三角形全章测试题(含答案)(优选.)
三角形全等测试题及答案
三角形全等测试题及答案一、选择题1. 两个三角形全等的条件是()A. 有两条边和它们的夹角对应相等B. 三条边对应相等C. 有两条边和其中一条边的对角对应相等D. 有两条边和其中一条边的邻角对应相等答案:B2. 如果两个三角形的对应角相等,那么这两个三角形()A. 一定全等B. 可能相似C. 一定相似D. 无法确定答案:B二、填空题3. 已知三角形ABC与三角形DEF全等,且∠A=∠D,AB=DE,那么AC=______。
答案:EF4. 如果两个三角形的两边和夹角对应相等,那么这两个三角形是______。
答案:全等三、判断题5. 如果两个三角形的对应边成比例,那么这两个三角形一定全等。
()答案:错误6. 如果两个三角形的两边和夹角对应相等,那么这两个三角形一定相似。
()答案:正确四、解答题7. 如图所示,已知三角形ABC与三角形DEF全等,且AB=5cm,BC=7cm,∠A=∠D=90°,求DE的长度。
答案:DE=7cm8. 已知三角形ABC与三角形DEF相似,且AB=3cm,BC=4cm,DE=6cm,求AC的长度。
答案:AC=8cm五、证明题9. 已知三角形ABC与三角形DEF全等,且∠A=∠D,AB=DE,证明:AC=EF。
证明:由于三角形ABC与三角形DEF全等,根据全等三角形的性质,对应边相等,所以AC=EF。
10. 已知∠A=∠D,AB=DE,AC=DF,求证:三角形ABC≌三角形DEF。
证明:根据SAS(边角边)判定方法,已知∠A=∠D,AB=DE,AC=DF,所以三角形ABC≌三角形DEF。
三角形单元测试题及答案
三角形单元测试题及答案# 三角形单元测试题及答案一、选择题1. 已知三角形的两边长分别为3cm和4cm,第三边的长度可能为:- A. 1cm- B. 5cm- C. 7cm- D. 8cm答案:B2. 在一个直角三角形中,如果一个锐角为30°,那么另一个锐角为: - A. 30°- B. 45°- C. 60°- D. 90°答案:C3. 等边三角形的三个内角的度数分别为:- A. 30°- B. 45°- C. 60°- D. 90°答案:C二、填空题4. 如果一个三角形的三个内角分别为α、β、γ,那么α + β + γ = ______。
答案:180°5. 直角三角形的斜边长度是两直角边长度的________。
答案:平方和的平方根6. 如果三角形的两边长分别为a和b,且a > b,那么第三边c的取值范围是:b < c < ______。
答案:a + b三、简答题7. 请简述三角形的稳定性。
答案:三角形的稳定性是指在给定三角形的三边长度后,其形状和大小是唯一确定的,不会因外力作用而改变其形状。
8. 什么是勾股定理?请举例说明。
答案:勾股定理是指在一个直角三角形中,直角边的平方和等于斜边的平方。
例如,如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度为√(3² + 4²) = 5。
四、计算题9. 已知三角形ABC,其中AB = 5cm,AC = 7cm,BC = 6cm。
求∠A的大小。
答案:根据余弦定理,cosA = (BC² + AC² - AB²) / (2 * BC * AC) = (6² + 7² - 5²) / (2 * 6 * 7) ≈ 0.97。
因此,∠A ≈ arccos(0.97) ≈ 14.5°。
八年级数学上册试题 第十一章 三角形章节测试卷--人教版(含详解)
第十一章《三角形》章节测试卷一.选择题(共12小题,满分48分,每小题4分)1.已知△ABC中,∠A=20°,∠B=70°,那么△ABC是( )A.直角三角形B.锐角三角形C.钝角三角形D.正三角形2.下面四个图形中,线段BD是△ABC的高的是( )A.B.C.D.3.要使如图所示的五边形木架不变形,至少要再钉上几根木条( )A.1根B.2根C.3根D.4根4.能把一个任意三角形分成面积相等的两部分是( )A.以上都可以B.高C.中线D.角平分线5.长度分别为3,8,x的三条线段能组成一个三角形,x的值可以是( )A.4B.5C.6D.116.如图,在△ABC中,∠BAC=90°,AD是△ABC的高,若∠B=20°,则∠DAC=( )A.90°B.20°C.45°D.70°7.如图所示,∠1=∠2=150°,则∠3=( )A.30°B.150°C.120°D.60°8.如图,在△ABC中,AB=2021,AC=2018,AD为中线,则△ABD与△ACD的周长之差为( )A.1B.2C.3D.49.若一个多边形的每个内角都等于150°,则这个多边形的边数是( )A.10B.11C.12D.1310.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A.90°B.135°C.270°D.315°11.△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数.符合条件的三角形有( )A.1个B.2个C.3个D.4个12.如图,在四边形ABCD中,∠ABC与∠BCD的平分线的交点E恰好在AD边上,则∠BEC=( )A.∠A+∠D﹣45°B.12(∠A+∠D)+45°C.180°-(∠A+∠D)D.12∠A+12∠D二.填空题(共4小题,满分16分,每小题4分)13.如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=20°,则∠1= °.14.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A= .15.如图,△ABC中,∠B=40°,∠C=30°,点D为边BC上一点,将△ADC沿直线AD折叠后,点C落到点E处,若DE∥AB,则∠AFD的度数为 .16.如图,D,E,F分别是△ABC的边AB,BC,AC上的中点,连接AE,BF,CD交于点G,AG:GE=2:1,△ABC的面积为6,设△BDG的面积为S1,△CGF的面积为S2,则S1+S2= .三.解答题(共8小题,满分86分)17.已知一个多边形的内角和是外角和的三倍,则这个多边形是几边形?18.如图,∠ABC=∠FEC=∠ADC=90°.(1)在△ABC中,BC边上的高是 ;(2)在△AEC中,AE边上的高是 ;(3)若AB=2.4cm,CD=2cm,AE=3cm,求△AEC的面积及CE的长.19.如图,已知D是△ABC边BC延长线上一点,DF⊥AB于点F,交AC于点E,∠A=35°,∠D=42°,求(1)∠ACD的度数;(2)∠AEF的度数.20.已知一等腰三角形的两边长x,y满足方程组{3x−y=55x+2y=23求此等腰三角形的周长.21.一个零件的形状如图,按规定∠A=90°,∠B和∠C应分别是32°和21°,检验工人量得∠BDC=149°,就判断这个零件不合格,运用三角形的有关知识说出零件不合格的理由.22.如图1所示,将一副三角板的直角顶点重合在点O处.(1)∠AOD ∠BOC;(填“>”“<”“=”)(2)若将三角尺按图2的位置摆放,∠AOC和∠BOD在数量上有何关系?说明理由;(3)在图2中,已知∠BOC与∠AOC的度数比为m:n,当a6m b11与a n+1b2n﹣11是同类项时,求∠BOD的度数.23.问题1现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.研究(1):如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是 研究(2):如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是 研究(3):如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.问题2研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是 .24.△ABC中,AD是∠BAC的角平分线,AE是△ABC的高.