圆锥曲线的综合问题含答案
高考数学最新真题专题解析—圆锥曲线综合(新高考卷)
高考数学最新真题专题解析—圆锥曲线综合(新高考卷)【母题来源】2022年新高考I卷【母题题文】已知点A(2,1)在双曲线C:x2a2−y2a2−1=1(a>1)上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.(1)求l的斜率;(2)若tan∠PAQ=2√2,求△PAQ的面积.【答案】解:(1)将点A代入双曲线方程得4a2−1a2−1=1,化简得a4−4a2+4=0得:a2=2,故双曲线方程为x22−y2=1;由题显然直线l的斜率存在,设l:y=kx+m,设P(x1,y1),Q(x2,y2),则联立直线与双曲线得:(2k2−1)x2+4kmx+2m2+2=0,△>0,故x1+x2=−4km2k2−1,x1x2=2m2+22k2−1,k AP+k AQ=y1−1x1−2+y2−1x2−2=kx1+m−1x1−2+kx2+m−1x2−2=0,化简得:2kx1x2+(m−1−2k)(x1+x2)−4(m−1)=0,故2k(2m2+2)2k2−1+(m−1−2k)(−4km2k2−1)−4(m−1)=0,即(k+1)(m+2k−1)=0,而直线l不过A点,故k=−1.(2)设直线AP的倾斜角为α,由tan∠PAQ=2√2,得tan∠PAQ2=√22,由2α+∠PAQ=π,得k AP=tanα=√2,即y1−1x1−2=√2,联立y 1−1x1−2=√2,及x 122−y 12=1得x 1=10−4√23,y 1=4√2−53, 同理,x 2=10+4√23,y 2=−4√2−53, 故x 1+x 2=203,x 1x 2=689而|AP|=√3|x 1−2|,|AQ|=√3|x 2−2|, 由tan∠PAQ =2√2,得sin∠PAQ =2√23, 故S △PAQ =12|AP||AQ|sin∠PAQ =√2|x 1x 2−2(x 1+x 2)+4|=16√29. 【母题来源】2022年新高考II 卷【母题题文】.设双曲线C:x 2a 2−y2b2=1(a >0,b >0)的右焦点为F(2,0),渐近线方程为y =±√3x. (1)求C 的方程;(2)经过F 的直线与C 的渐近线分别交于A ,B 两点,点P(x 1,y 1),Q(x 2,y 2)在C 上,且x 1>x 2>0,y 1>0.过P 且斜率为−√3的直线与过Q 且斜率为√3的直线交于点M ,从下面三个条件 ① ② ③中选择两个条件,证明另一个条件成立: ①M 在AB 上; ②PQ//AB; ③|AM|=|BM|.【答案】解:(1)由题意可得ba =√3,√a 2+b 2=2,故a =1,b =√3. 因此C 的方程为x 2−y 23=1.(2)设直线PQ 的方程为y =kx +m(k ≠0),将直线PQ 的方程代入C 的方程得(3−k 2)x 2−2kmx −m 2−3=0, 则x 1+x 2=2km3−k 2,x 1x 2=−m 2+33−k 2,x 1−x 2=√(x 1+x 2)2−4x 1x 2=2√3(m 2+3−k 2)3−k 2.不段点M 的坐标为(x M ,y M ),则{y M −y 1=−√3(x M −x 1)y M −y 2=√3(x M −x 2).两式相减,得y 1−y 2=2√3x M −√3(x 1+x 2),而y 1−y 2=(kx 1+m)−(kx 2+m)=k(x 1−x 2),故2√3x M =k(x 1−x 2)+√3(x 1+x 2),解得x M =k√m 2+3−k 2+km3−k 2.两式相加,得2y M −(y 1+y 2)=√3(x 1−x 2),而y 1+y 2=(kx 1+m)+(kx 2+m)=k(x 1+x 2)+2m ,故2y M =k(x 1+x 2)+√3(x 1−x 2)+2m ,解得y M =3√m 2+3−k 2+3m3−k 2=3k x M ⋅因此,点M 的轨迹为直线y =3k x ,其中k 为直线PQ 的斜率. 若选择 ① ②:设直线AB 的方程为y =k(x −2),并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =k(x A −2)y A =√3x A,解得x A =k−√3,y A =√3kk−√3.同理可得x B =k+√3,y B =√3kk+√3.此时x A +x B =4k 2k 2−3,y A +y B =12kk 2−3.而点M 的坐标满足{y M =k(x M −2)y M =3k x M , 解得x M =2k 2k 2−3=x A +x B2,y M =6kk 2−3=y A +y B2,故M 为AB 的中点,即|MA|=|MB|. 若选择 ① ③:当直线AB 的斜率不存在时,点M 即为点F(2,0),此时M 不在直线y =3k x 上,矛盾.故直线AB 的斜率存在,设直线AB 的方程为y =p(x −2)(p ≠0), 并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =p(x A −2)y A =√3x A,解得x A =p−√3,y A =√3pp−√3.同理可得x B =p+√3,y B =−√3pp+√3.此时x M =x A +x B2=2p 2p 2−3,y M =y A +y B2=6pp 2−3.由于点M 同时在直线y =3k x 上,故6p =3k ·2p 2,解得k =p.因此PQ//AB . 若选择 ② ③:设直线AB 的方程为y =k(x −2),并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =k(x A −2)y A =√3x A解得x A =k−√3,y A =√3kk−√3.同理可得x B =k+√3,y B =√3kk+√3,设AB 的中点为C(x C ,y C ),则x C =x A +x B2=2k 2k 2−3,y C =y A +y B2=6kk 2−3.由于|MA|=|MB|,故M 在AB 的垂直平分线上,即点M 在直线y −y C =−1k (x −x C )上.将该直线与y =3k x 联立,解得x M =2k 2k 2−3=x C ,y M =6kk 2−3=y C ,即点M 恰为AB 中点,故点而在直线AB 上. 【命题意图】本题考查双曲线的标准方程和几何性质,考查直线与双曲线的位置关系,考查开放探究能力,属于压轴题.主要考查直线与双曲线的位置关系及双曲线中面积问题,属于难题【命题方向】圆锥曲线综合大题是属于高考历年的压轴题之一,难度较大,对学生的综合要求较高。
数学圆锥曲线综合问题(二) 课后练习一及详解
圆锥曲线综合问题(二)题一:设抛物线的顶点在原点,准线方程为2x =-则抛物线的方程是( )A .28y x =B .28y x =-C .24y x =-D .24y x = 题二:已知抛物线24x y =上一点p 到焦点F 的距离是5,则点p 的横坐标是 .题三:已知抛物线C :212xy =,过焦点F 的动直线l 交抛物线于A B 、两点,O 为坐标原点. (1)求证:OA OB ⋅---→→为定值;(2)设M 是线段AB 的中点,过M 作x 轴的垂线交抛物线C 于点N ,证明:抛物线C 在点N 处的切线与AB 平行.题四:已知抛物线2:2C y px =的焦点坐标为(1,0)F ,过F 的直线l 交抛物线C 于A ,B 两点,直线AO ,BO 分别与直线m :2x =-相交于M N ,两点.(1)求抛物线C 的方程;(2)证明△ABO 与△MNO 的面积之比为定值.题五:已知椭圆的中心为坐标原点,短轴长为2,一条准线方程为l :2x =.(1)求椭圆的标准方程;(2)设O 为坐标原点,F 是椭圆的右焦点,点M 是直线l 上的动点,过点F 作OM 的垂线与以OM 为直径的圆交于点N ,求证:线段ON 的长为定值.题六:已知椭圆C :22221(0)x y a b a b +=>>的离心率为12,且经过31,2p ⎛⎫ ⎪⎝⎭. (1)求椭圆C 的方程;(2)设F 是椭圆C 的左焦点,判断以PF 为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.圆锥曲线综合问题(二)课后练习参考答案题一:答案:A详解:抛物线的准线方程为2x =-,∴抛物线的开口向右.设抛物线的标准方程为22y px =,则其准线方程为2p x =-∴22p -=-解得4p = ∴抛物线的标准方程为28yx =.故选A.题二:答案:±4 详解:根据抛物线的定义可知p 到焦点的距离为5,则其到准线距离也为5. 又∵抛物线的准线为1y=-,∴p 点的纵坐标为514-=. 将4y = 代入抛物线方程得:244x ⨯=,解得4x =±,故答案为:4±. 题三:答案:(1)364-;(2)见详解 详解:(1)设直线l 的方程为:18y kx =+,()()1122,,,A x y B x y . 由21218x y y kx ⎧=⎪⎪⎨⎪=+⎪⎩得:2110264x kx --=, ∴ 12164x x =- ∴()2121212123464OA OB x x y y x x x x =+=+=----→→为定值 (2)由(1)得:点M 的横坐标为4k ,∴点N 的横坐标为 4k ∵4y x '= ∴4|k x y k ='=,∴平行另解:设()00,N x y ,则12024x x k x +==,220028k y x == 设抛物线C 在点N 处的切线为284k k y m x ⎛⎫-=- ⎪⎝⎭由228412k k y m x x y ⎛⎫ ⎪ ⎪ ⎪⎝⎭-=-=⎧⎪⎪⎨⎪⎪⎩得:2202816m mk k x x -+-= ∴22404816m mk k ⎛⎫=--= ⎪⎝⎭△,解得:m k =,∴平行 题四:答案:(1)x y 42=;(2)14ABO MNO S S ∆∆= 详解:(1)由焦点坐标为(1,0),可知12p =,所以2=p 所以抛物线C 的方程为x y 42= (2)当直线l 垂直于x 轴时,△ABO 与△MNO 相似, 所以21()24ABO MNO OF S S ∆∆==,当直线l 与x 轴不垂直时,设直线AB 方程为(1)y k x =- 设(2,)M M y -,(2,)N N y -,11(,)A x y ,22(,)B x y ,解 2(1)4y k x y x=-⎧⎨=⎩ 整理得 2222(42)0k x k x k -++=,所以121x x ⋅= 121sin 121224sin 2ABO MNOAO BO AOB S AO BO x x S MO NO MO NO MON ∆∆⋅⋅⋅∠∴==⋅=⋅=⋅⋅⋅∠, 综上 14ABO MNO S S ∆∆= 题五:答案:(1)2212x y +=;(2)ON = 详解:(1)∵椭圆C 的短轴长为2,椭圆C 的一条准线为l :2x =,∴不妨设椭圆C 的方程为2221x y a +=.∴2212a c c c+==, 即1c =.∴椭圆C 的方程为2212x y +=. (2) F (1,0),右准线为l :2x =, 设00(,)N x y ,则直线FN 的斜率为001FN y k x =-,直线ON 的斜率为00CN y k x =, ∵FN ⊥OM ,∴直线OM 的斜率为001OM x k y -=-, ∴直线OM 的方程为:001x y x y -=-,点M 的坐标为002(1)2,x M y ⎛⎫-- ⎪⎝⎭. ∴直线MN 的斜率为()0000212MN x y y k x -+=-. ∵MN ⊥ON ,∴1MN CN k k =-, ∴()0000002112x y y y x x -+=--, ∴()()200002120y x x x +-+-=,即22002x y +=.∴ON =题六:答案:(1)22143x y +=.;(2)内切 详解: (1)∵椭圆22221(0)x y a b a b +=>>的离心率为12,且经过点31,2p ⎛⎫ ⎪⎝⎭,则 221914a b+=,且22214a b a -=∴224,3a b ==, ∴椭圆C 的方程为22143xy += (2)∵224,3a b ==,∴1c ==, ∴椭圆C 的左焦点F 的坐标为()1,0-.以椭圆C 的长轴为直径的圆的方程为224xy +=,圆心坐标是()0,0 ,半径为2. 以PF 为直径的圆的方程为22325416x y ⎛⎫+-= ⎪⎝⎭,圆心坐标是30,4⎛⎫⎪⎝⎭,半径为54. 35244==-,故以PF 为直径的圆与以椭圆长轴为直径的圆内切。
圆锥曲线综合试题(全部大题目)含答案
1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB的交点为Q 。
(1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112||||PC PD PQ +=.2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==⋅ (1)动点N 的轨迹方程;(2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=⋅AB OB OA 且,求直线l 的斜率k 的取值范围.3. 如图,椭圆134:221=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积相等,求直线PD 的斜率及直线CD 的倾斜角.4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||22PM PN -=.记动点P 的轨迹为W .(Ⅰ)求W 的方程;(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ⋅的最小值.5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围;(Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。
6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN +=(1)求点P 的轨迹方程; (2)若2·1cos PM PN MPN-∠=,求点P 的坐标.7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线1222=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3MON π∠=,双曲线的焦距为4。
高二数学圆锥曲线综合测试题(选修1-1&2-1)含答案!
