Matlab有限元分析操作基础
Matlab有限元分析操作基础共11页
Matlab有限元分析20140226为了用Matlab进行有限元分析,首先要学会Matlab基本操作,还要学会使用Matlab进行有限元分析的基本操作。
1. 复习:上节课分析了弹簧系统x推导了系统刚度矩阵2. Matlab有限元分析的基本操作(1)单元划分(选择何种单元,分成多少个单元,标号)(2)构造单元刚度矩阵(列出…)(3)组装系统刚度矩阵(集成整体刚度矩阵)(4)引入边界条件(消除冗余方程)(5)解方程(6)后处理(扩展计算)3. Matlab有限元分析实战【实例1】分析:步骤一:单元划分>>k1=SpringElementStiffness(100)a) 分析SpringAssemble库函数function y = SpringAssemble(K,k,i,j)% This function assembles the element stiffness% matrix k of the spring with nodes i and j into the % global stiffness matrix K.% function returns the global stiffness matrix K% after the element stiffness matrix k is assembled. K(i,i) = K(i,i) + k(1,1);K(i,j) = K(i,j) + k(1,2);K(j,i) = K(j,i) + k(2,1);K(j,j) = K(j,j) + k(2,2);y = K;b) K是多大矩阵?今天的系统刚度矩阵是什么?因为11221212k kk kk k k k-⎡⎤⎢⎥-⎢⎥⎢⎥--+⎣⎦所以10001000200200 100200300-⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦?c) K=SpringAssemble(K,k1,1,2) function y = SpringAssemble(K,k,i,j) K(i,i) = K(i,i) + k(1,1);K(i,j) = K(i,j) + k(1,2);K(j,i) = K(j,i) + k(2,1);K(j,j) = K(j,j) + k(2,2);K=SpringAssemble(K,k2,2,3)步骤四:引入边界条件,消除冗余方程>>k=K(2:3,2:3)%构造不含冗余的方程>>f=[0;15]%构造外力列阵步骤五:解方程引例:已知1212u31uu u+=⎧⎨-=⎩,求12u u和解:类似求解KU=F,输入下列Matlab命令:>> K=[1 1;1,-1]>> F=[3;1]>> U=inv(K)*F>> U=K\F(继续弹簧系统求解)>>u=k\f%使用高斯消去法求解>>U=[0 ; u]%构造原方程组>>F=K*U%求出所有外力,含多余计算步骤六:后处理、扩展计算>>u1=[0;U(2)]%构造单元位移>>f1=SpringElementForces(k1,u1)%求单元1内力>>u2=[U(2) ; U(3)]%构造单元2位移>>f2=SpringElementForces(k2,u2)%求单元2内力4. 总结clccleark1=SpringElementStiffness(100)%创建单元刚度矩阵1 k2=SpringElementStiffness(200)%创建单元刚度矩阵2 K=zeros(3,3)%创建空白整体刚度矩阵K=SpringAssemble(K,k1,1,2)%按节点装入单元矩阵1K=SpringAssemble(K,k2,2,3)%按节点装入单元矩阵2k=K(2:3,2:3)%构造不含冗余的方程f=[0;15]%构造外力列阵u=k\f%使用高斯消去法求解U=[0 ; u]%构造系统节点位移列阵F=K*U%求出所有外力,含多余计算u1=[0;U(2)]%构造单元位移f1=SpringElementForces(k1,u1)%求单元1内力u2=[U(2) ; U(3)]%构造单元2位移f2=SpringElementForces(k2,u2)%求单元2内力5. 练习1 Danyi 132 dan 34 3dan 35 4dan 35 dan5 54 dan6 42希望以上资料对你有所帮助,附励志名言3条:1、生气,就是拿别人的过错来惩罚自己。
有限元MATLAB
MATLAB报告Matlab程序求解简要过程如下:(1)求取单元节点位移提取矩阵T单元节点位移提取矩阵T本质上是置换矩阵群中的一个,结果可将任意杂乱的节点顺序置换成统一的顺序。
另一方面其作用是对单元刚度矩阵进行“升维操作”,将单元刚度矩阵统筹到整体刚度矩阵上来,便于对总体节点位移矩阵和支座反力进行求取。
本程序分析过程中对单元1的节点提取是按顺序编号1-2-3,对单元2的节点提取是按顺序编号2-3-4。
单元1的节点位移提取矩阵如下:单元2的节点位移提取矩阵如下:(2)求取单元几何矩阵B单元1的节点按编号顺序1-2-3分别进行对几何函数矩阵或算子矩阵的bi逆时针操作,对ci顺时针操作;单元2的节点按编号顺序2-3-4分别进行对几何函数矩阵的bi顺时针操作,对ci逆时针操作.在MATLAB程序中通过mod()取模函数来达到对节点的顺时针或逆时针循环操作。