(1)如图1,若∠B=40°,∠C=60°,求∠DAE的度数;(2)如图2(∠B<∠C),试说明∠DAE与∠B、∠C的数量关系;(3)拓展:如图3,四边形ABDC中,AE是∠BAC的角平分线,DA是∠BDC的角平分线,猜想:∠DAE与∠B、∠C的数量关系是否改变.说明理由.答案一.选择题1.【解答】解:∵△ABC中,∠A=20°,∠B=70°,∴∠C=180°﹣20°﹣70°=90°,∴△ABC是直角三角形.故选:A.2.【解答】解:由图可得,线段BD是△ABC的高的图是D选项.故选:D.3.【解答】解:过五边形的一个顶点作对角线,有5﹣3=2条对角线,所以至少要钉上2根木条.故选:B.4.【解答】解:三角形的中线把三角形分成等底同高的两个三角形,面积相等,所以,能把一个任意三角形分成面积相等的两部分是中线.故选:C.5.【解答】解:8﹣3<x<8+3,5<x<11,只有选项C符合题意.故选:C.6.【解答】解:∵∠BAC=90°,∴∠DAC+∠BAD=90°,∵AD是△ABC的高,∴∠ADB=∠BAD+∠B=90°,∴∠DAC=∠B=20°,故选:B.7.【解答】解:∵∠1=∠2=150°,∴∠ABC=∠BAC=180°﹣150°=30°,∴∠3=∠ABC+∠BAC=60°.故选:D.8.【解答】解:∵AD为中线,∴DB=DC,∴△ABD与△ACD的周长之差为:(AB+AD+BD)﹣(AD+DC+AC)=AB+AD+BD﹣AD﹣DC﹣AC=AB﹣AC=2021﹣2018=3,故选:C.9.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.10.【解答】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.11.【解答】解:方程组{x+2y=104x+3y=20的解为:{x=2 y=4,∵△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数,∴2<第三边长<6,1∴第三边长可以为:3,5.∴这样的三角形有2个.故选:B.12.【解答】解:∵四边形的内角和=360°,∴∠ABC+∠BCD=360°﹣(∠A+∠D),∵∠ABC与∠BCD的平分线的交点E恰好在AD边上,∴2∠EBC=∠ABC,2∠ECB=∠BCD,∴∠EBC+∠ECB=12(∠ABC+∠BCD)=12×[360°−(∠A+∠D)],∴∠BEC=180°﹣(∠EBC+∠ECB)=180°−12×[360°−(∠A+∠D)]=12(∠A+∠D),故选:D.二.填空题13.【解答】解:∵∠A=60°,∠C=50°,∴∠ABC=180°﹣∠A﹣∠C=180°﹣60°﹣50°=70°,∴∠1=∠ABC﹣∠D=50°﹣20°=50°.故答案为:50.14.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABC=2∠ABP,∠ACM=2∠ACP,又∵∠ABP=20°,∠ACP=50°,∴∠ABC=2×20°=40°,∠ACM=2×50°=100°,∴∠A=∠ACM﹣∠ABC=60°,故答案为60°.15.【解答】解:∵∠B=40°,∠C=30°,∴∠BAC=110°,由折叠的性质得,∠E=∠C=30°,∠EAD=∠CAD,∵DE∥AB,∴∠BAE=∠E=30°,∴∠CAD=40°,∴∠ADC=180°﹣∠CAD﹣∠C=110°,∴∠AFD=110°﹣40°=70°,故答案为:70°.16.【解答】解:∵D,E,F分别是△ABC的边AB,BC,AC上的中点,∴AD=DB,AF=CF,∴△BDG的面积=△ADG的面积,△CFG的面积=△AGF的面积,∴设△BDG的面积为S1,△CGF的面积为S2,则S1+S2=四边形ADGF的面积,∵△ABC的面积为6,AG:GE=2:1,∴四边形ADGF的面积=23×12×6=2,∴S1+S2=2,故答案为:2三.解答题17.解:设这个多边形为n边形,n边形的内角和为:(n﹣2)×180°,n边形的外角和为:360°,根据题意得:(n﹣2)×180°=3×360°,解得:n=8,答:这个多边形是八边形.18.解:(1)在△ABC中,BC边上的高是线段AB;故答案为线段AB;(2)在△AEC中,AE边上的高是线段CD;故答案为线段CD;(3)∵S△AEC=12×AE×CD=12×CE×AB,∴CE=AE⋅CDAB= 2.5(cm).19.解:(1)∵DF⊥AB,∴∠B=90°﹣∠D=48°,∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=83°;(2)∵DF⊥AB,∴∠AFD=90°,∴∠AEF=90°﹣∠A=55°.20.解:解方程组组{3x−y=55x+2y=23得{x=3 y=4,所以,等腰三角形的两边长为3,4.若腰长为3,底边长为4,由3+3=6>4知,三角形的周长为10.若腰长为4,底边长为3,则三角形的周长为11.所以,这个等腰三角形的周长为10或11.21.解:延长CD交AB于点E,∵∠BEC是△ACE的一个外角,∴∠BEC=∠A+∠C=90°+21°=111°,同理,∠BDC=∠BEC+∠B=111°+32°=143°,而检验工人量得∠BDC=149°,所以零件不合格.22.解:(1)∵∠AOB=∠COD=90°,∴∠AOB+∠BOD=∠COD+∠BOD,即∠AOD=∠BOC.故答案为:=;(2)∵∠AOB=∠COD=90°,∴∠AOC+∠BOD=180°.故∠AOC和∠BOD在数量上的关系为:∠AOC+∠BOD=180°;(3)∵a6m b11与a n+1b2n﹣11是同类项,∴{6m=n+111=2n−11,解得{m=2n=11,∵∠BOC与∠AOC的度数比为m:n,11﹣2=9,∴∠BOC=90°×2=20°,11−2∴∠BOD=90°﹣20°=70°.故∠BOD的度数是70°.23.解:(1)如图1,∠1=2∠A,理由是:由折叠得:∠A=∠DA′A,∵∠1=∠A+∠DA′A,∴∠1=2∠A;故答案为:∠1=2∠A;(2)如图2,猜想:∠1+∠2=2∠A,理由是:由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠ADB+∠AEC=360°,∴∠1+∠2=360°﹣∠ADE﹣∠A′DE﹣∠AED﹣∠A′ED=360°﹣2∠ADE﹣2∠AED,∴∠1+∠2=2(180°﹣∠ADE﹣∠AED)=2∠A;故答案为:∠1+∠2=2∠A;(3)如图3,∠2﹣∠1=2∠A,理由是:∵∠2=∠AFE+∠A,∠AFE=∠A′+∠1,∴∠2=∠A′+∠A+∠1,∵∠A=∠A′,∴∠2=2∠A+∠1,∴∠2﹣∠1=2∠A;(4)如图4,由折叠得:∠BMN=∠B′MN,∠ANM=∠A′NM,∵∠DNA+∠BMC=360°,∴∠1+∠2=360°﹣2∠BMN﹣2∠ANM,∵∠BMN+∠ANM=360°﹣∠A﹣∠B,∴∠1+∠2=360°﹣2(360°﹣∠A﹣∠B)=2(∠A+∠B)﹣360°,故答案为:∠1+∠2=2(∠A+∠B)﹣360°.24.解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分线,∠BAC=40°,∴∠CAD=∠BAD=12∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC =180°﹣∠B ﹣∠C ,∵AD 是∠BAC 的角平分线,∴∠CAD =∠BAD =12∠BAC ,∵AE 是△ABC 的高,∴∠AEC =90°,∴∠CAE =90°﹣∠C ,∴∠DAE =∠CAD ﹣∠CAE =12∠BAC ﹣(90°﹣∠C )=12(180°﹣∠B ﹣∠C )﹣90°+∠C =12∠C −12∠B ,即∠DAE =12∠C −12∠B ; (3)不变,理由:连接BC 交AD 于F ,过点A 作AM ⊥BC 于M ,过点D 作DN ⊥BC 于N ,∵AE 是∠BAC 的角平分线,AM 是高,∴∠EAM =12(∠ACB ﹣∠ABC ),同理,∠ADN =12(∠BCD ﹣∠CBD ),∵∠AFM =∠DFN ,∠AMF =∠DNF =90°,∴∠MAD =∠ADN ,∴∠DAE =∠EAM+∠MAD =∠EAM+∠ADN =12(∠ACB ﹣∠ABC )+12(∠BCD ﹣∠CBD )=12(∠ACD ﹣∠ABD ).。