高二数学圆锥曲线综合测试题(选修1-1&2-1)(考试时间:120分钟,共150分)说明:本试题分有试卷Ⅰ和试卷Ⅱ,试卷Ⅰ分值为36分,试卷Ⅱ分值为64分。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y 2=ax (a ≠0)的焦点到其准线的距离是 ( ) A.|a |4 B.|a |2 C .|a | D .-a 22.过点A (4,a )与B (5,b )的直线与直线y =x +m 平行,则|AB |= ( )A .6 B.2 C .2 D .不确定3.已知双曲线x 24-y 212=1的离心率为e ,抛物线x =2py 2的焦点为(e,0),则p 的值为( )A .2B .1 C.14 D.1164.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2b的最小值为 ( ) A .1 B .5 C .4 2 D .3+2 2 5.若双曲线x 2a2-y 2=1的一个焦点为(2,0),则它的离心率为 ( )A.255B.32C.233D .26.△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是 ( )A.x 29-y 216=1B.x 216-y 29=1 C.x 29-y 216=1(x >3) D.x 216-y 29=1(x >4)7.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =5e5x (e 为双曲线离心率),则有( )A .b =2aB .b =5aC .a =2bD .a =5b8.抛物线y =-4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是 ( )A.1716B.1516 C .-1516 D .-17169.已知点A 、B 是双曲线x 2-y 22=1上的两点,O 为坐标原点,且满足OA ·OB =0,则点O 到直线AB 的距离等于 ( ) A. 2 B.3 C .2 D .2 210.(2009·全国卷Ⅱ)双曲线x 26-y 23=1的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r =( )A. 3 B .2 C .3 D .611.(2009·四川高考)已知双曲线x 22-y 2b 2=1(b >0)的左、右焦点分别为F 1、F 2,其一条渐近线方程为y=x ,点P (3,y 0)在该双曲线上,则1PF ·2PF = ( ) A .-12 B .-2 C .0 D .412.(2009·天津高考)设抛物线y 2=2x 的焦点为F ,过点M (3,0)的直线与抛物线相交于A 、B 两点,与抛物线的准线相交于点C ,|BF |=2,则△BCF 与△ACF 的面积之比S △BCF S △ACF = ( )A.45B.23C.47D.12第Ⅰ卷二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.已知点(x 0,y 0)在直线ax +by =0(a ,b 为常数)上,则(x 0-a )2+(y 0-b )2的最小值为________. 14.(2009·福建高考)过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =________.15.直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2-4y 2=3的焦点为椭圆的焦点作椭圆,那么具有最短长轴的椭圆方程为______________.16.过抛物线y 2=2px (p >0)的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线准线的交点为B ,点A 在抛物线准线上的射影为C ,若AF =FB ,BA ·BC =48,则抛物线的方程为______________.三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知:圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A、B两点,且AB=22时,求直线l的方程.18.(本小题满分12分)过点P(2,4)作两条互相垂直的直线l1、l2,若l1交x轴于A点,l2交y轴于B 点,求线段AB的中点M的轨迹方程.19.(本小题满分12分)(2010·南通模拟)已知动圆过定点F (0,2),且与定直线L :y =-2相切.(1)求动圆圆心的轨迹C 的方程;(2)若AB 是轨迹C 的动弦,且AB 过F (0,2),分别以A 、B 为切点作轨迹C 的切线,设两切线交点为Q ,证明:AQ ⊥BQ .20.[理](本小题满分12分)给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A ,B 两点,记O 为坐标原点.(1)求OA ·OB 的值; (2)设AF =λFB ,当△OAB 的面积S ∈[2, 5 ]时,求λ的取值范围.20.[文](本小题满分12分)已知圆(x -2)2+(y -1)2=203,椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)的离心率为22,若圆与椭圆相交于A 、B ,且线段AB 是圆的直径,求椭圆的方程.21.(本小题满分12分)已知A 、B 、D 三点不在一条直线上,且A (-2,0),B (2,0),|AD |=2,AE =12(AB +AD ). (1)求E 点的轨迹方程;(2)过A 作直线交以A 、B 为焦点的椭圆于M ,N 两点,线段MN 的中点到y 轴的距离为45,且直线MN 与E 点的轨迹相切,求椭圆的方程.22.[理](本小题满分14分)(2010·东北四市模拟)已知O 为坐标原点,点A 、B 分别在x 轴,y 轴上运动,且|AB |=8,动点P 满足AP =35PB ,设点P 的轨迹为曲线C ,定点为M (4,0),直线PM交曲线C 于另外一点Q . (1)求曲线C 的方程; (2)求△OPQ 面积的最大值.[文](本小题满分14分)设椭圆ax 2+by 2=1与直线x +y -1=0相交于A 、B 两点,点C 是AB 的中点,若|AB |=22,OC 的斜率为22,求椭圆的方程.高二数学圆锥曲线章节测试题(选修1-1&2-1)答案与解析:1、解析:由已知焦点到准线的距离为p =|a |2.答案:B2、解析:由题知b -a5-4=1,∴b -a =1.∴|AB |=(5-4)2+(b -a )2= 2.答案:B3、解析:依题意得e =2,抛物线方程为y 2=12p x ,故18p =2,得p =116.答案:D4、解析:由(x -2)2+(y -1)2=13,得圆心(2,1), ∵直线平分圆的周长,即直线过圆心. ∴a +b =1.∴1a +2b =(1a +2b )(a +b )=3+b a +2ab ≥3+22, 当且仅当b a =2ab ,即a =2-1,b =2-2时取等号,∴1a +2b 的最小值为3+2 2. 答案:D5、解析:由a 2+1=4,∴a =3, ∴e =23=233.答案:C6、解析:如图|AD |=|AE |=8,|BF |=|BE |=2,|CD |=|CF |, 所以|CA |-|CB |=8-2=6.根据双曲线定义,所求轨迹是以A 、B 为焦点,实轴长为6的双曲线的右支,方程为x 29-y 216=1(x>3). 答案:C7、解析:由已知b a =55e ,∴b a =55×ca ,∴c =5b ,又a 2+b 2=c 2, ∴a 2+b 2=5b 2,∴a =2b . 答案:C8、解析:准线方程为y =116,由定义知116-y M =1⇒y M =-1516.答案:C9、解析:本题是关于圆锥曲线中的点到线的距离问题,由OA ·OB =0⇒OA ⊥OB ,由于双曲线为中心对称图形,为此可考查特殊情况,令点A 为直线y =x 与双曲线在第一象限的交点,因此点B 为直线y =-x 与双曲线在第四象限的一个交点,因此直线AB 与x 轴垂直,点O 到AB 的距离就为点A 或点B 的横坐标的值,由⎩⎪⎨⎪⎧x 2-y 22=1y =x ⇒x = 2.答案:A10、解析:双曲线的渐近线方程为y =±12x 即x ±2y =0,圆心(3,0)到直线的距离d =|3|(2)2+1= 3. 答案:A11、解析:由渐近线方程y =x 得b =2, 点P (3,y 0)代入x 22-y 2b 2=1中得y 0=±1.不妨设P (3,1),∵F 1(2,0),F 2(-2,0), ∴1PF ·2PF =(2-3,-1)·(-2-3,-1) =3-4+1=0. 答案:C12、解析:如图过A 、B 作准线l :x =-12的垂线,垂足分别为A 1,B 1, 由于F 到直线AB 的距离为定值.∴S △BCF S △ACF =|BC ||CA |. 又∵△B 1BC ∽△A 1AC . ∴|BC ||CA |=|BB 1||AA 1|, 由拋物线定义|BB 1||AA 1|=|BF ||AF |=2|AF |.由|BF |=|BB 1|=2知x B =32,y B =-3,∴AB :y -0=33-32(x -3).把x =y 22代入上式,求得y A =2,x A =2,∴|AF |=|AA 1|=52.故S △BCF S △ACF =|BF ||AF |=252=45. 答案:A 13、解析:(x 0-a )2+(y 0-b )2可看作点(x 0,y 0)与点(a ,b )的距离.而点(x 0,y 0)在直线ax +by =0上,所以(x 0-a )2+(y 0-b )2的最小值为点(a ,b )到直线ax +by =0的距离|a ·a +b ·b |a 2+b 2=a 2+b 2. 答案:a 2+b 2 解析:由焦点弦|AB |=2p sin 2α得|AB |=2psin 245°, ∴2p =|AB |×12,∴p =2.答案:214、解析:所求椭圆的焦点为F 1(-1,0),F 2(1,0),2a =|PF 1|+|PF 2|.欲使2a 最小,只需在直线l 上找一点P ,使|PF 1|+|PF 2|最小,利用对称性可解. 答案:x 25+y 24=115、解析:设抛物线的准线与x 轴的交点为D ,依题意,F 为线段AB 的中点,故|AF |=|AC |=2|FD |=2p , |AB |=2|AF |=2|AC |=4p , ∴∠ABC =30°,|BC |=23p ,BA ·BC =4p ·23p ·cos30°=48, 解得p =2,∴抛物线的方程为y 2=4x . 答案:y 2=4x16、解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2.解得a =-34.(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质, 得⎩⎪⎨⎪⎧CD =|4+2a |a 2+1,CD 2+DA 2=AC 2=22,DA =12AB = 2.解得a =-7,或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0. 17、解:法一:设点M 的坐标为(x ,y ), ∵M 为线段AB 的中点,∴A 的坐标为(2x,0),B 的坐标为(0,2y ). ∵l 1⊥l 2,且l 1、l 2过点P (2,4), ∴P A ⊥PB ,k P A ·k PB =-1.而k P A =4-02-2x ,k PB =4-2y 2-0,(x ≠1),∴21-x ·2-y 1=-1(x ≠1). 整理,得x +2y -5=0(x ≠1).∵当x =1时,A 、B 的坐标分别为(2,0),(0,4), ∴线段AB 的中点坐标是(1,2),它满足方程 x +2y -5=0.综上所述,点M 的轨迹方程是x +2y -5=0.法二:设M 的坐标为(x ,y),则A 、B 两点的坐标分别是(2x,0),(0,2y),连结PM , ∵l 1⊥l 2,∴2|PM |=|AB |.而|PM|22(2)(4)x y -+- |AB 22(2)(2)x y +, ∴2222(2)(4)44x y x y -+-=+化简,得x +2y -5=0即为所求的轨迹方程. 法三:设M 的坐标为(x ,y ),由l 1⊥l 2,BO ⊥OA ,知O 、A 、P 、B 四点共圆, ∴|MO |=|MP |,即点M 是线段OP 的垂直平分线上的点. ∵k OP =4020--=2,线段OP 的中点为(1,2), ∴y -2=-12(x -1), 即x +2y -5=0即为所求.18、解:(1)依题意,圆心的轨迹是以F (0,2)为焦点,L :y =-2为准线的抛物线. 因为抛物线焦点到准线距离等于4, 所以圆心的轨迹是x 2=8y .(2)证明:因为直线AB 与x 轴不垂直, 设AB :y =kx +2. A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +2,y =18x 2,可得x 2-8kx -16=0,x 1+x 2=8k ,x 1x 2=-16.抛物线方程为y =18x 2,求导得y ′=14x . 所以过抛物线上A 、B 两点的切线斜率分别是k 1=14x 1,k 2=14x 2,k 1k 2=14x 1·14x 2=116x 1·x 2=-1. 所以AQ ⊥BQ .19、解:(1)根据抛物线的方程可得焦点F (1,0),设直线l 的方程为x =my +1,将其与C 的方程联立,消去x 可得y 2-4my -4=0.设A ,B 点的坐标分别为(x 1,y 1),(x 2,y 2)(y 1>0>y 2),则y 1y 2=-4.因为y 21=4x 1,y 22=4x 2, 所以x 1x 2=116y 21y 22=1, 故OA ·OB =x 1x 2+y 1y 2=-3. (2)因为AF =λFB ,所以(1-x 1,-y 1)=λ(x 2-1,y 2),即⎩⎪⎨⎪⎧1-x 1=λx 2-λ, ①-y 1=λy 2, ②又y 21=4x 1, ③y 22=4x 2, ④由②③④消去y 1,y 2后,得到x 1=λ2x 2,将其代入①,注意到λ>0,解得x 2=1λ.从而可得y 2=-2λ,y 1=2λ,故△OAB 的面积S =12|OF |·|y 1-y 2|=λ+1λ, 因λ+1λ≥2恒成立,所以只要解λ+1λ≤5即可,解之得3-52≤λ≤3+52. 20、解:∵e =c a =a 2-b 2a 2=22,∴a 2=2b 2. 因此,所求椭圆的方程为x 2+2y 2=2b 2,又∵AB 为直径,(2,1)为圆心,即(2,1)是线段AB 的中点,设A (2-m,1-n ),B (2+m,1+n ),则⎩⎪⎨⎪⎧ (2-m )2+2(1-n )2=2b 2,(2+m )2+2(1+n )2=2b 2,|AB |=2 203⇒⎩⎪⎨⎪⎧ 8+2m 2+4+4n 2=4b 2,8m +8n =0,2m 2+n 2=2 203⇒⎩⎪⎨⎪⎧2b 2=6+m 2+2n 2,m 2=n 2=103,得2b 2=16. 故所求椭圆的方程为x 2+2y 2=16.21、解:(1)设E (x ,y ),由AE =12(AB +AD ),可知E 为线段BD 的中点, 又因为坐标原点O 为线段AB 的中点,所以OE 是△ABD 的中位线, 所以|OE |=12|AD |=1, 所以E 点在以O 为圆心,1为半径的圆上,又因为A ,B ,D 三点不在一条直线上,所以E 点不能在x 轴上,所以E 点的轨迹方程是x 2+y 2=1(y ≠0).(2)设M (x 1,y 1),N (x 2,y 2),中点为(x 0,y 0),椭圆的方程为x 2a 2+y 2a 2-4=1,直线MN 的方程为y =k (x +2)(当直线斜率不存在时不成立),由于直线MN 与圆x 2+y 2=1(y ≠0)相切,所以|2k |k 2+1=1,解得k =±33, 所以直线MN 的方程为y =±33(x +2), 将直线y =±33(x +2)代入方程x 2a 2+y 2a 2-4=1, 整理可得:4(a 2-3)x 2+4a 2x +16a 2-3a 4=0, 所以x 0=x 1+x 22=-a 22(a 2-3). 又线段MN 的中点到y 轴的距离为45, 即x 0=-a 22(a 2-3)=-45,解得a =2 2. 故所求的椭圆方程为x 28+y 24=1. 22、解:(1)设A (a,0),B (0,b ),P (x ,y ), 则AP =(x -a ,y ),PB =(-x ,b -y ),∵AP =35PB ,∴⎩⎨⎧ x -a =-35x ,y =35(b -y ).∴a =85x ,b =83y . 又|AB |=a 2+b 2=8,∴x 225+y 29=1. ∴曲线C 的方程为x 225+y 29=1. (2)由(1)可知,M (4,0)为椭圆x 225+y 29=1的右焦点, 设直线PM 方程为x =my +4, 由⎩⎪⎨⎪⎧ x 225+y 29=1,x =my +4,消去x 得 (9m 2+25)y 2+72my -81=0,∴|y P -y Q |=(72m )2+4×(9m 2+25)×819m 2+25。
圆锥曲线综合问题
圆锥曲线综合问题1.题目要求计算双曲线上一点到两个圆心的距离之差的最大值。
已知两圆的圆心和双曲线的焦点,可以通过计算点到圆心的距离和圆的半径来求得点到圆心的距离之和。
然后再通过两个圆心的距离和1来计算点到双曲线焦点的距离,最后将两个距离之差求出来即可得到最大值为5.2.题目要求计算过原点的直线与双曲线的交点斜率的取值范围。
可以将直线的方程代入双曲线的方程,然后整理得到一个关于斜率的一元二次方程。
由于两个交点不同,因此判别式大于0,可以得到斜率的取值范围为负根号3到正根号3.3.题目要求证明椭圆的长轴大于短轴,并求出过三个点的三角形的最大面积。
可以将直线的方程代入椭圆的方程,然后得到一个关于y的二次方程。
根据判别式大于0可以得到椭圆的长轴大于短轴。
然后可以通过求出三角形的三条边的长度,代入海伦公式求出三角形的面积,再通过求导数的方法求出最大值。
最终可以得到△OAB的最大面积为3.已知在平面直角坐标系xOy中的一个椭圆,中心在坐标原点,左焦点为F(-3,10),右顶点为D(2,0),且点A的坐标是(1,2)。
1) 求该椭圆的标准方程。
根据题意,椭圆的长轴长度为4,短轴长度为2,且焦点在x轴上。
因此,椭圆的标准方程为x^2/4+y^2=1.2) 过坐标原点O的直线交椭圆于点B、C,求△ABC面积的最大值。
当直线BC垂直于x轴时,|BC|=2,△ABC=1.当直线BC 不垂直于x轴时,设直线BC的方程为y=kx,代入椭圆的标准方程得到x^2=4k^2+1/(1+4k^2),再根据点到直线的距离公式求得△ABC的面积。
通过求导可得当k=-1/2时,△ABC的面积最大,此时△XXX的面积为2.变式:若直线l:y=kx+m(k≠0)与椭圆C交于不同的两点B、C且线段BC的垂直平分线恒过点A(0,-1),求m的范围。
根据题意,直线l与椭圆C交于两点,因此可以得到方程(4k^2+1)x^2+8kmx+4(m^2-1)=y^2.同时,由于线段BC的垂直平分线恒过点A(0,-1),因此可以得到3m=4k^2+1.结合两个方程可以得到m^21,因此m的范围为3/2<m<3.知识归纳:1.求参数范围的方法:建立等式或不等式的函数关系,再求参数范围。
高三数学圆锥曲线综合试题答案及解析
