点线面之间的关系

合集下载

点线面之间的关系

点线面之间的关系

点线面之间的关系
不在平面上的直线平行于平面内的一条直线,则这条线平行于平面。

一个平面内的两条相交直线都平行于另一个平面,则两平面平行。

两平面平行,则一个平面内的直线平行于另一个平面。

一条直线与平面平行,则过直线的平面与已知平面的交线平行于已知直线。

在已知平面内的直线若平行于两平面的相交直线,则平行于已知直线。

扩展资料
线垂直与面的两条相交直线,则线垂直与面。

线垂直于一个平面,则过这条线的平面垂直已有平面。

两平面垂直,一个平面的的'直线若垂直于两平面的相交直线,则县垂直于平面。

线垂直于面,则线垂直于平面内所有直线。

两直线同垂直于一个平面则两直线平行。

两平面垂直则他们的法向量也垂直,其内积为0。

直线垂直于平面,则平行于平面的单位法向量。

两条直线平行,则两条直线一定共面。

两个平面平行,则一个平面上的任意直线在另一个平面内找得到无穷条直线与其平行。

两平面平行,则两平面的法向量也平行。

零向量和任意直线平行,和任意平面平行。

两向量内积为0,不能说明两向量垂直,当两向量均非0时,两向量垂直。

立体几何——点线面的位置关系

立体几何——点线面的位置关系

点线面的位置关系(1)四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

符号语言:,,,A l B l A B l ααα∈∈∈∈ ⇒ ∈且。

公理2:过不在一条直线上的三点,有且只有一个平面。

三个推论:① 经过一条直线和这条直线外一点,有且只有一个平面② 经过两条相交直线,有且只有一个平面 ③ 经过两条平行直线,有且只有一个平面 它给出了确定一个平面的依据。

公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线(两个平面的交线)。

符号语言:,,P P l P l αβαβ∈∈⇒=∈且。

公理4:(平行线的传递性)平行与同一直线的两条直线互相平行。

符号语言://,////a l b l a b ⇒且。

(2)空间中直线与直线之间的位置关系1.概念 异面直线及夹角:把不在任何一个平面内的两条直线叫做异面直线。

已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的角(或直角)叫异面直线,a b 所成的夹角。

(易知:夹角范围090θ<≤︒)公理4:(平行线的传递性)平行与同一直线的两条直线互相平行。

符号语言://,////a l b l a b ⇒且。

定理:空间中如果一个角的两边分别与另一个角的两边分别平行,那么这两个角相等或互补。

(注意:会画两个角互补的图形)2.位置关系:⎧⎧⎪⎨⎨⎩⎪⎩相交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点(3)空间中直线与平面之间的位置关系直线与平面的位置关系有三种://l l A l ααα⊂⎧⎪=⎧⎨⎨⎪⎩⎩直线在平面内()有无数个公共点直线与平面相交()有且只有一个公共点直线在平面外直线与平面平行()没有公共点(4)空间中平面与平面之间的位置关系平面与平面之间的位置关系有两种://l αβαβ⎧⎨=⎩两个平面平行()没有公共点两个平面相交()有一条公共直线考点1:点,线,面之间的位置关系例1.(2014辽宁,4,5分)已知m,n 表示两条不同直线,α表示平面.下列说法正确的是( )A.若m ∥α,n ∥α,则m ∥nB.若m ⊥α,n ⊂α,则m ⊥n C.若m ⊥α,m ⊥n ,则n∥αD.若m ∥α,m ⊥n ,则n ⊥α [答案] 1.B[解析] 1.A 选项m 、n也可以相交或异面,C 选项也可以n ⊂α,D 选项也可以n ∥α或n 与α斜交.根据线面垂直的性质可知选B.例2.(2014山东青岛高三第一次模拟考试, 5) 设、是两条不同的直线,、是两个不同的平面,则下列命题正确的是( )A.若则 B.若则C .若则 D.若则[答案] 2. D[解析] 2.A 选项不正确,因为是可能的;ﻫB选项不正确,因为,时,,都是可能的;C选项不正确,因为,时,可能有;D选项正确,可由面面垂直的判定定理证明其是正确的.ﻫ故选D例3. (2014广西桂林中学高三2月月考,4) 设、是两条不同的直线,、是两个不同的平面.下列命题中正确的是( )(A) (B)(C) (D)[答案] 3. D[解析] 3.若,则平面与垂直或相交或平行,故(A) 错误;若,则直线与相交或平行或异面,故(B) 错误;若,则直线与平面垂直或相交或平行,故(C) 错误; 若,则直线,故(D)正确. 选D.例4.(2014周宁、政和一中第四次联考,7)设表示不同的直线,表示不同的平面,给出下列四个命题:①若∥,且则;②若∥,且∥. 则∥;③若,则∥∥;④若且∥,则∥.其中正确命题的个数是 ( )A .1 B.2 C.3 D .4 [答案] 4. B[解析] 4. ①正确;②直线或,错误;③错误,因为正方体有公共端点的三条棱两两垂直;④正确. 故真正确的是①④,共2个.2. 空间几何平行关系转化关系:直线、平面平行的判定及其性质归纳总结1. 证明线线平行的方法:定理 定理内容 符号表示分析解决问题的常用方法 直线与平面平行的判定平面外的一条直线与平面内的一条直线平行,则该直线与此平面平行,,////a b a b a ααα⊄⊂⇒且在已知平面内“找出”一条直线与已知直线平行就可以判定直线与平面平行。

