马科维茨的均值一方差组合模型
投资组合管理中的资产配置模型

投资组合管理中的资产配置模型资产配置是投资组合管理中的重要环节,旨在平衡投资者的风险和回报预期。
为了实现这个目标,投资者需要借助资产配置模型,将资金分配到不同的资产类别中。
本文将介绍几种常见的资产配置模型,包括马科维茨均值-方差模型、资本市场线模型和资产组合的最优分配模型。
1. 马科维茨均值-方差模型马科维茨均值-方差模型是资产配置中最经典的模型之一。
它通过考虑不同资产之间的相关性和预期收益率来计算资产的风险和预期收益。
该模型的核心思想是通过分散投资来降低风险,即在多个资产之间进行组合投资。
具体来说,该模型通过计算投资组合的期望收益率和方差,并构建有效边界,找到具有最佳收益风险比的投资组合。
2. 资本市场线模型资本市场线模型是基于资本资产定价模型(CAPM)的资产配置模型。
它认为投资组合的预期收益率应该与投资组合的贝塔值相关,贝塔值反映了投资组合相对于市场的风险敏感度。
该模型通过选择合适的贝塔值来实现投资组合的最优配置。
具体来说,投资者可以通过加权分配市场组合和无风险资产来确定最佳配置比例,以实现期望收益率与风险的平衡。
3. 资产组合的最优分配模型资产组合的最优分配模型是基于现代投资组合理论和均值-方差分析的模型。
它通过将资产配置问题转化为数学规划问题,以找到投资组合的最优分配比例。
具体来说,该模型考虑投资者的风险偏好和预期收益率,通过最小化投资组合的风险和最大化投资组合的预期收益率,找到最佳的资产配置比例。
综上所述,投资组合管理中的资产配置模型对于实现投资目标至关重要。
不同的模型可以根据投资者的需求和风险偏好进行选择和应用。
通过合理的资产配置,投资者可以在获取较高回报的同时有效控制投资风险,最大化投资组合的效益。
然而,投资决策需要基于充分的市场研究和分析,以及对资产配置模型的准确理解和应用。
均值—方差证券资产组合理论

均值—方差证券资产组合理论1. 简介均值—方差证券资产组合理论,也被称为马科维茨模型,是现代投资组合理论的基础。
该理论由美国经济学家哈里·马科维茨于1952年提出,并在1959年获得了诺贝尔经济学奖。
这一理论通过权衡资产组合的预期收益率和风险来寻找最佳的投资组合。
2. 理论原理均值—方差证券资产组合理论的核心原理在于风险与收益之间的平衡。
根据该理论,投资者可以通过有效的资产配置,实现在给定风险水平下最大化投资组合的预期收益率。
具体来说,均值—方差模型在计算资产组合时,考虑了以下两个重要指标:2.1 均值均值指的是资产组合的预期收益率。
通过对各个资产的历史数据进行分析和估计,可以计算出每个资产的预期收益率,并据此求得资产组合的整体预期收益率。
2.2 方差方差表示资产组合的风险程度。
在均值—方差模型中,方差用于衡量资产之间的波动性和相关性。
如果两个资产的收益变动具有较高的相关度,那么它们之间的方差较小;反之,如果两个资产的收益变动独立或者相关度较低,那么它们之间的方差较大。
3. 资产组合优化基于均值—方差证券资产组合理论,投资者可以通过优化资产组合来实现风险与收益之间的最佳平衡。
具体的资产组合优化包括以下几个步骤:3.1 数据准备在优化资产组合之前,首先需要收集并整理相关的数据。
这些数据包括各个资产的历史收益率、期望收益率以及方差。
通常,投资者可以通过金融数据提供商或者证券公司获取这些数据。
3.2 风险-收益曲线通过对各个资产的历史数据进行分析和计算,可以得到不同投资组合的风险和收益指标。
在优化资产组合之前,投资者可以绘制出风险-收益曲线,以便直观地了解不同投资组合之间的收益和风险的关系。
3.3 最优组合根据风险-收益曲线,可以找到在给定风险水平下具有最高预期收益率的投资组合。
这个投资组合被称为最优组合,也是均值—方差模型的核心输出。
3.4 边际效益在确定最优组合后,投资者可以通过计算边际效益来衡量每个资产对投资组合的贡献。
马科维茨均值-方差模型python

马科维茨均值-方差模型python马科维茨均值-方差模型是用来确定投资组合的最优化分析模型。
本文将介绍如何使用Python实现该模型。
首先需要导入所需的Python库:```pythonimport pandas as pdimport numpy as npfrom scipy.optimize import minimizeimport matplotlib.pyplot as plt```接下来,我们需要获取收益率数据。