高三数学圆锥曲线综合试题答案及解析1.已知圆经过椭圆的右焦点和上顶点.(1)求椭圆的方程;(2)过原点的射线与椭圆在第一象限的交点为,与圆的交点为,为的中点,求的最大值.【答案】(1);(2).【解析】本题考查直线、圆、椭圆、平面向量、分式函数等基础知识,考查直线与圆锥曲线的位置关系;考查运算求解能力、推理论证能力;考查数形结合、化归与转化及函数与方程等数学思想.第一问,数形结合,令y=0,x=0即可分别求出c和b的值,从而得到椭圆的标准方程;第二问,设出直线方程和P、Q点坐标,令直线与椭圆联立得到Q点横坐标,利用向量的数量积,将P、Q点坐标代入,得到关于k的表达式,利用导数求函数的最值;法二,将进行转化,变成,再利用配方法求最值.试题解析:(1)在中,令得,即,令,得,即, 2分由,∴椭圆:. 4分(2)法一:依题意射线的斜率存在,设,设 -5分得:,∴. 6分得:,∴, 7分∴. 9分.设,,令,得.又,∴在单调递增,在单调递减. 11分∴当时,,即的最大值为. 13分法二:依题意射线的斜率存在,设,设 5分得:,∴. 6分= 9分.设,则.当且仅当即.法三:设点,,6分= . 7分又,设与联立得: . 9分令. 11分又点在第一象限,∴当时,取最大值. 13分【考点】直线、圆、椭圆、平面向量、分式函数.2.(本小题满分12分)已知曲线上的点到点的距离比它到直线的距离小2.(1)求曲线的方程;(2)曲线在点处的切线与轴交于点.直线分别与直线及轴交于点,以为直径作圆,过点作圆的切线,切点为,试探究:当点在曲线上运动(点与原点不重合)时,线段的长度是否发生变化?证明你的结论.【答案】(1).(2)当点P在曲线上运动时,线段AB的长度不变,证明见解析.【解析】(1)思路一:设为曲线上任意一点,依题意可知曲线是以点为焦点,直线为准线的抛物线,得到曲线的方程为.思路二:设为曲线上任意一点,由,化简即得.(2)当点P在曲线上运动时,线段AB的长度不变,证明如下:由(1)知抛物线的方程为,设,得,应用导数的几何意义,确定切线的斜率,进一步得切线的方程为.由,得.由,得.根据,得圆心,半径,由弦长,半径及圆心到直线的距离之关系,确定.试题解析:解法一:(1)设为曲线上任意一点,依题意,点S到的距离与它到直线的距离相等,所以曲线是以点为焦点,直线为准线的抛物线,所以曲线的方程为.(2)当点P在曲线上运动时,线段AB的长度不变,证明如下:由(1)知抛物线的方程为,设,则,由,得切线的斜率,所以切线的方程为,即.由,得.由,得.又,所以圆心,半径,.所以点P在曲线上运动时,线段AB的长度不变.解法二:(1)设为曲线上任意一点,则,依题意,点只能在直线的上方,所以,所以,化简得,曲线的方程为.(2)同解法一.【考点】抛物线的定义,导数的几何意义,直线方程,直线与抛物线的位置关系,直线与圆的位置关系.3.已知抛物线C:的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且.(1)求抛物线C的方程;(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线与C相交于M,N两点,且A,M,B,N四点在同一个圆上,求直线l的方程.【答案】(1);(2)x-y-1=0或x+y-1=0.【解析】(1)设Q(x0,4),代入由中得x=,在根据抛物线的性质可得,解出p即可(2)设直线l的方程为,(m≠0)代入中得,直线的方程为,将上式代入中,并整理得.A(x1,y1),B(x2,y2),M(x3,y3),N(x4,y4),根据二次函数根与系数的关系可得y1+y2=4m,y1y2=-4,.然后求出MN的中点为E和AB的中点为D坐标的表达式,计算的表达式,根据求出m即可.试题解析:(1)设Q(x0,4),代入由中得x=,所以,由题设得,解得p=-2(舍去)或p=2.所以C的方程为.(2)依题意知直线l与坐标轴不垂直,故可设直线l的方程为,(m≠0)代入中得,设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=-4,故AB的中点为D(2m2+1,2m),,有直线的斜率为-m,所以直线的方程为,将上式代入中,并整理得.设M(x3,y3),N(x4,y4),则.故MN的中点为E().由于MN垂直平分AB,故A,M,B,N四点在同一个圆上等价于,从而,即,化简得m2-1=0,解得m=1或m=-1,所以所求直线l的方程为x-y-1=0或x+y-1=0.【考点】1.抛物线的性质和方程;2.直线方程以及直线与曲线的位置关系.4.如图,已知椭圆的右焦点为,点是椭圆上任意一点,圆是以为直径的圆.(1)若圆过原点,求圆的方程;(2)写出一个定圆的方程,使得无论点在椭圆的什么位置,该定圆总与圆相切,请写出你的探究过程.【答案】(1)或;(2).【解析】(1)因为是圆的直径,所以当圆过原点时,一定有,由此可确定点的位置并进一步求出圆的标准方程;(2)设圆M的半径为,连结,显然有根据椭圆的标准方程知,所以,从而找到符合条件的定圆.解:(1)解法一:因为圆过原点,所以,所以是椭圆的短轴顶点,的坐标是或,于是点的坐标为或,易求圆的半径为所以圆的方程为或 6分解法二:设,因为圆过原点,所以所以,所以,所以点于是点的坐标为或,易求圆的半径所以圆的方程为或 6分(2)以原点为圆心,5为半径的定圆始终与圆相内切,定圆的方程为 8分探究过程为:设圆的半径为,定圆的半径为,因为,所以当原点为定圆圆心,半径时,定圆始终与圆相内切.(13分)【考点】1、椭圆的定义与标准方程;2、圆的定义与标准方程.5.已知,是双曲线的左,右焦点,若双曲线左支上存在一点与点关于直线对称,则该双曲线的离心率为A.B.C.D.【答案】【解析】即双曲线的一条渐近线方程.过焦点且垂直渐近线的直线方程为:,与联立,解之可得故对称中心的点坐标为();由中点坐标公式可得对称点的坐标为,将其代入双曲线的方程可得结合化简可得,故.故选.【考点】双曲线的几何性质,直线方程,两直线的位置关系.6.已知F1、F2为双曲线=1(a>0,b>0)的左、右焦点,过点F2作此双曲线一条渐近线的垂线,垂足为M,且满足||=3||,则此双曲线的渐近线方程为________.【答案】y=±x【解析】由双曲线的性质可推得||=b,则||=3b,在△MF1O中,||=a,||=c,cos∠F1OM=-,由余弦定理可知=-,又c2=a2+b2,可得a2=2b2,即=,因此渐近线方程为y=±x.7.抛物线y=﹣x2上的点到直线4x+3y﹣8=0距离的最小值是()A.B.C.D.3【答案】B【解析】设抛物线y=﹣x2上一点为(m,﹣m2),该点到直线4x+3y﹣8=0的距离为,分析可得,当m=时,取得最小值为,故选B.8.已知椭圆和椭圆的离心率相同,且点在椭圆上.(1)求椭圆的方程;(2)设为椭圆上一点,过点作直线交椭圆于、两点,且恰为弦的中点。
圆锥曲线综合训练题(分专题,含答案)
圆锥曲线综合训练题一、求轨迹方程:1、(1)已知双曲线1C 与椭圆2C :2213649x y +=有公共的焦点,并且双曲线的离心率1e 与椭圆的离心率2e 之比为73,求双曲线1C 的方程. (2)以抛物线28y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程. (1)解:1C 的焦点坐标为(0,13).±213e =由1273e e =得113e =设双曲线的方程为22221(,0)y x a b a b -=>则2222213139a b a b a ⎧+=⎪⎨+=⎪⎩ 解得229,4a b == 双曲线的方程为22194y x -= (2)解:设点00(,),(,)M x y P x y ,则00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴00262x x y y =-⎧⎨=⎩.代入2008y x =得:2412y x =-.此即为点P 的轨迹方程.2、(1)ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,建立适当的坐标系求此三角形重心G 的轨迹和顶点A 的轨迹.(2)△ABC 中,B(-5,0),C(5,0),且sinC-sinB=53sinA,求点A 的轨迹方程.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x .设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有⎪⎪⎩⎪⎪⎨⎧='='33yy x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).(2)分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R (R 为外接圆半径),可转化为边长的关系. 解:sinC-sinB=53sinA 2RsinC-2RsinB=53·2RsinA ∴BC AC AB 53=- 即6=-AC AB (*)∴点A 的轨迹为双曲线的右支(去掉顶点) ∵2a=6,2c=10 ∴a=3, c=5, b=4所求轨迹方程为116922=-y x (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支) 3、如图,两束光线从点M (-4,1)分别射向直线y = -2上两点P (x 1,y 1)和Q (x 2,y 2)后,反射光线恰好通过椭圆C :12222=+by a x (a >b >0)的两焦点,已知椭圆的离心率为21,且x 2-x 1=56,求椭圆C 的方程. 解:设a =2k ,c =k ,k ≠0,则b =3k ,其椭圆的方程为1342222=-ky k x . 由题设条件得:114)2(120x x k ----=--+, ①224)2(120x x k ----=--+, ②x 2-x 1=56, ③ 由①、②、③解得:k =1,x 1=511-,x 2=-1,所求椭圆C 的方程为13422=+y x . 4、在面积为1的PMN ∆中,21tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为焦点且过P 点的椭圆方程.∴所求椭圆方程为1315422=+y x 解:以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设),(y x P .则⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-=-.1,21,2cy c x yc x y∴⎪⎪⎩⎪⎪⎨⎧===233435c c y c x 且即)32,325(P ∴⎪⎪⎩⎪⎪⎨⎧=-=+,43,13412252222b a ba 得⎪⎩⎪⎨⎧==.3,41522b a (1)求线段PQ 的中点的轨迹方程;(2)设∠POQ 的平分线交PQ 于点R (O 为原点),求点R 的轨迹方程.解:(1)设线段PQ 的中点坐标为M (x ,y ),由Q (4,0)可得点P (2x -4,2y ),代入圆的方程x 2+y 2=4可得(2x -4)2+(2y )2=4,整理可得所求轨迹为(x -2)2+y 2=1.(2)设点R (x ,y ),P (m ,n ),由已知|OP |=2,|OQ |=4,∴21||||=OQ OP ,由角平分线性质可得||||||||RQ PR OQ OP ==21,又∵点R 在线段PQ 上,∴|PR |=21|RQ |,∴点R 分有向线段PQ 的比为21,由定比分点坐标公式可得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=32211021342211421n n y m m x ,即⎪⎪⎩⎪⎪⎨⎧=-=23243y n x m ,∴点P 的坐标为⎪⎭⎫ ⎝⎛-23 ,243y x ,代入圆的方程x 2+y 2=4可得42324322=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-y x , 即234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0). ∴点R 的轨迹方程为234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0).6、已知动圆过定点()1,0,且与直线1x =-相切.(1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=uu u v uuu v若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设M 为动圆圆心, F ()1,0,过点M 作直线1x =-的垂线,垂足为N ,由题意知:MF MN =, 即动点M 到定点F 与定直线1x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中()1,0F 为焦点,1x =-为准线, ∴ 动点R 的轨迹方程为x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠, 由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+=△216160k =->,11k k <->或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=u u u r u u u r ,即 ()11,OP x y =u u u r ,()22,OQ x y =u u u r,于是12120x x y y +=,即()()21212110ky y y y --+=,2221212(1)()0k y y k y y k +-++=,2224(1)40k k k k k +-+=g ,解得4k =-或0k =(舍去),又41k =-<-, ∴ 直线l 存在,其方程为440x y +-=7、设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程;(II )若A 、B 分别为l l 12、上的点,且2512||||AB F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线;(III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP OQ →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.解:(I )Θe c a =∴=2422, Θc a a c 22312=+∴==,,∴-=双曲线方程为y x 2231,渐近线方程为y x =±334分(II )设A x y B x y ()()1122,,,,AB 的中点()M x y ,[]Θ2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y ,即则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分) (III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[]ΘOP OQ x x y y x x k x x x x k x x x x i →→=∴+=∴+--=∴+-++=·00110101212122121221212()()()()由得则,y k x y x k x k x k x x k k x x k k ii =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l .8、设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN⊥MQ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠则111111(,),(,),(,),P x y Q x y T x y ----……1分221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩L L L L L L L L ………3分 由(1)-(2)可得1.3MN QN k k •=-…6分又MN⊥MQ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x =直线QN 的方程为1111()3yy x x y x =+-,又直线PT 的方程为11.x y x y =-从而得1111,.22x x y y ==-所以112,2.x x y y ==-代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程. 9、已知:直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。
圆锥曲线的综合问题-练习
6.已知抛物线 y=2px2(p>0)的焦点为 F,点 P1,14在抛物线上,过点 P 作 PQ 垂 直于抛物线的准线,垂足为点 Q,若抛物线的准线与对称轴相交于点 M,则四 13 边形 PQMF 的面积为___8_____. 解析 由 P1,14在抛物线上,得 p=18,故抛物线的标准方程为 x2=4y,焦点 F(0,1),准线为 y=-1, ∴FM=2,PQ=1+41=54,MQ=1, 则直角梯形 PQMF 的面积为21×45+2×1=183.
1 2 3 4 5 6 7 8 9 10
3.已知 M(x0,y0)是双曲线 C:x22-y2=1 上的一点,F1,F2 分别是 C 的左、右两 →→
个焦点,若MF1·MF2<0,则 y0 的取值范围是( A )
A.-
33,
3 3
B.-
63,
3 6
C.-2
3
2,2
3
2
D.-2
3
3,2
3
3
解析 因为 F1(- 3,0),F2( 3,0),x220-y20=1, →→
设圆心到直线 l 的距离为 d,
则 L=2 4-d2≥455,
1 2 3 4 5 6 7 8 9 10
解得 d2≤156.又因为 d= 1+2 k2, 所以1+1 k2≤45, 于是 e2=ac22=b2+c2 c2=1+1 k2, 所以 0<e2≤45,解得 0<e≤255.故选 ABC.
1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10
5.(多选)已知直线 l:y=kx+2 过椭圆xa22+by22=1(a>b>0)的上顶点 B 和左焦点 F,
且被圆 x2+y2=4 截得的弦长为 L,若 L≥455,则椭圆离心率 e 的取值可能是
圆锥曲线综合压轴之离心率问题,含参考答案
