合金元素对焊接性能的影响

合集下载

合金元素对钢的影响

合金元素对钢的影响

合金元素对钢的影响
合金元素对钢的影响主要体现在以下几个方面:
1. 提升强度和硬度:合金元素如锰、硅、铬等,能有效增加钢的强度和硬度,使其更具耐磨性和耐久性。

这些元素在钢中以固溶体的形式存在,能提高钢的屈服点和抗拉强度。

2. 改善韧性:某些合金元素如钒、钛等,能细化钢的组织结构,从而提升其韧性。

它们在钢中形成碳化物,这些碳化物能有效地阻止裂纹扩展,从而增加钢的断裂抗力。

3. 改善工艺性能:合金元素可以改变钢的加工性能,例如改善铸造性能、焊接性能和切削性能等。

例如,磷可以提高钢的流动性,但过高的磷含量会导致钢的冷脆性增加。

4. 抗腐蚀性:合金元素如铬、镍等可以增加钢的抗腐蚀性。

它们在钢表面形成一层致密的氧化膜,能有效阻止进一步的氧化腐蚀。

5. 热处理性能:合金元素可以改变钢在热处理过程中的反应速度和效果。

例如,硅、锰等元素可以加速奥氏体化和冷却速度,而钛、钒等元素则可以减缓奥氏体化和冷却速度。

6. 改善磁性:一些合金元素如钴、铁等可以改变钢的磁性。

这些元素在钢中能影响铁磁畴的取向,从而改变其磁性能。

7. 降低导电性:合金元素如铜、镍等可以增加钢的导电性。

它们在钢中形成电子散射中心,增加电子的散射几率,降低电导率。

综上所述,合金元素对钢的影响是多方面的,可以根据实际需求选择添加合适的合金元素来优化钢的性能。

但需要注意的是,添加合金元素时需控制适当的比例,否则可能会产生反效果。

焊缝金属的合金化及过渡系数

焊缝金属的合金化及过渡系数

焊接材料(焊条、焊丝、焊剂)的成分对焊缝金属的化学成分、组织与性能有重要的影响。

为了使焊缝金属具有所要求的成分与性能,必须保证焊接材料中有益的合金元素含量和严格控制有害杂质的含量。

1 焊缝金属的合金化(1)焊缝金属的合金化就是把所需的合金元素通过焊接材料过渡到焊缝金属(或堆焊金属)中去。

焊接中合金化的目的是补偿焊接过程中由于蒸发、氧化等原因造成的合金元素的损失,消除焊接缺陷(裂纹、气孔等)和改善焊缝金属的组织和力学性能,或者是获得具有特殊性能的堆焊金属。

对金属焊接性影响较大的合金元素主要有C、Mn、Si、Cr、Ni、Mo、Ti、V、Nb、Cu、B等;低合金钢焊接中提高热影响区淬硬倾向的元素有C、Mn、Cr、Mo、V、W、Si等;降低淬硬倾向的元素有Ti、Nb、Ta等。