新人教版八年级数学上册《三角形》单元测试卷及答案详细解析
新人教版八年级数学上册《三角形》单元测试卷及答案考试时间:100分钟;命题人:七年级数学备课组题号一二三总分得分评卷人得分一、选择题1、以下列各组线段为边,能构成三角形的是()A.2,3,6 B.3,4,5 C.2,7,9 D.,3,2、已知等腰三角形的其中二边长分别为4,9,则这个等腰三角形的周长为()A.17 B.22 C.17或22 D.无法确定3、五边形的对角线共有()条。
A.2 B.4 C.5 D.64、若△ABC的边长都是整数,周长为12,且有一边长为4,则这个三角形的最大边长为()。
A.7 B.6 C.5 D.85、如图,把一副含30°角和45°角的直角三角板拼在一起,那么图中∠ADE是()A.100°B.120° C.135° D.150°6、等腰三角形的边长是3和8,则它的周长是( )A.11 B.14 C.19 D.14或197、一个三角形三个内角的度数之比为2:3:5,这个三角形一定是()A.等腰三角形B.直角三角形 C.锐角三角形D.钝角三角形8、如图所示,三角形纸片中,有一个角为60°,剪去这个角后,得到一个四边形,则的度数为()A.120°B.180°C.240°D.300°9、如图,∠BDC=98°,∠C=38°,∠A=37°,∠B的度数是()A.33°B.27°C.37°D.23°10、比较下图长方形内阴影部分面积的大小,甲()乙。
A.> B. < C. =评卷人得分二、填空题11、如图,梯形的上底是6.5厘米,下底是16厘米。
三角形甲的面积与三角形乙面积的最简比是(_______)。
12、已知△ABC 的两条边长分别为 5 和 8,那么第三边长 x 的取值范围____________-.13、如图,AO⊥CO,直线BD经过O点,且∠1=20°,则∠COD的度数为_________.14、如图,△ABC的角平分线BO、CO相交于点O,且∠BOC=132°,则∠A=__________.15、已知三角形的三边长分别为3,5,x,则化简式子|x-2|+|x-9|=___.16、直线l1∥l2,一块含45°角的直角三角板如图放置,∠1=85°,则∠2=_____.17、如图,DAE是一条直线,DE∥BC,则∠BAC=___度.18、如图,一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是__________.19、如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=45°,则∠2的度数为__________20、等腰三角形的一条边长为6,另一边长为13,则它的周长为_______.21、在△ABC中,∠A:∠B:∠C=2:3:4,则∠A=______________度评卷人得分三、解答题22、如图,在⊿ABC中,∠B = 50º,∠C = 70º,AD是高,AE是角平分线,(1)∠BAC=__________,∠DAC=__________。
初二上册三角形单元测试题及答案doc
初二上册三角形单元测试题及答案doc一、选择题(每题3分,共30分)1. 下列关于三角形的说法正确的是()。
A. 三角形的内角和为180度B. 三角形的外角和为360度C. 三角形的内角和为360度D. 三角形的外角和为180度2. 在一个三角形中,如果一个角是90度,那么这个三角形是()。
A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形3. 三角形的两边之和大于第三边,这个性质称为()。
A. 三角不等式B. 三角和定理C. 三角形的外角性质D. 三角形的内角性质4. 一个三角形的三边长分别为a、b、c,若a+b>c,则这个三角形是()。
A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等腰三角形5. 一个三角形的三个内角中,至少有()个锐角。
A. 0B. 1C. 2D. 36. 如果一个三角形的两边长分别为3和4,且第三边长为整数,则这个三角形的周长可能是()。
A. 7B. 8C. 9D. 107. 在一个等腰三角形中,如果底边长为6,腰长为5,则这个三角形的高是()。
A. 4B. 3C. 2D. 18. 一个三角形的三个内角中,最多有()个直角。
A. 0B. 1C. 2D. 39. 一个三角形的三个内角中,最多有()个钝角。
A. 0B. 1C. 2D. 310. 在一个三角形中,如果一个角是60度,那么这个三角形的另外两个角的和是()。
A. 60度B. 90度C. 120度D. 150度二、填空题(每题3分,共30分)1. 如果一个三角形的三边长分别为3、4、5,则这个三角形是______三角形。
2. 在一个等边三角形中,每个内角的度数是______度。
3. 如果一个三角形的两边长分别为2和3,第三边长为整数,则这个三角形的周长可能是______。
4. 在一个直角三角形中,如果一个锐角是30度,则另一个锐角是______度。
5. 如果一个三角形的三个内角的度数分别为50度、60度、70度,则这个三角形是______三角形。
部编数学八年级上册第11章《三角形》全章检测题(含答案)含答案
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!第十一章检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.如图,三角形的个数为( C )A.3 B.4 C.5 D.6 ,第3题图) ,第6题图) 2.(2015·泉州)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值( B ) A.11 B.5 C.2 D.13.如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角∠C的度数是( B )A.30° B.40° C.50° D.60°4.若△ABC有一个外角是钝角,则△ABC一定是( D )A.钝角三角形B.锐角三角形C.直角三角形D.以上都有可能5.(2015·广元)一个多边形的内角和是外角和的2倍,这个多边形的边数为( B )A.5 B.6 C.7 D.86.如图,CD平分含30°角的三角板的∠ACB,则∠1等于( B )A.110° B.105° C.100° D.95°7.如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,若S△DEF=2,则S△ABC等于( A )A.16 B.14 C.12 D.10,第7题图) ,第9题图) ,第10题图)8.一个多边形对角线的条数是边数的3倍,则这个多边形是( C )A.七边形B.八边形C.九边形D.十边形9.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△F MN,若MF∥AD,FN∥DC,则∠D的度数为( C )A.115° B.105° C.95° D.85°10.如图,∠1,∠2,∠3,∠4恒满足的关系是( D )A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4-∠3C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2-∠3二、填空题(每小题3分,共24分)11.(2015·南充)如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是__60__度.,第11题图) ,第12题图) ,第13题图) ,第18题图) 12.