这里我们使用了一个样本数据进行演示。
数据文件中包含了5只股票的每日收益率数据。
```python# 获取收益率数据stock_returns = pd.read_csv("data.csv")stock_returns.head()```然后,我们需要计算每只股票的收益率的平均值(期望收益率)和协方差矩阵(即方差-协方差矩阵):```python# 计算期望收益率和方差-协方差矩阵expected_returns = stock_returns.mean()cov_matrix = stock_returns.cov()```接下来,我们需要定义一个目标函数,该函数将最小化投资组合的方差:```python# 定义目标函数def portfolio_volatility(weights, cov_matrix):port_variance = np.dot(weights.T, np.dot(cov_matrix, weights))return np.sqrt(port_variance)```然后,我们需要定义一个约束条件,即所有股票的权重之和必须等于1:```python# 定义约束条件def constraint(weights):return np.sum(weights) - 1```现在,我们可以使用SciPy中的minimize函数来寻找投资组合的最优化解。
均值-方差

均值-方差理论马克维茨开创性的提出了证券组合的均值方差模型,将证券及其组合用收益率均值和方差来描述,并在此基础上给出了组合的可行域空间及其有效组合,但是它的缺点就是没有描述在拥有无风险证券的情况下组合的状态,也没有给出期望收益与系统风险之间的关系(只有系统风险才会受到补偿,非系统风险不会得到补偿),只是给出了一定的期望收益和一定风险会画出怎么样的图形,得到什么样的有效组合,再次就是该模型计算太复杂。
传统的证券投资基金的绩效评价方法孕育于“金融大爆炸”的1952年,即投资组合理论的开端。
自美国经济学家马科维茨(Harry Markowtitz)在其《资产选择:有效的多样化》一文中,第一次使用边际分析的原理,用期望收益率(均值)和方差(或标准差)代表的风险来研究投资组合的报酬。
这在当时引起了极大反响,属于金融界上里程碑式的伟大发现。
它在很大程度上帮助了基金管理公司的基金管理者、经理人们和投资者们合理组合其持有的金融资产,确保在具有一定的风险时还能取得最大的收益。
马科维茨的投资组合理论需要两个重要的假设前提:第一,投资者们都使用预期收益率的均值来衡量未来的实际收益率水平,使用预期收益率的方差或标准差来衡量未来的实际收益率的所需要承担的风险;第二,每个投资者都是风险厌恶者,投资者在追求收益率最大化的同时也在追求风险的最小化,即希望收益率均值越大越好,其方差获标准差越小越好。
在满足上述假设条件后,马科维茨发现了收益和风险的度量方法,并建立了均值—方差模型。
每一项投资结果都可以用收益率来衡量,投资组合的投资收益率计算公式如下:(2—1)其中表示投资组合P的预期收益率,表示证券i在投资组合中所占比例,表示证券的收益率。
投资组合方差的计算公式如下:(2—2)其中表示投资组合的方差,表示与的相关系数。
当投资者们只关心收益和风险时,马科维茨的均值—方差模型可以比较精确地计算出收益与风险的大小。
当时在20世纪50年代的早期,计算机技术尚未普及,该模型的计算量是相当之大的,故当时仅用于小单位之间,并未广泛运用于大规模市场。
金融经济学第五章 投资组合理论

24.6% 0.4070*24.6%=10.01%
C
0.3605
22.8%
0.3605*22.8%=8.22%
证券组合的期望回报率= r=p22.00%
20
(二)期望效用分析与均值-方差分析的关系
• 一般来说,资产回报的均值和方差并不能完全包含个 体做选择时所需要的全部信息
• 但在一定条件下,个体的期望效用函数能够仅仅表示 为资产回报的均值和方差的函数,从而投资者可以只 把均值和方差作为选择的目标
这等价于,投资者估计三种股票的期末价格分别 为46.48元[因为(46.48-40)/40=16.2%]、 43.61元[因为(43.61-35)/35=24.6%]和76.14 元[因为(76.14-62)/62=22.8%]。
证券组合期望回报率有几种计算方式,每种方式
得到相同的结果。
17
(1)证券和证券组合的值
掌握均值-方差前沿组合的相关性质.