还应特别注意一些微量元素的作用,如B、N、RE等。

焊接中常用的合金化方式有以下几种。

①应用合金焊丝或带极把所需要的合金元素加入焊丝、带极或板极内,配合碱性药皮或低氧、无氧焊剂进行焊接或堆焊,把合金元素过渡到焊缝或堆焊层中去。

这种合金化方式的优点是可靠,焊缝成分均匀、稳定,合金损失少;缺点是制造工艺复杂,成本高。

对于脆性材料,如硬质合金不能轧制、拔丝,故不能采用这种方式。

②应用合金药皮或非熔炼焊剂把所需要的合金元素以铁合金或纯金属的形式加入药皮或非熔炼焊剂中,配合普通焊丝使用。

这种合金化方式的优点是简单方便,制造容易,成本低;缺点是由于氧化损失较大,并有一部分合金元素残留在渣中,故合金利用率较低,合金成分不够稳定、均匀。

③应用药芯焊丝或药芯焊条药芯焊丝的截面形状是各式各样的,最简单的是具有圆形断面的,外皮可用低碳钢其他合金钢卷制而成,里面填满需要的铁合金及铁粉等物质。

用这种药芯焊丝可进行埋弧焊、气体保护焊和自保护焊,也可以在药芯焊丝表面涂上碱性药皮,制成药芯焊条。

这种合金过渡方式的优点是药芯中合金成分的配比可以任意调整,因此可行到任意成分的堆焊金属,合金的损失较少;缺点是不易制造,成本较高。

合金钢中各元素对其性能的影响

合金钢中各元素对其性能的影响

合金钢中各元素对其性能的影响1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。

碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。

2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。

如果钢中含硅量超过0.50-0.60%,硅就算合金元素。

硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。

在调质结构钢中加入 1.0-1.2%的硅,强度可提高15-20%。

硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。

含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。

硅量增加,会降低钢的焊接性能。

3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。

在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。

含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。

锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。

4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。

因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。

5、硫(S):硫在通常情况下也是有害元素。

使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。

硫对焊接性能也不利,降低耐腐蚀性。

所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。

在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。

6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。

耐蚀合金钢中添加微量元素对其焊接性能的影响研究

耐蚀合金钢中添加微量元素对其焊接性能的影响研究

耐蚀合金钢中添加微量元素对其焊接性能的影响研究耐蚀合金钢是一种具有优异耐腐蚀性能的金属材料,在各个领域被广泛应用。

然而,焊接是将多个部件连接在一起的常见工艺,在合金钢的焊接中可能会面临一些挑战和问题。

因此,研究在耐蚀合金钢中添加微量元素对其焊接性能的影响,对于进一步提高合金钢的焊接质量具有重要意义。

在耐蚀合金钢的焊接中,添加不同微量元素可能会对焊接性能产生不同的影响。

首先,添加微量元素可以调节焊接过程中的熔池流动性。

熔池流动性的改善可以降低焊接缺陷的产生率,提高焊接强度和质量。

例如,添加微量的铌元素能够有效改善焊接熔池的流动性,减少焊接缺陷的发生。

这是因为铌元素能够形成高熔点物质,增加熔池的黏性,使其更容易控制焊接过程,提高焊缝形成的完整性和一致性。

其次,添加微量元素还可以改变焊接材料的宏观力学性能。

耐蚀合金钢的力学性能对其在实际工程中的应用至关重要。

通过添加适量的微量元素,可以调节焊接材料的抗拉强度、硬度和韧性等力学性能。

例如,添加微量的钼元素可以显著提高焊接材料的抗拉强度和硬度,同时保持较好的韧性。

这是由于钼元素能够形成固溶体和强化相,提高焊接材料晶界的强度和边界对位错运动的阻碍作用。

另外,添加微量元素还可以调节焊接材料的耐腐蚀性能。

耐蚀合金钢的主要特点之一是其良好的耐腐蚀性能,因此,在焊接过程中需要保持焊接区域的耐腐蚀性能。

通过添加特定的微量元素,可以提高焊接材料的抗腐蚀性能,延长其在恶劣环境下的使用寿命。

例如,添加微量的铬元素能够形成介稳态晶界,提高焊接材料的晶界耐腐蚀性能,减少焊接接头处的腐蚀倾向。

在实际的焊接过程中,对于耐蚀合金钢中添加微量元素对其焊接性能的影响的研究需要综合考虑多个因素。

首先是添加元素的类型和含量,不同的元素可能产生不同的效果,因此需要选择合适的添加元素。

其次是焊接参数的调节,焊接过程中的温度、焊接速度等参数也会对焊接性能产生影响,需要进行合理调节。

此外,还需注意研究焊接材料的微观结构和相变规律等因素,以全面分析添加微量元素对焊接性能的影响。

各元素对焊接的影响

各元素对焊接的影响

1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。

碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。

2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。

如果钢中含硅量超过0.50-0.60%,硅就算合金元素。

硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。

在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。

硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。

含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。

硅量增加,会降低钢的焊接性能。

3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。

在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。

含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。

锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。

4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。

因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。

5、硫(S):硫在通常情况下也是有害元素。

使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。

硫对焊接性能也不利,降低耐腐蚀性。

所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。

在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。

6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。

铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。

各种元素对钢材性能的影响

各种元素对钢材性能的影响

1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。

碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。

2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。

如果钢中含硅量超过0.50-0.60%,硅就算合金元素。

硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。

在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。

硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。

含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。

硅量增加,会降低钢的焊接性能。

3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。

在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。

含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。

锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。

4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。

因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。

5、硫(S):硫在通常情况下也是有害元素。

使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。

硫对焊接性能也不利,降低耐腐蚀性。

所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。

在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。

6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。

铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。

各种元素对钢材性能的影响

各种元素对钢材性能的影响

1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。

碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。

2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。

如果钢中含硅量超过 0.50-0.60%,硅就算合金元素。

硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。

在调质结构钢中加入 1.0-1.2%的硅,强度可提高15-20%。

硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。

含硅1- 4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。

硅量增加,会降低钢的焊接性能。

3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30 — 0.50%。

在碳素钢中加入0.70%以上时就算锰钢”较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。

含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。

锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。

4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。

因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。

5、硫(S):硫在通常情况下也是有害元素。

使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。

硫对焊接性能也不利,降低耐腐蚀性。

所以通常要求硫含量小于0.055%,优质钢要求小于 0.040%。

在钢中加入 0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。

6、铬(Cr ):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。

铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。

各种合金元素对钢性能的影响

各种合金元素对钢性能的影响

三、各种合金元素对钢性能的影响目前在合金钢中常用的合金元素有:铬(Cr),锰(Mn),镍(Ni),硅(Si),硼(B),钨(W),钼(Mo),钒(V),钛(Ti)和稀土元素(Re)等。

