应力达 到某个共同的极限值。对于拉、压强度不相同的 材料,这一理论现在已被修正为最大拉应力理论。
适用材料及应力状态
缺点
没有考虑 2 , 3 的影响 不适合无拉应力 1 的状态
材料力学-第8章 强度理论
§9-2 关于断裂的强度理论
第二强度理论(最大拉应变理论)
第二强度理论又称为最大拉应变理论(maximum tensile strain criterion),它也是关于无裂纹脆性材 料构件的断裂失效的理论。
1
3
失效判据 强度条件
材料力学-第8章 强度理论
§9-3 关于屈服的强度理论
畸变能理论(第四强度理论)

材料力学第八章-组合变形

材料力学第八章-组合变形

12 103 141106
94.3MPa 100MPa
故所选工字钢为合适。
材料力学
如果材料许用拉应力和许用压应力不 同,且截面部分 区域受拉,部分区域 受压,应分别计算出最大拉应力 和最 大压应力,并分别按拉伸、压缩进行 强度计算。
材料力学
=+
材料力学
t,max
=+
t,max
①外力分析:外力向形心简化并沿主惯性轴分解。
②内力分析:求每个外力分量对应的内力方程和 内力图,确定危险面。
③应力分析:画危险面应力分布图,叠加,建立 危险点的强度条件。
一般不考虑剪切变形;含弯曲组合变形,一般以弯
曲为主,其危险截面主要依据Mmax,一般不考虑弯
曲切应力。
材料力学
四.叠加原理
构件在小变形和服从胡克定律的条件下, 力的独立性原理是成立的。即所有载荷作用 下的内力、应力、应变等是各个单独载荷作 用下的值的代数和。
材料力学
F F
350
150
y
50 z
50 150 z0 z1
显然,立柱是拉伸和弯曲的 组合变形。
1、计算截面特性(详细计算略) 面积 A 15103 m2
z0 75mm I y 5310 cm4
材料力学
2、计算内力 取立柱的某个截面进行分析
FN F
M (35 7.5) 102 F 42.5102 F
组合变形
§8.1 组合变形和叠加原理 §8.2 拉伸或压缩与弯曲的组合 §8.3 偏心压缩和截面核心 §8.4扭转与弯曲的组合
content
1、了解组合变形杆件强度计算的基本方法 2、掌握拉(压)弯组合变形和偏心拉压杆 件的应力和强度计算 3、掌握圆轴在弯扭组合变形情况下的强度 条件和强度计算

材料力学第8章 组合变形

材料力学第8章 组合变形

b.未通过轴线或形心主惯性轴,向其分解
注意:荷载分解、简化的前提是不改变研究段的内力。
(2)内力分析方法
用截面法计算任意截面的内力,通过内力确定变形的组成
z
Fsz My
Ty
Fsy
M z FN
FN
T
x M z , Fsy M y , Fsz
轴向拉、压 扭转 x,y面内的平面弯曲 x,z面内的平面弯曲
§8-2 两相互垂直平面内的弯曲
F sin
F cos F
(2)求B点的应力
MB FN
WA
12.32103 25103
0.1 0.22
0.1 0.2
6
B
17.23 MPa
(3)求B点30º斜截面上的正应力
300 cos2 30 17.23 cos2 30 12.99 MPa
(4)求B点的主应力
1 0 2 0 3 17.23 MPa
z
面梁,其横截面都有两个相互垂直的对称 轴,且截面的周边具有棱角,故横截面上
Mz
的最大正应力发生在截面的棱角处。于是
,可根据梁的变形情况,直接确定截面上
My
最大拉、压应力点的位置,而无需定出其
y
中性轴。
因危险点为单向应力状态(忽略弯曲切应力的影响), 故,强度条件为:
max
M y max Wy
F sin
12.32kN m
F cos F
例: 如图示一矩形截面折杆,已知F=50kN,尺寸如图所示, α=30°。(1)求B点横截面上的应力;(2)求B点α=30°截
面上的正应力;(3)求B点的主应力σ1、 σ2、 σ3。
FN
B
MB 100mm