单元1的几何矩阵如下:单元2的几何矩阵如下:(3)求取应力矩阵S单元应力矩阵满足S=D*B,其中D为弹性矩阵,B为单元几何矩阵各单元的弹性矩阵如下:单元1的应力矩阵如下:单元2的应力矩阵如下:(4)求取单元刚度矩阵K单元刚度矩阵K满足公式K=B’*D*B*t*A,其中t为平面板的厚度,A为单元面积,且单元刚度矩阵为对称矩阵。
单元1的刚度矩阵如下:单元2的刚度矩阵如下:(5)求取总体刚度矩阵sumKK由上述步骤求得的单元刚度矩阵K利用单元虚功原理和刚度方程可导出K’*δ=f,其中δ为单元节点位移列阵,f为单元等效节点载荷列阵,为了能将各个单元刚度方程统一到一个整体,便需要步骤(1)的单元节点提取矩阵对单元刚度方程进行变换,将两个变换结果联立便得到总体刚度方程,其中也可得到总体刚度矩阵sumKK,且总体刚度矩阵可由sumKK=Σ T’*K*T 求得。
总体刚度矩阵如下:(6)求取总体节点位移矩阵和支座反力利用上述步骤提到的总体刚度方程sumKK*delta=F,其中delta为总体节点位移矩阵,F为总体等效节点载荷列阵。
matlab有限元法圆柱绕流
matlab有限元法圆柱绕流分析,需要使用到MATLAB的有限元分析工具箱(FEATool)。
以下是一个简单的步骤:
1.建立模型:首先,使用FEATool创建圆柱绕流的模型。
这包括
定义流体区域、边界条件、初始条件等。
2.划分网格:使用FEATool对模型进行网格划分,以便进行有限
元分析。
3.设置材料属性:为流体和圆柱设置相应的物理属性,如密度、
粘度等。
4.设置边界条件和载荷:定义流体的入口和出口速度,以及任何
作用在圆柱上的力或力矩。
5.运行分析:使用FEATool进行有限元分析,这可能涉及到求解
流场的动量方程和连续性方程等。
6.后处理:使用FEA Tool的结果可视化功能,查看流场的速度、
压力等分布,以及圆柱受到的力或力矩等。
请注意,这只是一个非常基础的概述。
实际操作中,可能需要考虑更多的因素,如湍流模型的选择、边界条件的详细设置等。
另外,由于有限元分析是一个计算密集型任务,可能需要高性能计算资源。
第三章MATLAB有限元分析与应用
第三章MATLAB有限元分析与应用有限元分析(Finite Element Analysis, FEA)是一种工程计算方法,用于解决结构力学和流体力学等问题。
它将一个复杂的结构分割成多个简单的离散单元,通过建立数学模型和求解方程组,得到结构的力学、热力学和流体力学等性能参数。
MATLAB是一种功能强大的数学计算软件,具有直观的用户界面和丰富的工具箱,可以方便地进行有限元分析。
本章将介绍在MATLAB中进行有限元分析的基本步骤和方法,以及一些常见的应用例子。
首先,进行有限元分析需要将结构进行离散化。
常用的离散化方法有节点法和单元法。
节点法是将结构的几何形状划分为小的节点,并在节点上进行计算。
单元法是将结构划分为多个小的单元,并在每个单元内进行计算。
在MATLAB中,可以通过创建节点和单元的矩阵来描述结构和单元的关系。
例如,创建一个2D结构形式的节点矩阵:nodes = [0 0; 1 0; 0 1; 1 1];然后,通过创建描述节点连接关系的矩阵,来定义结构的单元:elements = [1 2 3; 2 4 3];这里的每一行代表一个单元,数字表示节点的编号。
接下来,需要定义材料的力学参数和边界条件。
材料的力学参数包括弹性模量、泊松比等。
边界条件包括支座约束和加载条件。
在MATLAB中,可以通过定义力学参数和边界条件的向量来描述。
例如,定义弹性模量和泊松比的向量:E=[200e9200e9];%弹性模量nu = [0.3 0.3]; % 泊松比定义支座约束的向量(1表示固定,0表示自由):constraints = [1 1; 0 0; 0 1; 0 1];定义加载条件的向量(包括点力和面力):最后,通过求解方程组得到结构的应力和位移等结果。
在MATLAB中,可以利用有限元分析工具箱中的函数进行计算。
例如,可以使用“assem”函数将节点和单元的信息组装成方程组,并使用“solveq”函数求解方程组。
matlab有限元法
matlab有限元法
有限元法是一种常用的工程数值计算方法,广泛应用于结构力学、流体力学、热传导等领域。
它通过将复杂的连续体分割成有限个简单的单元,利用单元之间的相互关系来近似描述整个问题的解。
在工程实践中,有限元法已经成为一种不可或缺的分析工具。
有限元法的基本步骤包括建立数学模型、离散化、确定边界条件、求解方程、后处理等。
首先,需要将实际工程问题转化为数学模型,确定问题的几何形状、材料特性和载荷条件。
然后,将问题离散化,即将结构分割成有限个简单的单元,并确定单元之间的连接关系。
接下来,需要确定边界条件,即给定结构的边界约束和外部载荷。
然后,通过求解离散化后的方程组,得到问题的数值解。
最后,进行后处理,分析和展示结果。
有限元法的优点在于能够处理复杂的几何形状和边界条件,可以模拟各种不同的物理现象,并且具有较高的精度和可靠性。
它能够帮助工程师更好地理解和设计结构,提高工程的可靠性和安全性。
然而,有限元法也存在一些局限性。
首先,离散化过程会引入一定的误差,尤其是在模型中存在较大的变形或应力集中的情况下。
其次,求解大规模的方程组需要较高的计算资源和时间。
此外,有限元法对材料的本构关系和边界条件的设定要求较高,需要进行合理的模型假设和参数选择。
总的来说,有限元法是一种强大而灵活的工程分析方法,能够帮助工程师解决各种复杂的工程问题。
通过合理的模型建立和边界条件设定,以及精确的计算和后处理,可以得到准确可靠的结果,为工程设计和优化提供有力支持。
有限元方法步骤-MATLAB的简略使用指南