点线面的关系

点线面的关系

点线面的关系在几何学中,点、线和面构成了基本的几何要素,它们之间存在着紧密的关系。

点是最基本的元素,它是没有长度、宽度和高度的,只有位置。

线是由一系列相邻点组成的,它具有长度但没有宽度和高度。

面由若干条线段相交形成的封闭区域,它具有长度和宽度但没有高度。

点、线和面之间的关系可以通过以下几个方面来描述。

1. 点与线的关系点与线之间的关系比较简单。

一条线段由两个端点组成,而一个点可以是一条线段的一个端点。

点可以在线上或者线的延长线上,也可以不在线上。

点的位置相对于线的位置有多种可能:在线的中间、在线的一端或者在线的外部。

点和线之间的关系可以通过点是否在线上来判断。

2. 点与面的关系点和面之间的关系也比较简单。

点可以在面上、在面的边界上或者在面的外部。

如果一个点在面上,则称该点在该面内。

点和面之间的关系可以通过点是否在面上来判断。

3. 线与线的关系线与线之间的关系有多种情况。

两条线可以相交,也可以平行或重合。

线与线之间的关系可以通过它们的位置关系来描述:如果两条线没有任何交点,则它们平行;如果两条线有且仅有一个交点,则它们相交;如果两条线的所有点都重合,则它们重合。

4. 线与面的关系线和面之间的关系也有多种情况。

线可以位于面内、跨越面或者位于面的边界上。

当一条线既在面内又与面相交时,它被称为切线。

线和面之间的关系可以通过它们的位置关系来判断。

5. 面与面的关系面与面之间的关系也有多种情况。

两个面可以平行,也可以相交。

两个相交的面可以有共线的边,也可以没有共线的边。

两个面之间的关系可以通过它们的位置关系来描述。

综上所述,点、线和面之间存在着丰富的关系。

它们相互作用和相互影响,形成了几何学中复杂而有趣的结构。

通过研究点、线和面之间的关系,我们可以深入理解几何学的基本原理,并将其应用于实际问题的解决中。

几何学作为数学的一部分,对于我们认识和探索世界具有重要的意义。

因此,我们应该充分理解和运用点、线和面之间的关系,以拓宽我们的视野和思维方式。

美术中点线面的关系

美术中点线面的关系

美术中点线面的关系美术中的点线面关系是艺术创作中非常重要的基本元素,它们相互作用、相互依存,共同构成了艺术作品的结构和形态。

点、线、面在美术作品中可以表达出丰富多样的意境和情感,给人们带来视觉上的享受和思考的空间。

点是最基本的图形元素,它是一种没有长度和宽度的形式,只有位置。

点在美术作品中可以起到强调、凸显的作用,也可以作为构图的基础元素。

点的位置、大小、形态等都是艺术家可以运用的手段,通过点的运用,可以创造出各种形式的美感。

比如,在绘画中,点的运用可以表达出物体的形态、纹理、光影等特征。

在雕塑中,点可以是雕塑的焦点,通过点的形态和布局,可以展现出雕塑作品的立体感和动态感。

线是由点连接而成的形式,它是艺术作品中的重要组成部分。

线可以是直线、曲线、弯曲的线条,通过线的变化和组合,可以表现出物体的形态、轮廓、纹理等特征。

线可以是细腻的,也可以是粗犷的;线可以是平直的,也可以是曲折的。

线的运用不仅可以表达出物体的外观,还可以传达出一种情感和氛围。

比如,在绘画中,线的运用可以营造出细腻、柔和的氛围,也可以创造出粗犷、有力的效果。

在雕塑中,线可以勾勒出雕塑的外形和纹理,通过线的变化和组合,可以表现出雕塑作品的立体感和动态感。

面是由线围成的形状,它是艺术作品中的重要构成部分。

面可以是平面的,也可以是立体的;面可以是简单的,也可以是复杂的。

面的运用可以表达出物体的形状、结构、纹理等特征,同时也可以传达出一种情感和氛围。

比如,在绘画中,通过面的运用可以表现出物体的形状和结构,同时也可以营造出一种平面的效果。

在雕塑中,面可以是立体的形状,通过面的变化和组合,可以表现出雕塑作品的立体感和动态感。

点、线、面在美术作品中相互作用、相互依存,共同构成了艺术作品的结构和形态。

点和线可以组合成面,面可以由点和线分割成更小的形状。

点、线、面的形态和布局都是艺术家可以运用的手段,通过它们的变化和组合,可以创造出各种形式的美感。

同时,点、线、面也可以传达出艺术家的思想、情感和意境,给人们带来视觉上的享受和思考的空间。

空间向量点线面的位置关系

空间向量点线面的位置关系

空间向量点线面的位置关系在三维空间中,点、线和面是基本的几何要素。

它们的位置关系在数学和几何学中扮演着重要的角色。

本文将探讨空间向量中点、线和面之间的不同位置关系及其特点。

一、点和线的位置关系在三维空间中,点和线的位置关系主要有以下几种情况。

1. 点在线上:如果一个点位于一条直线上,那么这个点与直线上的任意两点构成的向量都是共线的。

换句话说,点和线的向量共线。

2. 点在线的延长线上:点也可以位于一条线的延长线上,这时点与线上的任意两点构成的向量也是共线的。

3. 点与线相交:在三维空间中,点还可以与一条直线相交。

这时,点与线上的任意两点构成的向量不再共线。

4. 点与线平行:若一点与直线平行,则该点与直线上的任意两点构成的向量平行。

但是,点与线平行并不意味着点在线的延长线上。

二、点和面的位置关系点和面的位置关系也有几种情况,如下所示。

1. 点在面上:如果一个点位于一个平面上,那么这个点与平面上的任意三个点构成的向量都在同一个平面内。

2. 点在面的延长线上:点也可以位于一个平面的延长线上,这时点与平面上的任意三个点构成的向量仍在同一个平面内。

3. 点在平面内但不在平面上:有时,一个点位于一个平面内部但不在平面上。

这时,点与平面上的任意三个点构成的向量不在同一个平面内。

4. 点与平面相交:在三维空间中,点还可以与一个平面相交。

这时,点与平面上的任意三个点构成的向量不在同一个平面内。

三、线和面的位置关系线和面的位置关系主要有以下几种情况。

1. 线在平面上:如果一条直线位于一个平面上,那么直线上的任意两点构成的向量都在同一个平面内。

2. 线与平面相交于一点:一个直线也可以与一个平面相交于一点。

这时,直线上的任意两点构成的向量不在同一个平面内。

3. 线与平面平行:若一条直线与一个平面平行,则直线上的任意两点构成的向量与平面内的向量平行。

但是,直线与平面平行并不意味着直线在平面上。

4. 线在平面的延长线上:一条直线还可以位于一个平面的延长线上,这时直线上的任意两点构成的向量仍在同一个平面内。

点线面平行关系总结

点线面平行关系总结

点线面平行关系总结点线面的定义- 点:是指空间中没有长度、宽度和高度的几何对象。

- 线:是由点形成的集合体,具有长度但没有宽度和高度。

- 面:是由线形成的集合体,具有长度和宽度但没有高度。

平行关系的定义- 平行:是指两个或多个线或面在同一平面上没有交点的关系。

两个平行线之间的距离始终保持相等。

点线平行关系- 点与线的关系:一个点可以与一条直线平行。

当一条直线上有多个点与另一条直线平行时,这些点与另一条直线也是平行的。