五大元素:硅、锰、碳、磷、硫。

五大杂质元素:氧、氮、磷、硫、氢。

1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。

碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。

2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。

如果钢中含硅量超过0.50-0.60%,硅就算合金元素。

硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。

在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。

硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。

含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。

硅量增加,会降低钢的焊接性能。

硅可提高强度、高温疲劳强度、耐热性及耐H2S等介质的腐蚀性。

硅含量增高会降低钢的塑性和冲击韧性。

3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。

在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。

含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。

锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。

锰可提高钢的强度,增加锰含量对提高低温冲击韧性有好处。

4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。

因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。

铝合金中合金元素对焊接的影响

铝合金中合金元素对焊接的影响

铝合金中合金元素对焊接的影响铝合金是一种常用的结构材料,由于其性能优越、重量轻、耐腐蚀、易于加工等优点,被广泛应用于航空、汽车、船舶、建筑等领域。

然而,铝合金的焊接性能却受到合金元素的影响。

下面将对合金元素对铝合金焊接性能的影响进行详细分析。

首先,铝合金中常见的合金元素主要有镁、硅、铜、锰等。

这些元素与铝的化学性质不同,会改变铝合金的物理、化学和力学性质,从而影响其焊接性能。

比如,镁对铝的强化作用非常明显,但同时也会降低铝的塑性和可焊性;硅对铝合金的强度和硬度影响较大,但容易产生裂纹和疏松等缺陷;铜和锰能够提高铝合金的强度和塑性,但过高的铜含量会导致焊缝产生气孔和热裂纹。

其次,合金元素的含量和分布也会影响铝合金的焊接性能。

一般来说,过高或过低的含量都会影响焊接质量。

当镁的含量超过5%时,会导致铝合金的可焊性急剧下降,易出现严重的热裂纹和气孔缺陷;硅的含量超过7%时,容易产生疏松和裂纹,影响焊后强度;在适当的铜含量范围内,可以提高铝合金的强度和塑性,但过高的铜含量会导致焊缝产生气孔和热裂纹。

此外,合金元素的分布也非常重要,不同的分布方式会影响焊缝的强度和塑性。

最后,铝合金中的合金元素还会对焊接工艺参数产生影响。

合金元素的含量和分布不同,焊接过程中熔池的温度、流动性、收缩应力等参数也会不同,这就需要根据具体的合金元素特性来选择合适的焊接工艺参数。

比如,在焊接镁含量较高的铝合金时,需要使用低热输入焊接工艺,避免过热引起热裂纹和气孔;在焊接铜含量较高的铝合金时,则需要注意预热和热输入控制,避免产生热裂纹和气孔。

综上所述,合金元素是影响铝合金焊接性能的关键因素之一。

在铝合金焊接过程中,需要考虑合金元素的种类、含量和分布等因素,选择合适的焊接方法和工艺参数,才能保证焊接质量和借助合金元素实现铝合金性能的优化。

焊材中各类合金元素含量的作用与用途

焊材中各类合金元素含量的作用与用途

焊材中各类合金元素含量的作用与用途The various alloying elements present in welding materials play significant roles in determining the properties and applications of the welds. Here we will explore the effects and uses of different alloying elements commonly found in welding materials.Carbon: Carbon is a crucial element in welding alloys as it affects the strength and hardness of the weld metal. Higher carbon content can increase these properties, making it suitable for high-stress applications such as structural welding. However, excessive carbon can also reduce weldability and promote cracking during cooling.Manganese: Manganese improves the strength and impact resistance of welds. It also acts as a deoxidizer, helping to remove impurities during the welding process. Manganese is often used as an alloying element in combination with other elements to enhance specific properties like toughness or resistance to corrosion.Silicon: Silicon plays a vital role in enhancing fluidity and reducing brittleness in welded joints. It also improves the arc stability during welding. Additionally, silicon acts as a deoxidizer, preventing porosity formation in the weld metal.Sulfur: Sulfur is added to certain types of welding alloys to improve machinability, especially for free-machining steels or where post-weld machining operations are necessary. However, excessive sulfur content can lead to reduced ductility and overall mechanical properties of the weld metal.Phosphorus: Phosphorus improves strength and corrosion resistance but must be controlled carefully due to its embrittling effect at higher concentrations. This elementis often present in small quantities as an impurity in base metals but should be minimized or controlled when welding critical components.Chromium: Chromium provides excellent corrosion resistance to welded joints by forming oxide layers that protectagainst oxidation and other corrosive elements. Stainless steels are examples of alloys containing chromium for enhanced resistance to rust and corrosion.Nickel: Nickel increases toughness, ductility, and heat resistance of welds. It also enhances resistance to corrosion, especially in high-temperature environments. Nickel is commonly used in welding applications involving dissimilar materials or where high strength and excellent corrosion resistance are required.Tungsten: Tungsten is primarily used as an electrode material in gas tungsten arc welding (GTAW) or TIG welding. It has the highest melting point of any metal and offers excellent electrical conductivity. The presence of tungsten in the electrode ensures a stable and controllable arc, resulting in precise welds.Zinc: Zinc is often added as an alloying element to create galvanized steel. Welding zinc-coated metals can release toxic fumes, known as zinc oxide fumes. Proper ventilation and safety measures should be followed when working withsuch materials.In conclusion, the various alloying elements present in welding materials have distinct effects and uses. These elements influence properties like strength, toughness, corrosion resistance, and machinability, making themsuitable for specific applications. However, it isimportant to note that the composition and concentration of these elements must be carefully controlled to achieve desired weld quality and performance.在焊接材料中,各种合金元素的存在对于焊缝的性能和应用起着重要作用。