第1章引言这个简短的引言分为两部分,第一部分是对有限元方法步骤的概括介绍,第二部分是MATLAB的简略使用指南。
1.1 有限元方法的步骤有许多关于有限元分析的优秀教材,比如在参考文献[1-18]中列出的那些书目。
因此,本书不准备对有限元理论或有限元方程进行详细地阐述和推导。
每一章只总结概括主要的方程,这些章节都附有示例来说明这些方程。
此外,全书只讨论线弹性结构力学的问题。
有限元方法用于解决工程问题的数值计算过程。
本书假定所有的行为都是线弹性行为。
虽然本书的问题都与结构工程相关,但有限元方法也同样适用于工程的其他领域。
本书中使用有限元方法解决问题共包括6个步骤。
对有限元分析的6个步骤阐述如下:(1) 离散化域——这个步骤包括将域分解成单元和节点。
对于像桁架和刚架这类离散系统,已经离散化,这一步就不需要了。
此处获得的结果应该已经是精确的。
然而,对于连续系统,如板壳,这一步就变得至关重要,因为它只能得到近似的结果。
因此解决方案的精确度取决于所使用的离散化方法。
本书中,我们将手动完成这一步(对连续系统)。
(2) 写出单元刚度矩阵(element stiffness matrices)——写出域内每个单元的单元刚度矩阵。
在本书中,这个步骤通过MATLAB实现。
(3) 集成整体刚度矩阵(global stiffness matrices)——这一步用直接刚度法(direct stiffness approach)实现。
在本书中,该步骤借助于MATLAB实现。
(4) 引入边界条件——诸如支座(supports)、外加载荷(applied loads)和位移(displacements)等。
本书中手动实现这一步骤。
(5) 解方程——这一步骤分解整体刚度矩阵并用高斯消去法求解方程组。
在本书中,在用高斯消去法实现求解部分的时候需要手动分解矩阵。
(6) 后处理——得到额外的信息,如支反力、单元节点力和单元应力。
本书中这一步骤通过MATLAB实现。
matlab 有限元基础
matlab 有限元基础一、什么是有限元分析?有限元分析(Finite Element Analysis,FEA)是一种数值计算方法,用于解决复杂的工程和科学问题。
它将连续的物理系统分解成离散的有限元素,通过求解线性或非线性方程组来计算系统的行为。
有限元分析可以用于求解结构、流体力学、热传导等领域中的问题。
二、Matlab 有限元基础1. Matlab 基础知识Matlab 是一个数值计算软件,它提供了强大的矩阵运算能力和丰富的绘图功能。
在进行有限元分析时,Matlab 可以用于构建模型、求解方程组和可视化结果。
2. 有限元模型构建在进行有限元分析之前,需要先构建模型。
通常情况下,模型可以通过 CAD 软件进行建模,并导出为 STL 格式。
然后使用 Matlab 中的importGeometry 函数将 STL 文件导入到 Matlab 中,并使用pdegeometry 函数创建几何体对象。
3. 生成网格生成网格是指将几何体对象分割成小块的过程。
在 Matlab 中,可以使用 generateMesh 函数生成简单形状网格或使用 PDE 工具箱中的自动网格生成器生成更复杂形状的网格。
4. 定义边界条件在进行有限元分析时,需要定义边界条件。
边界条件包括约束和载荷。
约束是指物体的运动被限制的方式,载荷是施加在物体上的力或压力。
5. 求解方程组在定义好模型、网格和边界条件后,可以使用 Matlab 中的 pdepe 函数求解偏微分方程组。
pdepe 函数使用有限元方法求解偏微分方程组,并返回解向量。
6. 可视化结果最后一步是可视化结果。
Matlab 提供了丰富的绘图函数,可以用于绘制网格、位移、应力等结果。
三、有限元分析中常用的 Matlab 工具箱1. PDE 工具箱PDE 工具箱是一个专门用于求解偏微分方程问题的工具箱。
它提供了自动网格生成器、求解器和可视化工具,可以用于求解结构、流体力学和热传导等问题。
matlab有限元加均布力
matlab有限元加均布力在MATLAB中,使用有限元方法来分析一个受到均布力的系统通常需要几个步骤。
假设你已经定义了系统的几何形状和材料属性,下一步就是添加均布力。
下面是一个基本的步骤概述:1.定义模型: 在MATLAB中,首先需要定义你的模型。
这可能包括定义网格(有限元的顶点),材料属性(如弹性模量,泊松比等),以及边界条件。
2.施加均布力: 在定义了模型之后,你需要确定在哪些区域施加均布力。
均布力是作用在整个区域上的等效力,其大小可以通过该区域的面积和作用在单位面积上的力来计算。
在MATLAB中,你可以通过将均布力作为节点载荷添加到模型中来实现这一点。
例如,如果你有一个矩形区域,并且你想在整个区域上施加均布力,你可以这样做:matlab复制代码% 假设你有一个名为mesh的有限元网格,每个元素有一个对应的节点索引uniformForce = 10; % 单位为NnodeIndices = mesh.Elements.Nodes; % 获取所有节点的索引nodalLoad = uniformForce * ones(size(nodeIndices, 2), 1); % 为每个节点分配均布力mesh.NodalLoads = nodalLoad; % 将节点载荷添加到有限元网格中3.求解有限元方程: 在添加了所有的载荷和边界条件之后,你需要求解有限元方程以找出节点的位移和应变。
这通常涉及到使用有限元求解器,如MATLAB的feasol函数。