线线平行关系- 线与线的关系:两条直线如果在同一个平面上且没有交点,那么这两条直线是平行的。

- 线与曲线的关系:直线和曲线之间一般不会存在平行关系。

面面平行关系- 面与面的关系:如果两个平面没有交点且在同一个平面上,那么这两个平面是平行的。

平行关系的性质- 平行性质1:平行线截取同一平行线段的比例相等。

- 平行性质2:平行线与一条横截直线所截取的对应角相等。

- 平行性质3:平行线所夹带的平行线也相互平行。

应用举例- 平面几何学中,平行关系有广泛的应用。

例如在研究多边形、三角形等图形时,需要考虑边之间的平行关系。

- 在建筑设计中,平行线的概念可以帮助建筑师确定平行墙面的布局和设计。

- 在地理学中,平行线用于描述纬度线和经度线在地球表面上的关系。

总结- 点线面的形成依次是由点到线,再由线到面。

- 点线面之间存在平行关系,即两个或多个点、线、面在同一平面上没有交点的关系。

- 平行关系具有一些性质,例如截取同一平行线段的比例相等、对应角相等等。

- 平行关系在几何学、建筑设计和地理学等领域具有实际应用。

点线面的位置关系和判定方法

点线面的位置关系和判定方法

点线面的位置关系和判定方法在几何学中,点、线段和平面是最基本的图形元素,它们之间的位置关系和判定方法对于几何问题的解决至关重要。

本文将探讨点线面的位置关系以及相应的判定方法。

一、点与线段的位置关系和判定方法1. 点在线段上的情况:一个点可以在线段的两端点之间,也可以在线段上,或者在线段外。

要判断一个点是否在线段上,可以使用如下方法:(1)距离判定法:计算点到线段两个端点的距离,如果两个距离之和等于线段长度,那么点就位于线段上。

(2)向量判定法:将线段的两个端点视为向量A和向量B,将点与线段的一个端点视为向量C。

如果向量C可以表示为向量A与向量B的线性组合,且系数的和等于1,那么点就位于线段上。

2. 点在线段的延长线上的情况:当一个点在线段的延长线上时,意味着可以无限延长线段,点位于线段的一侧。

判定方法如下:(1)向量判定法:同样将线段的两个端点视为向量A和向量B,将点与线段的一个端点视为向量C。

如果向量C可以表示为向量A与向量B的线性组合,且系数的和大于1,那么点在线段的延长线上。

3. 点在线段的左侧或右侧的情况:若点位于线段的左侧(或右侧),则该点与线段的两个端点所形成的线段组合为逆时针(或顺时针)方向。

判定方法如下:(1)向量叉积法:将线段的一个端点与点构成的向量记为向量A,将线段的一个端点与线段另一端点构成的向量记为向量B。

计算向量A和向量B的叉积,若叉积大于0,则点在线段的左侧;若叉积小于0,则点在线段的右侧;若叉积等于0,则点在线段上。

二、点与平面的位置关系和判定方法1. 点在平面上的情况:一个点可以位于平面上,也可以位于平面外部。

判定方法如下:(1)向量法:选择平面上的三个非共线点A、B、C,将点与这三个点分别构成向量。

如果点与向量A、B、C共面,那么点就位于平面上。

2. 点在平面的一侧或另一侧的情况:当一个点在平面的一侧时,意味着通过该点可以画出与平面垂直的直线。

判定方法如下:(1)点法向量法:选择平面上的一个点P,计算向量AP与平面的法向量N的点积。

点线面重叠关系总结

点线面重叠关系总结

点线面重叠关系总结
1. 点与线的重叠关系
当一个点与一条线相交、落在线上或在线的延长线上时,我们
说点与线存在重叠关系。

重叠关系的种类包括以下几种:
- 点在线上:点与线的坐标完全一致,点被认为落在线上。

- 点在线的延长线上:点的坐标位于线的延长线上,但不在线上。

- 点与线相交:点的坐标与线的坐标有一个共同交点。

2. 点与面的重叠关系
当一个点与一个平面相交、落在平面上或在平面的延长线上时,我们说点与面存在重叠关系。

重叠关系的种类包括以下几种:
- 点在面上:点的坐标完全一致,点被认为落在面上。

- 点在平面的延长线上:点的坐标位于平面的延长线上,但不
在平面上。

- 点与平面相交:点的坐标与平面的坐标有一个共同交点。

3. 线与面的重叠关系
当一条线与一个平面相交、完全包含于平面或平面的一部分重
叠时,我们说线与面存在重叠关系。

重叠关系的种类包括以下几种:
- 线在面内:线的所有坐标点都位于平面内部。

- 线与平面重叠:线的一部分与平面的坐标有共同交点。

- 线在平面外但与平面相交:线的一部分与平面的坐标有共同
交点,但线的端点位于平面外部。

总结以上重叠关系,可以帮助我们理解和描述点、线和面之间
的空间关系,并在相关领域如几何学、计算机图形学等中应用。

点、线、面之间的位置关系

点、线、面之间的位置关系

点、线、面之间的位置关系点线面之间的位置关系(一)平面:1、平面的两个特征:①无限延展②平的(没有厚度)2、平面的画法:通常画平行四边形来表示平面3、平面的表示:(1)用一个小写的希腊字母α、β、γ等表示,如平面α、平面β;(2)用表示平行四边形的两个相对顶点的字母表示,如平面AC 考点一、点线面的位置关系表示点A 在直线a 上(或直线a 经过点A )A ∈a 元素与集合间的关系点A 在直线a 外(或直线a 不经过点A )A ?a 点A 在平面α内(或平面α经过点A )A ∈α点A 在平面α外(或平面α不经过点A )A ?α例1 如图10,用符号语言表示下列图形中点、直线、平面之间的位置关系.变式训练1.画图表示下列由集合符号给出的关系:(1)A ∈α,B ?α,A ∈l,B ∈l;(2)a ?α,b ?β,a ∥c,b∩c=P,α∩β=c.例6.A 、B 、C 表示不同的点,a 、l 表示不同的直线,α、β表示不同的平面,下列推理不正确的是()()A ααα??∈∈∈∈l B l B A l A ,,,()B βα∈∈A A ,,AB B B =?∈∈βαβα ,直线()C αα??∈?A l A l , ()D α∈C B A ,,,β∈C B A ,,且C B A ,,不共线α?与β重合考点2.直线与直线的位置关系1.空间两条直线的位置关系:(1)相交直线——有且仅有一个公共点;(2)平行直线——在同一平面内,没有公共点;(3)异面直线——不同在任何一个平面内,没有公共点。

相交直线和平行直线也称为共面直线.异面直线的画法常用的有下列三种:2. 平行直线:在平面几何中,平行于同一条直线的两条直线互相平行,这个结论在空间也是成立的。

即公理4:平行于同一条直线的两条直线互相平行。