如图,△ABC中,BD是AC边上的高,CE是AB边上的高,BD与CE相交于点O,则∠ABD__=__∠ACE(填“>”“<”或“=”),∠A+∠DOE=__180__度.13.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有__稳定__性.14.若一个三角形的两边长是4和9,且周长是偶数,则第三边长为__7或9或11__.15.(2015·烟台)正多边形的一个外角是72°,则这个多边形的内角和的度数是__540°_ _.16.一个等腰三角形的底边长为5cm,一腰上的中线把这个三角形的周长分成的两部分之差是3cm,则它的腰长是__8_cm__.17.一个人从A点出发向北偏东30°方向走到B点,再从B点出发向南偏东15°方向走到C 点,此时C点正好在A点的北偏东70°的方向上,那么∠ACB的度数是__95°__.18.如图,已知∠A=α,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线相交于点A1,得∠A1;若∠A1BC的平分线与∠A1CD的平分线相交于点A2,得∠A2……∠A2015BC的平分线与∠A2015CD的平分线相交于点A2016,得∠A2016,则∠A2016=__α22016__.(用含α的式子表示)三、解答题(共66分)19.(8分)如图,△ABC中,∠A=90°,∠ACB的平分线交AB于D,已知∠DCB=2∠B ,求∠ACD的度数.解:设∠B=x°,可得∠DCB=∠ACD=2x°,则x+2x+2x=90,∴x=18,∴∠A CD=2x°=36°20.(8分)如图,在△ABC中,AD是高,AE是角平分线,∠B=70°,∠DAE=18°,求∠C的度数.解:∵∠BAD=90°-∠B=20°,∴∠BAE=∠BAD+∠DAE=38°.∵AE是角平分线,∴∠CAE=∠BAE=38°,∴∠DAC=∠DAE+∠CAE=56°,∴∠C=90°-∠DA C=34°21.(9分)已知等腰三角形的周长为18 cm,其中两边之差为3 cm,求三角形的各边长.解:设腰长为x cm,底边长为y cm,则{2x+y=18,x-y=3,或{2x+y=18,y-x=3,解得{x=7,y=4,或{x=5,y=8,经检验均能构成三角形,即三角形的三边长是7 cm,7 cm,4 cm或5 cm,5 cm,8 cm22.(9分)如图,小明从点O出发,前进5 m后向右转15°,再前进5 m后又向右转15°……这样一直走下去,直到他第一次回到出发点O为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?解:(1)所经过的路线正好构成一个外角是15度的正多边形,360÷15=24,24×5=120 (m),则小明一共走了120米(2)(24-2)×180°=3960°23.(10分)如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=10 cm,BC=8 cm,AC=6 cm.(1)求△ABC的面积;(2)求CD的长;(3)作出△ABC的中线BE,并求△ABE的面积.解:(1)24 cm2(2)S△ABC=12×10×CD=24,∴CD=4.8 cm(3)作图略,S△ABE=12 cm224.(10分)(1)如图,一个直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C,△ABC中,若∠A=30°,则∠ABC+∠ACB=__150°__,∠XBC+∠XCB=__90°__;(2)若改变直角三角板XYZ的位置,但三角板XYZ的两条直角边XY,XZ仍然分别经过B,C,那么∠ABX+∠ACX的大小是否变化?若变化,请说明理由;若不变化,请求出∠ABX+∠ACX的大小.解:(2)∵∠ABX+∠ACX=(∠ABC+∠ACB)-(∠XBC+∠XCB)=150°-90°=60°,∴∠ABX+∠ACX的大小不变,其大小为60°25.(12分)平面内的两条直线有相交和平行两种位置关系.(1)如图①,若AB∥CD,点P在AB,CD外部,则有∠B=∠BOD,又因为∠BOD是△POD的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B-∠D.将点P移到AB,CD内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论;(2)在如图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图③,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求如图④中∠A+∠B+∠C+∠D+∠E的度数.解:(1)不成立,结论是∠BPD=∠B+∠D.证明:延长BP交CD于点E,∵AB∥CD,∴∠B=∠BED,又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D(2)∠BPD=∠BQD+∠B+∠D(3)由(2)的结论得:∠AGB=∠A+∠B+∠E且∠AGB=∠CGD,∴∠A+∠B+∠C +∠D+∠E=180°。
三角形单元测试题及答案
三角形单元测试题及答案一、选择题1. 一个三角形的内角和等于多少度?A. 180°B. 360°C. 90°D. 120°答案:A2. 直角三角形中,直角的度数是多少?A. 30°B. 60°C. 90°D. 120°答案:C3. 等边三角形的三个内角各是多少度?A. 30°B. 45°C. 60°D. 90°答案:C二、填空题4. 在三角形ABC中,若∠A = 40°,∠B = 70°,则∠C = ______ 度。
答案:70度5. 三角形的周长是指三角形三条边的________。
答案:和6. 如果一个三角形的三边长分别为a、b、c,且a + b > c,那么这个三角形是________三角形。
答案:合法三、判断题7. 所有三角形的面积都可以用底乘高除以2来计算。
()答案:错误8. 等腰三角形的两腰相等。
()答案:正确9. 一个三角形的三边长分别为3、4、5,则这个三角形是直角三角形。
()答案:正确四、简答题10. 请说明如何判断一个三角形是否为等边三角形。
答案:一个三角形是等边三角形,当且仅当它的三条边长相等。
11. 解释什么是三角形的高,并说明如何计算三角形的高。
答案:三角形的高是指从三角形的一个顶点垂直到对边的线段。
计算三角形的高,首先需要确定三角形的底边,然后从底边的对顶点垂直作线,这条线段就是高。
对于已知底边和面积的三角形,可以通过面积公式(面积 = 底边× 高÷ 2)来计算高。
五、计算题12. 已知三角形ABC的三边长分别为AB = 5cm,BC = 7cm,AC = 6cm,求三角形ABC的面积。
答案:首先,使用海伦公式计算面积。
设a、b、c分别为三角形的三边长,S为半周长,面积A可以通过公式A = √(s(s - a)(s -b)(s - c)) 计算。
三角形全章测试题(含答案)
七年级三角形全章测试题一、选择题(每题3分,共计24分)1.如果在一个顶点周围用两个正方形和n 个正三角形恰好可以进行平面镶嵌,则n 的值是( ).A .3 B .4 C .5 D .62.下面四个图形中,线段BE 是⊿ABC 的高的图是( )3.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A .13cmB .6cmC .5cmD .4cm4.三角形一个外角小于与它相邻的内角,这个三角形是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .属于哪一类不能确定 5.如图,在直角三角形ABC 中,AC ≠AB ,AD 是斜边上的高, DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,则图中与∠C (∠C 除外)相等的角的个数是( ) A 、3个 B 、4个 C 、5个 D 、6个6.如图,将一副三角板叠放在一起,使直角的顶点重合于O ,则∠AOC+∠DOB=( )A 、900B 、1200C 、1600D 、18007.以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )(A)1个 (B)2个 (C)3个 (D)4个8.给出下列命题:①三条线段组成的图形叫三角形 ②三角形相邻两边组成的角叫三角形的内角 ③三角形的角平分线是射线 ④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外 ⑤任何一个三角形都有三条高、三条中线、三条角平分线 ⑥三角形的三条角平分线交于一点,且这点在三角形内。