离心率问题1.椭圆离心率)(,112222222c b a a b a c a ce =-<-===2.双曲线离心率)(,112222222c b a ab ac ace =+>+===3.常用二级结论:设圆锥曲线C 的焦点F 在x 轴上,过点F 且斜率为k 的直线l 交曲线C 于A 、B 两点,若0)(B F F A >=λλ ,则|11|12+-+=λλk e ,设直线倾斜角为θ,则有|11||cos |+-=λλθe .特别地,对于抛物线有|11||cos |+-=λλθ 经典举例例1:已知椭圆C :22221(0)x y a b a b +=>>的左右焦点分别为F 1,F 2,点A 是椭圆上一点,线段AF 1的垂直平分线与椭圆的一个交点为B ,若B F 3B A 2=,则椭圆C 的离心率为()A .31B .33C .32D .36解:如上左图,B F 3B A 2 =得A 、F 2、B 共线,B F 3B F F A 222=+得B F 2F A 22 =,设BF 2=m ,则AF 2=2m ,,AB=3m ,故BF 1=3m ,BF 1+BF 2=4m ,得AF 1=2m ,AF 1=AF 2,故A 为上顶点或下顶点.如上右图,作BD ⊥x 轴得BD=2b,DF 2=2c 即B(2,23bc -),代入椭圆方程得33=a c ,选B点评:画出草图,利用向量关系、垂直平分线、椭圆的性质得到点A 处于特殊位置,利用相似得到点B 坐标,进而得到离心率.例2:已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为F 1,F 2,P 为椭圆上不与左、右顶点重合的任意一点,I ,G 分别为△PF 1F 2的内心和重心,当IG ⊥x 轴时,椭圆的离心率为()A .31B .21C .23D .36解:设P(x 0,y 0),重心G(3,300y x ),同时021212212)(y c r F F PF PF ⋅⋅=++得c a cy r +=0得I(ca cy x +00,3),在PDI 中,PD 2+DI 2=PI 2,即有200200202)()31()()(c a cy y x x c a cy c a +-+-=++-得1)(49220220=+-b y c a x 又1220220=+b y a x 得22)(49c a a -=得31=a c ,故选A 点评:明显此题对同学们的基本功底有一定的要求,例如重心坐标公式、三角形内切圆半径的求解.例3:已知椭圆C 1:)0(111212212>>=+b a b y a x 与双曲线C 2:)00(122222222>>=-b a b y a x ,有相同的焦点F 1,F 2,点P 是两曲线在第一象限的交点,且21F F 在P F 1 上的投影等于|P F 1|,e 1,e 2分别是椭圆C 1和双曲线C 2的离心率,则9e 12+e 22的最小值是()A .4B .6C .8D .16解:21F F 在P F 1 上的投影等于|P F 1 |,可知PF 1⊥PF 2于是2212221F F PF PF =+即有222214PF PF c =+,同时2211212,2PF PF a PF PF a =-=+两边同时平方得,4PF PF 2PF PF ,4PF PF 2PF PF 2221222121212221a a =⋅-+=⋅++两式相加得2112221=+e e ,于是8)9210(21910(2111)(9(2192221212222212122222122212221=⋅+≥++=++=+e e e e e e e e e e e e e e ,当且仅当222121229e e e e =即123e e =时成立,故选C例4:已知F 1、F 2分别为双曲线的左、右焦点,O 为坐标原点,以原点为圆心,|OF 1|为半径的圆与双曲线左支的一个交点为P ,若PF 1与双曲线右支有交点,则双曲线的离心率的取值范围为()A .),5(+∞B .)5,1(C .),15(+∞D .)15,1(解:如图,设双曲线方程为12222=-b y a x ,圆的方程为222c y x =+,联立得P(cb c c b a 222,+-),PF 1与双曲线右支有交点,则a b k PF <1,即有a b ccc b a c b <++-222,整理可得2>a b ,故5>e ,选A. 精选好题1.已知双曲线12222=-by a x (a >0,b >0)的左、右焦点分别为F 1,F 2,P 是双曲线上一点,△PF 1F 2是以F 1P为底边的等腰三角形,且32312ππ<∠<F PF 则该双曲线的离心率的取值范围是()A .(1,2)B .)213,1(+C .)2213(,+D .)213(∞++2.已知双曲线12222=-by a x (a >0,b >0)的右焦点为F ,过点F 且斜率为k (k ≠0)的直线l 交双曲线于A 、B 两点,线段AB 的中垂线交x 轴于点D .若3AB >,则双曲线的离心率取值范围是()A .332,1(B .31(,C .),3[+∞D .),332[+∞3.设O 为坐标原点,F 1,F 2为双曲线12222=-by a x (a >0,b >0)的两个焦点,l 1,l 2为双曲线的两条渐近线,F 1A 垂直l 1于A ,F 1A 的延长线交l 2于B ,若|OA |+|OB |=2|AB |,则双曲线的离心率为()A .6B .5C .26D .254.已知F 1,F 2是椭圆与双曲线的公共焦点,P 是它们的一个公共点,且F 1P >F 2P ,线段F 1P 的垂直平分线过F 2.若椭圆的离心率为e 1,双曲线的离心率为e 2,则2221e e +的最小值为()A .6B .3C .6D .35.已知双曲线C :12222=-by a x (a >0,b >0)的右焦点为F ,若以OF (O 为坐标原点)为直径的圆被双曲线C 的一条渐近线所截得的弦长等于双曲线C 的虚轴长,则双曲线C 的离心率为()A .25B .2C .45D .26.已知F 1、F 2分别是双曲线C :12222=-by a x (a >0,b >0)的左、右焦点,过点F 1向一条渐近线作垂线,交双曲线右支于点P ,直线F 2P 与y 轴交于点Q (P ,Q 在轴同侧),连接QF 1,若△PQF 1的内切圆圆心恰好落在以F 1F 2为直径的圆上,则双曲线的离心率为()A .3B .2C .5D .27.已知双曲线C :12222=-by a x (a >0,b >0)的左、右焦点分别为F 1(﹣c ,0),F 2(c ,0),过点F 1的直线l (斜率存在)交双曲线C 的渐近线于A ,B 两点,若|F 2A |=|F 2B |,2F BF F AF 58S S 2121c =+∆∆=(2121F BF F AF S S ∆∆、表示△AF 1F 2,△BF 1F 2的面积),则双曲线C 的离心率为()A .3B .26C .5D .3158.已知双曲线C :12222=-by a x (a >0,b >0),若双曲线不存在以点(2a ,a )为中点的弦,则双曲线离心率e 的取值范围是()A .(1,]332B .]332,25[C .),332[+∞D .]25[∞+,9.设椭圆C :22221(0)x y a b a b+=>>的右焦点为F ,椭圆C 上的两点A 、B 关于原点对称,且满足0FB FA =⋅→→,|FB |≤|FA |≤2|FB |,则椭圆C 的离心率的取值范围是()A .35,22[B .)1,35[C.]13,22[- D.)1,13[-10.已知直线y =kx (k ≠0)与双曲线12222=-by a x (a >0,b >0)交于A ,B 两点,以AB 为直径的圆恰好经过双曲线的右焦点F ,若△ABF 的面积为4a 2,则双曲线的离心率为()A .2B .3C .2D .511.如图,α,β,γ是由直线l 引出的三个不重合的半平面,其中二面角α﹣l ﹣β大小为60°,γ在二面角α﹣l ﹣β内绕直线l 旋转,圆C 在γ内,且圆C 在α,β内的射影分别为椭圆C 1,C 2.记椭圆C 1,C 2的离心率分别为e 1,e 2,则e 12+e 22的取值范围是()A .)43,31[B .)45,31[C .)43,21[D .45,21[12.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为F 1,F 2,P 为椭圆上不与左、右顶点重合的任意一点,I ,G 分别为△PF 1F 2的内心和重心,当IG ⊥x 轴时,椭圆的离心率为()A .31B .21C .23D .3613.椭圆的焦点)0,22(F 1-,)0,22(F 2长轴长为2a ,在椭圆上存在点P ,使∠F 1PF 2=90°,对于直线y =a ,在圆x 2+(y ﹣1)2=2上始终存在两点M ,N 使得直线上有点Q ,满足∠MQN =90°,则椭圆的离心率的取值范围是()A .)1,322[B .)1,22[C .322,22[D .322,0(14.过双曲线C :12222=-by a x (a >0,b >0)右焦点F 的直线l 与C 交于P ,Q 两点,,若→→=PF 2QP ,0FQ QP =⋅→→,则C 的离心率为()A .2B .2C .7D .1015.已知双曲线E :12222=-b y a x (a >0,b >0),斜率为81-的直线与E 的左右两支分别交于A ,B 两点,点P的坐标为(﹣1,2),直线AP 交E 于另一点C ,直线BP 交E 于另一点D .若直线CD 的斜率为81-,则E 的离心率为()A .26B .23C .25D .2516.设椭圆C :22221(0)x y a b a b+=>>的左,右顶点为A ,B .P 是椭圆上不同于A ,B 的一点,设直线AP ,BP 的斜率分别为m ,n ,则当ba+ln |m |+ln |n |取得最小值时,椭圆C 的离心率为()A .51B .22C .54D .2317.设椭圆C :22221(0)x y a b a b+=>>的左,右顶点为A ,B .P 是椭圆上不同于A ,B 的一点,设直线AP ,BP 的斜率分别为m ,n ,则当b a(3﹣mn 32)+mn2+3(ln |m |+ln |n |)取得最小值时,椭圆C 的离心率为()A .51B .22C .54D .2318.设F 1,F 2为双曲线12222=-by a x (a >0,b >0)的左、右焦点,点P (x 0,2a )为双曲线上的一点,若△PF 1F 2的重心和内心的连线与x 轴垂直,则双曲线的离心率为()A .26B .25C .6D .519.过双曲线C :12222=-by a x (a >0,b >0)左焦点F 的直线l 与C 交于M ,N 两点,且→→=FM 3FN ,若OM⊥FN ,则C 的离心率为()A .2B .7C .3D .1020.已知椭圆C :22221(0)x y a b a b+=>>的左右焦点分别为F 1,F 2,点A 是椭圆上一点,线段AF 1的垂直平分线与椭圆的一个交点为B ,若→→=B 3F AB 2则椭圆C 的离心率为()A .31B .33C .32D .3621.已知O 为坐标原点,A ,B 分别是椭圆C :22221(0)x y a b a b+=>>的左,右顶点,抛物线E :y 2=2px (p>0)与椭圆C 在第一象限交于点P ,点P 在x 轴上的投影为P ’,且有→→→⋅|OP'|OP'OP =c (其中c 2=a 2﹣b 2),AP 的连线与y 轴交于点M ,BM 与PP '的交点N 恰为PP '的中点,则椭圆C 的离心率为()A .23B .22C .32D .3122.已知点P (x 0,y 0)(x 0≠±a )在椭圆C :22221(0)x y a b a b+=>>上,若点M 为椭圆C 的右顶点,且PO⊥PM (O 为坐标原点),则椭圆C 的离心率e 的取值范围是()A .(0,33)B .(33,1)C .(22,1)D .(0,22)23.已知椭圆与双曲线有公共焦点,F 1,F 2,F 1为左焦点,F 2为右焦点,P 点为它们在第一象限的一个交点,且∠F 1PF 2=4π,设e 1,e 2分别为椭圆双曲线离心率,则2111e e +的最大值为()A .2B .22C .32D .4224.已知F 1,F 2是椭圆E :22221(0)x y a b a b+=>>的左、右焦点,若E 上存在不同两点A ,B ,使得→→=BF 3A F 21则该椭圆的离心率的取值范围为()A .(3﹣1,1)B .(0,3﹣1)C .(2﹣3,1)D .(0,2﹣3)25.点A 是椭圆1222=+y ax (a >1)的上顶点,B 、C 是该椭圆的另外两点,且△ABC 是以点A 为直角顶点的等腰直角三角形,若满足条件的△ABC 只有一个,则椭圆的离心率e 的范围是()A .33≤e <1B .0<e ≤33C .0<e ≤36D .36≤e <126.已知F 1,F 2是椭圆C :22221(0)x y a b a b+=>>的焦点,P 是椭圆C 上一点,若I 是△PF 1F 2的内心,且满足→→→→=++0IP 4IF 3IF 221则C 的离心率e 的值是()A .92B .72C .21D .54参考答案1.D2.A3.B4.C5.A6.C7.D8.B9.A10.D11.C12.A13.A 14.C15.C16.D17.A18.A19.B20.B21.D22.C23.B24.C 25.C26.D。
直线与圆锥曲线综合性问题(含答案)
直线与圆锥曲线综合性问题(含答案)一.考点分析。
⑴直线与圆锥曲线的位置关系和判定直线与圆锥曲线的位置关系有三种情况:相交、相切、相离.直线方程是二元一次方程,圆锥曲线方程是二元二次方程,由它们组成的方程组,经过消元得到一个一元二次方程,直线和圆锥曲线相交、相切、相离的充分必要条件分别是、、.⑵直线与圆锥曲线相交所得的弦长直线具有斜率,直线与圆锥曲线的两个交点坐标分别为,则它的弦长上面的公式实质上是由两点间距离公式推导出来的,只是用了交点坐标设而不求的技巧而已(因为,运用韦达定理来进行计算. 当直线斜率不存在是,则.注:,1.圆锥曲线,一要重视定义,这是学好圆锥曲线最重要的思想方法,二要数形结合,既熟练掌握方程组理论,又关注图形的几何性质,以简化运算;2.当涉及到弦的中点时,通常有两种处理方法:一是韦达定理,二是点差法;3.圆锥曲线中参数取值范围问题通常从两个途径思考:一是建立函数,用求值域的方法求范围,二是建立不等式,通过解不等式求范围. 二.考试探究圆锥曲线是解析几何的核心内容,也是高考命题的热点之一.高考对圆锥曲线的考查,总体上是以知识应用和问题探究为主,一般是给出曲线方程,讨论曲线的基本元素和简单的几何性质;或给出曲线满足的条件,判断(求)其轨迹;或给出直线与曲线、曲线与曲线的位置关系,讨论与其有关的其他问题(如直线的方程、直线的条数、弦长、曲线中参变量的取值范围等);或考查圆锥曲线与其他知识综合(如不等式、函数、向量、导数等)的问题等. 1.,(2006年北京卷,文科,19)椭圆C:的两个焦点为F1,F2,点P 在椭圆C 上,且0∆>0∆=0∆<k 1122(,),(,)A x y B x y 1212()y y x x -=-k 12AB y y =-22221(0)x y a b a b+=>>(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l 过圆x 2+y 2+4x-2y=0的圆心M ,交椭圆C 于A 、B 两点,且A 、B 关于点M对称,求直线l 的方程.〖解析〗(Ⅰ)由椭圆的定义及勾股定理求出a,b,c 的值即可,(Ⅱ)可以设出A 、B 点的坐标及直线方程,联立直线方程和椭圆方程后利用一元二次方程根与系数关系即可求出直线方程,也可以利用“点差法”求出直线的斜率,然后利用点斜式求出直线方程. 〖答案〗解法一:(Ⅰ)因为点P 在椭圆C 上,所以,a=3.在Rt △PF1F2中,故椭圆的半焦距c=,从而b2=a2-c2=4,所以椭圆C 的方程为=1. (Ⅱ)设A ,B 的坐标分别为(x1,y1)、(x2,y2).已知圆的方程为(x+2)2+(y -1)2=5,所以圆心M 的坐标为(-2,1). 从而可设直线l 的方程为y=k(x+2)+1,代入椭圆C 的方程得(4+9k2)x2+(36k2+18k)x+36k2+36k -27=0. 因为A ,B 关于点M 对称.所以,,,解得, 所以直线l 的方程为,,,,,即8x-9y+25=0. (经检验,所求直线方程符合题意) 解法二: (Ⅰ)同解法一.(Ⅱ)已知圆的方程为(x+2)2+(y -1)2=5,所以圆心M 的坐标为(-2,1).11212414,||,||.33PF F F PF PF ⊥==6221=+=PF PF a ,52212221=-=PF PF F F 54922y x +.29491822221-=++-=+kkk x x 98=k ,1)2(98++=x y,设A ,B 的坐标分别为(x1,y1),(x2,y2).由题意x1x2且,,,,,,,,,①,,,,,,,,,②由①-②得,,,,,,,,,③因为A 、B 关于点M 对称,所以x1+,x2=-4,,y1+,y2=2,代入③得=,即直线l 的斜率为,所以直线l 的方程为y -1=(x+2),即8x -9y+25=0. (经检验,所求直线方程符合题意.) 2.(2008年山东卷,文科,22)已知曲线所围成的封闭图形的面积为曲线的内切圆半径为.记为以曲线与坐标轴的交点为顶点的椭圆.(Ⅰ)求椭圆的标准方程;(Ⅱ)设是过椭圆中心的任意弦,是线段的垂直平分线.是上异于椭圆中心的点.(1)若(为坐标原点),当点在椭圆上运动时,求点的轨迹方程;(2)若是与椭圆的交点,求的面积的最小值.≠,1492121=+yx ,1492222=+yx .04))((9))((21212121=+-++-y y y y x x x x 2121x x y y --98989811(0)xyC a b a b+=>>:1C 32C 1C 2C AB 2C l AB M l MO OA λ=O A 2C M M l 2C AMB △〖解析〗(Ⅰ)由三角形面积公式和点到直线的距离公式可得关于a ,b 的方程组,,曲线与坐标轴的交点为椭圆的顶点,显然为焦点在x 轴的椭圆;(Ⅱ)(1)设出的方程,,,联立直线与椭圆得到方程组后,由可得的轨迹方程,注意或不存在时所得方程仍然成立;(2)由直线的方程:和椭圆方程联立后表示出由不等式放缩即可求出最小值.〖答案〗(Ⅰ)由题意得又,解得,.因此所求椭圆的标准方程为.(Ⅱ)(1)假设所在的直线斜率存在且不为零,设所在直线方程为,.解方程组得,, 所以. 设,由题意知,所以,即, 因为是的垂直平分线,所以直线的方程为,即,因此, 1C 2C AB (0)y kx k =≠()A A A x y ,()M x y ,(0)MO OA λλ=≠M 0k =l 1y x k =-22214AMB S ABOM =△2ab ⎧=⎪⎨=0a b >>25a =24b =22154x y +=AB AB (0)y kx k =≠()A A A x y ,22154x y y kx ⎧+=⎪⎨⎪=⎩,,222045A x k =+2222045A k y k =+22222222202020(1)454545AAk k OA x y k k k+=+=+=+++()M x y ,(0)MO OA λλ=≠222MO OA λ=2222220(1)45k x y kλ++=+l AB l 1y x k=-x k y =-22222222222220120()4545x y x y x y x y x yλλ⎛⎫+ ⎪+⎝⎭+==++又,所以,故. 又当或不存在时,上式仍然成立.综上所述,的轨迹方程为.(2)当存在且时,由(1)得,, 由解得,, 所以,,. 解法一:由于 , 当且仅当时等号成立,即时等号成立, 此时面积的最小值是. 当,. 当不存在时,. 综上所述,的面积的最小值为. 解法二:因为, 220x y +≠2225420x y λ+=22245x y λ+=0k=M 222(0)45x y λλ+=≠k 0k ≠222045Ax k =+2222045A k y k=+221541x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩,,2222054M k x k =+222054M y k =+2222220(1)45AAk OA x y k +=+=+222280(1)445k AB OA k +==+22220(1)54k OM k+=+22214AMBSAB OM =△2222180(1)20(1)44554k k k k++=⨯⨯++2222400(1)(45)(54)k k k +=++22222400(1)45542k k k +⎛⎫+++ ⎪⎝⎭≥222221600(1)4081(1)9k k +⎛⎫== ⎪+⎝⎭224554k k +=+1k =±AMB △409AMB S=△0k=140229AMB S =⨯=>△k 140429AMB S ==>△AMB △409222222111120(1)20(1)4554k k OA OMk k +=+++++2224554920(1)20k k k +++==+。