3.等角定理等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等.a b a b ab βααα推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.4.异面直线定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线推理模式:,,,A B a B a ααα?∈AB 与a 是异面直线例1.若直线a 与b 是异面直线,直线b 与c 是异面直线,则直线a 与c 的位置关系是 .例2.已知a ,b 是异面直线,直线c ∥直线a,则c 与b 的位置关系. ①一定是异面直线②一定是相交直线③不可能是平行直线④不可能是相交直线例3.若P 是两条异面直线l 、m 外的任意一点,则说法错误的有(填序号). ①过点P 有且仅有一条直线与l 、m 都平行②过点P 有且仅有一条直线与l 、m 都垂直③过点P 有且仅有一条直线与l 、m 都相交④过点P 有且仅有一条直线与l 、m 都异面例4. 如图6,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.图6求证:四边形EFGH是平行四边形.例5.如图6,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点且AC=BD. 求证:四边形EFGH是菱形.例4 如图7,已知正方体ABCD—A′B′C′D′.图7(1)哪些棱所在直线与直线BA′是异面直线?(2)直线BA′和CC′的夹角是多少?(3)哪些棱所在直线与直线AA′垂直?例5.如图8,已知正方体ABCD —A′B′C′D′.图8(1)求异面直线BC ′与A′B′所成的角的度数; (2)求异面直线CD′和BC′所成的角的度数.例6.在正三棱柱111C B A ABC -中,若12BB AB =,则1AB 与B C 1所成的角的大小.变式训练1.下列四个命题:(1)分别在两个平面内的两条直线是异面直线(2)和两条异面直线都垂直的直线有且只有一条(3)和两条异面直线都相交的两条直线必异面(4)若a 与b 是异面直线,b 与c 是异面直线,则a 与c 也异面其中真命题个数为()()A 3 ()B 2 ()C 1 ()D 02.在正方体-ABCD ''''D C B A 中,M 、N 分别是棱'AA 和AB 的中点,P 为上底面ABCD 的中心,则直线PB 与MN 所成的角为()()A 300 ()B 450 ()C 600 ()D3.已知直线a ,如果直线b 同时满足条件:①a 、b 异面②a 、b 所成的角为定值③a 、b 间的距离为定值,则这样的直线b 有()()A 1条 ()B 2条 ()C 4条 ()D 无数条4.正四棱柱ABCD-A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为 .考点三.直线与平面的位置关系(二)三公理三推论:公理1:若一条直线上有两个点在一个平面内,则该直线上所有的点都在这个平面内.A l ∈,B l ∈,A α∈,B α∈?α?l公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。

点、线、面的位置关系

点、线、面的位置关系

点、线、面的基本位置关系如下表所示:公理1:文字语言:如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内. 符号语言:A AB B ααα∈⎫⇒⊂⎬∈⎭.图形语言:公理2:文字语言:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线. 符号语言:A A l A ααββ∈⎫⇒∈=⎬∈⎭图形语言:应用:①确定两相交平面的交线位置;②判定点在直线上说明:①公理2揭示了两个平面相交的主要特征,是判定两平面相交的依据,提供了确定两个平面交线的方法.②指出:今后所说的两个平面(或两条直线,如无特殊说明,均指不同的平面(直线). 公理3:文字语言:经过不在同一条直线上的三点,有且只有一个平面. 符号语言:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合图形语言:应用:①确定平面;②证明两个平面重合说明:①“有且只有一个”的含义分两部分理解:“有”说明图形存在,但不唯一,“只有一个”说明图形如果有顶多只有一个,但不保证符合条件的图形存在,“有且只有一个”既保证了图形的存在性,又保证了图形的唯一性.②在数学语言的叙述中,“确定一个”,“可以作且只能作一个”与“有且只有一个”是同义词,因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证. 推论1:经过一条直线和直线外的一点有且只有一个平面. 推论2:经过两条相交直线有且只有一个平面. 推论3:经过两条平行直线有且只有一个平面.图形符号语言文字语言(读法)AaA a ∈ 点A 在直线α上 AaA a ∉点A 不在直线a 上BA αAαA α∈ 点A 在平面α内AαA α∉点A 不在平面α内b a Aa b A = 直线a 、b 交于A 点aαa α⊂ 直线a 在平面α内aαa α=∅ 直线a 与平面α无公共点a Aαa A α= 直线a 与平面α交于点Al αβ=平面α、β相交于直线l【典型例题分析】例1、将下列符号语言转化为图形语言:()1,,,;A B A l B l αβ∈∈∈∈()2,,//,,.a b a c b c p c αβαβ⊂⊂==例2、将下列文字语言转化为符号语言: ⑴ 点A 在平面α内,但不在平面β内; ⑵ 直线a 经过平面α外一点M ;⑶ 直线l 在平面α内,又在平面β内.(即平面α和β相交于直线l )例3、求证:三角形是平面图形. 已知:三角形ABC求证:三角形ABC 是平面图形例4、点A ∉平面BC D ,,,,E F G H 分别是,,,AB BC CD DA 上的点,若E H 与F G 交于P . 求证:P 在直线BD 上.1、试用集合符号表示下列各语句,并画出图形: (1)点A 在平面α内,但不在平面β内;(2)直线a 经过不属于平面α的点A ,且a 不在平面α内; (3)平面α与平面β相交于直线l ,且l 经过点P ; (4)直线l 经过平面α外一点P ,且与平面α相交于点M .2、 在正方体1111ABCD A B C D -中,①1A A 与1C C 是否在同一平面内? ②点1,,B C D 是否在同一平面内?③画出平面1AC 与平面1BC D 的交线,平面1AC D 与平面1BD C 的交线.GH A BC D EPFA 1D 1C 1CD AB B 13、已知直线a //b //c ,直线d 与a 、b 、c 分别相交于A 、B 、C ,求证:a 、b 、c 、d 四线共面.c'badc αC B A4、求证:一个平面和不在这个平面内的一条直线最多只有一个公共点.推论1: 经过一条直线和直线外的一点有且只有一个平面. 已知:直线l ,点A 是直线l 外一点. 求证:过点A 和直线l 有且只有一个平面推论2: 经过两条相交直线有且只有一个平面. 已知:直线P b a = .求证:过直线a 和直线b 有且只有一个平面.推论3:经过两条平行直线有且只有一个平面. 已知:直线//a b .求证:过直线a 和直线b有且只有一个平面【小结】认清点、线、面的位置关系,注意各种关系的定义【课堂练习】1.在空间中,下列命题不正确的是()错误!未找到引用源。