4.后处理: 一旦你有了节点的位移和应变,你就可以进行后处理来分析你的模型。
这可能包括绘制应力分布图,检查最大/最小应力,查看位移分布等。
请注意,上述代码是一个非常简化的示例,实际的代码可能会根据你的具体需求和模型复杂性而有所不同。
你可能还需要考虑其他因素,如非线性行为、接触条件、多物理场耦合等。
桁架结构的有限元分析MATLAB
桁架结构的有限元分析MATLAB桁架结构是一种由直杆或斜杆连接而成的稳定结构,在工程应用中较为常见。
有限元分析(Finite Element Analysis,FEA)是一种利用数值方法解决结构力学问题的工具。
本文将介绍如何使用MATLAB进行桁架结构的有限元分析,并对其进行1200字以上的详细描述。
在进行桁架结构有限元分析前,需要先进行结构建模以及材料属性和加载条件的定义。
这些定义可以通过MATLAB命令行或者编写MATLAB脚本文件实现。
首先,我们需要定义桁架结构的节点和单元。
节点用于表示桁架结构的连接点,单元用于表示相邻节点之间的连接关系。
可以使用MATLAB中的矩阵表示节点和单元,如下所示:nodes = [x1, y1; x2, y2; ...; xn, yn];elements = [n1, n2; n3, n4; ...; nm, np];```其中,`nodes`是一个n行2列的矩阵,表示n个节点的坐标;`elements`是一个m行2列的矩阵,表示m个单元的节点连接关系。
接下来,我们需要定义材料属性和加载条件。
材料属性包括杨氏模量和截面面积等参数,加载条件包括节点的约束和外部加载。
可以使用MATLAB中的矩阵或者结构体表示材料属性和加载条件,如下所示:materials = struct('E', E1, 'A', A1; 'E', E2, 'A', A2; ...);constraints = [n1, d1x, d1y; ...; nm, dmx, dmy];loads = [n1, F1x, F1y; ...; nl, Flx, Fly];```其中,`materials`是一个结构体数组,每个结构体包含材料的杨氏模量(E)和截面面积(A);`constraints`是一个m行3列的矩阵,表示m个节点的约束,其中d1x和d1y分别表示节点的x方向和y方向位移约束;`loads`是一个l行3列的矩阵,表示l个节点的外部加载,其中F1x和F1y分别表示节点的x方向和y方向外部力。
第三章+matlab有限元分析与应用
在满足一定约束条件下,寻找使某个或多个设 计指标达到最优的设计方案的过程。
目标函数
用于衡量设计方案优劣的数学表达式,通常是 最小化或最大化的某个性能指标。
约束条件
限制设计方案选择的条件,包括设计变量的上下界、设计变量的关系等。
基于Matlab的有限元优化设计方法
MATLAB优化工具箱
提供了一系列用于求解各种优化问题的函数和算法,包括线性规划、非线性规划、混合 整数规划等。
有限元模型
由一组离散化的元素组成,每个 元素代表系统的一部分,并具有 特定的属性和行为。
节点
元素之间的连接点,用于传递力 和位移。
有限元分析的基本步骤
前处理
01
建立有限元模型,包括定义元素类型、几何形状、材料属性、
边界条件和载荷等。
Байду номын сангаас求解
02
应用数学方程求解有限元模型的节点位移和应力分布。
后处理
03
对于一些复杂模型,如具有非线性、大变形、多 材料等特性,建模难度大,需要发展更高级的建 模方法和技术。
数据安全与隐私保护
在进行有限元分析时,需要处理大量的数据,如 何保证数据的安全和隐私保护是一个重要的问题 。需要采取有效的数据加密和保护措施来确保数 据的安全性和隐私性。
未来发展方向与展望
跨学科融合
结果后处理
显示结果
使用Matlab的图形功能,如`plot`、`mesh`等,绘制 结果的可视化图像。
分析结果
对结果进行详细的分析,如查看位移分布、应力分布 等。
结果优化
根据分析结果,对模型进行优化设计,以提高性能或 降低成本。
03
有限元分析实例
Chapter
matlab桁架结构有限元计算
matlab桁架结构有限元计算
在MATLAB中,进行桁架结构的有限元计算可以按照以下步
骤进行:
1. 定义节点和单元:根据实际问题的几何形状和拓扑关系,定义桁架结构的节点和单元。
节点是桁架结构的连接点,单元是连接节点的构件。
2. 定义材料属性和截面属性:根据实际问题的材料和截面要求,定义桁架结构的材料属性和截面属性。
材料属性包括弹性模量和泊松比等,截面属性包括截面面积和惯性矩等。
3. 组装刚度矩阵:根据节点和单元的几何形状和材料属性,计算每个单元的局部刚度矩阵,然后根据单元和节点的连接关系,将局部刚度矩阵组装成整体刚度矩阵。
4. 施加边界条件:根据实际问题的边界条件,将边界节点的位移固定为零,或施加位移或力的约束条件。
5. 求解位移和反力:使用求解线性方程组的方法,求解位移和反力。
可以使用MATLAB中的线性方程组求解函数(如'\''运
算符)来计算。
6. 计算应力和应变:根据位移和节点的几何形状,计算节点上的应变,然后根据材料属性,计算节点上的应力。
以上步骤涵盖了桁架结构的有限元计算的基本流程,具体实现时需要根据实际问题进行适当的调整和扩展。
MATLAB有限元分析与应用可编辑全文
%
modulus of elasticity E, cross-sectional
%
area A, and length L. The size of the
%
element stiffness matrix is 2 x 2.