正确的命题有( )A.1个B.2个C.3个D.4个二、填空题(每题3分,共计24分)9.如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。
10.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是___________________. 11.把一副常用的三角板如图所示拼在一起,那么图中∠ADE 是 度。
人教版八年级上册数学《三角形》单元测试题带答案
人教版数学八年级上学期《三角形》单元测试时间:90分钟总分: 100一、选择题1.能将三角形面积平分的是三角形的..)A.角平分..B...C.中..D.外角平分线2.已知三角形的两边长分别为4cm和9cm, 则下列长度的四条线段中能作为第三边的是.. )A.13c..B.6c..C.5c..D.4cm3.三角形一个外角小于与它相邻的内角, 这个三角形是...)A.直角三角..B.锐角三角..C.钝角三角..D.属于哪一类不能确定4.若一个多边形每一个内角都是135º, 则这个多边形的边数是...)A...B...C.1..D.125.某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面, 可供选择的地砖共有( )A.4..B.3..C.2..D.1种6.一个多边形的外角和是内角和的一半, 则它是. )边形A...B...C...D.47.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,若△CEF的面积为12cm2,则S △DGF的值为. )学*科*网...学*科*网...A.4cm..B.6cm..C.8cm..D.9cm28.已知△ABC中, ∠A=20°, ∠B=∠C, 那么三角形△ABC是()A.锐角三角..B.直角三角..C.钝角三角..D.正三角形9.试通过画图来判定, 下列说法正确的是()A.一个直角三角形一定不是等腰三角形B.一个等腰三角形一定不是锐角三角形C.一个钝角三角形一定不是等腰三角形D.一个等边三角形一定不是钝角三角形10.如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是()A.35..B.55..C.60..D.70°二、填空题11.如果点G是△ABC的重心.AG的延长线交BC于点D.GD=12.那么AG=________.12.如图,将三角尺的直角顶点放在直尺的一边上,∠1= ,∠2= ,则∠3=_____________°.13.若一个多边形的内角和比外角和大360°, 则这个多边形的边数为_______________.14.如图,△ABC中,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为D.E、F,则线段___是△ABC中AC边上的高.15.一个多边形的内角和是外角和的2倍, 则这个多边形的边数为___.16.十边形的外角和是_____°.17.若三角形的周长是60cm,且三条边的比为3:4:5,则三边长分别为__________.18.如图,⊿ABC中,∠..40°,∠..72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CD.=_________度。
三角形单元测试题及答案
三角形单元测试题及答案一、选择题(每题2分,共20分)1. 三角形的内角和等于多少度?A. 90度B. 180度C. 360度D. 720度答案:B2. 等边三角形的三个内角各是多少度?A. 45度B. 60度C. 90度D. 120度答案:B3. 直角三角形的两个锐角之和等于多少度?A. 45度B. 90度C. 135度D. 180度答案:B4. 一个三角形的两边长分别为3cm和4cm,第三边长至少是多少cm?A. 1cmB. 2cmC. 3cmD. 4cm答案:A5. 以下哪个选项不是三角形的分类?A. 等边三角形B. 等腰三角形C. 直角三角形D. 四边形答案:D6. 一个三角形的两边长分别为5cm和12cm,第三边长的范围是多少?A. 7cm到17cmB. 5cm到12cmC. 12cm到17cmD. 5cm到17cm答案:A7. 以下哪个选项不是三角形的外角性质?A. 等于两个不相邻内角的和B. 等于相邻内角的补角C. 大于90度D. 等于180度减去相邻内角答案:C8. 一个三角形的三个内角分别是50度、60度和70度,这个三角形是?A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能构成三角形答案:A9. 一个三角形的周长是24cm,其中一边长为8cm,另外两边之和至少是多少cm?A. 8cmB. 16cmC. 24cmD. 32cm答案:B10. 以下哪个选项是三角形的稳定性?A. 容易变形B. 不容易变形C. 容易旋转D. 容易平移答案:B二、填空题(每题2分,共20分)1. 一个三角形的三个内角分别是30度、60度和______度。
答案:90度2. 在一个等腰三角形中,如果底角是50度,那么顶角是______度。
答案:80度3. 一个三角形的两边长分别为3cm和5cm,第三边的长至少是______cm。
答案:2cm4. 一个三角形的周长是18cm,其中一边长为6cm,另外两边之和至少是______cm。
三角形单元测试题及答案
三角形单元测试题及答案题目一:三角形的特性1. 给出一个三角形ABC,边长AB = 5cm,边长BC = 3cm,边长AC = 4cm。
判断该三角形的类型并说明理由。
答案:这个三角形是一个锐角三角形。
因为根据三角形边长关系定理,任意两边之和大于第三边,AB + BC > AC,BC + AC > AB,以及AC + AB > BC成立。
另外,任意两边的长度的平方和大于第三边的长度的平方,AB^2 + BC^2 > AC^2,BC^2 + AC^2 > AB^2,以及AC^2 + AB^2 > BC^2也成立。
2. 给出一个等边三角形DEF,边长为6cm。
求其内角的度数。
答案:根据等边三角形的特性,三个内角的度数都相等,因此我们只需要求其中一个内角的度数即可。
我们可以利用余弦定理来计算。
由于等边三角形的三个边长均相等,令其中一条边长为a,则根据余弦定理得:a^2 = a^2 + a^2 - 2 * a * a * cosC,化简得 cosC = 1/2,所以 C = 60°。
因此,等边三角形的内角度数为60°。
题目二:三角函数的计算1. 已知直角三角形ABC,AB = 6cm,BC = 8cm。
求角A的正弦值和余弦值。
答案:由于三角形ABC是直角三角形,角A为直角,所以 sinA = BC / AB = 8 / 6 = 4 / 3,cosA = AB / BC = 6 / 8 = 3 / 4。
2. 已知角A的余弦值为0.6,求角A的正弦值。
答案:根据三角函数的定义,sinA = √(1 - cos^2A) = √(1 - 0.6^2) = √(1 - 0.36) = √0.64 = 0.8。
题目三:三角方程的解解下列方程(其中0° ≤ x ≤ 360°):1. sinx + cosx = 1答案:将sinx写为cosx的函数形式,得到cosπ/4x + cosx = 1。
三角形测试题及答案