合金元素对中铬高纯铁素体不锈钢焊接性影响初探

合金元素对中铬高纯铁素体不锈钢焊接性影响初探
度 粗 化 , 和 铌 的 作 用 最 强 , 和铜 的作 用 次 之 。 此类 不 锈 钢 薄 板 在 适 当 的焊 接 方 法 和 焊 接 工 艺 条 件 下 , 接 HA 钛 钼 焊 Z
的 晶粒 度 一 般 可 以达 到 4—5级 , 接 接 头具 有较 好 的 综 合 性 能 。 焊 关 键 词 : 中 铬 高 纯 铁 素 体 不 锈 钢 合 金 元素 焊 接 性
的性能 ( 强度 、 性和 冷热 加工性 能 ) 韧 具有 重要 的作 用 。
2 1 中铬高 纯铁 素体 不锈 钢 的成 分及 性能 .
表 1 所示 是 3种 典 型 的 中铬 高 纯 铁 素 体 不 锈 钢 S S 3 、4 、4 U 4 6 4 3 4 4及普 通 4 0不 锈 钢 的化 学 成 分 , 金 3 其
生产应用 r 搭 蜉
合 金 元 素 对 中 铬 高 纯 铁 素 体 不 锈 钢 焊 接 性 影 响 初 探
山西 太钢 不锈 钢股 份 有限公 司( 3 0 3 000 ) 张心保
太 钢 不 锈 钢 工 业 园 有 限 公 司( 3 0 8 000 )
摘要


进行 了中铬高纯铁 素体 不锈 钢 S S 3 ,4 ,4 U  ̄ 6 4 3 4 4薄板 的不 填丝 TG对接 焊试验 和结果分 析 , 1 I 对其 中的
的影 响作用 , 于此 类 钢 的优 化 设 计 和 拓 展 应 用 范 围 对 具 有重 要 的指导 意义 。 2 中铬 高纯 铁 素 体 不 锈 钢 的 合 金 系 统 及合 金 元 素 的
作 用
现代高 纯铁 素体 不 锈钢 是 指 2 0世 纪 6 0年 代 以来 在不锈 钢生 产技 术进 步 的基 础上 生 产 的超低 碳 氮 铁 素 体 不锈 钢 , 种 不 锈 钢 的性 能 与 之 前 的传 统 不 锈 钢 相 这 比有 了很大 的提 高 。这 类 不 锈 钢 具 有 以下 特 征 : 低 超 碳 氮含 量和 中高 铬含量 ( 7 ~3 % ) 以提 高 耐 蚀性 ; 1% 0 , 添加 了钛 、 、 、 、 等 合 金元 素 , 些 合 金 元 素 的 铌 钼 铜 镍 这 含量很 少 , 是 对 于改 善 材 料 的组 织 形 态 和 提 高 材 料 但