点线面的应用方式以及点,线,面分别的作用

点线面的应用方式以及点,线,面分别的作用

点线面的应用方式以及点,线,面分别的作

点线面的应用方式以及点,线,面分别的作用如下:
1、点动成线:如针式打印机打字时,一个个点形成线。

一辆汽车运动一段距离,他运动的距离就是一段线。

2、线动成面:如在医疗领域用激光刀手术时,激光经过处形成的刀口。

一个木棒绕一个端点旋转画出一个圆,这个圆所形成的就是面。

3、面动成体:如我们在刷牙时,牙膏口是一个圆面,挤牙膏时形成一个圆柱。

扇扇子的时候,扇子在空中划过的空间就是面动成体。

点线面三者关系如下:
1、点最重要的功能在于表明位置和进行聚焦,点与面是比较而形成的,同样一个点,如果布满整个或大面积的平面,它就是面了,如果在一个平面中多次出现,就可以理解为点。

2、点与点之间连接形成线,或者点沿着一定方面规律性的延伸可以成为线,线强调方向和外形。

3、平面上三个以上点的连接可以形成面,同时,平面上线的封闭或者线的展开也可以形成面,面强调形状和面积。

根据点线面之间的相对位置关系的知识点总结

根据点线面之间的相对位置关系的知识点总结

根据点线面之间的相对位置关系的知识点
总结
在几何学中,点、线和面是最基本的几何概念。

它们之间的相对位置关系对于理解和解决几何问题至关重要。

以下是根据点线面之间的相对位置关系的一些重要知识点的总结:
1. 点和线的关系:
- 直线上的每个点都在同一条直线上;
- 直线外的点不存在于同一条直线上。

2. 点和平面的关系:
- 平面可以由无数个点组成;
- 平面上的每个点都在同一平面上;
- 平面外的点不存在于同一平面上。

3. 线和平面的关系:
- 一条直线在平面上可以有三种不同的相交情况:
- 直线和平面相交于一个点;
- 直线和平面平行,不相交;
- 直线包含在平面内。

4. 线和线的关系:
- 直线和直线可能相交于一个点,此时它们称为交线;
- 直线和直线可能平行,不相交。

5. 面和面的关系:
- 两个平面可以平行,不相交;
- 两个平面可以相交于一条直线;
- 两个平面可以相交于一点。

6. 直线、平面和点的关系:
- 一条直线可能与一个点相交;
- 一条直线可能与一个平面相交;
- 一个平面可能与一个点相交。

以上是根据点线面之间的相对位置关系的一些重要知识点的总结。

通过理解和掌握这些知识点,你将能够更好地解决几何问题和分析几何结构。

点线面关系判定定理

点线面关系判定定理
定理:垂直于同一平面的两条直线平行(直线与平面垂直性质定理)
求证角相等或互补 定理:空间中如果两个角的两边分别对应平行,那么两个角相等或互补
求证直线与平面平行
定理:平面外一条直线与此平面内一条直线平行,则该直线与平面平行 (线面平行判定定理)
求证平面和平面平行
定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行 (面面平行判定定理)
第二章点、线、面关系判定
公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内
备注
求证直线或点在平面内 公理2:过不在一条直线上的三点,有且只有一个平面
求证两条线平行
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共 直线
公理4:平行于同一条直线的两条直线互相平行
定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直 线平行(直线与平面平行的性质定理) 定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行 (面面平行性质定理)
定理:一条直线与一个平面内的两条相交线都垂,则该直线与该平面垂直 (直线与平面垂直判定定理)
求证直线与平面垂直
定理:两个平面垂直,则同一个平面内垂直于交线的直线与另一个平面垂直 (面面垂直性质定理)
求证平面与平面的垂直 定理:一个平面过另一个平面的垂线,则这两个平面垂直(面面垂直判定定理)

平面构成中点线面的关系

平面构成中点线面的关系

平面构成中点线面的关系
在平面构成中,点、线、面是最基本的元素,它们之间的关系可以通过以下几个方面来描述:
1. 点构成线:点按照一定的方向和距离排列,可以形成各种形式的线,如直线、曲线等。