圆锥曲线的综合经典例题(有答案)
经典例题精析类型一:求曲线的标准方程1. 求中心在原点,一个焦点为且被直线截得的弦AB的中点横坐标为的椭圆标准方程.思路点拨:先确定椭圆标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、(定量).解析:方法一:因为有焦点为,所以设椭圆方程为,,由,消去得,所以解得故椭圆标准方程为方法二:设椭圆方程,,,因为弦AB中点,所以,由得,(点差法)所以又故椭圆标准方程为.举一反三:【变式】已知椭圆在x轴上的一个焦点与短轴两端点连线互相垂直,且该焦点与长轴上较近的端点的距离为.求该椭圆的标准方程.【答案】依题意设椭圆标准方程为(),并有,解之得,,∴椭圆标准方程为2.根据下列条件,求双曲线的标准方程.(1)与双曲线有共同的渐近线,且过点;(2)与双曲线有公共焦点,且过点解析:(1)解法一:设双曲线的方程为由题意,得,解得,所以双曲线的方程为解法二:设所求双曲线方程为(),将点代入得,所以双曲线方程为即(2)解法一:设双曲线方程为-=1由题意易求又双曲线过点,∴又∵,∴,故所求双曲线的方程为.解法二:设双曲线方程为,将点代入得,所以双曲线方程为.总结升华:先根据已知条件确定双曲线标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、.在第(1)小题中首先设出共渐近线的双曲线系方程.然后代点坐标求得方法简便.第(2)小题实轴、虚轴没有唯一给出.故应答两个标准方程.(1)求双曲线的方程,关键是求、,在解题过程中应熟悉各元素(、、、及准线)之间的关系,并注意方程思想的应用.(2)若已知双曲线的渐近线方程,可设双曲线方程为().举一反三:【变式】求中心在原点,对称轴在坐标轴上且分别满足下列条件的双曲线的标准方程.(1)一渐近线方程为,且双曲线过点.(2)虚轴长与实轴长的比为,焦距为10.【答案】(1)依题意知双曲线两渐近线的方程是,故设双曲线方程为,∵点在双曲线上,∴,解得,∴所求双曲线方程为.(2)由已知设, ,则()依题意,解得.∴双曲线方程为或.3.求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程:(1)过点;(2)焦点在直线:上思路点拨:从方程形式看,求抛物线的标准方程仅需确定一次项系数;从实际分析,一般需结合图形确定开口方向和一次项系数两个条件,否则,应展开相应的讨论解析:(1)∵点在第二象限,∴抛物线开口方向上或者向左当抛物线开口方向左时,设所求的抛物线方程为(),∵过点,∴,∴,∴,当抛物线开口方向上时,设所求的抛物线方程为(),∵过点,∴,∴,∴,∴所求的抛物线的方程为或,对应的准线方程分别是,.(2)令得,令得,∴抛物线的焦点为或当焦点为时,,∴,此时抛物线方程;焦点为时,,∴,此时抛物线方程为∴所求的抛物线的方程为或,对应的准线方程分别是,.总结升华:这里易犯的错误就是缺少对开口方向的讨论,先入为主,设定一种形式的标准方程后求解,以致失去一解.求抛物线的标准方程关键是根据图象确定抛物线开口方向,选择适当的方程形式,准确求出焦参数P.举一反三:【变式1】分别求满足下列条件的抛物线的标准方程.(1)焦点为F(4,0);(2)准线为;(3)焦点到原点的距离为1;(4)过点(1,-2);(5)焦点在直线x-3y+6=0上.【答案】(1)所求抛物线的方程为y2=16x;(2)所求抛物线的标准方程为x2=2y;(3)所求抛物线的方程y2=±4x或x2=±4y;(4)所求抛物线的方程为或;(5)所求抛物线的标准方程为y2=-24x或x2=8y.【变式2】已知抛物线的顶点在原点,焦点在轴负半轴上,过顶点且倾角为的弦长为,求抛物线的方程.【答案】设抛物线方程为(),又弦所在直线方程为由,解得两交点坐标,∴,解得.∴抛物线方程为.类型二:圆锥曲线的焦点三角形4.已知、是椭圆()的两焦点,P是椭圆上一点,且,求的面积.思路点拨:如图求的面积应利用,即.关键是求.由椭圆第一定义有,由余弦定理有,易求之.解析:设,,依题意有(1)2-(2)得,即.∴.举一反三:【变式1】设为双曲线上的一点,是该双曲线的两个焦点,若,则的面积为()A.B.C.D.【答案】依据双曲线的定义有,由得、,又,则,即,所以,故选A.【变式2】已知双曲线实轴长6,过左焦点的弦交左半支于、两点,且,设右焦点,求的周长.【答案】:由双曲线的定义有: ,,两式左、右分别相加得(.即∴.故的周长.【变式3】已知椭圆的焦点是,直线是椭圆的一条准线.①求椭圆的方程;②设点P在椭圆上,且,求.【答案】①.②设则,又.【变式4】已知双曲线的方程是.(1)求这双曲线的焦点坐标、离心率和渐近线方程;(2)设和是双曲线的左、右焦点,点在双曲线上,且,求的大小【答案】(1)由得,∴,,.焦点、,离心率,渐近线方程为.(2),∴∴【变式5】中心在原点,焦点在x轴上的一个椭圆与双曲线有共同焦点和,且,又椭圆长半轴与双曲线实半轴之差为4,离心率之比.(1)求椭圆与双曲线的方程;(2)若为这两曲线的一个交点,求的余弦值.【答案】(1)设椭圆方程为(),双曲线方程,则,解得∵,∴, .故所求椭圆方程为,双曲线方程为.(2)由对称性不妨设交点在第一象限.设、.由椭圆、双曲线的定义有:解得由余弦定理有.类型三:离心率5.已知椭圆上的点和左焦点,椭圆的右顶点和上顶点,当,(O为椭圆中心)时,求椭圆的离心率.思路点拨:因为,所以本题应建立、的齐次方程,使问题得以解决.解析:设椭圆方程为(),,,则,即.∵,∴,即,∴.又∵,∴.总结升华:求椭圆的离心率,即求的比值,则可由如下方法求.(1)可直接求出、;(2)在不好直接求出、的情况下,找到一个关于、的齐次等式或、用同一个量表示;(3)若求的取值范围,则想办法找不等关系.举一反三:【变式1】如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为()A.B.C.D.【答案】连接,则是直角三角形,且,令,则,,即,,所以,故选D.【变式2】已知椭圆()与x轴正半轴交于A点,与y轴正半轴交于B点,F点是左焦点,且,求椭圆的离心率.法一:,,∵, ∴,又,,代入上式,得,利用代入,消得,即由,解得,∵,∴.法二:在ΔABF中,∵,,∴,即下略)【变式3】如图,椭圆的中心在原点, 焦点在x轴上, 过其右焦点F作斜率为1的直线, 交椭圆于A、B两点, 若椭圆上存在一点C, 使. 求椭圆的离心率.【答案】设椭圆的方程为(),焦距为,则直线l的方程为:,由,消去得,设点、,则∵+, ∴C点坐标为.∵C点在椭圆上,∴.∴∴又∴∴【变式4】设、为椭圆的两个焦点,点是以为直径的圆与椭圆的交点,若,则椭圆离心率为_____.【答案】如图,点满足,且.在中,有:∵,∴,令此椭圆方程为则由椭圆的定义有,,∴又∵,∴,,∴∴,∴,即.6.已知、为椭圆的两个焦点,为此椭圆上一点,且.求此椭圆离心率的取值范围;解析:如图,令, ,,则在中,由正弦定理,∴,令此椭圆方程为(),则,,∴即(),∴, ∴,∵,且为三角形内角,∴,∴,∴, ∴.即此椭圆离心率的取值范围为.举一反三:【变式1】已知椭圆,F1,F2是两个焦点,若椭圆上存在一点P,使,求其离心率的取值范围.【答案】△F1PF2中,已知,|F1F2|=2c,|PF1|+|PF2|=2a,由余弦定理:4c2=|PF1|2+|PF2|2-2|PF1||PF2|cos120°①又|PF1|+|PF2|=2a ②联立①②得4c2=4a2-|PF1||PF2|,∴【变式2】椭圆的焦点为,,两条准线与轴的交点分别为,若,则该椭圆离心率的取值范围是()A.B.C.D.【答案】由得,即,解得,故离心率.所以选D.【变式3】椭圆中心在坐标系原点,焦点在x轴上,过椭圆左焦点F的直线交椭圆P、Q两点,且OP⊥OQ,求其离心率e的取值范围.【答案】e∈[,1)【变式4】双曲线(a>1,b>0)的焦距为2c,直线过点(a,0)和(0,b),且点(1,0)到直线的距离与点(-1,0)到直线的距离之和s≥c.求双曲线的离心率e的取值范围.【答案】直线的方程为bx+ay-ab=0.由点到直线的距离公式,且a>1,得到点(1,0)到直线的距离.同理得到点(-1,0)到直线的距离.=.由s≥c,得≥c,即5a≥2c2.于是得5≥2e2.即4e4-25e2+25≤0.解不等式,得≤e2≤5.由于e>1,所以e的取值范围是.类型五:轨迹方程7.已知中,,,为动点,若、边上两中线长的和为定值15.求动点的轨迹方程.思路点拨:充分利用定义直接写出方程是求轨迹的直接法之一.应给以重视解法一:设动点,且,则、边上两中点、的坐标分别为,.∵,∴,即.从上式知,动点到两定点,的距离之和为常数30,故动点的轨迹是以,为焦点且,,的椭圆,挖去点.∴动点的轨迹方程是().解法二:设的重心,,动点,且,则.∴点的轨迹是以,为焦点的椭圆(挖去点),且,,.其方程为().又, 代入上式,得()为所求.总结升华:求动点的轨迹,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,建立等式,利用直接法或间接法得到轨迹方程.举一反三:【变式1】求过定点且和圆:相切的动圆圆心的轨迹方程.【答案】设动圆圆心, 动圆半径为,.(1)动圆与圆外切时,,(2)动圆与圆内切时,,由(1)、(2)有.∴动圆圆心M的轨迹是以、为焦点的双曲线,且,,.故动圆圆心的轨迹方程为.【变式3】已知圆的圆心为M1,圆的圆心为M2,一动圆与这两个圆外切,求动圆圆心P的轨迹方程.【答案】设动圆圆心P(x,y),动圆的半径为R,由两圆外切的条件可得:,.∴.∴动圆圆心P的轨迹是以M1、M2为焦点的双曲线的右支,其中c=4,a=2,∴b2=12,故所求轨迹方程为.【变式4】若动圆与圆:相外切,且与直线:相切,求动圆圆心的轨迹方程.法一:设,动圆半径,动圆与直线切于点,点.依题意点在直线的左侧,故∵,∴.化简得, 即为所求.法二:设,作直线:.过作于,交于,依题意有, ∴,由抛物线定义可知,点的轨迹是以为顶点,为焦点,:为准线的抛物线.故为所求.。
高二数学圆锥曲线综合试题答案及解析
高二数学圆锥曲线综合试题答案及解析1.已知曲线C上任意一点P到两定点F1(-1,0)与F2(1,0)的距离之和为4.(1)求曲线C的方程;(2)设曲线C与x轴负半轴交点为A,过点M(-4,0)作斜率为k的直线l交曲线C于B、C两点(B在M、C之间),N为BC中点.(ⅰ)证明:k·kON为定值;(ⅱ)是否存在实数k,使得F1N⊥AC?如果存在,求直线l的方程,如果不存在,请说明理由.【答案】(1);(2)(ⅰ);(ⅱ)不存在.【解析】(1)由于曲线C上任意一点P到两定点F1(-1,0)与F2(1,0)的距离之和为4,结合椭圆的定义可知曲线C是以两定点F1(-1,0)和F2(1,0)为焦点,长轴长为4的椭圆,从而可写出曲线C的方程;(2)由已知可设出过点直线l的方程,并设出直线l与曲线C所有交点的坐标;然后联立直线方程与曲线C的方程,消去y就可获得一个关于x的一元二次方程,应用韦达定理就可写出两交点模坐标的和与积;(ⅰ)应用上述结果就可以用k的代数式表示出弦的中点坐标,这样就可求出ON的斜率,再乘以k就可证明k·kON 为定值;(ⅱ)由F1N⊥AC,得kAC•kFN= -1,结合前边结果就可将此等式转化为关于k的一个方程,解此方程,若无解,则对应直线不存在,若有解,则存在且对应直线方程很易写出来.试题解析:(1)由已知可得:曲线C是以两定点F1(-1,0)和F2(1,0)为焦点,长轴长为4的椭圆,所以,故曲线C的方程为:. 4分(2)设过点M的直线l的方程为y=k(x+4),设B(x1, y1),C(x2, y2)(x2>y2).(ⅰ)联立方程组,得,则, 5分故,, 7分所以,所以k•kON=为定值. 8分(ⅱ)若F1N⊥AC,则kAC•kFN= -1,因为F1(-1,0),故, 10分代入y2=k(x2+4)得x2=-2-8k2,y2="2k" -8k3,而x2≥-2,故只能k=0,显然不成立,所以这样的直线不存在. 13分【考点】1.椭圆的方程;2.直线与椭圆的位置关系.2.双曲线+=1的离心率,则的值为.【答案】-32【解析】由题意可得,a=2,又∵e==3,∴c=3a=6,∴b2=c2-a2=36-4=32,而k=-b2,∴k=-32【考点】双曲线离心率的计算.3.已知椭圆,直线是直线上的线段,且是椭圆上一点,求面积的最小值。
圆锥曲线综合之齐次化巧解斜率的和积问题,含详细参考答案
齐次化巧解斜率的和积问题1.曲线的平移法则:对于给定曲线,平移口决:左加右减(针对x ),下加上减(针对y )2.两直线的斜率之和或积为定值方法拓展1.拓展:齐次化巧解斜率的和积问题2.原理:平移不改变直线的斜率、韦达定理的运用3.步骤:①设:设两直线的斜率分别为k 1和k 2;②移:将直线和曲线整体平移,使得两直线的公共点落在原点,写出平移后曲线的方程,并将平移后的目标直线设为固定形式:mx+ny =1若与定点(00,y x )的斜率关系,则可设直线方程为1)()(00=-+-y y n x x m ③联:联立直线和曲线方程,得到开如:)0(022≠=++p rx qxy py 方程两边同时除以x 2,得到形如)0(0)((2≠=++p r x y q x y p ④换:令k =x y ,得到)0(02≠=++p r qk pk ,则k 1和k 2是该方程的两根⑤达:韦达定理得到k 1+k 2和k 1k 2,从而得到m 和n 的关系4.优点:相比传统的韦达定理,计算量大大减少,缺点:mx+ny =1不能表示经过原点的直线常见三种类型:①MB MA k k ⋅为定值(不为0)②MB MA k k +为定值(不为0)③)0(πθθβα<<=+例1A 、B 是抛物线x y 42=上的两点,且满足OA ⊥OB(O 为坐标原点),求证:直线AB 经过一个定点.练习1已知抛物线C :)0(22>=p px y 上一点A(2,a )到其焦点的距离为3(1)求抛物线C 的方程;(2)过点(4,0)的直线与抛物线C 交于点P 、Q 两点,O 为坐标原点,证明∠POQ=90°.例2设曲线C :)0(22>=p py x 上一点M(m ,2)到焦点的距离为3.(1)求曲线C 方程;(2)设P 、Q 为曲线C 上不同于原点O 的任意两点,且满足以线段PQ 为直径的圆过原点O ,试问直线PQ 是否恒过定点?若恒过定点,求出定点坐标;若不恒过定点,说明理由.练习2已知离心率为25的双曲线C 的中心在坐标原点,左、右焦点F 1、F 2在x 轴上,双曲线C 的右支上一点A 使0AF AF 21=⋅→→且△AF 1F 2的面积为1.(1)求双曲线C 的标准方程;(2)若直线l :y=kx+m 与双曲线C 相交于E 、F 两点(E 、F 不是左右顶点),且以EF 为直径的圆过双曲线C 的右顶点D ,求证:直线l 过定点,并求出该定点的坐标.例3如图,椭圆E :)0(12222>>=+b a b y a x 经过点A(0,-1),且离心率为22(1)求椭圆E 的方程;(2)经过点(1,1)且斜率为k 的直线与椭圆E 交于不同的两点P 、Q(异于点A),证明:直线AP 与AQ 的斜率之和为2.练习3已知椭圆C 过点A(231,),两个焦点为(-1,0),(1,0)(1)求椭圆的方程;(2)E 、F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值.例4(2017全国I 卷)已知椭圆)0(12222>>=+b a b y a x ,四点)23,1()23,1()1,0()1,1(4321P P P P -,中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A 、B 两点,若直线P 2A 与直线P 2B 的斜率之和为-1,求证:l 过定点.练习4设抛物线C :x y 22=点A(2,0),B(-2,0),过点A 的直线l 与C 交于M 、N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:∠ABM=∠ABN参考答案例1设A(11,y x )、B(22,y x )直线AB 的解析式为mx+ny =1,与抛物线联立有)(42ny mx x y +=即有044(2=--m x y n x y ,此方程是关于2211,x y x y 的一元二次方程,142211-=-=⋅=⋅m x y x y k k OB OA ,即41=m ,直线AB 的方程为141=+ny x ,过定点(4,0)练习1(1)2+2p =3得p=2,抛物线的方程为x y 42=(2)设P(11,y x )、Q(22,y x )直线PQ 的解析式为mx+ny =1,与抛物线联立有)(42ny mx x y +=即有044(2=--m x y n x y ,此方程是关于2211,x y x y 的一元二次方程,直线PQ 过点(4,0)得41=m 142211P -=-=⋅=⋅m x y x y k k OQ O ,故∠POQ=90°例2(1)2+2p =3得p=2,抛物线的方程为y x 42=(2)设P(11,y x )、Q(22,y x )直线PQ 的解析式为mx+ny =1,与抛物线联立有)(42ny mx y x +=即有014(42=-+x y m x y n ,此方程是关于2211,x y x y 的一元二次方程,以PQ 为直径的圆过原点,则1412211P -=-=⋅=⋅nx y x y k k OQ O 得n=41,直线PQ 方程为141=+y mx ,过定点(0,4)练习2(1)易知AF 1-AF 2=2a ,AF 21+BF 22=4c 2,25=a c 得2a =4,b=1,故双曲线的方程为1422=-y x (2)设P(11,y x )、Q(22,y x )直线PQ 的方程为m (x-2)+ny =1,令p=x -2,q=y ,则直线PQ 的方程为mp+nq =1与双曲线联立有)(4)2(2nq mp q p +=+即有044))(41(2=--+pq n q pm ,此方程是关于2,22211--x y x y 的一元二次方程,则1414222211D DP -=+-=-⋅-=⋅mx y x y k k Q 得m=43,直线PQ 方程为1)2(43=+-ny x ,过定点(310,0)例3(1)1222=+y x (2)设P(11,y x )、Q(22,y x )直线PQ 的方程为mx+n (y+1)=1,令p=x ,q=y+1,则直线PQ 的方程为mp+nq =1与椭圆联立有2)1(222=-+q p 即有014))(42(2=++-p q mp q n ,此方程是关于22111,1x y x y ++的一元二次方程,则n m k k Q 424D DP --=+,而直线PQ 过点(1,1)则有m +2n =1即有m =1-2n ,代入可得242)21(4D DP =+--=+nn k k Q 练习3(1)13422=+y x (2)设E(11,y x )、F(22,y x )直线EF 的方程为m (x-1)+n (y-23)=1,令p=x -1,q=y-23,则直线EF 的方程为mp+nq =1与椭圆联立有1223(4)1(322=+++q p 即有063)126()(124(2=+++++m pq m n p qn ,此方程是关于123,1232211-+-+x y x y 的一元二次方程,则0412126AE =++-=+n m n k k AF 得n=-2m,故直线EF 的斜率为21例4(1)易知点P 2P 3P 4在椭圆上,可得椭圆方程为1422=+y x (2)设A(11,y x )、B(22,y x )直线AB 的方程为mx+n (y -1)=1,令p=x ,q=y-1,则直线AB 的方程为mp+nq =1与椭圆联立有4)1(4322=++q p 即有034)(44(2=+++p q mp q n ,此方程是关于22111,1x y x y --的一元二次方程,则1444AE -=+-=+n m k k AF 得m=n+21,故直线方程为0121)1(=-+-+x y x n ,故直线过定点(2,1)练习4(1)121121--=+=x y x y 或(2)设M(11,y x )、N(22,y x )直线MN 的方程为m(x+2)+ny =1,令p=x+2,q=y ,则直线MN 的方程为mp+nq =1与椭圆联立有)2(22-=p q 即有024)28()(41(222=-+-++m m p q n mn p q n ,此方程是关于2,22211++x y x y 的一元二次方程,则2BN BM 4128n n mn k k +--=+,而直线过点A(2,0),m=41,得0BN BM =+k k 故∠ABM=∠ABN。