合金元素对焊接性能的影响

合金元素对焊接性能的影响

合金元素对焊接性能的影响1、碳(C):对焊接性及焊缝金属组织性能的影响主要表现在提高强度和硬度,但随着强度和硬度的提高,焊缝金属的塑性、韧性下降。

2、锰(Mn):来自生铁与脱氧剂。

Mn有很好的脱氧能力,能清除钢中的FeO,还能与S形成MnS,以消除S的有害作用。

这些反应产物大部分进入炉渣而被去除,小部分残留于钢中成为非金属夹杂物。

因此,Mn能改善钢的品质,降低钢的脆性,提高钢的热加工性能。

Mn除了形成MnO和MnS作为杂质存在于钢中以外,在室温下Mn能溶于铁素体中,对钢有一定的强化作用。

3、硅(Si):来自生铁与脱氧剂。

Si脱氧能力比Mn强,是主要的脱氧剂,能消除FeO夹杂对钢的不良影响。

Si能与FeO作用而形成SiO2,然后进入炉渣而被排除。

Si除了形成SiO2,作为杂质存在于钢中以外,在室温下Si大部分溶于铁素体中,因此Si对钢有强化作用。

4、铬(Cr):是不锈中的主加元素,Cr与氧生成Cr2O3保护膜,防止氧化,但Cr与C能形成Cr23C6,是导致不锈钢晶间腐蚀的主要原因。

在低合金钢中Cr含量小于1.6%,提高钢的淬透性,不降低钢的冲击韧度。

5、镍(Ni):在钢中加入镍,可以提高钢的强度和冲击韧度,Ni与Cr配合加入效果更佳。

一般增加低合金钢中的Ni含量会提高钢的屈服强度,但钢中Ni含量较高时热裂纹(主要是液化裂纹)倾向明显增加。

6、钛(Ti):与O的亲和力很大,以微小颗粒氧化物的形式弥散分布于焊缝中,可以促进焊缝金属晶粒细化。

Ti 与C形成的TiC粒子对焊缝起弥散强化作用。

Ti与B同时加入对焊缝性能的影响最佳,低合金钢中Ti 、B含量的最佳范围Ti =0.01%~0.02%,B=0.002%~0.006%。

7、钼(Mo):低合金钢焊缝中加入少量的Mo不仅提高强度,同时也能改善韧性。

向焊缝中再加入微量Ti,更能发挥Mo的有益作用,使焊缝金属的组织更加均匀,冲击韧性显著提高。

对于Mo-Ti系焊缝金属,当Mo=0.20%~0.35%,Ti=0.03%~0.05%时,可得到均匀的细晶粒铁素体组织,焊缝具有良好的韧性。

不锈钢材料中C.Cr.Ni.Mo元素对焊接的影响

不锈钢材料中C.Cr.Ni.Mo元素对焊接的影响

不锈钢材料中C.Cr.Ni.Mo元素对焊接的影响引言不锈钢是一种重要的材料,在许多领域都有广泛的应用。

其中,C(碳)、Cr(铬)、Ni(镍)、Mo(钼)等元素在不锈钢材料中扮演着重要的角色。

本文将探讨这些元素对不锈钢焊接性能的影响。

C(碳)C元素是不锈钢中的主要合金元素之一。

它的存在可以显著提高不锈钢的强度和硬度。

然而,在焊接过程中,过高的碳含量会导致焊缝区域的晶间腐蚀敏感性增加。

因此,控制合适的碳含量对焊接质量至关重要。

Cr(铬)Cr元素在不锈钢中起到抗腐蚀的关键作用。

它与氧气反应生成一种致密的铬氧化物膜(Cr2O3),阻碍了进一步的氧气扩散,从而提高了不锈钢的抗腐蚀性能。

在焊接中,合适的Cr含量可以保证焊缝区域的抗腐蚀性能与母材相当。

Ni(镍)Ni元素在不锈钢中起到增强韧性和抗冲击性能的作用。

在焊接过程中,合适的Ni含量可以有助于减少焊接热影响区的脆性相的形成,提高焊缝的韧性。

此外,Ni还可以改善焊接材料的耐腐蚀性能。

Mo(钼)Mo元素是不锈钢中的常用合金元素之一,主要用于提高抗蚀性能。

Mo可以与其他元素形成稳定的化合物,增加不锈钢的抗氧化性能和耐蚀性。

在焊接过程中,适当的Mo含量可以减少焊缝区域的晶间腐蚀,提高焊缝的耐蚀性。

影响焊接性能的因素除了上述C、Cr、Ni、Mo元素对焊接性能的影响外,还有其他一些因素可能会影响焊接质量。

例如焊接工艺参数、焊接电流密度和焊接速度等。

正确选择和控制这些因素对于保证焊接接头的质量至关重要。

结论C、Cr、Ni、Mo元素在不锈钢材料中发挥着重要的作用,影响着焊接质量和性能。

适当控制这些元素的含量可以确保焊接接头具有良好的力学性能、耐腐蚀性能和耐热性能。

除了合适的元素含量,合理的焊接工艺参数和焊接操作也是确保焊接质量的关键因素。

本文主要介绍了不锈钢材料中C、Cr、Ni、Mo元素对焊接的影响。

未来的研究可以进一步探索不锈钢焊接中其他元素、焊接材料和焊接工艺对焊接性能的影响,以推动不锈钢焊接技术的发展和应用。

元素对钢的性能的影响及裂纹的形成和影响

元素对钢的性能的影响及裂纹的形成和影响

化学元素对钢的性能的影响1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。

碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。

2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。

如果钢中含硅量超过0.50-0.60%,硅就算合金元素。

硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。

在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。

硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。

含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。

硅量增加,会降低钢的焊接性能。

3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。

在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。

含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。

锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。

4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。

因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。

5、硫(S):硫在通常情况下也是有害元素。

使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。

硫对焊接性能也不利,降低耐腐蚀性。

所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。

在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。

6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。

铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。

合金元素对钢的性能影响

合金元素对钢的性能影响

合金元素对钢的影响合金元素在钢中的存在形式:❖溶入铁素体、奥氏体和马氏体中,以固溶体的溶质形式存在❖形成强化相,如溶入渗碳体形成合金渗碳体,形成特殊碳化物或者金属间化合物❖形成非金属夹杂,如合金元素与O、N、S形成氧化物、氮化物和硫化物有些元素如Pb、Ag等游离态存在。