材料力学-第八章组合变形

材料力学-第八章组合变形

M z y M y sin
Iz
Iz
x
M y z M z cos
Iy
Iy
x
y
z
y
z

M
y sin
z

cos
对于圆形截面
因为过形心的任意轴均为截面的对称轴,所以当横 截面上同时作用两个弯矩时,可以将弯矩用矢量表示, 然后求二者的矢量和。于是,斜弯曲圆截面上的应力计 算公式为:
A
C
B
D
2 kN 5 kN
300 500
2 kN (a)
500
解:
1.5 kN Am
7 kN
C
1.5 kN m
B
D
(1)分析载荷 如图b所示
5 kN
12 kN (b)
T 1.5 kN m
(2)作内力图 x
如图c、d、e、f 所示
(c)
MC MD
1.5 kN Am
7 kN
C
1.5 kN m
B
FN A


F (2a)2
1 4
F a2
(2)开槽后的正应力
My
FN F
My

Fa 2
FN
2
max


FN A

My Wy




F 2a2

Fa / 2 2a2 a2 /
6


2
F a2
2a
2a
z
a
所以:
2
1
8
y
§8.3 斜弯曲
F1

材料力学刘鸿文第六版最新课件第八章 组合变形

材料力学刘鸿文第六版最新课件第八章 组合变形
667 667
F c 160 106 171300N
934 934
许 可 压 力 为 F 45000N 45kN
§8-2 拉伸或压缩与弯曲的组合
例2图 示一夹具。在夹紧零件时, 夹 具受到的P = 2KN的力作用 。已知: 外力作用线与夹具竖杆轴线间的距离
e = 60 mm, 竖杆横截面的尺寸为b = 10 mm ,h = 22 mm,材料许用应力 [] = 170 MPa 。 试校核此夹具竖杆 的强度。
4、拉(压)弯组合变形下的强度计算
拉弯组合变形下的危险点 处于单向应力状态
t ,max
Fl Wy
F A
[ t ]
c ,max
Fl Wy
F A
[ c ]
4、中性轴位置
由中性轴上各点的正应力均为零;
FN
My
Байду номын сангаас
|z| 0
A
Iy
| z | FN I y A M y
+_
(-z y)
y -_
z
_
_
+
|z|
第三组
圆截面、弯扭组合变形
§8-4 扭转与弯曲的组合
扭转+双向弯曲
求合弯矩
M
2
M
2 y
M
2 z
§8-4 扭转与弯曲的组合
例题1 传动轴左端的轮子由电机带动,传入的扭转力偶矩
Me=300Nm。两轴承中间的齿轮半径R=200mm,径向啮合 力F1=1400N,轴的材料许用应力〔σ 〕=100MPa。试按 第三强度理论设计轴的直径d。
§8-1 组合变形和叠加原理
基本变形 构件只发生一种变形;
轴向拉压、扭转、平面弯曲、剪切;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M
e
偏心受拉——拉弯组合 偏心受压——压弯组合

正应力计算
任意一点单向应力状态 正应力代数相加

M
N
内力单独作用
N N A My M Iz
e N
(-) (+) (+) (+)
组合应力 N My N M
A
N
M

Iz

最大最小正应力

e
截面边缘应力最大或最小 边缘到弯矩中性轴的距离分别为y1和y2
F e a 1 , A 5
F e b 1 A 5
A 180 30 10 3600 F a b 2 2
N
2.5 A 2.5 180 a b 30 10 2.5 mm e F 3600
b E b 200103 50106 10
MPa MPa
梯形分布
(2)计算 F 和 e 的数值
Wz h 5 mm , A 30 6 180 mm2 A 6
max
min
N e F e 1 1 A Wz / A A 5
103 kPa
103k和抗压能力相同,最大应力满足条件
2. 脆性材料
e N M N 1 max f 或 [ ] A Wz A Wz / A
常用作受压,当压力作用于截面核心内时
c max
e N M N 1 f c 或 [ c ] A Wz A Wz / A N e 1 f t 或 [ t ] A Wz / A
压力梯 M 216 h 3 e 0.206 m 0.5 m 形分布 N 1050 6 6
N M 1050 216 max A Wz 2 3 2 32 / 6
175 72 247 kPa
N M min 175 72 A Wz