•通过证券市场投资配置资源的两部分工作:
(1)证券与市场的分析,对投资者可能选择的所有 投资工具的风险及预期收益的特性进行评估。 (2)对资产进行最优的资产组合的构建,涉及在可 行的资产组合中决定最佳风险-收益机会,从可行的 资产组合中选择最好的资产组合。
3
一、现代投资组合理论的起源
• 投资者事先知道资产收益率的概率分布,并且收益率满足 正态分布的条件。
• 经济主体的效用函数是二次的,即u(w)=w-(1/2)αw2, α>0
• 经济主体以期望收益率来衡量未来实际收益率的总体水平, 以收益的方差(或标准差)来衡量收益率的不确定性(风 险),因而经济主体在决策中只关心资产的期望收益率和 方差。
最后,通过求解二次规划,可以算出有效投资组合的集合,计算结果 指明各种资产在投资者的投资中所占份额,以便实现投资组合的有效性— —即对给定的风险使期望回报率最大化,或对于给定的期望回报使风险最 小化。
几类投资组合优化模型及其算法

几类投资组合优化模型及其算法几类投资组合优化模型及其算法投资组合优化模型是金融领域中常用的一种数学模型,它通过对资产进行适当的配置,以期获得最大的收益或最小的风险。
在实际应用中,根据不同的投资目标和约束条件,可以使用不同类型的投资组合优化模型及相应的算法。
一、均值-方差模型及算法均值-方差模型是最经典的投资组合优化模型之一,它基于资产的期望收益和风险(方差或标准差)之间的权衡。
常用的算法有:马科维茨(Markowitz)模型和现代投资组合理论。
马科维茨模型利用资产的历史数据估计收益率和协方差矩阵,通过最小化风险(方差)的方式来寻找最优化的投资组合。
算法流程为:(1)计算资产的期望收益和协方差矩阵;(2)设定目标函数和约束条件,如最大化收益、最小化风险、达到特定风险水平等;(3)通过数学规划方法,如二次规划或线性规划求解最优的权重分配。
现代投资组合理论进一步发展了马科维茨模型,引入了资本市场线和风险资本边界等概念。
它将投资组合的有效边界与资本市场线相结合,可以通过调整风险与收益的平衡点,实现不同风险偏好下的最优组合。
算法流程与马科维茨模型类似,但增加了一些额外的计算步骤。
二、风险平价模型及算法风险平价模型是近年来研究的热点之一,它基于资产之间的风险关系,通过将各资产的风险贡献平均化,来实现风险平衡。
常用的算法有:风险平价模型及最小方差模型。
风险平价模型的核心思想是将整个投资组合中,每个资产的风险贡献度(总风险对该资产的贡献程度)设置为相等,从而实现整体投资组合风险的均衡。
算法流程为:(1)计算各资产的风险贡献度;(2)设定目标函数和约束条件,如最小化风险、满足收益要求等;(3)通过优化算法,如线性规划、非线性规划等,求解最优的权重分配。
最小方差模型在风险平价模型的基础上,进一步最小化整个投资组合的方差。
算法流程与风险平价模型类似,但在目标函数的设定上多了一项方差的计算。
三、条件-Value at Risk模型及算法条件-Value at Risk模型是一种集成了条件-Value at Risk方法的投资组合优化模型,它引入了一定的风险约束条件,如最大损失限制,来保护投资者不承受过大的风险。
均值方差模型实验报告(3篇)

第1篇一、实验目的本次实验旨在通过均值方差模型(Mean-Variance Model),即Markowitz模型,研究不同资产组合在不同风险水平下的最优配置策略。
通过对历史数据进行模拟分析,验证模型在实际投资中的应用价值,并探讨模型在实际操作中可能存在的问题。
二、实验背景1952年,诺贝尔经济学奖得主哈里·马科维茨(Harry Markowitz)提出了均值方差模型,该模型为现代投资组合理论奠定了基础。
模型的核心思想是:在风险可控的前提下,追求收益最大化;或者在收益一定的情况下,降低风险。
均值方差模型已成为金融领域最经典的资产配置模型之一。
三、实验方法1. 数据收集:选取我国某证券市场近5年的股票、债券、基金等金融资产作为研究对象,收集各类资产的历史收益率数据。
2. 模型构建:根据均值方差模型,计算各类资产的预期收益率、方差、协方差,构建投资组合优化模型。
3. 模型求解:利用数学优化方法求解模型,得到不同风险水平下的最优资产配置比例。
4. 结果分析:比较不同风险水平下的资产配置策略,分析模型的实际应用价值。
四、实验结果与分析1. 数据预处理:对原始数据进行清洗、处理,确保数据准确无误。
2. 模型参数估计:根据历史收益率数据,计算各类资产的预期收益率、方差、协方差。
3. 模型求解:利用MATLAB等软件,通过拉格朗日乘数法求解均值方差模型,得到不同风险水平下的最优资产配置比例。
4. 结果分析:(1)在不同风险水平下,最优资产配置比例存在差异。
在低风险水平下,债券类资产的配置比例较高;在高风险水平下,股票类资产的配置比例较高。
(2)随着风险水平的提高,投资组合的预期收益率逐渐增加,但风险也随之增加。
这符合均值方差模型的基本原理。
(3)在相同风险水平下,不同投资组合的收益率存在差异。
这表明,通过优化资产配置,可以在一定程度上提高投资组合的收益率。
五、实验结论1. 均值方差模型在实际投资中具有一定的应用价值,可以帮助投资者在风险可控的前提下,追求收益最大化。
马科维茨资产组合选择读书报告

马科维茨《资产组合选择》读书报告摘要投资者采取最大化折现期望或预期回报的准则,该准则不足以作为立论的前提假设和引领投资者行为的最大化原则,它不能得出存在一个优于所有非分散化组合的分散化资产组合。
马科维茨用几何方法表示了主观信念和资产组合选择之间依照“期望E回报——回报方差V”准则形成的关系。
E-V准则得出投资者将希望选择可行组合中最富有效率的一个,也就是给定E 或者更大时V 最小,以及给定V 或更小时E 最大,该准则得出的有效资产组合几乎都是分散化的。
本文用三只证券的案例及一些简单的数学模型,主要考察资产组合选择过程的第二个阶段:从对所包括的证券的相关主观信念形成资产组合选择。
【关键词】分散化E-V准则组合选择1952年,马科维茨在《金融杂志》上发表题为《资产组合选择》一文,该文堪称现代金融理论史上的里程碑,标志着现代组合投资理论的开端。