第八章 第十节 圆锥曲线的综合问题(理)
第八章 第十节 圆锥曲线的综合问题(理)1.若直线mx +ny =4和⊙O :x 2+y 2=4没有交点,则过点(m ,n )的直线与椭圆x 29+y 24=1的交点个数为 ( ) A .至多一个 B .2个 C .1个 D .0个 解析:由直线mx +ny =4和⊙O :x 2+y 2=4没有交点得4m 2+n2>2,m 2+n 2<4,点(m ,n )表示的区域在椭圆x 29+y 24=1的内部,则过点(m ,n )的直线与椭圆x 29+y 24=1的交点个数为2个. 答案:B2.抛物线y 2=4x 的焦点是F ,准线是l ,点M (4,4)是抛物线上一点,则经过点F 、M 且与l 相切的圆共有 ( ) A .0个 B .1个 C .2个 D .4个 解析:由于圆经过焦点F 且与准线l 相切,由抛物线的定义知圆心在抛物线上,又因为圆经过抛物线上的点M ,所以圆心在线段FM 的垂直平分线上,即圆心是线段FM 的垂直平分线与抛物线的交点,结合图形易知有两个交点,因此一共有2个满足条件的圆. 答案:C3.过抛物线y 2=2px (p >0)的焦点的直线x -my +m =0与抛物线交于A 、B 两点,且△OAB (O 为坐标原点)的面积为22,则m 6+m 4=________.解析:设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y 2=2px ,x =my -m ,消去x 得y 2-2mpy +2pm =0, ∴y 1+y 2=2pm ,y 1y 2=2pm ,(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=4p 2m 2-8pm . 又焦点⎝⎛⎭⎫p 2,0在x -my +m =0上,∴p =-2m , ∴|y 1-y 2|=4m 4+m 2, ∴S △OAB =12×p2|y 1-y 2|=22,-m m 4+m 2=2,平方得m 6+m 4=2. 答案:24.(2009·全国卷A 、B 两点,F 为C 的焦点.若|F A |=2|FB |,则k = ( ) A.13 B.23 C.23 D.223 解析:过A 、B 作拋物线准线l 的垂线,垂足分别为A 1、B 1, 由拋物线定义可知,|AA 1|=|AF |,|BB 1|=|BF |, ∵2|BF |=|AF |,∴|AA 1|=2|BB 1|,即B 为AC 的中点.从而y A =2y B ,联立方程组⎩⎪⎨⎪⎧y =k (x +2),y 2=8x ⇒消去x 得:y 2-8ky +16=0,∴⎩⎪⎨⎪⎧y A +y B =8k ,y A ·y B =16⇒⎩⎪⎨⎪⎧3y B =8k ,2y 2B =16⇒消去y B 得k =223.答案:D5.已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于( )A .3B .4C .3 2D .4 2 解析:设直线AB 的方程为y =x +b ,由⎩⎪⎨⎪⎧y =-x 2+3y =x +b⇒x 2+x +b -3=0⇒x 1+x 2=-1, 得AB 的中点M (-12,-12+b ),又M (-12,-12+b )在直线x +y =0上可求出b =1,∴x 2+x -2=0,则|AB |=1+12(-1)2-4×(-2)=3 2. 答案:C6.(2008·全国卷Ⅱ)已知F 为抛物线C :y 2=4x 的焦点,过F 且斜率为1的直线交C 于A 、B 两点.设|F A |>|FB |,则|F A |与|FB |的比值等于________. 解析:F (1,0),∴直线AB 的方程为y =x -1.⎩⎪⎨⎪⎧y =x -1,y 2=4x ⇒x 2-6x +1=0⇒x =3±2 2. ∵|F A |>|FB |,由抛物线定义知A 点的横坐标为3+22,B 点的横坐标为3-2 2. |F A ||FB |=x A +1x B +1=4+224-22=2+22-2=6+422=3+2 2. 答案:3+2 27.(2009·银川模拟)已知对∀k ∈R ,直线y -kx -1=0与椭圆x 5+y 2m =1恒有公共点,则实数m 的取值范围是 ( ) A .(0,1) B .(0,5) C .[1,5)∪(5,+∞) D .[1,5) 解析:直线恒过定点(0,1),若直线与椭圆恒有公共点, 只需点(0,1)在椭圆上或内部,∴1m ≤1,又m >0且m ≠5,∴m ≥1且m ≠5. 答案:C8.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则双曲线离心率e 的最大值为________. 解析:设∠F 1PF 2=θ,由⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2a ,|PF 1|=4|PF 2|得⎩⎨⎧|PF 1|=83a ,|PF 2|=23a ,∴cos θ=17a 2-9c 28a 2=178-98e 2.∵cos θ∈[-1,1),∴1<e ≤53.答案:539.(1)求动圆的圆心轨迹C 的方程;(2)是否存在直线l ,使l 过点(0,2),并与轨迹C 交于P ,Q 两点,且满足OP ·OQ=0?若存在,求出直线l 的方程;若不存在,说明理由. 解:(1)如图,设M 为动圆圆心,F (2,0),过点M 作直线x =-2的垂线,垂足为N ,由题意知:|MF |=|MN |,即动点M 到定点F 与到定直线x = -2的距离相等,由抛物线的定义知,点M 的轨迹为抛物线, 其中F (2,0)为焦点,x =-2为准线, 所以动圆圆心轨迹C 的方程为y 2=8x . (2)由题可设直线l 的方程为x =k (y -2)(k ≠0),由⎩⎪⎨⎪⎧x =k (y -2)y 2=8x ,得y 2-8ky +16k =0, Δ=(-8k )2-4×16k >0,解得k <0或k >1. 设P (x 1,y 1),Q (x 2,y 2), 则y 1+y 2=8k ,y 1y 2=16k ,由OP ·OQ =0,得x 1x 2+y 1y 2=0,即k 2(y 1-2)(y 2-2)+y 1y 2=0,整理得:(k 2+1)y 1y 2-2k 2(y 1+y 2)+4k 2=0,代入得16k (k 2+1)-2k 2·8k +4k 2=0,即16k +4k 2=0, 解得k =-4或k =0(舍去),所以直线l 存在,其方程为x +4y -8=0.10.已知双曲线C :x 21-λ-y 2λ=1(0<λ<1)的右焦点为B ,过点B 作直线交双曲线C 的右支于M 、N 两点,试确定λ的范围,使OM ·ON=0,其中点O 为坐标原点. 解:设M (x 1,y 1),N (x 2,y 2),由已知易求B (1,0), 当MN 垂直于x 轴时,MN 的方程为x =1, 设M (1,y 0),N (1,-y 0)(y 0>0),由OM ―→·ON ―→=0,得y 0=1,∴M (1,1),N (1,-1). 又M (1,1), N (1,-1)在双曲线上, ∴11-λ-1λ=1⇒λ2+λ-1=0⇒λ=-1±52,∵0<λ<1,∴λ=5-12. 当MN 不垂直于x 轴时, 设MN 的方程为y =k (x -1).由⎩⎪⎨⎪⎧x 21-λ-y 2λ=1,y =k (x -1),得:[λ-(1-λ)k 2]x 2+2(1-λ)k 2x -(1-λ)(k 2+λ)=0, 由题意知:λ-(1-λ)k 2≠0,∴x 1+x 2=-2k 2(1-λ)λ-(1-λ)k 2,x 1x 2=-(1-λ)(k 2+λ)λ-(1-λ)k 2,∴y 1y 2=k 2(x 1-1)(x 2-1)=k 2λ2λ-(1-λ)k 2,∵OM ·ON =0,且M 、N 在双曲线右支上,∴⎩⎪⎨⎪⎧x 1x 2+y 1y 2=0x 1+x 2>0x 1x 2>0⇒⎩⎪⎨⎪⎧k 2=λ(1-λ)λ2+λ-1k 2>λ1-λ⇒⎩⎪⎨⎪⎧λ(1-λ)λ2+λ-1>λ1-λλ2+λ-1>0⇒5-12<λ<23.综上,知5-12≤λ<23. 11.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,短轴一个端点到右焦点的距离为 3.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为32,求△AOB 面积的最大值.解:(1)设椭圆的半焦距为c ,依题意⎩⎪⎨⎪⎧c a =63,a =3,∴b =1,∴所求椭圆方程为x 23+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2). ①当AB ⊥x 轴时,|AB |= 3. ②当AB 与x 轴不垂直时, 设直线AB 的方程为y =kx +m . 由已知|m |1+k 2=32,得m 2=34(k 2+1).把y =kx +m 代入椭圆方程,整理得(3k 2+1)x 2+6kmx +3m 2-3=0, ∴x 1+x 2=-6km 3k 2+1,x 1x 2=3(m 2-1)3k 2+1.∴|AB |2=(1+k 2)⎣⎢⎡⎦⎥⎤36k 2m 2(3k 2+1)2-12(m 2-1)3k 2+1=12(k 2+1)(3k 2+1-m 2)(3k 2+1)2=3(k 2+1)(9k 2+1)(3k 2+1)2=3+12k 29k 4+6k 2+1=3+129k 2+1k2+6(k ≠0) ≤3+122×3+6=4.当且仅当9k 2=1k 2,即k =±33时等号成立.当k =0时,|AB |= 3. 综上所述,|AB |max =2.∴当|AB |最大时,△AOB 面积取最大值: S max =12×|AB |max ×32=32.。
圆锥曲线综合问题—5. 存在性问题
圆锥曲线综合问题—5. 存在性问题(一)存在性问题是近几年高考试题对解析几何考查的一种热点题型,以判断满足条件的点、直线、参数是否存在,证明直线与圆锥曲线的位置关系,数量关系(等量或不等量)为主要呈现方式,多以解答题的形式考查;对这类问题,若存在,需要找出来,若不存在,需说明理由,其解法有:一、假设法 假设法的一般解法是,先假定存在,然后根据已知条件或其他定理、公理、法则等推导下去,如与已知定理、公理、法则等不发生矛盾,即推出的结果合理,并经验证成立,那么结论成立,若发生矛盾,则结论不成立。
1.(2015届湖南省浏阳一中、攸县一中、醴陵一中三校高三联考)已知椭圆:C 22221(0)x y a b a b +=>>的焦距为, 且过点31(,)22A .(1)求椭圆的方程;(2)已知:1l y kx =-,是否存在k 使得点A 关于l 的对称点B (不同于点A )在椭圆C 上?若存在求出此时直线l 的方程,若不存在说明理由.【答案】(1)2213x y +=;(2)不存在k 满足条件2. 【2015届吉林省实验中学高三上学期第四次模拟考试数学(理)】已知椭圆C 的中心在原点O ,焦点在x 轴上,离心率为12,右焦点到右顶点的距离为1;(Ⅰ)求椭圆C 的标准方程; (Ⅱ)是否存在与椭圆C 交于,A B 两点的直线l :()y kx m k =+∈R ,使得22OA OB OA OB +=-成立?若存在,求出实数m 的取值范围,若不存在,请说明理由.【答案】(1)22143x y +=(2)(-∞,-7]∪[7,+∞)3. (河北省容城中学2014届高三上学期第一次月考数学(理)试题)已知点A (-2,0),B (2,0),直线P A 与直线PB 的斜率之积为34-,记点P 的轨迹为曲线C .(1)求曲线C 的方程.(2)设M ,N 是曲线C 上任意两点,且OM ON OM ON -=+,问是否存在以原点为圆心且与MN 总相切的圆?若存在,求出该圆的方程;若不存在,请说明理由.【答案】(1)221(0)43x y y +=≠(2) 存在以原点为圆心且与MN 总相切的圆,其方程为22127x y +=4. 【浙江省温州八校2014届高三10月期初联考数学(理)】如图,椭圆2222+=1(>>0)x y C a b a b :经过点3(1,),2P 离心率1=2e ,直线l 的方程为=4x .(Ⅰ)求椭圆C 的方程;(Ⅱ)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记,,PA PB PM 的斜率分别为123,,.k k k 问:是否存在常数λ,使得123+=.k k k λ若存在求λ的值;若不存在,说明理由.【答案】(1)22143x y +=(2)2λ=5. 【中原名校联盟2013-2014学年高三上期第一次摸底考试理】(本小题满分12分) 已知椭圆长轴的左右端点分别为A ,B ,短轴的上端点为M ,O 为椭圆的中心,F 为椭圆的右焦点,且AF u u u r ·FB uur =1,|OF uu u r|=1.(Ⅰ)求椭圆的标准方程;(2)若直线l 交椭圆于P ,Q 两点,问:是否存在直线l ,使得点F 恰为△PQM 的垂心?若存在,求出直线l 的方程;若不存在,请说明理由.【答案】(1)2212x y +=(2)存在,方程为43y x =-6. 【河北省邯郸市2014届高三9月摸底考试数学理科】(本题满分12分)已知定点(3,0)G -,S 是圆22:(3)72C x y -+=(C 为圆心)上的动点,SG 的垂直平分线与SC 交于点E .设点E 的轨迹为M . (1),求M 的方程; (2)是否存在斜率为1的直线l ,使得直线l 与曲线M 相交于A ,B 两点,且以AB 为直径的圆恰好经过原点?若存在,求出直线l 的方程;若不存在,请说明理由.【答案】(1)221189x y +=(2)y x y x =+=-7. 直线1ax y -= 与曲线2221x y -=相交于P 、Q 两点。
圆锥曲线的综合问题 强化训练-2023届高三数学二轮专题复习(含解析)
冲刺2023年高考二轮 圆锥曲线的综合问题强化训练(原卷+答案)考点一 证明问题——等价转化,直击目标圆锥曲线中证明问题的两种常见类型圆锥曲线中的证明问题,主要有两类:一是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上,某直线经过某个点、某两条直线平行或垂直等;二是证明直线与圆锥曲线中的一些数量关系(相等或不等).例 1已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,-2),B (32,-1)两点.(1)求E 的方程;(2)设过点P (1,-2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ .证明:直线HN 过定点.对点训练已知直线y =3与曲线C :x 2+2py =0的两个公共点之间的距离为4√6. (1)求C 的方程;(2)设P 为C 的准线上一点,过P 作C 的两条切线,切点为A ,B ,直线P A ,PB 的斜率分别为k 1,k 2,且直线P A ,PB 与y 轴分别交于M ,N 两点,直线AB 的斜率为k 0.证明:k 1·k 2为定值,且k 1,k 0,k 2成等差数列.考点二 定点问题——目标等式寻定点解析几何中的定点问题一般是指与解析几何有关的直线或圆(其他曲线过定点太复杂,高中阶段一般不涉及)过定点的问题,其实质是:当动直线或动圆变化时,这些直线或圆相交于一点,即这些直线或圆绕着定点在转动,这类问题的求解一般分为以下三步:一选:选择变量,定点问题中的定点,随某一个量的变化而固定,可选择这个量为变量(有时可选择两个变量,如点的坐标、斜率、截距等,然后利用其他辅助条件消去其中之一).二求:求出定点坐标所满足的方程,即把需要证明为定点的问题表示成关于上述变量的方程.三定点:对上述方程进行必要的化简,即可得到定点坐标. 例 2 已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,AB 为过椭圆右焦点的一条弦,且AB 长度的最小值为2.(1)求椭圆M 的方程;(2)若直线l 与椭圆M 交于C ,D 两点,点P (2,0),记直线PC 的斜率为k 1,直线PD 的斜率为k 2,当1k 1+1k 2=1时,是否存在直线l 恒过一定点?若存在,请求出这个定点;若不存在,请说明理由.对点训练已知抛物线C :y 2=2px (p >0)的焦点为F ,S (t ,4)为C 上一点,直线l 交C 于M ,N 两点(与点S 不重合).(1)若l 过点F 且倾斜角为60°,|FM |=4(M 在第一象限),求C 的方程;(2)若p =2,直线SM ,SN 分别与y 轴交于A ,B 两点,且OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =8,判断直线l是否恒过定点?若是,求出该定点;若否,请说明理由.考点三 定值问题——巧妙消元寻定值定值问题一般是指在求解解析几何问题的过程中,探究某些几何量(斜率、距离、面积、比值等)与变量(斜率、点的坐标等)无关的问题,其求解步骤一般为:一选:选择变量,一般为点的坐标、直线的斜率等.二化:把要求解的定值表示成含上述变量的式子,并利用其他辅助条件来减少变量的个数,使其只含有一个变量(或者有多个变量,若是能整体约分也可以).三定值:化简式子得到定值.由题目的结论可知要证明为定值的量必与变量的值无关,故求出的式子必能化为一个常数,所以只需对上述式子进行必要的化简即可得到定值.例 3 已知双曲线C :x 2a2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,双曲线C 的右顶点A 在圆O :x 2+y 2=3上,且AF 1⃗⃗⃗⃗⃗⃗⃗ ·AF 2⃗⃗⃗⃗⃗⃗⃗ =-1.