基本方法
叠加原理 等效应力


一般步骤
荷载分解(分类),每组荷载只产生一种基本变形 分别计算基本变形下的应力 应力叠加:单向应力状态,代数相加 等效应力:复杂应力状态,计算主应力,等效应力


横截面内力特点
轴力N:作用于截面形心 弯矩M:对过形心的z轴之矩 该力系可简化为作用于截面形心 以外的一个力 偏心受力
min min
(-)
(+)
(+)
(+)
max
max
max
偏心拉伸截面上不出现压应力或偏心压缩截面上不 出现拉应力的条件 h
矩形截面 e
D 圆形截面 e 8 当偏心受压构件截面上不出现拉应力时,荷载作用 范围(偏心范围)称为截面核心。 只要压力荷载作用在截面核心,就可以保证杆件全 截面受压,而没有拉应力存在。

常见的组合类型
水平面弯曲 + 竖直面弯曲变形 轴向变形 + 弯曲变形 扭转变形 + 弯曲变形 轴向变形 + 扭转变形


组合变形的实例
烟囱压弯组合 桥塔压弯组合,主梁压、弯、扭组合 房柱压弯组合 边梁、雨篷梁弯剪扭组合 机械上旋转轴弯扭组合

8.1.2 组合变形强度计算方法
y1
y
如果截面对称于z轴(Wz1= Wz2 ),则
N M N e 1 max 应力分布规律 A Wz / A A Wz min 应力分布规律与偏心距 e 有关
(1)e < Wz/A,梯形分布,无中性轴
(2) e = Wz/A,三角形分布,中性轴位于 截面边缘; (3)e > Wz/A,双三角形分布,中性轴位于 截面之中。 0


变形特点
轴力引起伸缩变形 弯矩导致弯曲变形

最后变形是这两种 变形的综合结果。

工程实例
(1)厂房排架柱 屋盖荷载: 对上柱偏心 对下柱偏心 吊车荷载: 对下柱偏心
(2)斜拉桥的加劲梁 自重、车辆载荷、拉索竖向分力:弯曲 拉索的水平分力:轴向受压
(3)框架结构柱截面 水平荷载作用 竖向荷载作用 截面内力:N、M、V N、M 可合成为压弯组合 或偏心受压 偏心距为 M e N N N
Wz e A
6

例8-1
图示偏心受拉构件,已知:a=150×10-6, b=50×10-6, 取 E=200 GPa。求: (1)绘制横截面上的正应力分布 (2)求拉力F 和偏心距 e 的数值

解:
(1)应力分布
F
a
30 MPa
F
30 6
b 10 MPa
a E a 200103 150106 30
当压力作用于截面核心之外时,还应验算抗拉强度
t max
N M A Wz
8.1 8.2 8.3 8.4
组合变形的概念 拉伸(压缩)与弯曲组合 弯曲与弯曲组合(斜弯曲) 扭转与弯曲组合
8.1.1 组合变形的实例

起吊臂
组合变形的定义

轴向拉伸(压缩)、剪切、 扭转、弯曲为杆件的基本变形
杆件同时发生两种或两种以上基本变形,称为组 合变形

构件上点的应力状态可能是: 简单应力状态 复杂应力状态

例8-2
柱基础底面尺寸为2m3m,基础高度0.9m。上部荷 载和基础自重 F+G=1050 kN,作用于基础顶面 M0=126kN.m、V=100kN。试确定基底压力(压应力 )分布。


(1)基底内力
(2)偏心距
N F G 1050 kN M M 0 V 0.9 126 100 0.9 216 kN.m
M N
或 M Ne
N My A Iz
M N
最大应力
e N My1 N Ne N 1 max A W z1 / A A W z1 A Iz
y2 z
最小应力
e N My2 N Ne N 1 min A Wz 2 / A A Wz 2 A Iz
相关文档
最新文档