湖北省黄冈市黄州区2018届九年级上学期期末考试数学试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄州区九年级(上)期末数学试卷
一、选择题(每小题3分,共21分)
1.下列所给图形是中心对称图形但不是轴对称图形的是()
A.B.C.D.
2.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()
A.(x+2)2=9 B.(x﹣2)2=9 C.(x+2)2=1 D.(x﹣2)2=1 3.下列事件中,属于必然事件的是()
A.明天我市下雨
B.抛一枚硬币,正面朝上
C.走出校门,看到的第一辆汽车的牌照的末位数字是偶数
D.一个口袋中装有2个红球和一个白球,从中摸出2个球,其中有红球
4.已知反比例函数y=﹣,下列结论不正确的是()
A.图象必经过点(﹣1,3)B.若x>1,则﹣3<y<0
C.图象在第二、四象限内D.y随x的增大而增大
5.如图1,AB是⊙O的直径,CD是⊙O的弦,若∠BAD=48°,则∠DCA的大小为()A.48°B.42°C.45°D.24°
图1 图2 图3
6.如图2,一农户要建一个矩形花圃,花圃的一边利用长为12m的住房墙,另外三边用25m长的篱笆围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,花圃面积为80m2,设与墙垂直的一边长为x m(已标注在图中),则可以列出关于x的方程是()
A.x(26﹣2x)=80 B.x(24﹣2x)=80
C.(x﹣1)(26﹣2x)=80 D.x(25﹣2x)=80
7.如图3,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;
②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()
A.1个B.2个C.3个D.4个
二、填空题(每小题3分,共21分)
8.已知关于x的方程x2+x+m=0的一个根是2,则m=,另一根为.9.已知二次函数y=2(x﹣h)2的图象上,当x>3时,y随x的增大而增大,则h的取值范围是.
10.如图4,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠B′AB=°.
图4 图5
11.如图5,⊙O的直径AB=20cm,CD是⊙O的弦,AB⊥CD,垂足为E,OE:EB=3:2,则CD的长是________ cm.
12.在一个不透明的袋子中装有除颜色外其余均相同的7个小球,其中红球2个,黑球5个,若再放入n个一样的黑球并摇匀,此时,随机摸出一个球是黑球的概率等于,
则n的值为.
13.如图6,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是cm.
图6 图7
14.如图7,设点P在函数y=的图象上,PC⊥x轴于点C,交函数y=的图象于点A,PD⊥y轴于点D,交函数y=的图象于点B,则四边形P AOB的面积为.
三、解答题(共78分)
15.(5分)解方程:x2﹣9=2(x+3).
16.(7分)如图,在平面直角坐标系xOy中,△ABC的三
个顶点坐标分别为A(1,1),B(4,0),C(4,4).
(1)按下列要求作图:
①将△ABC向左平移4个单位,得到△A1B1C1;
②将△A1B1C1绕点B1逆时针旋转90°,得到△A2B2C2;
(2)求点C1在旋转过程中所经过的路径长.
17.(7分)如今网上购物已经成为一种时尚,某网店“双十一”全天交易额逐年增长,2015年交易额为50万元,2017年交易额为72万元.
(1)求2015年至2017年“双十一”交易额的年平均增长率;
(2)如果按(1)中的增长率,到2018年“双十一”交易额是否能达到100万元?请说明理由.
18.(6分)如图,在⊙O中,=,∠ACB=60°,求证:∠AOB=∠BOC=∠AOC.
19.(8分)已知关于x的方程x2﹣(k+1)x+k2+1=0有两个实数根.
(1)求k的取值范围;
(2)若方程的两实数根分别为x1,x2,且x12+x22=6x1x2﹣15,求k的值.
20.(7分)如图,已知一次函数y1=﹣x+a与x轴、y轴分别交于点D、C两点和反比例函数交于A、B两点,且点A的坐标是(1,3),点B的坐标是(3,m)
(1)求a,k,m的值;
(2)求C、D两点的坐标,并求△AOB的面积.
21.(8分)四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.(1)随机抽取一张卡片,求恰好抽到数字2的概率;
(2)小贝和小晶想用以上四张卡片做游戏,游戏规则如图所示.你认为这个游戏公平吗?请说明理由.
22.(9分)如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)若AC=6,BC=8,OA=2,求线段DE的长.
23.(10分)某商业集团新建一小车停车场,经测算,此停车场每天需固定支出的费用(设施维修费、车辆管理人员工资等)为800元.为制定合理的收费标准,该集团对一段时间每天小车停放辆次与每辆次小车的收费情况进行了调查,发现每辆次小车的停车费不超过5元时,每天来此处停放的小车为1440辆;当每辆次小车的停车费超过5元时,每增加1元,到此处停放的小车就减少120辆次.为便于结算,规定每辆次小车的停车费x(元)只取整数,用y(元)表示此停车场的日净收入,且要求日净收入不低于2512元.(日净收入=每天共收取的停车费一每天的固定支出)
(1)当x≤5时,写出y与x之间的关系式,并说明每辆小车的停车费最少不低于多少元;
(2)当x>5时,写出y与x之间的函数关系式(不必写出x的取值范围);
(3)该集团要求此停车场既要吸引客户,使每天小车停放的辆次较多,又要有较大的日净收入.按此要求,每辆次小车的停车费应定为多少元?此时日净收入是多少?