点的密集程度和排列方式决定了线的特征。

2. 线构成面:线按照一定的方向和形状进行排列和组合,可以形成不同形状的面。

线的长度、方向、弯曲程度以及它们之间的关系决定了面的形态。

3. 点线面相互转化:在一定条件下,点、线、面之间可以相互转化。

例如,当点的数量足够多时,它们可以构成线或面;同样,线的排列方式也可以形成面。

4. 比例关系:点、线、面在构成中存在着比例关系。

不同大小、形状的点、线、面的组合会影响整个构成的视觉效果和平衡感。

5. 空间关系:在平面构成中,虽然只有二维空间,但通过点、线、面的排列和组合,可以营造出立体感和空间感。

6. 情感表达:点、线、面的不同组合和运用方式可以传达出不同的情感和氛围。

例如,直线通常给人稳定、简洁的感觉,曲线则更加柔和、流畅。

点、线、面在平面构成中是相互关联、相互影响的。

它们的组合和运用方式决定了整个构成的形式美感和表现力。

康定斯基在点线面书中点线面之间的关系

康定斯基在点线面书中点线面之间的关系

康定斯基在点线面书中点线面之间的关系1. 引言说到康定斯基,这个名字就像艺术界的一颗明星,闪闪发光。

他在《点、线、面》这本书里,不仅教我们如何看待艺术,还深入探讨了点、线、面之间的微妙关系。

今天我们就来聊聊这个话题,顺便带点幽默,轻松一下。

2. 点的魅力2.1 点:一切的起点你知道吗,点在康定斯基的眼里可不是随便一个小黑点哦。

它代表了开始,一切的源头。

想象一下,一个小点像是宇宙中的星星,虽然小,但却充满了可能性。

点可以是孤独的,也可以是热闹的,甚至可以引发一场视觉的革命。

就像人生中的那些小决定,看似微不足道,但有时却能改变一切。

2.2 点与情感再说说点在情感上的表达。

康定斯基认为,点可以传达情感。

比如,重重一击的点,给人一种强烈的震撼;而轻轻一抹的点,则让人感到温柔的抚慰。

你可以想象,艺术作品中那个小小的点,可能承载了画家的无尽思绪和情感。

简直就像是在给你发情书呢!3. 线的延展3.1 线的故事接下来,我们聊聊线。

线就像人生的轨迹,蜿蜒曲折,有时候很平坦,有时候却像过山车一样刺激。

康定斯基把线看作是连接点与点之间的桥梁,它不仅有形状,还有情感。

你看,那些弯弯曲曲的线条,有的让人觉得温暖,有的却带着些许紧张感,仿佛在讲述一个个动人的故事。

3.2 线的节奏而且,线的节奏感也是康定斯基非常看重的一点。

不同的线条,可以营造出不同的氛围。

比如,直线给人一种力量感,仿佛在告诉你“我来了”;而波浪线则让人觉得轻松,像是在海边漫步,心情一下子就放松了。

这就像生活中的不同阶段,有时候你要快速前进,有时候则需要慢慢享受。

4. 面的构建4.1 面的丰富最后,我们得提提面。

面是点和线结合的产物,是艺术中最复杂的部分。

康定斯基认为,面不仅仅是形状,它更代表了空间和情感的结合。

试想一下,当你看到一个五颜六色的面时,心里是不是也会荡漾出各种情感?面可以是安静的,也可以是喧闹的,甚至能让你感受到时间的流逝。

4.2 面与空间而且,面在空间中的表现也是非常重要的。

数学点线面关系的描述

数学点线面关系的描述

数学点线面关系的描述
数学中的点、线、面是几何学中重要的基本概念。

它们之间的关系可以描述如下:
1. 点和线的关系:一个点可以属于一条直线,也可以不属于任何直线。

如果一个点属于一条直线,那么这个点可以被视为直线的一个顶点或交点。

两条直线可以通过一个点相交,也可以不相交。

2. 点和面的关系:一个点可以属于一个平面,也可以不属于任何平面。

如果一个点属于一个平面,那么这个点可以被视为平面的一个顶点。

同样,两个平面可以通过一个点相交,也可以不相交。

3. 线和面的关系:一条直线可以与一个平面相交,可以与一个平面平行,也可以与一个平面垂直。

如果一条直线与一个平面相交,那么它与该平面的交点可以是一个点,也可以是一条直线。

4. 平行和垂直:当两条直线的方向完全相同或相反时,它们被称为平行直线。

当两条直线的夹角为90度时,它们被称为垂直直线。

同样,当两个平面之间的夹角为90度时,它们被称为垂直平面。

这些描述能帮助我们理解和研究几何学中的点、线、面之间的关系和性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