一、合金元素与铁的相互作用1 扩大奥氏体区的元素(奥氏体形成元素)使A4点上升,A3点下降,导致奥氏体稳定区域扩大❖无限扩大奥氏体区的元素:Ni, Mn, Co❖有限扩大奥氏体区的元素:C, Cu, N2. 缩小奥氏体区的元素(铁素体形成元素)使A4点下降,A3点上升,导致奥氏体稳定区域缩小❖完全封闭奥氏体区的元素:Cr, Ti, V, W, Mo, Al, Si❖缩小奥氏体区,但不使之封闭的元素:B, Nb, Zr二、合金元素与碳的相互作用1. 非碳化物形成元素主要包括:B, N, Ni, Cu, Co, Al, Si等➢它们不能与碳元素形成化合物,但可以固溶于铁中形成固溶体➢这些元素都位于元素周期表中铁元素的右边2. 碳化物形成元素主要包括Ti, Zr, Nb, V, W, Mo, Cr, Mn, Fe➢这些元素都位于元素周期表中铁元素的左边➢它们都可与碳元素形成化合物,但形成的碳化物的性质差别很大➢Fe-C相图是研究钢中相变和对碳钢进行热处理时选择加热温度的依据,因此有必要先了解合金元素对Fe-C相图的影响。

➢钢中有三个基本的相变过程:加热时奥氏体的形成、冷却时过冷奥氏体的分解以及淬火马氏体回火时的转变。

合金元素对钢加热时奥氏体形成过程的影响合金元素对减小奥氏体晶粒长大倾向的作用也各不相同。

Ti、V、Zr、Nb等强碳化物形成元素强烈阻碍奥氏体晶粒长大,细化晶粒。

W、Mo、Cr阻止奥氏体晶粒长大的作用中等。

非碳化物形成元素Ni、Si、Cu、Co等阻止奥氏体晶粒长大的作用轻微。

Mn、P有助于奥氏体晶粒的长大。

合金元素对过冷奥氏体分解过程的影响几乎所有的合金元素(除Co)外都使C-曲线向右移动,即减慢珠光体类型转变产物的形成速度。

焊接碳当量

焊接碳当量

焊接碳当量(Welding Carbon Equivalent)是用于评估焊接接头中的合金元素含量对焊接性能的影响的一个指标。

它主要用于预测焊接接头的冷裂纹倾向性。

焊接碳当量的计算公式可以根据具体的焊接标准和材料而有所不同,常见的计算公式包括以下两种:
1.简化碳当量公式(CEV):
CEV = C + (Mn/6) + (Cr+Mo+V)/5 + (Ni+Cu)/15
其中,C、Mn、Cr、Mo、V、Ni和Cu分别表示焊接材料中的碳、锰、铬、钼、钒、镍和铜的质量百分比。

CEV值越高,焊接接头的冷裂纹倾向性越大。

2.Ito-Bessyo碳当量公式(Pcm):
Pcm = C + Si/30 + (Mn+Cu+Cr)/20 + (Ni+Mo)/60 + V/100
其中,C、Si、Mn、Cu、Cr、Ni、Mo和V分别表示焊接材料中的碳、硅、锰、铜、铬、镍、钼和钒的质量百分比。

Pcm值越高,焊接接头的冷裂纹倾向性越大。

需要注意的是,不同的焊接材料和标准可能会采用不同的碳当量公式或修正因子。

此外,碳当量只是预测焊接接头的冷裂纹倾向性的指标之一,实际焊接性能还受到其他因素的影响,如焊接工艺、残余应力等。

对于具体的焊接项目,建议参考相关的焊接标准或咨询专业的焊接工程师以获取准确的焊接碳当量计算方法和评估指导。

合金元素对焊接性能的影响

合金元素对焊接性能的影响

硅(Si)元素对焊接性有何影响硅是焊丝中最常用的脱氧元素,它可以防止铁与氧化合,并可在熔池中还原FeO。

但是单独用硅脱氧,生成的SiO2熔点高(约1710℃),且生成物的颗粒小,难以从熔池中浮出,易造成焊缝金属夹渣。

锰(Mn)元素对焊接性有何影响锰的作用与硅相似,但脱氧能力比硅稍差一些。

单独用锰脱氧,生成的MnO密度较大(15.11g /cm3),也不易从溶池中浮出。

在焊丝中含锰,除了脱氧作用外,还能和硫化合生成了硫化锰(MnS),并被除去(脱硫),故可降低由硫引起的热裂纹的倾向。

由于单独用硅和锰脱氧,都难以除去脱氧的生成物。

故目前多采用硅锰联合脱氧,使生成的SiO2和MnO复合成硅酸盐(MnO·SiO2)。

MnO·SiO2的熔点低(约1270℃)且密度小(约3.6g / cm3),在熔池中能凝聚成大块熔渣而浮出,达到良好的脱氧效果。

锰也是钢材中的重要合金元素,也是重要的淬透性元素,它对焊缝金属的韧性有很大影响。

当Mn含量<0.05%时焊缝金属的韧性很高;当Mn含量>3%后又很脆;当Mn含量 = 0.6~1.8%时,焊缝金属有较高的强度和韧性。

硫(S)元素对焊接性有何影响硫在钢中常以硫化铁的形式存在,并呈网状分布在晶粒边界,因而显著地降低钢的韧性。

铁加硫化铁的共晶温度较低(985℃),因此,在进行热加工时,由于加工开始温度一般为1150~1200℃,而铁和硫化铁共晶已经熔化,从而导致加工时开裂,这种现象就是所谓“硫的热脆性”。