y = [E*A/L -E*A/L ; -E*A/L E*A/L];
2019/11/28
y = k * u/A;
2019/11/28
18
§3-2 线性杆元
3、实例计算分析应用
如图所示二线性杆元结构,假定E=210MPa,A=0.003m^2,P=10kN, 节点3的右位移为0.002m。
求:系统的整体刚度矩阵; 节点2的位移; 节点1、3的支反力; 每个杆件的应力
解:
步骤1:离散化域
%LinearBarElementStresses This function returns the element nodal
%
stress vector given the element stiffness
%
matrix k, the element nodal displacement
%
vector u, and the cross-sectional area A.
? ?
?
? ?
?
10??
630000 ????0.002?? ?? F3 ??
线性杆元也是总体和局部坐标一致的一维有限单元,用线性函数描述
每个线性杆元有两个节点(node)
? EA
单刚矩阵为:k
?
? ?
L
???
EA L
?
EA L
? ? ?
有限元的MATLAB解法
有限元的MATLAB解法1.打开MATLAB。
2.输入“pdetool”再回车,会跳出PDE Toolbox的窗口(PDE意为偏微分方程,是partial differential equations的缩写),需要的话可点击Options菜单下Grid命令,打开栅格。
3.完成平面几何模型:在PDE Toolbox的窗口中,点击工具栏下的矩形几何模型进行制作模型,可画矩形R,椭圆E,圆C,然后在Set formula栏进行编辑并(如双脊波导R1+R2+R3改为RI-R2-R3,设定a、b、s/a、d/b的值从而方便下步设定坐标)用算术运算符将图形对象名称连接起来,若还需要,可进行储存,形成M文件。
4.用左键双击矩形进行坐标设置:将大的矩形left和bottom都设为0,width是矩形波导的X轴的长度,height是矩形波导的y轴的长度,以大的矩形左下角点为原点坐标为参考设置其他矩形坐标。
5.进行边界设置:点击“Boundary”中的“Boundary Mode”,再点击“Boundary”中的“Specify Boundary Conditions”,选择符合的边界条件,Neumann为诺曼条件,Dirichlet为狄利克雷条件,边界颜色显示为红色。
6.进入PDE模式:点击"PDE"菜单下“PDE Mode”命令,进入PDE 模式,单击“PDE Specification”,设置方程类型,“Elliptic”为椭圆型,“Parabolic”为抛物型,“Hyperbolic”为双曲型,“Eigenmodes”为特征值问题。
7.对模型进行剖分:点击“Mesh”中“Initialize Mesh”进行初次剖分,若要剖的更细,再点击“Refine Mesh”进行网格加密。
8.进行计算:点击“Solve”中“Solve PDE”,解偏微分方程并显示图形解,u值即为Hz或者Ez。
9.单击“Plot”菜单下“Parameters”选项,打开“Plot Selection”对话框。
matlab 有限元基础
Matlab 有限元基础什么是有限元法有限元法(Finite Element Method,FEM)是一种数值计算方法,常被用于工程和科学领域中的结构力学、流体力学、热传导等问题的求解。
有限元法通过将复杂的实际问题离散化为有限个简单的单元,利用数学模型和计算方法来近似求解问题。
有限元法的基本思想是将计算域划分为有限个小单元,每个小单元的物理性质通过节点上的数学函数进行近似描述。
通过对这些小单元的数学模型进行积分计算,得到整个计算域的方程,并通过求解这些方程来得到问题的近似解。
Matlab 在有限元分析中的应用Matlab作为一种功能强大的数值计算和编程软件,被广泛应用于有限元分析中。
它提供了丰富的数学和计算工具,能够方便地实现有限元法的建模、求解和分析。
有限元法的建模在Matlab中,有限元法的建模主要包括以下几个步骤:1.创建几何模型:通过定义节点和单元来描述计算域的几何形状。
可以使用Matlab提供的图形界面工具或者编程方式来创建几何模型。
2.定义边界条件:根据实际问题的边界条件,为模型的节点或单元指定相应的约束条件。
这些条件通常包括位移、力和温度等。
3.定义材料性质:根据实际问题的材料性质,为模型的节点或单元定义相应的材料参数。
这些参数包括弹性模量、泊松比和热导率等。
4.网格划分:将计算域划分为有限个小单元,形成离散化的网格结构。
在Matlab中,可以使用自带的网格划分工具或者自定义的算法进行网格划分。
5.构建刚度矩阵和载荷向量:根据节点的约束条件和单元的材料性质,利用数学公式和计算方法构建刚度矩阵和载荷向量。
有限元法的求解有限元法的求解主要包括以下几个步骤:1.组装系统方程:根据刚度矩阵和载荷向量,将节点的位移和载荷进行组合,形成整个系统的方程。
2.施加边界条件:将已知的位移和载荷应用于系统方程中的相应位置,形成含有未知位移的方程。
3.求解方程:使用Matlab提供的线性代数求解函数,求解含有未知位移的系统方程,得到位移的近似解。
matlab 有限元法
matlab 有限元法
Matlab中的有限元法(Finite Element Method,FEM)是一种常用的数值分析方法,用于模拟和解决包括结构力学、热传导、流体力学等问题。
它将连续介质划分为离散的有限单元,通过建立数学模型和使用近似解法来求解。
下面是一般步骤来使用Matlab进行有限元分析:
1. 剖分网格:将要模拟的连续介质划分为离散的有限单元(如三角形或四边形元素)。
2. 建立数学模型:根据具体问题的物理方程或导引方程,建立线性或非线性的方程模型。
3. 施加边界条件:确定并施加边界条件,如位移、载荷或约束等。
4. 组装刚度矩阵和载荷向量(Assembly):通过元素刚度矩阵的组装,得到总系统的刚度矩阵和载荷向量。