点线面之间的关系一.选择题(共8小题)1.在正方体ABCD﹣A1B1C1D1中,E为棱CD的中点,则()A.A1E⊥DC1B.A1E⊥BD C.A1E⊥BC1D.A1E⊥AC2.在正方体ABCD﹣A1B1C1D1中,下列几种说法正确的是()A.A1C1⊥AD B.D1C1⊥ABC.AC1与DC成45°角D.A1C1与B1C成60°角3.设a、b是不同的直线,α、β是不同的平面,则下列四个命题中正确的是()A.若a⊥b,a⊥α,则b∥αB.若a∥α,α⊥β,则a⊥βC.若a⊥β,α⊥β,则a∥αD.若a⊥b,a⊥α,b⊥β,则α⊥β4.已知互不相等的直线l,m,n和平面α,β,γ,则下列命题正确的是()A.若l与m为异面直线,l⊂α,m⊂β,则α∥β;B.若α∥β,l⊂α,m⊂β,则l∥m;C.若α∩β=l,β∩γ=m,α∩γ=n,l∥γ,则m∥n;D.若α⊥β,β⊥γ,则α∥β.5.在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.6.已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.7.直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°8.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.二.填空题(共4小题)9.在三棱锥P﹣ABC中,PA⊥底面ABC,AC⊥BC,PA=AC=BC=2,则直线PC与AB所成角的大小是.10.如图所示,在棱长为2的正方体ABCD﹣A1B1C1D1中,点E、F分别为边CC1、B1C1的中点,点G、H分别在AA1、D1A1上,且满足AA1=3AG,D1H=2HA1,则异面直线EF、GH所成角的余弦值为.11.已知正四棱锥的体积为12,底面对角线长为,则侧面与底面所成的二面角等于°.12.如图,正方形ABCD所在平面与正方形ABEF所在平面成60°的二面角,则异面直线AD与BF所成角的余弦值是.三.解答题(共6小题)13.如图所示,在四棱锥P﹣ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E,F,G分别是AB,PC,CD的中点.求证:(1)CD⊥PD;(2)平面EFG∥平面PAD.14.如图,三角形ABC中,AC=BC=,ABED是边长为1的正方形,平面ABED ⊥底面ABC,若G、F分别是EC、BD的中点.(Ⅰ)求证:GF∥底面ABC;(Ⅱ)求证:AC⊥平面EBC;(Ⅲ)求几何体ADEBC的体积V.15.如图,已知PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN⊥CD;(2)若∠PDA=45°,求证:MN⊥平面PCD.16.如图,在正三棱柱ABC﹣A1B1C1中,点D是AB中点,M是AA1上一点,且AM=tAA1.(1)求证:BC1∥平面A1CD;(2)若3AB=2AA1,当t为何值时,B1M⊥平面A1CD?17.如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在上,且OM∥AC.(Ⅰ)求证:平面MOE∥平面PAC;(Ⅱ)求证:平面PAC⊥平面PCB.18.如图,在直三棱柱ABC﹣A1B1C1中,底面△ABC为等边三角形,AB=4,AA1=5,点M是BB1中点(Ⅰ)求证:平面A1MC⊥平面AA1C1C (Ⅱ)求点A到平面A1MC的距离.点线面之间的关系参考答案与试题解析一.选择题(共8小题)1.在正方体ABCD﹣A1B1C1D1中,E为棱CD的中点,则()A.A1E⊥DC1B.A1E⊥BD C.A1E⊥BC1D.A1E⊥AC【解答】解:法一:连B1C,由题意得BC1⊥B1C,∵A1B1⊥平面B1BCC1,且BC1⊂平面B1BCC1,∴A1B1⊥BC1,∵A1B1∩B1C=B1,∴BC1⊥平面A1ECB1,∵A1E⊂平面A1ECB1,∴A1E⊥BC1.故选:C.法二:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为2,则A1(2,0,2),E(0,1,0),B(2,2,0),D(0,0,0),C1(0,2,2),A(2,0,0),C(0,2,0),=(﹣2,1,﹣2),=(0,2,2),=(﹣2,﹣2,0),=(﹣2,0,2),=(﹣2,2,0),∵•=﹣2,=2,=0,=6,∴A1E⊥BC1.故选:C.2.在正方体ABCD﹣A1B1C1D1中,下列几种说法正确的是()A.A1C1⊥AD B.D1C1⊥ABC.AC1与DC成45°角D.A1C1与B1C成60°角【解答】解:由题意画出如下图形:A.因为AD∥A1D1,所以∠C1A1D1即为异面直线A1C1与AD所成的角,而∠C1A1D1=45°,所以A错;B.因为D1C1∥CD,利平行公理4可以知道:AB∥CD∥C1D1,所以B错;C.因为DC∥AB.所以∠C1AB即为这两异面直线所成的角,而,所以C错;D.因为A1C1∥AC,所以∠B1CA即为异面直线A1C1与B1C所成的角,在正三角形△B1CA中,∠B1CA=60°,所以D正确.故选:D.3.设a、b是不同的直线,α、β是不同的平面,则下列四个命题中正确的是()A.若a⊥b,a⊥α,则b∥αB.若a∥α,α⊥β,则a⊥βC.若a⊥β,α⊥β,则a∥αD.若a⊥b,a⊥α,b⊥β,则α⊥β【解答】解:A中,b可能在α内;B中,a可能在β内,也可能与β平行或相交(不垂直);C中,a可能在α内;D中,a⊥b,a⊥α,则b⊂α或b∥α,又b⊥β,∴α⊥β.故选:D.4.已知互不相等的直线l,m,n和平面α,β,γ,则下列命题正确的是()A.若l与m为异面直线,l⊂α,m⊂β,则α∥β;B.若α∥β,l⊂α,m⊂β,则l∥m;C.若α∩β=l,β∩γ=m,α∩γ=n,l∥γ,则m∥n;D.若α⊥β,β⊥γ,则α∥β.【解答】解:在A中,若l与m为异面直线,l⊂α,m⊂β,则α与β相交或平行,故A错误;在B中,若α∥β,l⊂α,m⊂β,则l与m平行或异面,故B错误;在C中,若α∩β=l,β∩γ=m,α∩γ=n,l∥γ,则由线面平行的性质定理得m∥n,故C正确;在D中,若α⊥β,β⊥γ,则α与β相交或平行,故D错误.故选:C.5.在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,∵在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,∴A(1,0,0),D1(0,0,),D(0,0,0),B1(1,1,),=(﹣1,0,),=(1,1,),设异面直线AD1与DB1所成角为θ,则cosθ===,∴异面直线AD1与DB1所成角的余弦值为.故选:C.6.已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.