硫的这种性质使钢在焊接时产生热裂纹。

因此,一般在钢中对硫的含量都严格加以控制。

普通碳素钢、优质碳素钢以及高级优质钢的主要区别就在于硫、磷含量的多少。

前面提到,锰有脱硫作用,这是因为锰可与硫形成高熔点(1600℃)的硫化锰(MnS),它呈粒状分布于晶粒内。

在热加工时,硫化锰有足够的塑性,因而消除了硫的有害作用。

因此钢中保持一定的含锰量是有益的。

磷(P)元素对焊接性有何影响磷在钢中能全部溶于铁素体内。

焊接参数对合金元素影响

焊接参数对合金元素影响

一、焊接电流
随着焊接电流的增加,堆焊金属中脱氧元素的含量也增加,这是因为CO2气体保护焊焊接电流的增加,导致熔滴在焊丝端头停留时间的减少,从而使熔滴接触氧化性气体的时间也减少,所以,合金元素的烧损也就减少了,相反,随着焊接电流的减少,焊缝中合金元素的烧损将增加
二、电弧压力
电弧电压的变化直接影响到电弧燃烧特点和焊丝熔滴过度特点,从而也就影响了合金元素的烧损程度。

当电弧电压降低时,熔滴在焊丝端头停留的时间减少,所以,熔滴接触氧化性气体的时间也减少,从而减少了合金元素的烧损。

相反,随着电弧电压的提高,焊缝中合金元素的烧损将增加。

三、焊接速度
随着焊接速度的变化,焊接电流与电弧压力在变化,即随着焊接速度的增加,焊接电流、电弧电压也增加,所以,焊丝熔滴与氧化性气体接触的时间很短,焊接速度对合金元素烧损的影响也就不明显了。