5. 求解方程:通过求解总系统的线性方程组,得到未知位移或其他需要的结果。
6. 后处理结果:对求解结果进行可视化或分析,如绘制应力分布、位移云图、应变曲线等。
Matlab提供了丰富的工具箱和函数,用于各种结构和物理问题的有限元分析,例如Partial Differential Equation Toolbox(部分微分方程工具箱)和Structural Analysis T oolbox(结构分析工具箱),其中包含了常用的有限元分析函数和设置界面。
另外,Matlab还支持用户自定义编程,允许使用脚本或函
数来实现特定的有限元算法。
总之,通过Matlab的有限元分析工具和编程能力,可以方便地进行各种结构和物理问题的数值分析和模拟。
Matlab 有限元法计算分析程序编写
fid_in = fopen( file_in, 'r' ) ; % open input file node_number = fscanf( fid_in, '%d', 1 ) ; %read node number node = zeros( node_number, 2 ) ; for i=1:1:node_number nn = fscanf( fid_in, '%d', 1 ) ; node( i, : ) = fscanf( fid_in, '%f', [1,2] ) ; % read node definition end element_number = fscanf( fid_in, '%d', 1 ) ; % read element number element = zeros( element_number, 4 ) ; for i=1:1:element_number ne = fscanf( fid_in, '%d', 1 ) ; element( i, : ) = fscanf( fid_in, '%d', [1,4] ) ; % read element definition end
计算荷载向量
对各节点集中荷载作如下的计算 a)分解成坐标方向的荷载分量 b)按自由度顺序叠加到荷载向量中 对非节点集中荷载作如下的计算 a)在单元局部坐标系下计算等效节点荷载 b)作坐标变换(如果需要) c)按自由度顺序叠加到荷载向量中
引入边界条件
• 最简单的方法是改变主元为十分大的值 (采用这种方法时,可以在刚度方程计算 过程中实施) • 修改刚度方程
a i = βi
matlab 程序 2d有限元方法
matlab 程序2d有限元方法二维有限元方法在工程与科学计算中有着广泛的应用。
MATLAB作为一种功能强大的数学软件,为二维有限元分析提供了便捷的实现途径。
本文将详细介绍如何使用MATLAB编写二维有限元方法的程序。
一、有限元方法概述有限元方法(Finite Element Method,简称FEM)是一种用于求解偏微分方程的数值方法。
它通过将复杂的连续体划分成简单的单元,并在这些单元上求解方程,从而将连续问题转化为离散问题。
在二维问题中,通常将连续区域划分为三角形或四边形单元,然后在每个单元上求解偏微分方程,最后通过整体刚度矩阵的组装和求解得到整个区域的解。
二、MATLAB编程实现二维有限元方法以下是使用MATLAB实现二维有限元方法的基本步骤:1.创建网格在MATLAB中,可以使用`triangle`函数或`patch`函数创建二维网格。
以下是一个简单的例子:```matlab% 定义节点坐标odes = [0 0; 1 0; 1 1; 0 1; 0.5 0.5];% 定义单元连接关系elements = [1 2 5; 2 3 5; 3 4 5; 4 1 5];% 绘制网格triplot(nodes, elements);```2.确定单元属性在二维有限元方法中,需要为每个单元定义形状函数、雅可比矩阵等属性。
以下是一个示例:```matlabfunction [N, dNdx, dNdy, J] = shape_functions(nodes, element) % 获取单元节点坐标x = nodes(element, 1);y = nodes(element, 2);% 计算形状函数N = [1 - (x - x(1)) / (x(2) - x(1)) - (y - y(1)) / (y(2) - y(1));(x - x(1)) / (x(2) - x(1));(y - y(1)) / (y(2) - y(1));(x - x(1)) / (x(2) - x(1)) * (y - y(1)) / (y(2) - y(1))];% 计算形状函数对x、y的导数dNdx = [-1 / (x(2) - x(1)), 1 / (x(2) - x(1)), 0, (y(2) - y(1)) / ((x(2) - x(1)) * (y(2) - y(1)))];dNdy = [0, 0, 1 / (y(2) - y(1)), (x(2) - x(1)) / ((x(2) - x(1)) * (y(2) - y(1)))];% 计算雅可比矩阵J = [sum(dNdx), sum(dNdy); ...sum(dNdx .* x), sum(dNdy .* x); ...sum(dNdx .* y), sum(dNdy .* y)];end```3.组装刚度矩阵和质量矩阵在得到单元属性后,可以组装整体刚度矩阵和质量矩阵。
matlab用有限元法求解偏微分方程组
matlab用有限元法求解偏微分方程组使用有限元法求解偏微分方程组是一种常见的数值计算方法,它在工程领域和科学研究中广泛应用。
本文将介绍如何利用MATLAB软件进行有限元法求解偏微分方程组的基本步骤和注意事项。
我们需要了解有限元法的基本原理。
有限元法是一种将连续问题离散化为有限个小区域,通过在每个小区域内建立适当的数学模型,然后将这些小区域连接起来形成整个问题的数学模型的方法。
在有限元法中,我们通常将问题的域分割成许多小的有限元,每个有限元都具有简单的几何形状,如线段、三角形或四边形。