该论文最早采用风险资产的期望收益率(均值)和用方差(或标准差)代表的风险来来研究资产组合和选择问题。
马柯维茨根据风险分散原理,应用二维线性规划的数学方法,揭示了如何建立投资组合的有效边界,使边界上的每一个组合在给定的风险水平下获得最大的收益,或者在收益一定的情况下风险最小。
同时马柯维茨认为,投资组合的风险不仅与构成组合的各种证券的个别风险有关,而且受各证券之间的相互关系的影响,相关系数越大,代表风险的方差越大,因此我们应当在产业间进行分散化投资组合选择,必须避免投资于具有很高相关性的证券。
一、马科维茨投资组合模型的前提假设(一)从对所包括的证券的相关主观信念形成资产组合选择在文章的开头和结尾,马科维茨一直在强调他研究的着眼点是资产组合选择过程的第二个阶段,即从对备选证券未来表现的有关主观信念形成资产组合选择。
在这之前,传统的经济学家多从资产组合选择过程的第二个阶段出发,即从观察和经验形成对备选证券未来表现的主观信念。
这样的经验观察多是用描述性的语言对金融问题进行研究,研究结果缺乏数据支撑及数学模型的论证。
马科维茨均值方差模型的Matlab实现

0.025
三、约束条件下有效前沿 在实际构建投资组合时,要综合考虑合法合规或者风险管理等限制条件,这样
组合构建将受到一些约束。比如,组合中单只证券投资范围受限。 【例 3】如果组合中股票型基金—诺安高端制造股票(001707)的投资上限为
30%、混合型基金—嘉实主题新动力混合(070021)的投资上限为 50%、债券型 基金—博时裕瑞纯债债券(001578)的投资上限为 50%,求解有效前沿。
注意:年化标准差=日标准差× √每年交易日数量
根据以上数据,可求解马科维茨均值方差模型。在此所用软件为 MATLAB R2014a。
一、组合收益与风险计算
投资组合的收益率为组合中各证券的收益率与权重乘积的和,即
������
E(������������) = ∑ ������������������(������������)
0.014
0.015
图 2 上下限约束情况下三只证券的投资组合有效前沿图
参考资料: [1] 郑志勇、王洪武. 金融数量分析—基于 MATLAB 编程[M]. 北京:北京航空航
天出版社, 2018. [2] 张志涌、杨祖樱. Matlab 教程[M]. 北京:北京航空航天大学出版社, 2017.
计算结果如下: PortRisk =
0.0087 0.0087 0.0090 0.0095 0.0103 0.0111 0.0119
0.0126 0.0134 0.0142
PortReturn = 0.1698 0.1751 0.1803 0.1856 0.1909 0.1962 0.2014 0.2067 0.2120 0.2173
计算代码如下: % 组合中证券的预期收益率 ExpReturn = [0.273885 0.224652 0.113793]; % 组合中证券的协方差矩阵
均值-方差模型理论及其在我国股票市场的应用

均值-方差模型理论及其在我国股票市场的应用一、引言均值-方差模型是现代投资组合理论的重要组成部分,它通过衡量资产的预期收益率和风险水平,援助投资者做出合理的资产配置决策。
本文将对均值-方差模型的理论基础及其在我国股票市场的应用进行探讨。
二、均值-方差模型的理论基础1.1 均值-方差模型的基本原理均值-方差模型是由美国经济学家马科维茨于1952年提出的一种金融投资组合选择方法。
其基本原理是通过计算资产的预期收益率和风险,以追求投资组合风险最小的预期收益率。
1.2 组合的风险与收益干系均值-方差模型假设资产的收益率听从正态分布,并通过方差衡量风险。
通过构建不同权重的资产组合,可以寻找到预期收益率最高,且方差最小的组合。
1.3 投资组合的有效边界均值-方差模型还引入了有效边界的观点。
有效边界是指在给定预期收益率水平下,最小化投资组合方差的全部可能投资组合的集合。
通过有效边界,投资者可以在风险和收益之间找到合适的平衡点。
三、均值-方差模型在我国股票市场的应用2.1 资产预期收益率的计算在我国股票市场,资产预期收益率可以通过对历史数据进行分析和对市场进步趋势的猜测来确定。
常用的方法包括股票收益率的历史平均值、市盈率、市净率等指标计算。
2.2 风险的器量均值-方差模型中,风险通过资产的方差来器量。
在我国股票市场,常用的风险器量方法有股票收益率的历史标准差、波动率等。
2.3 投资组合优化利用均值-方差模型,投资者可以计算不同权重下投资组合的预期收益和风险水平,并找到有效边界上的最优投资组合。
通过优化投资组合,投资者可以实现风险最小化与收益最大化的目标。
2.4 风险偏好和投资组合选择投资者的风险偏好对投资组合的选择有着重要影响。
依据投资者的风险承受能力和投资目标,可以选择不同风险水平下的投资组合,以达到最佳配置效果。
2.5 动态调整与重平衡在实际投资过程中,市场波动和投资者风险偏好的变化可能导致投资组合的变动。
02-4.2马科维茨均值-方差模型

02
马科维茨均值-方差模型
02 马科维茨均值-方差模型
概率论基本知识: 随机变量、密度函数
投资组合的收益率 R = x1 R1 + x2 R2 + x3 R3 决策目标: min Var(R)
约束条件: ER≥ 15%
x1 + x2 + x3 = 1 x1, x2 , x3 ≥ 0
(期望年收益率至少达到15%) (资金全部用完,不允许剩余) (不允许融资融券、买空卖空)
02 马科维茨均值-方差模型
= ρ XY
= σ XY σ XσY
cov( X ,Y ) Var( X )Var(Y )
02 马科维茨均值-方差模型
假设:每种资产的收益用随机变量描述 其分布规律可以根据历史数据或其他方法预测得到
收益的均值(期望值)衡量这种资产的平均收益状况 收益的方差(或标准差)衡量这种股票收益的波动幅度
两种资产收益的协方差表示它们之间的相关程度
02 马科维茨均值-方差模型
年份
例:三种股票A,B,C T=12(年)历史数据
1
2
3
期望年收益率至少达到15%,
4
应当如何投资?