(1)求双曲线C 的方程;(2)动直线l 与双曲线C 恰有1个公共点,且与双曲线C 的两条渐近线分别交于点M 、N ,设O 为坐标原点.求证:△OMN 的面积为定值.对点训练已知F 1(-√3,0),F 2(√3,0)分别是双曲线C :x 2a 2−y 2b 2=1(a >b >0)的左、右焦点,A 为双曲线在第一象限的点,△AF 1F 2的内切圆与x 轴交于点P (1,0).(1)求双曲线C 的方程;(2)设圆O :x 2+y 2=2上任意一点Q 处的切线l ,若l 与双曲线C 左、右两支分别交于点M 、N ,问:QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ 是否为定值?若是,求出此定值;若不是,说明理由.考点四 圆锥曲线中的最值、范围问题——巧设变量,引参搭桥圆锥曲线中的最值 (1)椭圆中的最值 F 1,F 2为椭圆x 2a2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上的任意一点,B 为短轴的一个端点,O 为坐标原点,则有:①|OP |∈________;②|PF 1|∈________;③|PF 1|·|PF 2|∈________;④∠F 1PF 2≤∠F 1BF 2.(2)双曲线中的最值F 1,F 2为双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,O为坐标原点,则有:①|OP |≥________;②|PF 1|≥________. (3)抛物线中的最值点P 为抛物线y 2=2px (p >0)上的任一点,F 为焦点,则有:①|PF |≥________;②A (m ,n )为一定点,则|P A |+|PF |有最小值;③点N (a ,0)是抛物线的对称轴上一点,则|PN |min ={|a |(a ≤p ),√2pa −p 2(a >p).例 4如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P (0,1)的两点,且点Q (0,12)在线段AB 上,直线P A ,PB 分别交直线y =-12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值; (2)求|CD |的最小值.对点训练已知抛物线C :x 2=2py (p >0)的焦点为F ,且F 与圆M :x 2+(y +4)2=1上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,P A ,PB 是C 的两条切线,A ,B 是切点,求△P AB 面积的最大值.[典例] 已知圆(x +√3)2+y 2=16的圆心为M ,点P 是圆M 上的动点,点N (√3,0),点G 在线段MP 上,且满足(GN⃗⃗⃗⃗⃗ +GP ⃗⃗⃗⃗⃗ )⊥(GN ⃗⃗⃗⃗⃗ −GP ⃗⃗⃗⃗⃗ ). (1)求点G 的轨迹C 的方程;(2)过点T (4,0)作斜率不为0的直线l 与轨迹C 交于A ,B 两点,点A 关于x 轴的对称点为D ,连接BD 交x 轴于点Q ,求△ABQ 面积的最大值.(1)因为(GN ⃗⃗⃗⃗⃗⃗ +GP ⃗⃗⃗⃗⃗ )⊥(GN ⃗⃗⃗⃗⃗⃗ −GP ⃗⃗⃗⃗⃗ ), 所以(GN ⃗⃗⃗⃗⃗⃗ +GP ⃗⃗⃗⃗⃗ )·(GN ⃗⃗⃗⃗⃗⃗ −GP ⃗⃗⃗⃗⃗ )=0,即GN ⃗⃗⃗⃗⃗⃗ 2-GP ⃗⃗⃗⃗⃗ 2=0, 所以|GP |=|GN |,所以|GM |+|GN |=|GM |+|GP |=|MP |=4>2√3=|MN |, 所以点G 在以M ,N 为焦点,长轴长为4的椭圆上,设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),则2a =4,2c =2√3,即a =2,c =√3,所以b 2=a 2-c 2=1, 所以点G 的轨迹C 的方程为x 24+y 2=1. (2)依题意可设直线l :x =my +4. 由{x =my +4,x 24+y 2=1消去x ,得(m 2+4)y 2+8my +12=0.设A (x 1,y 1),B (x 2,y 2),由Δ=64m 2-4×12×(m 2+4)=16(m 2-12)>0,得m 2>12. ①且y 1+y 2=-8mm 2+4,y 1y 2=12m 2+4.②因为点A 关于x 轴的对称点为D , 所以D (x 1,-y 1), 可设Q (x 0,0),所以k BD =y 2+y 1x 2−x 1=y 2+y 1m (y 2−y 1), 所以BD 所在直线的方程为y -y 2=y 2+y 1m (y2−y 1)(x -my 2-4). 令y =0,得x 0=2my 1y 2+4(y 1+y 2)y 1+y 2. ③将②代入③, 得x 0=24m−32m−8m=1, 所以点Q 的坐标为(1,0).因为S △ABQ =|S △TBQ -S △TAQ |=12|QT ||y 2-y 1|=32√(y 1+y 2)2−4y 1y 2=6√m 2−12m 2+4,令t =m 2+4,结合①得t >16, 所以S △ABQ =6√t−16t= 6√−16t 2+1t =6√−16(1t −132)2+164.当且仅当t =32,即m =±2√7时,(S △ABQ )max =34. 所以△ABQ 面积的最大值为34.参考答案考点一[例1] 解析:(1)设椭圆E 的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ). 将点A (0,-2),B (32,-1)的坐标代入,得{4n =1,94m +n =1,解得{m =13,n =14. 所以椭圆E的方程为x 23+y 24=1. (2)证明:方法一 设M (x 1,y 1),N (x 2,y 2).由题意,知直线MN 与y 轴不垂直,设其方程为x -1=t (y +2).联立得方程组{x −1=t (y +2),x 23+y 24=1. 消去x 并整理,得(4t 2+3)y 2+(16t 2+8t )y +16t 2+16t -8=0,所以y 1+y 2=-16t 2+8t 4t 2+3,y 1y 2=16t 2+16t−84t 2+3.设T (x 0,y 1).由A ,B ,T 三点共线,得y 1+2x 0=y 1+1x 0−32,得x 0=32y 1+3.设H (x ′,y ′). 由MT ⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,得(32y 1+3-x 1,0)=(x ′-32y 1-3,y ′-y 1),所以x ′=3y 1+6-x 1,y ′=y 1, 所以直线HN 的斜率k =y 2−y ′x 2−x ′=y 2−y 1x 2+x 1−(3y 1+6)=y 2−y 1t (y 1+y 2)−3y 1+4t−4,所以直线HN 的方程为y -y 2=y 2−y 1t (y 1+y 2)−3y 1+4t−4·(x -x 2).令x =0,得y =y 2−y 1t (y 1+y 2)−3y 1+4t−4·(-x 2)+y 2=(y 1−y 2)(ty 2+2t+1)t (y 1+y 2)−3y 1+4t−4+y 2=(2t−3)y 1y 2+(2t−5)(y 1+y 2)+6y 1t (y 1+y 2)−3y 1+4t−4=(2t−3)·16t 2+16t−84t 2+3+(5−2t )·16t 2+8t4t 2+3+6y 1−t(16t 2+8t)4t 2+3−3y 1+4t−4=-2.所以直线NH 过定点(0,-2).方法二 由A (0,-2),B (32,-1)可得直线AB 的方程为y =23x -2. a .若过点P (1,-2)的直线的斜率不存在,则其直线方程为x =1.将直线方程x =1代入x 23+y 24=1,可得N (1,2√63),M (1,-2√63). 将y =-2√63代入y =23x -2,可得T (3-√6,-2√63).由MT⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,得H (5-2√6,-2√63). 此时直线HN 的方程为y =(2+2√63)(x -1)+2√63,则直线HN 过定点(0,-2). b .若过点P (1,-2)的直线的斜率存在,设此直线方程为kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立得方程组{kx −y −(k +2)=0,x 23+y 24=1. 消去y 并整理,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0. 所以{x 1+x 2=6k (2+k )3k 2+4,x 1x 2=3k (4+k )3k 2+4,则{y 1+y 2=−8(2+k )3k 2+4,y 1y 2=4(4+4k−2k 2)3k 2+4, 且x 1y 2+x 2y 1=−24k3k 2+4.①联立得方程组{y =y 1,y =23x −2,可得T (3y 12+3,y 1). 由MT⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,得H (3y 1+6-x 1,y 1). 则直线HN 的方程为y -y 2=y 1−y 23y 1+6−x 1−x2(x -x 2). 将点(0,-2)的坐标代入并整理,得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0.②将①代入②,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立.综上可得,直线HN 过定点(0,-2).对点训练解析:(1)将y =3代入x 2+2py =0,得x 2=-6p . 当p ≥0时,不合题意;当p <0时,x =±√−6p ,则2√−6p =4√6, 解得p =-4,故C 的方程为x 2=8y .(2)证明:由(1)可知C 的准线方程为y =-2, 不妨设P (m ,-2),A (x 1,y 1),B (x 2,y 2),设过点P 且与C 相切的直线l 的斜率为k ,则l :y =k (x -m )-2,且k ≠0,联立{y =k (x −m )−2,x 2=8y ,得x 2-8kx +8(km +2)=0,则Δ=64k 2-32(km +2)=0,即k 2-12mk -1=0,由题意知,直线P A ,PB 的斜率k 1,k 2为方程k 2-12mk -1=0的两根, 则k 1+k 2=m2,k 1k 2=-1,故k 1·k 2为定值. 又x 2-8kx +8(km +2)=(x -4k )2=0, 则x 1=4k 1,同理可得x 2=4k 2,则k 0=y 1−y 2x 1−x 2=18x −1218x 22x 1−x 2=x 1+x 28,因此k 0=4(k 1+k 2)8=k 1+k 22,故k 1,k 0,k 2成等差数列.考点二[例2]解析:(1)因为x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,过椭圆右焦点的弦长的最小值为2b 2a=2,所以a =2,c =√2,b =√2,所以椭圆M 的方程为x 24+y 22=1. (2)设直线l 的方程为m (x -2)+ny =1,C (x 1,y 1),D (x 2,y 2),由椭圆的方程x 2+2y 2=4,得(x -2)2+2y 2=-4(x -2).联立直线l 的方程与椭圆方程,得(x -2)2+2y 2=-4(x -2)[m (x -2)+ny ], 即(1+4m )(x -2)2+4n (x -2)y +2y 2=0,(1+4m )(x−2y )2+4n x−2y+2=0, 所以1k 1+1k 2=x 1−2y 1+x 2−2y 2=-4n 1+4m=1,化简得m +n =-14,代入直线l 的方程得m (x -2)+(−14−m)y =1,即m (x -y -2)-14y =1,解得x =-2,y =-4,即直线l恒过定点(-2,-4).对点训练解析:(1)抛物线C :y 2=2px (p >0)的焦点为F (p2,0),因为l 过点F 且倾斜角为60°,所以l :y =√3(x -p2), 联立y 2=2px (p >0),可得12x 2-20px +3p 2=0,解得x =32p 或x =p6,又M 在第一象限,所以x M =32p ,因为|FM |=4,所以32p +p2=4,解得p =2,所以抛物线C 的方程为y 2=4x ;(2)由已知可得抛物线C 的方程为y 2=4x ,点S (4,4), 设直线l 的方程为x =my +n ,点M (y 12 4,y1),N (y 22 4,y2),将直线l 的方程与抛物线C :y 2=4x 联立得y 2-4my -4n =0, 所以Δ=16m 2+16n >0,y 1+y 2=4m ,y 1y 2=-4n (*),直线SM 的方程为y -4=y 1−4y 12 4-4(x -4),令x =0求得点A 的纵坐标为4y 1y 1+4,同理求得点B 的纵坐标为4y 2y2+4, 由OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =16y 1y 2y 1y 2+4(y 1+y 2)+16=8,化简得y 1y 2=4(y 1+y 2)+16,将上面(*)式代入得-4n =16m +16,即n =-4m -4, 所以直线l 的方程为x =my -4m -4,即x +4=m (y -4), 所以直线l 过定点(-4,4).考点三[例3] 解析:(1)不妨设F 1(-c ,0),F 2(c ,0), 因为A (a ,0), 从而AF 1⃗⃗⃗⃗⃗⃗⃗ =(−c −a ,0),AF 2⃗⃗⃗⃗⃗⃗⃗ =(c -a ,0) ,故有 AF 1⃗⃗⃗⃗⃗⃗⃗ ·AF 2⃗⃗⃗⃗⃗⃗⃗ =a 2-c 2=-1, 又因为a 2+b 2=c 2, 所以 b =1,又因为A (a ,0) 在圆 O :x 2+y 2=3 上, 所以 a =√3,所以双曲线C的标准方程为x 23-y 2=1.(2)证明:设直线l 与x 轴交于D 点,双曲线的渐近线方程为y =±√33x ,由于动直线l 与双曲线C 恰有1个公共点, 且与双曲线C 的两条渐近线分别交于点M 、N ,当动直线l 的斜率不存在时, l :x =±√3,|OD |=√3,|MN |=2,S △OMN =12×√3×2=√3,当动直线l 的斜率存在时, 且斜率k ≠±√33, 不妨设直线 l :y =kx +m,故由{y =kx +m x 23−y 2=1⇒(1-3k 2)x 2-6mkx -3m 2-3=0, 依题意,1-3k 2≠0且m ≠0,Δ=(-6mk )2-4(1-3k 2)(-3m 2-3)=0, 化简得 3k 2=m 2+1,故由{y =kx +my =√33x ⇒x M =√33−k , 同理可求,x N =-√33+k, 所以|MN |=√1+k 2|xM−x N |=2√3|m|√k 2+1|1−3k 2|,又因为原点O 到直线l :kx -y +m =0的距离d =√k 2+1,所以S △OMN =12|MN |d =√3m 2|1−3k 2|,又由3k 2=m 2+1,所以S △OMN =√3|m|√k 2+1|1−3k 2|=√3,故△OMN 的面积为定值,定值为√3.对点训练解析:(1)如图,设AF 1,AF 2与△AF 1F 2的内切圆分别交于G ,H 两点, 则2a =|AF 1|−|AF 2|=|F 1P |−|PF 2| =(1+√3)-(√3-1)=2,所以a =1,则b 2=c 2-a 2=2, 则双曲线C 的方程为x 2-y 22=1.(2)由题意得,切线l 的斜率存在.设切线l 的方程为y =kx +m ,M (x 1,y 1),N (x 2,y 2). 因为l 与圆O :x 2+y 2=2相切,所以√1+k 2=√2,即m 2=2k 2+2.联立{y =kx +m ,x 2−y 22=1,消去y 并整理得(2-k 2)x 2-2kmx -m 2-2=0, 所以x 1+x 2=2km2−k 2,x 1x 2=−m 2−22−k 2.又QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ =(QO ⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ )·(QO ⃗⃗⃗⃗⃗ +ON ⃗⃗⃗⃗⃗ ) =|QO ⃗⃗⃗⃗⃗ |2-OQ ⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗ −OQ ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ +ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =|QO ⃗⃗⃗⃗⃗ |2-|OQ ⃗⃗⃗⃗⃗ |·|ON ⃗⃗⃗⃗⃗ |cos ∠QON -|OQ ⃗⃗⃗⃗⃗ |·|OM ⃗⃗⃗⃗⃗⃗ |cos ∠QOM +ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =|QO ⃗⃗⃗⃗⃗ |2-|OQ ⃗⃗⃗⃗⃗ |·|OQ ⃗⃗⃗⃗⃗ |−|OQ ⃗⃗⃗⃗⃗ |·|OQ ⃗⃗⃗⃗⃗ |+ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =|QO ⃗⃗⃗⃗⃗ |2-|QO ⃗⃗⃗⃗⃗ |2-|QO ⃗⃗⃗⃗⃗ |2+ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ −|OQ ⃗⃗⃗⃗⃗ |2. 又OM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2 =x 1x 2+(kx 1+m )(kx 2+m )=(k 2+1)x 1x 2+km (x 1+x 2)+m 2 =(k 2+1)(−m 2−2)2−k 2+2k 2m 22−k2+m 2=m 2−2k 2−22−k 2,将m 2=2k 2+2代入上式得OM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗ =0.所以QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ =0-|OQ ⃗⃗⃗⃗⃗ |2=-2. 综上所述,QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ 为定值,且QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ =-2.考点四(1)[b ,a ] [a -c ,a +c ] [b 2,a 2] (2)a c -a (3)p2[例4] 解析:(1)设M (2√3cos θ,sin θ)是椭圆上一点,P (0,1),则|PM |2=12cos 2θ+(1-sin θ)2=13-11sin 2θ-2sin θ=14411-11(sin θ+111)2≤14411.故|PM |的最大值为12√1111.(2)由题意,知直线AB 的斜率存在,故设直线AB 的方程为y =kx +12.将直线方程与椭圆方程联立,得{y =kx +12,x 212+y 2=1.消去y 并整理,得(k 2+112)x 2+kx -34=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-kk 2+112,x 1x 2=-34(k 2+112).直线P A :y =y 1−1x 1x +1与直线y =-12x +3交于点C ,则x C =4x 1x1+2y 1−2=4x 1(2k+1)x 1−1. 同理可得,x D =4x 2x 2+2y 2−2=4x 2(2k+1)x 2−1,则|CD |= √1+14|x C -x D | =√52|4x1(2k+1)x1−1−4x2(2k+1)x2−1|=2√5|x 1−x 2[(2k+1)x1−1][(2k+1)x 2−1]|=2√5|x 1−x 2(2k+1)2x 1x 2−(2k+1)(x 1+x 2)+1|=3√52·√16k 2+1|3k+1|=6√55·√16k 2+1· √916+1|3k+1| ≥6√55,当且仅当k =316时等号成立.故|CD |的最小值为6√55.对点训练解析:(1)由题意知M (0,-4),F (0,p2),圆M 的半径r =1,所以|MF |-r =4,即p2+4-1=4,解得p =2.(2)由(1)知,抛物线方程为x 2=4y , 由题意可知直线AB 的斜率存在,设A (x 1,x 12 4),B (x2,x 22 4),直线AB 的方程为y =kx +b ,联立得{y =kx +bx 2=4y,消去y 得x 2-4kx -4b =0, 则Δ=16k 2+16b >0(※),x 1+x 2=4k ,x 1x 2=-4b ,所以|AB |=√1+k 2|x 1-x 2|=√1+k 2·√(x 1+x 2)2−4x 1x 2=4√1+k 2·√k 2+b . 因为x 2=4y ,即y =x 24,所以y ′=x 2,则抛物线在点A 处的切线斜率为x12,在点A 处的切线方程为y −x 12 4=x 12(x -x 1),即y =x 12x −x 12 4,同理得抛物线在点B 处的切线方程为y =x 22x −x 22 4,联立得{y =x 12x −x 124y =x22x -x 22 4,则{x =x 1+x 22=2ky =x 1x 24=−b , 即P (2k ,-b ).因为点P 在圆M 上,所以4k 2+(4-b )2=1 ①,且-1≤2k ≤1,-5≤-b ≤-3,即-12≤k ≤12,3≤b ≤5,满足(※). 设点P 到直线AB 的距离为d ,则d =2√1+k 2,所以S △P AB =12|AB |·d =4√(k 2+b )3.由①得,k 2=1−(4−b )24=−b 2+8b−154, 令t =k 2+b ,则t =−b 2+12b−154,且3≤b ≤5. 因为t =−b 2+12b−154在[3,5]上单调递增,所以当b =5时,t 取得最大值,t max =5,此时k =0,所以△P AB 面积的最大值为20√5.。