然后,在每个有限元上建立适当的近似函数,通过对这些函数的系数进行求解,我们可以得到问题的近似解。
在MATLAB中,有限元法的求解过程可以分为以下几个步骤:1. 离散化域:根据问题的几何形状,将问题的域进行离散化处理。
离散化可以采用三角剖分法或四边形剖分法,将域分割成许多小的有限元。
2. 建立数学模型:在每个有限元上建立适当的数学模型。
这通常涉及选择适当的近似函数,并在每个有限元上求解这些函数的系数。
3. 组装方程:将每个有限元上的数学模型组装成整个问题的数学模型。
这涉及到将有限元之间的边界条件进行匹配,并建立整个问题的刚度矩阵和载荷向量。
4. 求解方程:利用线性代数求解方法,求解得到问题的近似解。
MATLAB提供了各种求解线性方程组的函数,如“\”运算符、LU 分解和共轭梯度法等。
5. 后处理:对求解结果进行后处理,包括绘制解的图形、计算问题的误差等。
在进行有限元法求解偏微分方程组时,需要注意以下几点:1. 网格剖分的合理性:网格剖分的精细程度对结果的精确性有很大影响。
网格过于粗糙可能导致结果的不准确,而网格过于细小则会增加计算的复杂性。
因此,需要根据问题的特点和计算资源的限制选择合适的网格剖分。
2. 近似函数的选择:近似函数的选择直接影响到结果的准确性和计算的效率。
一般情况下,近似函数的阶数越高,结果的准确性越高,但计算的复杂性也越大。
matlab有限元编程
是的,MATLAB可以用于有限元编程,用于解决各种结构、固体力学、热传导、电磁场等物理问题的数值模拟。
有限元法是一种数值方法,用于求解偏微分方程,特别适用于复杂的几何形状和边界条件的问题。
以下是一些使用MATLAB进行有限元编程的基本步骤:
1. 建立几何模型:首先,需要定义模型的几何形状和边界条件。
这包括确定节点和单元(元素)的位置。
2. 网格生成:将模型划分为离散的节点和单元。
这些节点和单元构成了有限元网格,可以使用MATLAB中的函数或者专用的网格生成工具来实现。
3. 定义材料属性和载荷:为每个单元分配适当的材料属性,如弹性模量、密度等。
同时,还要定义在结构上施加的力或边界条件。
4. 组装刚度矩阵和载荷向量:根据有限元法原理,将每个单元的局部刚度矩阵组装成全局刚度矩阵,同时将载荷向量组装成全局载荷向量。
5. 施加边界条件:根据边界条件,在全局刚度矩阵和载荷向量中施加约束条件。
6. 求解方程:通过求解线性方程组,得到节点的位移和其他所需的结果。
7. 后处理:根据求解结果,进行结果的可视化和分析。
可以绘制应力、应变分布图,计算位移、反应力等。
MATLAB提供了丰富的工具箱和函数来进行有限元编程,如Partial Differential Equation Toolbox(偏微分方程工具箱)、Finite Element Analysis Toolbox(有限元分析工具箱)等,可以大大简化有限元编程的过程。
在使用这些工具时,可以参考MATLAB的官方文档和例子,以及相关的有限元理论和方法。
有限元的MATLAB解法
有限元的MATLAB解法1.打开MATLAB。
2.输入“pdetool”再回车,会跳出PDE Toolbox的窗口(PDE意为偏微分方程,是partial differential equations的缩写),需要的话可点击Options菜单下Grid命令,打开栅格。
3.完成平面几何模型:在PDE Toolbox的窗口中,点击工具栏下的矩形几何模型进行制作模型,可画矩形R,椭圆E,圆C,然后在Set formula栏进行编辑并(如双脊波导R1+R2+R3改为RI-R2-R3,设定a、b、s/a、d/b的值从而方便下步设定坐标)用算术运算符将图形对象名称连接起来,若还需要,可进行储存,形成M文件。
4.用左键双击矩形进行坐标设置:将大的矩形left和bottom都设为0,width是矩形波导的X轴的长度,height是矩形波导的y轴的长度,以大的矩形左下角点为原点坐标为参考设置其他矩形坐标。
5.进行边界设置:点击“Boundary”中的“Boundary Mode”,再点击“Boundary”中的“Specify Boundary Conditions”,选择符合的边界条件,Neumann为诺曼条件,Dirichlet为狄利克雷条件,边界颜色显示为红色。
6.进入PDE模式:点击"PDE"菜单下“PDE Mode”命令,进入PDE 模式,单击“PDE Specification”,设置方程类型,“Elliptic”为椭圆型,“Parabolic”为抛物型,“Hyperbolic”为双曲型,“Eigenmodes”为特征值问题。
7.对模型进行剖分:点击“Mesh”中“Initialize Mesh”进行初次剖分,若要剖的更细,再点击“Refine Mesh”进行网格加密。
8.进行计算:点击“Solve”中“Solve PDE”,解偏微分方程并显示图形解,u值即为Hz或者Ez。
9.单击“Plot”菜单下“Parameters”选项,打开“Plot Selection”对话框。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Matlab 有限元分析20140226
为了用Matlab 进行有限元分析,首先要学会Matlab 基本操作,还要学会使用Matlab 进行有限元分析的基本操作。
1. 复习:上节课分析了弹簧系统
x
推导了系统刚度矩阵
11221
2
1200k k k k k k k k -⎡⎤
⎢⎥-⎢⎥⎢⎥--+⎣⎦
2. Matlab有限元分析的基本操作
(1)单元划分(选择何种单元,分成多少个单元,标号)(2)构造单元刚度矩阵(列出…)
(3)组装系统刚度矩阵(集成整体刚度矩阵)
(4)引入边界条件(消除冗余方程)
(5)解方程
(6)后处理(扩展计算)
3. Matlab有限元分析实战【实例1】
分析:
步骤一:单元划分
步骤二:构造单元刚度矩阵
>>k1=SpringElementStiffness(100) >>…?