5
6
7
8
9
10
11
12
股票A 1.300 1.103 1.216 0.954 0.929 1.056 1.038 1.089 1.090 1.083 1.035 1.176
Matlab在马柯维茨均值-方差模型的简单应用

方差矩阵;Rp
E(rp )
和
2 p
分别是投资组合的期望回报率和回报率的方
差。
精选课件
9
• 以华北制药、中国石化、上海机场三只股 票,如何构使用马柯维茨模型构建投资组 合模型?
• 资产数据如下表
华北制药 中国石化 上海机场
表 1 三只股票的日回报率、风险数据及协方差矩阵
收益率均值(%)
收益率标准差(%)
i 1
其中, R (R1, R2,..., Rn )T ; Ri E(ri ) 是第 i 种资产的预期收益率;
X (x1, x2,..., xn )T 是投资组合的权重向量;(ij )nn 是 n 种资产间的
协方差矩阵;
Rp
E (rp
)
和
2 p
分别是投资组合的期望回报率和回报
率的方差。
精选课件
ExpReturn = [0.000540 0.000275 0.000236]; ExpCovariance = 0.0001*
[5.27 2.80 1.74; 2.80 4.26 1.67; 1.74 1.67 2.90 ];
NumPorts =10;
AssetBounds=[0,0,0;0.5,0.5,0.5]%设置资产上限
• Groups:(可选)资产分组,Groups(i,j)=1表示第j个资产属于 第i个群(例如,行业);
• GroupBounds:每个资产群约束(例如,某个行业配置能超过20%)
• 输出函数:
• PortRisk:资产组合风险(标准差)
• PortReturn:资产组合预期收益(期望)
• PortWts:资产组合中各资产精选权课重件
0.2650 0.2350 0.5000
马科维茨投资组合理论.ppt

2020/7/8
投资学第二章
7
Markowitz 的基本思想
风险在某种意义下是可以度量的。 各种风险有可能互相抑制,或者说可能“对
冲”。因此,投资不要“把鸡蛋放在一个篮 子里”,而要“分散化”。 在某种“最优投资”的意义下,收益大意味 着要承担的风险也更大。
2020/7/8
投资学第二章
8
马科维兹模型概要
其次,理性的投资者将选择并持有有效率投资组 合,即那些在给定的风险水平下的期望回报最大 化的投资组合,或者那些在给定期望回报率水平 上的使风险最小化的投资组合。
2020/7/8
投资学第二章
11
再次,通过对某种证券的期望回报率、回报 率的方差和某一证券与其它证券之间回报率 的相互关系(用协方差度量)这三类信息的 适当分析,辨识出有效投资组合在理论上是 可行的。
一、主要内容 二、假设条件
2020/7/8
投资学第二章
4
一、主要内容
马科维茨(H. Markowitz, 1927~) 《证券组合选择理论》
有着棕黄色头发,高大 身材,总是以温和眼神 凝视他人,说话细声细 语并露出浅笑。
2020/7/8
投资学第二章
5
❖ 瑞典皇家科学院决定将1990年诺贝尔奖授 予纽约大学哈利.马科维茨(Harry Markowitz)教授,为了表彰他在金融经济学 理论中的先驱工作—资产组合选择理论。
2.投资者事先知道投资收益率的概率分布,并 且收益率满足正态分布的条件。
2020/7/8
投资学第二章
14
3.资者的效用函数是二次的,即u(W)=a+bW+CW2。
(注意:假设2和3成立可保证期望效用仅仅是财富期 望和方差的函数)
模型构建法计算组合方差

模型构建法计算组合方差组合方差是投资组合中各个资产的权重和资产之间的相关性所决定的。
通过考察各个资产的历史回报率、协方差和权重来计算。
本文将介绍一种常用的模型构建法,即马科维茨模型(Markowitz Model)。
马科维茨模型是20世纪50年代由美国经济学家哈里·马科维茨提出的,是现代投资组合理论的基础,也被称为均值-方差模型。
它假设投资者的目标是在给定风险下最大化预期回报,或者在给定回报下最小化风险。
该模型的核心是通过优化选择资产权重来实现这一目标。
具体来说,计算组合方差的步骤如下:1.收集数据:需要收集各个资产的历史回报率,并计算它们之间的协方差矩阵。
协方差矩阵反映了不同资产之间的相关性。
2.构建投资组合:选择一组资产构成我们的投资组合,并给每个资产确定一个权重。
权重表示该资产在投资组合中的占比。
3.计算预期回报率:将各个资产的历史回报率与权重相乘,得到每个资产的预期回报率。
然后将所有资产的预期回报率相加,得到整个投资组合的预期回报率。