三角形测试题及答案一、选择题1. 三角形内角和等于多少度?A. 180°B. 360°C. 90°D. 120°答案:A2. 直角三角形的两条直角边分别为3和4,斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A3. 等边三角形的三个角各是多少度?A. 60°B. 90°C. 120°D. 180°答案:A4. 一个三角形的三个内角分别是50°、60°和70°,这个三角形是?A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能构成三角形答案:A5. 已知三角形的三边长分别为a、b、c,且满足a² + b² = c²,这个三角形是?A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形答案:B二、填空题6. 如果三角形的两边长分别为5和7,且第三边长是奇数,那么第三边长可能是______。
答案:9(因为根据三角形的两边之和大于第三边,两边之差小于第三边,5 + 7 > x > |5 - 7|,所以x > 2且x < 12,且x为奇数,故x=9)7. 等腰三角形的顶角为120°,那么底角的度数分别是______。
答案:30°(因为等腰三角形两底角相等,且三角形内角和为180°,所以底角= (180° - 120°) / 2 = 30°)8. 已知三角形ABC,其中∠A = 40°,∠B = 70°,求∠C的度数。
答案:70°(因为三角形内角和为180°,所以∠C = 180° - ∠A - ∠B = 180° - 40° - 70° = 70°)三、计算题9. 在三角形ABC中,已知AB = 10,AC = 8,BC = 6,求三角形ABC的面积。
三角形单元测试题及答案
三角形单元测试题及答案1. 选择题:- 下列哪个选项不是三角形的内角和?A. 180°A. 360°B. 540°C. 720°D. 1080°- 答案:B2. 填空题:- 在一个三角形中,如果一个角是直角,那么这个三角形叫做______三角形。
- 答案:直角3. 判断题:- 如果一个三角形的两边长度分别为3和4,那么第三边的长度可以是1。
(正确/错误)- 答案:错误4. 简答题:- 解释什么是等边三角形,并给出一个等边三角形的边长为6时,其面积的计算方法。
- 答案:等边三角形是三条边都相等的三角形。
边长为6的等边三角形面积可以通过公式 \( A = \frac{\sqrt{3}}{4} \times a^2 \)计算,其中 \( a \) 是边长。
代入 \( a = 6 \) 得到面积 \( A =\frac{\sqrt{3}}{4} \times 6^2 = 9\sqrt{3} \) 平方单位。
5. 计算题:- 已知三角形ABC,其中AB=5,AC=7,BC=6,求三角形ABC的面积。
- 答案:使用海伦公式,首先计算半周长 \( s = \frac{5 + 7 + 6}{2} = 9 \),然后面积 \( A = \sqrt{s(s-5)(s-7)(s-6)} =\sqrt{9 \times 4 \times 2 \times 3} = 6\sqrt{6} \) 平方单位。
6. 应用题:- 在一个直角三角形中,斜边的长度是13,一条直角边的长度是5,求另一条直角边的长度。
- 答案:根据勾股定理,设另一条直角边为 \( x \),有 \( 5^2+ x^2 = 13^2 \),解得 \( x = \sqrt{169 - 25} = 12 \)。
7. 证明题:- 证明:等腰三角形的底角相等。
- 答案:设等腰三角形为ABC,AB=AC,根据等边对等角原理,因为AB=AC,所以∠B=∠C,即等腰三角形的底角相等。
三角形单元测试题及答案
三角形单元测试题及答案一、选择题(每题2分,共10分)1. 三角形的内角和是多少度?A. 90度B. 180度C. 360度D. 720度答案:B2. 直角三角形的两个锐角之和是多少度?A. 90度B. 180度C. 360度D. 720度答案:A3. 等腰三角形的两个底角相等,那么顶角是多少度?A. 30度B. 60度C. 90度D. 120度答案:C4. 一个三角形的三个内角都是60度,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形答案:D5. 如果一个三角形的两边长分别为3和4,第三边长为整数,那么第三边长可能是:A. 1B. 2C. 3D. 4答案:D二、填空题(每题2分,共10分)6. 一个等边三角形的每个内角都是______度。
答案:607. 如果一个三角形的两边长分别为5和12,且第三边长为整数,那么第三边长至少是______。
答案:78. 一个三角形的三个内角中,最大角不能超过______度。
答案:1809. 在一个三角形中,如果两个角的度数分别为40度和70度,那么第三个角的度数是______度。
答案:7010. 直角三角形的斜边长是两个直角边的______。
答案:平方和的平方根三、解答题(每题5分,共20分)11. 已知一个三角形的三个内角分别为α、β、γ,且α+β+γ=180度,求证:如果α=β,那么γ=90度。
证明:因为α+β+γ=180度,且α=β,所以2α+γ=180度。
又因为α+β+γ=180度,所以2α+α=180度,即3α=180度,解得α=60度。
因此,γ=180度-2α=180度-120度=60度。
所以,如果α=β,那么γ=90度。
12. 已知一个三角形的两边长分别为6和8,求第三边长x的范围。
解:根据三角形的三边关系,第三边长x必须满足8-6<x<8+6,即2<x<14。
因此,第三边长x的范围是2<x<14。
(完整版)解三角形单元测试题(附答案)
解三角形单元测试题6、 A ABC 中,已知ax, b 2, B60°,如果△ ABC 两组解,则 x 的取值范围()A • x 2B• x 2C • 2 x\3D • 2x \3337、已知△ ABC 的面积为3 2且b 2,c3,则/ A 等于()A • 30°B • 30° 或 150 °C • 60°D • 60° 或 120°&甲船在岛B 的正南方A 处,AB = 10千米,甲船以每小时 4千米的速度向正北航行, 同时乙船自B 出发以每小时6千米的速度向北偏东 60。
的方向驶去,当甲,乙两船相距 最近时,它们所航行的时间是()15015A-50分钟 B •二分钟 C • 21.5分钟 D • 2.15分钟779、飞机沿水平方向飞行,在A 处测得正前下方地面目标 C 得俯角为30°,向前飞行10000 米,到达B 处,此时测得目标C 的俯角为75°,这时飞机与地面目标的水平距离为 ( )A • 5000 米B • 5000、2 米C • 4000 米D • 4000 • 2 米10、已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是(、填空题11、在厶 ABC 中,若/ A: / B: / C=1:2:3,1、在厶ABC 中, a = 3, b = .. 7 , c = 2,那么 B 等于() D • 120°A • 30 °B• 45°C •60°2、在厶ABC 中, a = 10, B=60 ° ,C=45° ,则 c 等于( )A . 10 、3B • 10 ,3 1 C• ,3 1 D • 10'.. 33、 在厶ABC 中, a = 2 . 3 ,b = 2 . 2 , B = :45°,贝U A 等于()A • 30°B • 60°C • 30 ° 或 120 °D •30° 或150 °4、在厶ABC 中, 已知a 2 2 2b c bc ,则角A 为( )2亠2 A •B ——CD •或——363335、在厶ABC 中, 已知 2sin AcosB sinC ,那么△ ABC.宀曰疋疋( )、选择题:B •等腰三角形 C •等腰直角三角形A •直角三角形 D •正三角形 C • 0 x -.5 D •. 13 x 5则 a : b: c _______12、在厶ABC 中,a 3、3,C _______ 2, B 150。