步骤三:构造系统刚度矩阵
a) 分析SpringAssemble库函数
function y = SpringAssemble(K,k,i,j)
% This function assembles the element stiffness
% matrix k of the spring with nodes i and j into the % global stiffness matrix K.
% function returns the global stiffness matrix K
% after the element stiffness matrix k is assembled. K(i,i) = K(i,i) + k(1,1);
K(i,j) = K(i,j) + k(1,2);
K(j,i) = K(j,i) + k(2,1);
K(j,j) = K(j,j) + k(2,2);
y = K;
b) K是多大矩阵?
今天的系统刚度矩阵是什么?
因为
11
22
1212
k k
k k
k k k k
-
⎡⎤
⎢⎥
-
⎢⎥⎢⎥--+
⎣⎦
所以
1000100
0200200 100200300
-
⎡⎤
⎢⎥
-
⎢⎥
⎢⎥
--
⎣⎦
?
c) K=SpringAssemble(K,k1,1,2)
function y = SpringAssemble(K,k,i,j) K(i,i) = K(i,i) + k(1,1); K(i,j) = K(i,j) + k(1,2); K(j,i) = K(j,i) + k(2,1); K(j,j) = K(j,j) + k(2,2);
1100100100100k -⎡⎤=⎢⎥-⎣⎦
10010001001000000K -⎡⎤
⎢⎥=-⎢⎥⎢⎥⎣⎦
K=SpringAssemble(K,k2,2,3)
1200200200200k -⎡⎤=⎢⎥-⎣⎦
100100
01003002000200200K -⎡⎤⎢⎥=--⎢⎥
⎢⎥-⎣⎦
100100
0100010010030020002002000200200100200300--⎡⎤⎡⎤⎢⎥⎢⎥--≠-⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦
!?
步骤四:引入边界条件,消除冗余方程>>k=K(2:3,2:3)%构造不含冗余的方程>>f=[0;15]%构造外力列阵
步骤五:解方程
引例:已知1212
u 3
1u u u +=⎧⎨-=⎩,求 12u u 和 解:
类似求解KU=F ,
输入下列Matlab 命令: >> K=[1 1;1,-1] >> F=[3;1] >> U=inv(K)*F >> U=K\F
(继续弹簧系统求解)
>>u=k\f %使用高斯消去法求解 >>U=[0 ; u]%构造原方程组
>>F=K*U %求出所有外力,含多余计算
步骤六:后处理、扩展计算
>>u1=[0;U(2)]%构造单元位移
>>f1=SpringElementForces(k1,u1)%求单元1内力>>u2=[U(2) ; U(3)]%构造单元2位移
>>f2=SpringElementForces(k2,u2)%求单元2内力
4. 总结
clc
clear
k1=SpringElementStiffness(100)%创建单元刚度矩阵1 k2=SpringElementStiffness(200)%创建单元刚度矩阵2 K=zeros(3,3)%创建空白整体刚度矩阵
K=SpringAssemble(K,k1,1,2)%按节点装入单元矩阵1
K=SpringAssemble(K,k2,2,3)%按节点装入单元矩阵2
k=K(2:3,2:3)%构造不含冗余的方程
f=[0;15]%构造外力列阵
u=k\f%使用高斯消去法求解
U=[0 ; u]%构造系统节点位移列阵
F=K*U%求出所有外力,含多余计算
u1=[0;U(2)]%构造单元位移
f1=SpringElementForces(k1,u1)%求单元1内力
u2=[U(2) ; U(3)]%构造单元2位移
f2=SpringElementForces(k2,u2)%求单元2内力
5. 练习
1 Danyi 13
2 dan 34 3dan 35 4dan 35 dan5 54 dan6 42
(本资料素材和资料部分来自网络,仅供参考。
请预览后才下载,期待您的好评与关注!)。