4.计算组合方差:根据马科维茨模型,组合方差的计算公式如下:组合方差=权重矩阵*协方差矩阵*权重矩阵的转置其中,权重矩阵是一个列向量,包含了每个资产的权重。
5.优化权重:通过数学方法或计算机算法,寻找最优的权重组合,使得组合方差最小或者达到一些风险水平下的最小方差。
这里的优化问题就是一个二次规划问题,可以使用拉格朗日乘子法等方法求解。
6.衡量风险和回报:通过调整权重,可以得到不同的风险和回报。
投资者可以根据自己的需求,在风险和回报之间做出合适的选择。
需要注意的是,马科维茨模型有一些假设,如资产收益率符合正态分布、投资者只考虑均值和方差等。
在实际应用中,还可以考虑其他模型,如风险价值模型、条件协方差模型等。
总结起来,通过马科维茨模型计算组合方差可以帮助投资者构建最优投资组合,同时平衡风险和回报。
它是一种常用的工具,可以在投资决策中提供有价值的参考。
但需要注意的是,这只是一种模型,不能完全代表真实情况,投资者还应结合其他因素进行综合考虑。
马克维茨的均值方差模型

马科维茨的均值一方差组合模型(重定向自均值方差模型)马科维茨的均值一方差组合模型(Markowitz Mean-Variance Model,Markowitz Model简称MM)[编辑]马科维茨的均值一方差组合模型简介证券及其它风险资产的投资首先需要解决的是两个核心问题:即预期收益与风险。
那么如何测定组合投资的风险与收益和如何平衡这两项指标进行资产分配是市场投资者迫切需要解决的问题。
正是在这样的背景下,在50年代和60年代初,马可维兹理论应运而生。
[编辑]马科维茨模型的假设条件该理论依据以下几个假设:1、投资者在考虑每一次投资选择时,其依据是某一持仓时间内的证券收益的概率分布。
2、投资者是根据证券的期望收益率估测证券组合的风险。
3、投资者的决定仅仅是依据证券的风险和收益。
4、在一定的风险水平上,投资者期望收益最大;相对应的是在一定的收益水平上,投资者希望风险最小。
根据以上假设,马可维兹确立了证券组合预期收益、风险的计算方法和有效边界理论,建立了资产优化配置的均值-方差模型:目标函数:minб2(rp)=∑ ∑xixjCov(ri-rj)rp= ∑ xiri限制条件:1=∑Xi (允许卖空)或1=∑Xi xi>≥0(不允许卖空)其中rp为组合收益,ri为第i只股票的收益,xi、xj为证券i、j的投资比例,б2(rp)为组合投资方差(组合总风险),Cov (ri 、rj ) 为两个证券之间的协方差。
该模型为现代证券投资理论奠定了基础。
上式表明,在限制条件下求解Xi 证券收益率使组合风险б2(rp )最小,可通过朗格朗日目标函数求得。
其经济学意义是,投资者可预先确定一个期望收益,通过上式可确定投资者在每个投资项目(如股票)上的投资比例(项目资金分配),使其总投资风险最小。
不同的期望收益就有不同的最小方差组合,这就构成了最小方差集合。
[编辑]马科维茨模型的意义马科维茨的投资组合理论不仅揭示了组合资产风险的决定因素,而且更为重要的是还揭示了“资产的期望收益由其自身的风险的大小来决定”这一重要结论,即资产(单个资产和组合资产)由其风险大小来定价,单个资产价格由其方差或标准差来决定,组合资产价格由其协方差来决定。
均值-方差模型实践

均值-⽅差模型实践介绍均值—⽅差模型是由H.M.Markowitz()在1952年提出的风险度量模型,这是现代资产配置的起点。
马科维茨把风险定义为的,⾸次将数理统计的⽅法应⽤到选择的研究中。
这种模型⽅法使相互制约的⽬标能够达到最佳的平衡效果。
其最有名的应⽤者是耶鲁⼤学校友捐赠基⾦主理⼈斯⽂森。
耶鲁⼤学教育基⾦的资产数量及配置变化前摩根史丹利投资管理公司董事长巴顿·M·毕格斯(Barton M. Biggs)说:“世界上只有两位真正伟⼤的投资者,他们是斯⽂森和巴菲特。
”其中斯⽂森是耶鲁⼤学的校友捐赠基⾦的主理⼈,《机构投资的创新之路》就是他主笔的书。
1985年斯⽂森回到耶鲁接管捐赠基⾦之后,到2019年,该基⾦的资产从10亿美元增长到了303亿美元,接近30倍,⽽这是在基⾦不断为⼤学提供开⽀的情况下做到的。
要知道,在耶鲁⼤学的⽀出逐渐提升的情况下,1985年教育基⾦仅提供耶鲁⼤学10%的开⽀,⽽在《机构投资的创新之路》出版时,教育基⾦提供了耶鲁⼤学45%的开⽀。
斯⽂森的业绩如此优秀,来⾃于他⾃⼰开创的“耶鲁模式”,从图中可以看到,相⽐于巴菲特的集中式持股,斯⽂森主要依赖于分散化的资产配置。
从《机构投资的创新之路》中可以读到,其主要原理是改善后的均值-⽅差模型。
接下来我们来详细讲述⼀下均值-⽅差模型。