钢中加入合金元素的作用

钢中加入合金元素的作用

钢中加入合金元素的作用
在钢中加入合金元素可以带来以下几个方面的作用:
1. 提高强度和硬度:合金元素可以通过固溶强化、析出强化等方式提高钢的强度和硬度。

例如,加入碳、锰、铬等元素可以提高钢的硬度和强度。

2. 改善韧性和塑性:适量的合金元素可以改善钢的韧性和塑性,使其在受到外力作用时不易断裂或产生裂纹。

例如,加入镍、钼等元素可以提高钢的韧性。

3. 提高耐腐蚀性:一些合金元素可以提高钢的耐腐蚀性,使其在恶劣环境下具有更好的抗腐蚀性能。

例如,加入铬、镍、钼等元素可以形成不锈钢,提高钢的耐腐蚀性。

4. 改善焊接性能:某些合金元素可以改善钢的焊接性能,使其在焊接过程中不易产生裂纹、气孔等缺陷。

例如,加入钛、钒等元素可以改善钢的焊接性能。

5. 优化热处理性能:合金元素可以影响钢的相变点和晶粒长大行为,从而优化钢的热处理性能。

通过合理选择合金元素,可以使钢在热处理过程中达到预期的组织和性能。

6. 获得特殊性能:不同的合金元素可以赋予钢特殊的性能,如耐磨性、高温强度、磁性等。

例如,加入钨、钴等元素可以提高钢的耐磨性。

总之,在钢中加入合金元素可以显著改善钢的性能,使其适应各种工程应用的需求。

通过合理选择和控制合金元素的种类、含量以及热处理工艺,可以获得具有优异综合性能的合金钢材料。

各种元素对钢材性能的影响

各种元素对钢材性能的影响

1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。

碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。

2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。

如果钢中含硅量超过0.50-0.60%,硅就算合金元素。

硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。

在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。

硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。

含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。

硅量增加,会降低钢的焊接性能。

3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。

在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。

含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。

锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。

4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。

因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。

5、硫(S):硫在通常情况下也是有害元素。

使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。

硫对焊接性能也不利,降低耐腐蚀性。

所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。

在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。

6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。

铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

硅(Si)元素对焊接性有何影响?
硅是焊丝中最常用的脱氧元素,它可以防止铁与氧化合,并可在熔池中还原FeO。

但是单独用硅脱氧,生成的SiO2熔点高(约1710℃),且生成物的颗粒小,难以从熔池中浮出,易造成焊缝金属夹渣。

锰(Mn)元素对焊接性有何影响?
锰的作用与硅相似,但脱氧能力比硅稍差一些。

单独用锰脱氧,生成的MnO密度较大(15.11g/cm3),也不易从溶池中浮出。

在焊丝中含锰,除了脱氧作用外,还能和硫化合生成了硫化锰(MnS),并被除去(脱硫),故可降低由硫引起的热裂纹的倾向。

由于单独用硅和锰脱氧,都难以除去脱氧的生成物。

故目前多采用硅锰联合脱氧,使生成的SiO2和MnO复合成硅酸盐(MnO·SiO2)。

MnO·SiO2的熔点低(约1270℃)且密度小(约3.6g / cm3),在熔池中能凝聚成大块熔渣而浮出,达到良好的脱氧效果。

锰也是钢材中的重要合金元素,也是重要的淬透性元素,它对焊缝金属的韧性有很大影响。

当Mn含量<0.05%时焊缝金属的韧性很高;
当Mn含量>3%后又很脆;
当Mn含量= 0.6~1.8%时,焊缝金属有较高的强度和韧性。

硫(S)元素对焊接性有何影响?
硫在钢中常以硫化铁的形式存在,并呈网状分布在晶粒边界,因而显著地降低钢的韧性。

铁加硫化铁的共晶温度较低(985℃),因此,在进行热加工时,由于加工开始温度一般为1150~1200℃,而铁和硫化铁共晶已经熔化,从而导致加工时开裂,这种现象就是所谓“硫的热脆性”。

硫的这种性质使钢在焊接时产生热裂纹。

因此,一般在钢中对硫的含量都严格加以控制。

普通碳素钢、优质碳素钢以及高级优质钢的主要区别就在于硫、磷含量的多少。

前面提到,锰有脱硫作用,这是因为锰可与硫形成高熔点(1600℃)的硫化锰(MnS),它呈粒状分布于晶粒内。

在热加工时,硫化锰有足够的塑性,因而消除了硫的有害作用。

因此钢中保持一定的含锰量是有益的。

磷(P)元素对焊接性有何影响?
磷在钢中能全部溶于铁素体内。

它对钢的强化作用仅次于碳,使钢的强度和硬度增加,磷能提高钢的抗腐蚀性能,而塑性和韧性则显著降低。

特别在低温时影响更为严重,这称为磷的冷跪倾向。

故它对焊接不利,增加钢的裂缝敏感性。

作为杂质,磷在钢中的含量也要加以限制。

铬(Cr)元素对焊接性有何影响?
铬能提高钢的强度和硬度而塑性和韧性降低不大。

铬具有很强的耐蚀、耐酸的能力,所以奥氏体
不锈钢中一般都含有较多的铬(13%以上)。

铬还具有很强的抗氧化能力和耐热性。

因此,铬在耐热钢中应用也很广,如12CrMo、15CrMo 5CrMo 等钢中都含有一定量的铬。

铬是奥氏体钢的重要组成元素和铁素体化的元素,它在合金钢中能提高在高温时的抗氧化能力和机械性能。

在奥氏体不锈钢中,当铬镍的总量为40%,Cr/Ni = 1时,有热裂缝倾向;当Cr/Ni = 2.7时,就没有热裂缝倾向。

所以一般18-8型钢中Cr/Ni = 2.2~2.3左右时,铬在合金钢中就容易产生碳化物,使合金钢导热变差,容易产生氧化铬,使焊接造成困难。

铝(AI)元素对焊接性有何影响?
铝是强烈的脱氧元素之一,故用铝作脱氧剂,不仅可少产生FeO,且易于使FeO还原,有效地抑制在熔池中产生的CO气体的化学反应,提高抗CO气孔的能力。

另外,铝还能和氮化合而起固氮作用,故也能减少氮气孔。

但是用铝脱氧,生成的AI2O3熔点很高(约2050℃),以固态存在熔池中,容易引起焊缝夹渣。

同时,含铝的焊丝容易引起飞溅,铝的含量过高还会降低焊缝金属抗热裂能力,因而焊丝中含铝量必须严格控制,不宜过多。

若在焊丝中含铝量控制适当,则在焊缝金属的硬度、屈服点、抗拉强度均稍有提高。

钛(Ti)元素对焊接性有何影响?,
钛也是一种强烈的脱氧元素,且也能和氮化合成TiN而起固氮作用,提高焊缝金属抗氮气孔的能力。

若Ti和B(硼)在焊缝组织中含量适当,可以使焊缝组织得到细化。

钼(Mo)元素对焊接性有何影响?
钼在合金钢中能提高钢的强度、硬度,细化晶粒,防止回火脆性和过热倾向,提高高温强度、蠕变强度及持久强度、含钼小于0.6%时,可以提高塑性,减少产生裂纹的倾向,提高冲击韧性。

钼有促进石墨化的倾向。

故一般含钼的耐热钢如16Mo、12CrMo、15CrMo等含钼量约在0.5%左右。

钼在合金钢中的含量在0.6 ~1.0%时,钼会使合金钢的塑性和韧性下降,增加合金钢的淬火倾向。

钒(V)元素对焊接性有何影响?
钒可提高钢的强度,细化晶粒,降低晶粒长大倾向,提高淬硬性。

钒是较强烈的碳化物形成元素,所形成的碳化物在650℃以下都是稳定的。

有时效硬化作用。

钒的碳化物具有高温稳定性,因而能提高钢的高温硬度。

钒能够改变碳化物在钢中的分布状况,但是钒容易生成难熔的氧化物,增加了气焊和气割的困难。

一般焊缝中含钒量在0.11%左右时,可以起到固氮作用,变不利为有利。

(end)
如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档