完整版)圆锥曲线综合练习题(有答案)
完整版)圆锥曲线综合练习题(有答案)圆锥曲线综合练1.已知椭圆 $x^2/a^2+y^2/b^2=1$ 的长轴在 $y$ 轴上,焦距为 4,则 $m$ 等于()A。
4B。
5C。
7D。
82.直线 $x-2y+2=0$ 经过椭圆$x^2/a^2+y^2/b^2=1(a>b>0)$ 的一个焦点和一个顶点,则该椭圆的离心率为frac{\sqrt{5}}{2}3.设双曲线 $x^2/a^2-y^2/b^2=1(a>0)$ 的渐近线方程为$3x\pm 2y=0$,则 $a$ 的值为24.若 $m$ 是 2 和 8 的等比中项,则圆锥曲线$x^2/a^2+y^2/b^2=1$ 的离心率是frac{\sqrt{5}}{2}5.已知双曲线 $x^2/a^2-y^2/b^2=1(a>b>0)$,$N$ 两点,$O$ 为坐标原点,过其右焦点且垂直于实轴的直线与双曲线交于 $M$ 点。
若 $OM\perp ON$,则双曲线的离心率为frac{\sqrt{5}+1}{2}6.已知点$F_1,F_2$ 是椭圆$x^2/2+y^2/2=1$ 的两个焦点,点 $P$ 是该椭圆上的一个动点,则 $|PF_1+PF_2|$ 的最小值是sqrt{2}7.双曲线 $x^2/a^2-y^2/b^2=1$ 上的点到一个焦点的距离为 12,则到另一个焦点的距离为2\sqrt{5}8.$P$ 为双曲线 $x^2/a^2-y^2/b^2=1$ 的右支上一点,$M$,则 $|PM|-|PN|$ 分别是圆 $(x+5)^2+y^2=4$ 和 $(x-5)^2+y^2=1$ 上的点,的最大值为99.已知点 $P(8,a)$ 在抛物线 $y^2=4px$ 上,且 $P$ 到焦点的距离为 10,则焦点到准线的距离为210.在正三角形 $ABC$ 中,$D\in AB$,$E\in AC$,$\overrightarrow{DE}=\overrightarrow{BC}$,则以 $B$,$C$ 为焦点,且过 $D$,$E$ 的双曲线离心率为frac{3+\sqrt{5}}{2}11.两个正数 $a$,$b$ 的等差中项是 $5$,一个等比中项是 $25$,且 $a>b$,则抛物线 $y^2=-x$ 的焦点坐标是left(-\frac{5\sqrt{21}}{21},0\right)12.已知 $A_1$,$A_2$ 分别为椭圆$x^2/a^2+y^2/b^2=1(a>b>0)$ 的左右顶点,椭圆 $C$ 上异于$A_1$,$A_2$ 的点 $P$ 恒满足 $k\cdot PA_1\cdot k\cdotPA_2=-1$,则椭圆 $C$ 的离心率为frac{3}{5}13.已知椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 的左、右焦点分别为 $F_1,F_2$,点 $A$ 在第一象限内且在椭圆上,点 $B$ 也在椭圆上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:圆锥曲线的综合问题 【要点回顾】1.直线与圆锥曲线的位置关系判定直线与圆锥曲线的位置关系时,通常是将直线方程与曲线方程联立,消去变量y (或x )得关于变量x (或y )的方程:ax 2+bx +c =0(或ay 2+by +c =0).若a ≠0,可考虑一元二次方程的判别式Δ,有:Δ>0⇔直线与圆锥曲线相交; Δ=0⇔直线与圆锥曲线相切; Δ<0⇔直线与圆锥曲线相离.若a =0且b ≠0,则直线与圆锥曲线相交,且有一个交点. 2.圆锥曲线的弦长问题设直线l 与圆锥曲线C 相交于A 、B 两点,A (x 1,y 1),B (x 2,y 2), 则弦长|AB |=1+k 2|x 1-x 2|或 1+1k2|y 1-y 2|.【热身练习】1.(教材习题改编)与椭圆x 212+y 216=1焦点相同,离心率互为倒数的双曲线方程是( )A .y 2-x 23=1 B.y 23-x 2=1 C.34x 2-38y 2=1D.34y 2-38x 2=1 解析:选A 设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0),则⎩⎪⎨⎪⎧a 2+b 2=c 2,ca =2,c =2,得a =1,b = 3.故双曲线方程为y 2-x 23=1.2.(教材习题改编)直线y =kx -k +1与椭圆x 29+y 24=1的位置关系是( )A .相交B .相切C .相离D .不确定解析:选A 由于直线y =kx -k +1=k (x -1)+1过定点(1,1),而(1,1)在椭圆内,故直线与椭圆必相交.3.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( ) A .1条B .2条C .3条D .4条解析:选C 结合图形分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0).4.过椭圆x 2a 2+y 2b2=1(a >b >0)的左顶点A 且斜率为1的直线与椭圆的另一个交点为M ,与y 轴的交点为B ,若|AM |=|MB |,则该椭圆的离心率为________.解析:由题意知A 点的坐标为(-a,0),l 的方程为y =x +a ,所以B 点的坐标为(0,a ),故M 点的坐标为⎝ ⎛⎭⎪⎫-a 2,a 2,代入椭圆方程得a 2=3b 2,则c 2=2b 2,则c 2a 2=23,故e =63.5.已知双曲线方程是x 2-y 22=1,过定点P (2,1)作直线交双曲线于P 1,P 2两点,并使P (2,1)为P 1P 2的中点,则此直线方程是________________.解析:设点P 1(x 1,y 1),P 2(x 2,y 2),则由x 21-y 212=1,x 22-y 222=1,得k =y 2-y 1x 2-x 1=2x 2+x 1y 2+y 1=2×42=4,从而所求方程为4x -y -7=0.将此直线方程与双曲线方程联立得14x 2-56x +51=0,Δ>0,故此直线满足条件.答案:4x -y -7=0 【方法指导】1.直线与圆锥曲线的位置关系,主要涉及弦长、弦中点、对称、参数的取值范围、求曲线方程等问题.解题中要充分重视根与系数的关系和判别式的应用.2.当直线与圆锥曲线相交时:涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目中的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”. 【直线与圆锥曲线的位置关系】[例1] (2012·北京高考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为22.直线y=k (x -1)与椭圆C 交于不同的两点M ,N .(1)求椭圆C 的方程; (2)当△AMN 的面积为103时,求k 的值. [自主解答] (1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,解得b =2,所以椭圆C 的方程为x 24+y 22=1.(2)由⎩⎪⎨⎪⎧y =k x -1,x 24+y22=1,得(1+2k 2)x 2-4k 2x +2k 2-4=0.设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1=k (x 1-1),y 2=k (x 2-1),x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2,所以|MN |=x 2-x 12+y 2-y 12=1+k2[x 1+x 22-4x 1x 2]=21+k 24+6k21+2k2.又因为点A (2,0)到直线y =k (x -1)的距离d =|k |1+k2,所以△AMN 的面积为S =12|MN |· d =|k |4+6k 21+2k 2.由|k |4+6k 21+2k 2=103,解得k =±1. 【由题悟法】研究直线与圆锥曲线的位置关系时,一般转化为研究其直线方程与圆锥方程组成的方程组解的个数,但对于选择、填空题也可以利用几何条件,用数形结合的方法求解.【试一试】1.(2012·信阳模拟)设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A.⎣⎢⎡⎦⎥⎤-12,12 B .[-2,2] C .[-1,1] D .[-4,4]解析:选C 易知抛物线y 2=8x 的准线x =-2与x 轴的交点为Q (-2,0),于是,可设过点Q (-2,0)的直线l 的方程为y =k (x +2)(由题可知k 是存在的),联立⎩⎪⎨⎪⎧y 2=8x ,y =k x +2⇒k 2x 2+(4k 2-8)x +4k 2=0.当k =0时,易知符合题意;当k ≠0时,其判别式为Δ=(4k 2-8)2-16k 4=-64k 2+64≥0, 可解得-1≤k ≤1. 【最值与范围问题】[例2] (2012·浙江高考)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.不过原点O 的直线l 与C 相交于A ,B 两点,且线段AB 被直线OP 平分.(1)求椭圆C 的方程;(2)求△ABP 面积取最大值时直线l 的方程.[自主解答] (1)设椭圆左焦点为F (-c,0),则由题意得 ⎩⎪⎨⎪⎧2+c 2+1=10,c a =12,得⎩⎪⎨⎪⎧c =1,a =2.所以椭圆方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M .当直线AB 与x 轴垂直时,直线AB 的方程为x =0,与不过原点的条件不符,舍去.故可设直线AB 的方程为y =kx +m (m ≠0),由⎩⎪⎨⎪⎧y =kx +m ,3x 2+4y 2=12消去y ,整理得(3+4k 2)x 2+8kmx +4m 2-12=0, ① 则Δ=64k 2m 2-4(3+4k 2)(4m 2-12)>0,⎩⎪⎨⎪⎧x 1+x 2=-8km3+4k2,x 1x 2=4m 2-123+4k 2.所以线段AB 的中点为M ⎝ ⎛⎭⎪⎫-4km 3+4k 2,3m 3+4k 2.因为M 在直线OP :y =12x 上,所以3m 3+4k 2=-2km3+4k 2.得m =0(舍去)或k =-32.此时方程①为3x 2-3mx +m 2-3=0,则Δ=3(12-m 2)>0,⎩⎪⎨⎪⎧x 1+x 2=m ,x 1x 2=m 2-33.所以|AB |=1+k 2·|x 1-x 2|=396·12-m 2, 设点P 到直线AB 的距离为d ,则d =|8-2m |32+22=2|m -4|13. 设△ABP 的面积为S ,则S =12|AB |·d =36·m -4212-m2.其中m ∈(-23,0)∪(0,23).令u (m )=(12-m 2)(m -4)2,m ∈[-23,2 3 ],u ′(m )=-4(m -4)(m 2-2m -6)=-4(m -4)(m -1-7)(m -1+7).所以当且仅当m =1-7时,u (m )取到最大值. 故当且仅当m =1-7时,S 取到最大值. 综上,所求直线l 的方程为3x +2y +27-2=0. 【由题悟法】1.解决圆锥曲线的最值与范围问题常见的解法有两种:几何法和代数法.(1)若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决,这就是几何法; (2)若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,这就是代数法.2.在利用代数法解决最值与范围问题时常从以下五个方面考虑: (1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系; (3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;(4)利用基本不等式求出参数的取值范围; (5)利用函数的值域的求法,确定参数的取值范围. 【试一试】2.(2012·东莞模拟)已知抛物线y 2=2px (p ≠0)上存在关于直线x +y =1对称的相异两点,则实数p 的取值范围为( )A.⎝ ⎛⎭⎪⎫-23,0B.⎝ ⎛⎭⎪⎫0,23C.⎝ ⎛⎭⎪⎫-32,0D.⎝ ⎛⎭⎪⎫0,32 解析:选B 设抛物线上关于直线x +y =1对称的两点是M (x 1,y 1)、N (x 2,y 2),设直线MN 的方程为y =x +b .将y =x +b 代入抛物线方程,得x 2+(2b -2p )x +b 2=0,则x 1+x 2=2p -2b ,y 1+y 2=(x 1+x 2)+2b =2p ,则MN 的中点P 的坐标为(p -b ,p ).因为点P 在直线x +y =1上,所以2p -b =1,即b =2p -1.又Δ=(2b -2p )2-4b 2=4p 2-8bp >0,将b =2p -1代入得4p 2-8p (2p -1)>0,即3p 2-2p <0,解得0<p <23. 【定点定值问题】[例3] (2012·辽宁高考)如图,椭圆C 0:x 2a 2+y 2b2=1(a >b >0,a ,b 为常数),动圆C 1:x 2+y 2=t 21,b <t 1<a .点A 1,A 2分别为C 0的左,右顶点,C 1与C 0相交于A ,B ,C ,D 四点.(1)求直线AA 1与直线A 2B 交点M 的轨迹方程;(2)设动圆C 2:x 2+y 2=t 22与C 0相交于A ′,B ′,C ′,D ′四点,其中b <t 2<a ,t 1≠t 2.若矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,证明:t 21+t 22为定值.[自主解答] (1)设 A (x 1,y 1),B (x 1,-y 1),又知A 1(-a,0),A 2(a,0),则直线A 1A 的方程为y =y 1x 1+a(x +a ),①直线A 2B 的方程为y =-y 1x 1-a(x -a ).② 由①②得y 2=-y 21x 21-a2(x 2-a 2).③由点A (x 1,y 1)在椭圆C 0上,故x 21a 2+y 21b2=1.从而y 21=b 2⎝ ⎛⎭⎪⎫1-x 21a 2,代入③得x 2a 2-y 2b 2=1(x <-a ,y <0). (2)证明:设A ′(x 2,y 2),由矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,得4|x 1||y 1|=4|x 2|·|y 2|, 故x 21y 21=x 22y 22.因为点A ,A ′均在椭圆上,所以b 2x 21⎝ ⎛⎭⎪⎫1-x 21a 2=b 2x 22⎝ ⎛⎭⎪⎫1-x 22a 2.由t 1≠t 2,知x 1≠x 2,所以x 21+x 22=a 2,从而y 21+y 22=b 2, 因此t 21+t 22=a 2+b 2为定值.【由题悟法】1.求定值问题常见的方法有两种(1)从特殊入手,求出表达式,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 2.定点的探索与证明问题(1)探索直线过定点时,可设出直线方程为y =kx +b ,然后利用条件建立b 、k 等量关系进行消元,借助于直线系方程找出定点;(2)从特殊情况入手,先探求定点,再证明一般情况. 【试一试】3.(2012·山东省实验中学模拟)已知抛物线y 2=2px (p ≠0)及定点A (a ,b ),B (-a,0),ab ≠0,b 2≠2pa ,M 是抛物线上的点.设直线AM ,BM 与抛物线的另一个交点分别为M 1,M 2,当M 变动时,直线M 1M 2恒过一个定点,此定点坐标为________.解析:设M ⎝ ⎛⎭⎪⎫y 202p ,y 0,M 1⎝ ⎛⎭⎪⎫y 212p ,y 1,M 2⎝ ⎛⎭⎪⎫y 222p ,y 2,由点A ,M ,M 1共线可知y 0-b y 202p-a=y 1-y 0y 212p -y 202p,得y 1=by 0-2pa y 0-b ,同理由点B ,M ,M 2共线得y 2=2pa y 0.设(x ,y )是直线M 1M 2上的点,则y 2-y 1y 222p -y 212p =y 2-y y 222p-x ,即y 1y 2=y (y 1+y 2)-2px ,又y 1=by 0-2pa y 0-b ,y 2=2pay 0, 则(2px -by )y 02+2pb (a -x )y 0+2pa (by -2pa )=0. 当x =a ,y =2pa b时上式恒成立,即定点为⎝ ⎛⎭⎪⎫a ,2pa b .答案:⎝⎛⎭⎪⎫a ,2pa b。