⽅法详述均值-⽅差模型的基本假设1、投资者在考虑每⼀次投资选择时,其依据是某⼀持仓时间内的证券收益的概率分布。
2、投资者是根据证券的期望收益率估测证券组合的风险。
3、投资者的决定仅仅是依据证券的风险和收益。
4、在⼀定的风险⽔平上,投资者期望收益最⼤;相对应的是在⼀定的收益⽔平上,投资者希望风险最⼩。
* 作者备注:第1点中提到的概率分布模型⼀般使⽤的是正态分布,那么后续2、3、4中提到的期望收益率就是收益的期望值(均值),风险就是⽅差。
⽽正态分布可以完全⽤均值和⽅差两个参数表征,有利于模型的解析。
马科维茨均值方差模型

马科维茨均值方差模型
马科维茨均值方差模型(Markowitz mean-variance model)是一种最优化投资策略,由美国经济学家哈耶克·马科维兹于1952年提出,认为投资人在决定投资组合时,追求
的主要收益可以理解为连续多年的未来收益,而集中多年内的投资风险对投资者也是必要的。
最优化投资是建立在马科维茨均值方差模型之上的,它是以平衡投资风险与投资收益
的原则来确定该投资资产组合最优化的参数。
马科维茨均值方差模型以投资风险为基本考虑因素,在评估和选取投资组合时,深刻
地考虑了来自投资机会的综合风险。
其核心思想是将投资的机会风险分解为投资组合的收
益回报之间的关系,考虑各种投资组合的风险和收益、以及其内部的多种风险因素,以便
优化投资的最佳组合,提升投资的内在价值。
主要思想和模型:
1、组合有效收益:用来描述投资组合所能获得的最大收益与不同组合间的有效收益
之间的关系。
2、均值方差组合:考虑投资组合中各资产的组合均值和波动性,它们可以归结为投资
组合的一个数字,它表明投资组合投资者正做出的风险程度。
3、最优化投资组合:把有效收益与均值方差组合结合,根据投资者设定对投资收益
期望值和投资重点,可以通过组合优化,选取出一个不同的投资组合。
因此,马科维茨均值方差模型可以被认为是一种分析市场风险特征及采用一种最佳投
资组合以便获得较好收益的投资方法,可以将多种资产的组合优化,把投资期望利益最大
化的基础投资组合与投资者的投资需求相结合,实现优化投资的目标。
均值和方差变动的马科维茨投资组合模型研究

约束条件为
WTR=Ep
(3.2)
其中,Ep 是期望收益率。
(3.3)
对模型进行求解,可以求出在收益率固定的情况下,所
对应的最低风险。把收益率和该收益率所对应的最低风险描在
股票的收益率以及收益率的均值和方差。本文所选取的数据来
自国泰安 CSMAR 数据库。
合模型所推导出的有效前沿曲线不动的马科维茨投资组合模型,为投资者提供更准
确的投资建议。
假设金融产品收益率的均值增加 ,变成 ,收益率
的方差增加 ,变成
。建立模型如下:
min 1/2WT(V+ )W (4.1)
二、文献综述
自从 1952 年马科维茨提出了均值 - 方差模型,许多学者 开始研究均值 - 方差模型。何朝林等(2011)基于模型参数不 确定性,构建了稳健静态资产组合模型;周圣(2012)发现在 一定的限制条件下,无风险资产模型的有效前沿曲线和最初的 均值 - 方差模型的有效前沿曲线是一致的。张群等(2013)把 交易中的限制条件引入均值 - 方差模型,创建了风险偏好系 数均值方差模型。姚海祥等(2013)考虑通货膨胀因素,推导 出了均值 - 方差模型有效边界的表达式和有效的投资策略。 Lam,Jaaman 和 Isa(2013)放宽了均值 - 方差模型中的正态假 设条件,把概率分布的峰值和偏度加入均值 - 方差模型。
三、传统的马科维茨投资组合模型
传统的马科维茨投资组合模型有很多假设条件,假设投 资者是理性的、所掌握的信息是一致的、了解金融产品的一切 性质;假设金融产品收益率服从正态分布,每一种金融产品收 益率相关;假设金融市场是完全竞争的。根据上述假设条件, 马科维茨建立了投资组合的均值方差模型。假设在金融市场上 存在 N 种证券(本文不研究无风险资产),每种证券收益率 的均值用 R 表示。每种证券收益率的方差用 v 表示。用 V 表 示 N 种证券收益率的协方差,即表示每一种证券购买一个单
投资组合理论马克维茨均值方差模型CAPM_图文

Ch.8 现olio Theory (MPT)
8.1 资产组合理论 8.2 资本资产定价模型(CAPM) 8.3 套利定价理论(APT) 8.4 有效市场假说(EMH)
米尔顿·弗里德曼 (Friedman,Milton)
萨缪尔森 Samuelson
蒙代尔 (Robert A. Mundell)
i1
i1 ji, j1
i, j1
证明:
证明:D(rp ) E[rp E(rp )]2
n
n