2024-2025学年人教新版八年级上册数学《第11章 三角形》单元测试卷(有答案)
2024-2025学年人教新版八年级上册数学《第11章三角形》单元测试卷一.选择题(共10小题,满分30分,每题3分)1.△ABC的三角之比是1:2:3,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定2.下面四个图形中,线段BD是△ABC的高的是()A.B.C.D.3.学习了四边形之后,小颖同学用如图所示的方式表示了四边形与特殊四边形的关系,则图中的“M”和“N”分别表示()A.平行四边形,正方形B.正方形,菱形C.正方形,矩形D.矩形,菱形4.一个正n边形的一个外角与它相邻的内角相等,则n的值为()A.4B.5C.6D.75.下面是三根小棒的长度(单位:cm),能围成三角形的是()A.1,2,3B.3,4,8C.5,5,10D.2,8,76.如图,有一个直角三角形纸板破损了一个角,如果把它补成完整的三角形纸板,需要补的角的度数是()A.45°B.35°C.55°D.25°7.将一副三角板按如图所示方式摆放,使有刻度的边互相垂直,则∠1=()A.45°B.50°C.60°D.75°8.空调安装在墙上时,一般都会采用如图的方法固定,这种方法应用的几何原理是()A.两点确定一条直线B.两点之间线段最短C.三角形的稳定性D.垂线段最短9.如图,点P是△ABC的重心,过点P作AC的平行线,分别交AB,BC于点D,E,若AC=6,则DE 的长为()A.2B.3C.4D.510.如图,将一副三角尺按不同位置摆放,摆放方式中∠α≠∠β的图形有()A.B.C.D.二.填空题(共10小题,满分30分,每题3分)11.多边形的每一个内角都等于它相邻外角的5倍,则该多边形的边数是.12.一个三角形,一个内角的度数是另两个内角度数和的.另两个内角的度数相差18°.这个三角形的最小的内角的度数是.13.如图,在生活中,为了保证儿童的安全,通常儿童座椅主体框架成三角形,这是利用了.14.已知a,b,c是△ABC的三边长,满足|a﹣7|+(b﹣2)2=0,c为奇数,则c=.15.四边形具有不稳定性.如图,矩形ABCD按箭头方向变形成平行四边形A'B'C'D',变形后∠A'=30°,若矩形ABCD的面积是12,则平行四边形A'B'C'D'的面积是.16.如图,∠ACB=90°,AC=6,BC=8,点D在AB上,∠A=2∠BCD,则CD的长为.17.如图,AP,BP分别平分△ABC内角∠CAB和外角∠CBD,连接CP,若∠ACP=130°,则∠APB =.18.在△ABC中,AD,BE为三角形的高,M为AD,BE所在直线的交点,∠BMD=52°,则∠C的度数是.19.已知:如图所示,在△ABC中,点D,E,F分别为BC,AD,CE的中点,且S=4cm2,则阴影△ABC 部分的面积为cm2.20.如图,点D是△ABC的重心,连接AD并延长交BC于点E,AB=4,△ABE的周长比△ACE的周长大1.8,则AC=.三.解答题(共7小题,满分60分)21.已知在△ABC中,AB=5,BC=2,且AC为奇数.(1)求△ABC的周长;(2)判断△ABC的形状.22.已知:如图,点P是△ABC的重心,过P作AC的平行线,分别交AB,BC于点D,E,作DF∥EC,交AC于点F,若△ABC的面积为18cm2,求四边形ECFD的面积.23.如图,在△ABC中,∠B=38°,∠C=60°,AD是BC边上的高,AE是∠BAC的平分线.求∠DAE 的度数.24.如图,在五边形ABCDE中,AP平分∠EAB,且AP∥DE,交CD于点P.(1)五边形ABCDE的内角和为度;(2)若∠C=100°,∠D=75°,∠E=135°,求∠B的度数.25.如图,AD是△ABC的高,CE是△ABC的角平分线,BF是△ABC的中线.(1)若∠ACB=50°,∠BAD=65°,求∠AEC的度数;(2)若AB=9,△BCF与△BAF的周长差为3,求BC的长.26.如图,在△ABC中,∠ACB=90°,∠CDB=90°,CE是△ABC的角平分线,已知∠CEB=105°,求∠ECB,∠ECD的大小.27.如图,已知每个小正方形格的面积是1平方厘米,求不规则图形的面积是多少平方厘米.参考答案与试题解析一.选择题(共10小题,满分30分,每题3分)1.B2.D3.B4.A5.D6.B7.D8.C9.C10.D二.填空题(共10小题,满分30分,每题3分)11.12.12.45°.13.三角形的稳定性.14.7.15.6.16..17.40°.18.52°或128°.19.见试题解答内容20.2.2.三.解答题(共7小题,满分60分)21.见试题解答内容22.见试题解答内容23.11°.24.(1)540;(2)∠B=140°.25.(1)50°(2)12或15.26.45°,15°.27.不规则图形的面积是19平方厘米.。
三角形测试卷含答案
1、2、3、4、5、6、7、第11、选择题(共10小题,每小题至少有两边相等的三角形是(A .等边三角形C •等腰直角三角形下列图形具有稳定性的是(如图,/仁55°,A./3=108 °章《三角形》单元测试卷(满分120分,限时120分钟)3分,共30分))B .等腰三角形D .锐角三角形)则/ 2的度数为(°C. 54 D. 55°10、如图,AD是厶ABC的角平分线,点O在AD上,且OE丄BC于点E,/ BAC=60 ° / C=80 ° 则/ EOD的度数为()A .20°、填空题(共B.30°C. 10 D . 156小题,每小题3分,共18 分)11、已知三角形的两边长分别为3和6,那么第三边长的取值范围是12、如图,AD丄BC于D,那么图中以AD为高的三角形有_________ 个.三角形一边上的中线把原三角形分成两个(B、面积相等的三角形D、周长相等的三角形)A、形状相同的三角形C、直角三角形下列说法不正确的是(A .三角形的中线在三角形的内部B .三角形的角平分线在三角形的内部C •三角形的高在三角形的内部D.三角形必有下列长度的三根小木棒能构成三角形的是()A . 2cm, 3cm, 5cm B. 7cm, 4cm, 2cmC. 3cm, 4cm, 8cmD. 3cm, 3cm, 4cm已知△ ABC中,/ A=20 ° / B= / C,那么三角形△A .锐角三角形B .直角三角形试通过画图来判定,下列说法正确的是(A .一个直角三角形一定不是等腰三角形C .一个钝角三角形一定不是等腰三角形D为垂足,ABC 是(钝角三角形高线在三角形的内部D •正三角形13、如图,△ ABC中,/ ACB >90° AD丄BC,BE丄AC,CF丄AB,垂足分别为D、E、F,则线段是厶ABC中AC边上的高.9、A. 35° B .55°B •一个等腰三角形一定不是锐角三角形D .一个等边三角形一定不是钝角三角形/ C=55 °则/ ABC的度数是()14、一个多边形的内角和是外角和的2倍,则这个多边形的边数为_________15、十边形的外角和是________ °16、若三角形的周长是60cm,且三条边的比为3: 4: 5,则三边长分别为__________________三、解答题(共8题,共72分)17、(本题8分)求正六边形的每个外角的度数.C. 60° D .70°18、(本题8分)如图,一个六边形木框显然不具有稳定性,要把它固定下来,至少要钉上几根木条,请画出相应木条所在线段. AF22、(本题10分)如图,在△ ABC中,AD是BC边上的中线,△ ADC的周长比厶ABD的周长多5cm, AB与AC的和为11cm,求AC的长.共有_____ 个三角形.(2)按上面的方法继续下去,第n个图形中有__________ 个三角形(用n的代数式表示结论)23、(本题10分)如图,在△ ABC中,/ ABC=66 ° / ACB=54 ° BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求/ ABE、/ ACF和/ BHC的度数.20、(本题8 分)已知:如图,/ B=42° / A+10° = Z 1,Z ACD=64°求证:AB // CD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改