E[ wiri E( wiri )]2
i1
i1
E[w1r1 w2r2 ... wnrn w1E(r1) w2E(r2 ) ... wnE(rn )]2
维茨、冯?诺伊曼运筹学理论奖,以表
彰他们在证券组合选择理论、稀疏矩
阵技术、SIMSCRIPT程序语言等方面所
哈里▪马科维茨
作的理论突破和技术创新工作。
(Harry M. Markowitz)
(1927年8月24日-)
1952年在学术论文《资产选择:有效的多样化》
中,首次应用资产组合报酬的均值和方差这两个数学
E[w1(r1 E(r1)) w2(r2 E(r2)) ... wn(rn E(rn))]2
将平方项展开得到
E[w1(r1 E(r1)) w2(r2 E(r2)) ... wn (rn E(rn ))]2
n
nn
wi2E(ri E(ri ))2
马柯维茨的资产组合理论
马柯维兹(Harry Markowitz)1952年在 Journal of Finance发表了论文《资产组合的选择》,标志着现代 投资理论发展的开端。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
马科维茨的均值一方差组合模型
出自 MBA智库百科(/)
马科维茨的均值一方差组合模型(Markowitz Mean-Variance Model,Markowitz Model简称MM)
目录
[隐藏]
∙ 1 马科维茨的均值一方差组合模型简介
∙ 2 马科维茨模型的假设条件
∙ 3 马科维茨模型的意义
∙ 4 马科维茨均值一方差组合模型的优缺点
∙ 5 相关条目
[编辑]
马科维茨的均值一方差组合模型简介
证券及其它风险资产的投资首先需要解决的是两个核心问题:即预期收益与风险。
那么如何测定组合投资的风险与收益和如何平衡这两项指标进行资产分配是市场投资者迫切需要解决的问题。
正是在这样的背景下,在50年代和60
年代初,马可维兹理论应运而生。
[编辑]
马科维茨模型的假设条件
该理论依据以下几个假设:
1、投资者在考虑每一次投资选择时,其依据是某一持仓时间内的证券收益的概率分布。
2、投资者是根据证券的期望收益率估测证券组合的风险。
3、投资者的决定仅仅是依据证券的风险和收益。
4、在一定的风险水平上,投资者期望收益最大;相对应的是在一定的收益水平上,投资者希望风险最小。
根据以上假设,马可维兹确立了证券组合预期收益、风险的计算方法和有效边界理论,建立了资产优化配置的均值-方差模型:
目标函数:minб2(rp)=∑∑xixjCov(ri-rj)
rp= ∑ xiri
限制条件: 1=∑Xi (允许卖空)
或 1=∑Xi xi>≥0(不允许卖空)
其中rp为组合收益, ri为第i只股票的收益,xi、 xj为证券 i、j的投资比例,б2(rp)为组合投资方差(组合总风险),Cov (ri 、rj ) 为两个证券之间的协方差。
该模型为现代证券投资理论奠定了基础。
上式表明,在限制条件下求解Xi 证券收益率使组合风险б2(rp )最小,可通过朗格朗日目标函数求得。
其经济学意义是,投资者可预先确定一个期望收益,通过上式可确定投资者在每个投资项目(如股票)上的投资比例(项目资金分配),使其总投资风险最小。
不同的期望收益就有不同的最小方差组合,这就构成了最小方差集合。
[编辑]
马科维茨模型的意义
马科维茨的投资组合理论不仅揭示了组合资产风险的决定因素,而且更为重要的是还揭示了“资产的期望收益由其自身的风险的大小来决定”这一重要结论,即资产(单个资产和组合资产)由其风险大小来定价,单个资产价格由其方差或标准差来决定,组合资产价格由其协方差来决定。
马可维茨的风险定价思想在他创建的“均值-方差”或“均值-标准差”二维空间中投资机会集的有效边界上表现得最清楚。
下文在“均值-标准差”二维空间中给出投资机会集的有效边界,图形如下:
上面的有效边界图形揭示出:单个资产或组合资产的期望收益率由风险测度指标标准差来决定;风险越大收益率越高,风险越小收益率越低;风险对收益的决定是非线性(二次)的双曲线(或抛物线)形式,这一结论是基于投资者为风险规避型这一假定而得出的。
具体的风险定价模型为:
(5)
其中,且A,B,C,
D为常量;R表示N个证券收益率的均值(期望)列向量,Ω为资产组合协方差矩阵,1表示分量为1的N维列向量,上标T表示向量(矩阵)转置(公式(5)的推导过程。
[编辑]
马科维茨均值一方差组合模型的优缺点
马可维茨的风险定价思想和模型具有开创意义,奠定了现代金融学、投资学乃至财务管理学的理论基础。
不过这种理论也有缺点,就是他的数学模型较为复杂,不便于实际操作。