《三角形》全章测试题
一、选择题(每题3分,共计30分)
1、以下列各组线段为边,能组成三角形的是【】
A. 2 cm ,3 cm,5 cm
B. 3 cm,3 cm,6 cm
C. 5 cm,8 cm,2 cm
D. 4 cm,5 cm,6 cm
2.下面四个图形中,线段BE是⊿ABC的高的图是()
3.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()
A.13cm B.6cm C.5cm D.4cm
4.三角形一个外角小于与它相邻的内角,这个三角形是()
A.直角三角形 B.锐角三角形
C.钝角三角形 D.属于哪一类不能确定
5.如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,
DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C
第5题图(∠C除外)相等的角的个数是()
A、3个
B、4个
C、5个
D、6个
6.如图,将一副三角板叠放在一起,使直角的顶点重合于O,
则∠AOC+∠DOB=()
A、900
B、1200
C、1600
D、1800
第6题图
7.以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是()
(A)1个 (B)2个 (C)3个 (D)4个
8.给出下列命题:①三条线段组成的图形叫三角形②三角形相邻两边组成的角叫三角形的内角③三角形的角平分线是射线④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外⑤任何一个三角形都有三条高、三条中线、三条角平分线⑥三角形的三条角平分线交于一点,且这点在三角形内。
正确的命题有( )
A.1个
B.2个
C.3个
D.4个
9、正多边形的每个内角都等于135º,则该多边形是正()边形。
(A)8 (B)9 (C)10 (D)11
10、三角形一边上的中线把原三角形分成两个( ) A 、形状相同的三角形 B 、面积相等的三角形 C 、直角三角形 D 、周长相等的三角形 二、填空题(每题4分,共计32分)
11.如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。
12.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是___________________.
13.把一副常用的三角板如图所示拼在一起,那么图中∠ADE 是 度。
14.如图,∠1=_____.
15.若三角形三个内角度数的比为2:3:4,则相应的外角比是 .
16.如图,⊿ABC 中,∠A = 40°,∠B = 72°,CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE ,则∠CDF = 度。
C
B
A
第9题图
第10题图
A
B C
D
E
第11题图
140
80
1
第12题图
第14题图
1 2
B
A
E
C D
M
I
16题图
17.如果将长度为a-2、a+5和a+2的三根线段首尾顺次相接可以得到一个三角形,那么a的取值范围是
18.如图,△ABC中,∠A=1000,BI、CI分别平分∠ABC,∠ACB,则∠BIC= ,若BM、CM分别平分∠ABC,∠ACB的外角平分线,则∠M=
三、解答题一(每题6分,共计18分)
19.(小颖要制作一个三角形木架,现有两根长度为8m和5m的木棒。
如果要求第三根木棒的长度是整数,小颖有几种选法?第三根木棒的长度可以是多少?
20.一个正多边形的一个外角等于它的一个内角的,这个正多边形是几边形??
四、解答题二(每题7分,共计21分)
21.(7分)已知,如图,在△ ABC中,AD,AE分别是△ ABC的高和角平分
线,若∠B=30°,∠C=50°.
(1)求∠DAE的度数。
(2)试写出∠DAE与∠C-∠B有何关系?(不必证明)
A
C
D
第23题图
3 1
22.(7分)如图,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交AC 于E,∠A=35°,∠D=42°,求∠ACD 的度数.
23.(9分)如图,在△ABC 中,∠B=∠C,∠BAD=40°,且∠ADE=∠AED,求∠CDE 的度数. 参考答案
一、1.D ;2.A ;3.B ;4.C ;5.B ;6.D ;7.A ;8.D ;9.A ;10.B
F
D
C
B
E
A 第24题图
D E
A
第24题图
二、11.9;12.三角形的稳定性;13.135;14.1200;15.7:6:5;16.74;
17.a>5;18.720,720,360;
三、
19.不能。
如果此人一步能走三米多,由三角形三边的关系得,此人两腿的长大于3米多,这与实际情况不符。
所以他一步不能走三米多。
-------------只要说到三角形三边的关系就要适当给分,语言整齐就可满分6分
20.小颖有9种选法。
第三根木棒的长度可以是6cm,7cm,8cm,9cm,10cm,11cm,12 cm。
--------------------------每对一个给1分,共6分21.解:设正多边形的边数为n,------------1分
得180(n-2)=360×3,------------------3分
解得n=8.------------------------5分
答:这个正多边形是八边形.--------------------------6分
四、
22.(1)135°;---------------1分
(2)122°--------------------2分;
(3)128°;-----------------3分
(4)60°;-------------------5分
(5)∠BOC = 90°+ 1
∠A----------------------------7分
2
23.(1) ∠DAE=10°------------------3分
(2)∠C - ∠B=2∠DAE -----------------------7分
24.解:因为∠AFE=90°,所以∠AEF=90°-∠A=90°-35°=55°.-------------3分所以∠CED=•∠AEF=55°,------------------5分
所以∠ACD=180°-∠CED-∠D=180°-55°-42=83°.--------------------7分五,
25.解:设∠DAE=x,则∠BAC=40°+x. --------------1分
因为∠B=∠C,所以2∠2=180°-∠BAC, --------------3分
∠C=90°-1
2∠BAC=90°-1
2
(40°+x). -------------------5分
同理∠AED=90°-1
2∠DAE=90°-1
2
x.-----------------7分
∠CDE=∠AED-∠C=(90°-1
2x)-[90°-
1
2
(40°+x)]=20°.----------------9分
26.解:BE与DF平行……………………………………………………2分理由如下:
由n边形内角和公式可得四边形内角和为(4-2)×180°=360°………3分∵∠A=∠C=90°
∴∠ADC+∠ABC=180°……………………………………………5分
∵BE平分∠ABC,DF平分∠ADC
∴∠ADF=∠ADC,∠ABE=∠ABC…………………………7分
∵∠BFD是三角形ADF的外角
∴∠BFD=∠A+∠ADF………………………………………………10分∴∠BFD+∠ABE=∠A+∠ADC+∠ABC=∠A+(∠ADC+∠ABC)
最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改。