【解答】解:【解法一】如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,]),可知MN=AB1=,NP=BC1=;作BC中点Q,则△PQM为直角三角形;∵PQ=1,MQ=AC,△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×(﹣)=7,∴AC=,∴MQ=;在△MQP中,MP==;在△PMN中,由余弦定理得cos∠MNP===﹣;又异面直线所成角的范围是(0,],∴AB1与BC1所成角的余弦值为.【解法二】如图所示,补成四棱柱ABCD﹣A1B1C1D1,求∠BC1D即可;BC1=,BD==,C1D=,∴+BD2=,∴∠DBC1=90°,∴cos∠BC1D==.故选:C.7.直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°【解答】解:延长CA到D,使得AD=AC,则ADA1C1为平行四边形,∠DA1B就是异面直线BA1与AC1所成的角,又A1D=A1B=DB=AB,则三角形A1DB为等边三角形,∴∠DA1B=60°故选:C.8.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.【解答】解:对于选项B,由于AB∥MQ,结合线面平行判定定理可知B不满足题意;对于选项C,由于AB∥MQ,结合线面平行判定定理可知C不满足题意;对于选项D,由于AB∥NQ,结合线面平行判定定理可知D不满足题意;所以选项A满足题意,故选:A.二.填空题(共4小题)9.在三棱锥P﹣ABC中,PA⊥底面ABC,AC⊥BC,PA=AC=BC=2,则直线PC与AB所成角的大小是60°.【解答】解:取PA中点E,PB中点F,BC中点G,连接EF,FG,EG,∵EF、FG分别是△PAB、△PBC的中位线∴EF∥AB,FG∥PC,因此,∠EFG(或其补角)就是异面直线AB与PC所成的角.连接AG,则Rt△ACG中,AG==,EG==,又∵AB=PC=2,∴EF=FG=.由此可得,在△EFG中,cos∠EFG==﹣结合∠EFG是三角形内角,可得∠EFG=120°.综上所述,可得异面直线AB与PC所成角的大小为60°.故答案为:60°.10.如图所示,在棱长为2的正方体ABCD﹣A1B1C1D1中,点E、F分别为边CC1、B1C1的中点,点G、H分别在AA1、D1A1上,且满足AA1=3AG,D1H=2HA1,则异面直线EF、GH所成角的余弦值为.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,由题意E(0,2,1),F(1,2,2),G(2,0,),H(,0,2),=(1,0,1),=(﹣,0,),设异面直线EF、GH所成角的为θ,则cosθ===.∴异面直线EF、GH所成角的余弦值为.故答案为:.11.已知正四棱锥的体积为12,底面对角线长为,则侧面与底面所成的二面角等于60°.【解答】解:正四棱锥的体积为12,底面对角线的长为,底面边长为2,底面积为12,所以正四棱锥的高为3,则侧面与底面所成的二面角的正切tanα=,∴二面角等于60°,故答案为60°12.如图,正方形ABCD所在平面与正方形ABEF所在平面成60°的二面角,则异面直线AD与BF所成角的余弦值是.【解答】解:由题意得,CB⊥AB,AB⊥BE.可得正方形ABCD所在平面与正方形ABEF的二面角即∠CBE=60°,同时也得AB⊥平面BCE,即AB⊥CE,即三角形CEF为直角三角形和三角形CBE为等边三角形;即是EF⊥CE.设AB=1,则CE=1,CF=,FB=,利用余弦定理,得.故异面直线AD与BF所成角的余弦值是.三.解答题(共6小题)13.如图所示,在四棱锥P﹣ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E,F,G分别是AB,PC,CD的中点.求证:(1)CD⊥PD;(2)平面EFG∥平面PAD.【解答】证明:(1)∵PA⊥底面ABCD,∴CD⊥PA,又矩形ABCD中,CD⊥AD,且AD∩PA=A,∴CD⊥平面PAD,∵PD⊂平面PAD,∴CD⊥PD.(2)∵矩形ABCD中,E、G分别是AB、CD中点,∴EG∥AD,∵EG⊄平面PAD,AD⊂平面PAD,∴EG∥平面PAD,∵F是PC中点,∴FG∥PD,∵FG⊄平面PAD,PD⊂平面PAD,∴FG∥平面PAD,∵EG∩FG=G,EG、FG⊂平面EFG,∴平面EFG∥平面PAD.14.如图,三角形ABC中,AC=BC=,ABED是边长为1的正方形,平面ABED ⊥底面ABC,若G、F分别是EC、BD的中点.(Ⅰ)求证:GF∥底面ABC;(Ⅱ)求证:AC⊥平面EBC;(Ⅲ)求几何体ADEBC的体积V.【解答】解:(I)证法一:取BE的中点H,连接HF、GH,(如图)∵G、F分别是EC和BD的中点∴HG∥BC,HF∥DE,(2分)又∵ADEB为正方形∴DE∥AB,从而HF∥AB∴HF∥平面ABC,HG∥平面ABC,HF∩HG=H,∴平面HGF∥平面ABC∴GF∥平面ABC(5分)证法二:取BC的中点M,AB的中点N连接GM、FN、MN(如图)∵G、F分别是EC和BD的中点∴(2分)又∵ADEB为正方形∴BE∥AD,BE=AD∴GM∥NF且GM=NF∴MNFG为平行四边形∴GF∥MN,又MN⊂平面ABC,∴GF∥平面ABC(5分)证法三:连接AE,∵ADEB为正方形,∴AE∩BD=F,且F是AE中点,(2分)∴GF∥AC,又AC⊂平面ABC,∴GF∥平面ABC(5分)(Ⅱ)∵ADEB为正方形,∴EB⊥AB,∴GF∥平面ABC(5分)又∵平面ABED⊥平面ABC,∴BE⊥平面ABC(7分)∴BE⊥AC又∵CA2+CB2=AB2∴AC⊥BC,∵BC∩BE=B,∴AC⊥平面BCE(9分)(Ⅲ)连接CN,因为AC=BC,∴CN⊥AB,(10分)又平面ABED⊥平面ABC,CN⊂平面ABC,∴CN⊥平面ABED.(11分)∵三角形ABC是等腰直角三角形,∴,(12分)∵C﹣ABED是四棱锥,==(14分)∴V C﹣ABED15.如图,已知PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN⊥CD;(2)若∠PDA=45°,求证:MN⊥平面PCD.【解答】证明:(1)连接AC,BD,设AC∩BD=0,连接NO,MO,则NO∥PA.∵PA⊥平面ABCD,∴NO⊥平面ABCD,∴NO⊥AB,∵MO⊥AB,∴AB⊥面MNO∴MN⊥AB,而CD∥AB,∴MN⊥CD…(6分)(2)∵∠PDA=45°∴PA=AD=BC,由△PAM≌△CMB,得PM=CM,又∵N为PC的中点,∴MN⊥PC又MN⊥CD,PC∩CD=C∴MN⊥平面PCD…(12分)16.如图,在正三棱柱ABC﹣A1B1C1中,点D是AB中点,M是AA1上一点,且AM=tAA1.(1)求证:BC1∥平面A1CD;(2)若3AB=2AA1,当t为何值时,B1M⊥平面A1CD?【解答】解:(1)如图1,取A1B1的中点E,连接BE,C1E.在正三棱柱ABC﹣A1B1C1中,点D是AB中点,可得CD∥C1E又因为DB∥EA1,DB=EA1⇒BE∥DA1.且CD∩DA1=D,BE∩C1E=E,面EBC1∥平面A1CD;∵BC1⊂面EBC1,BC1⊄平面A1CD,∴BC1∥平面A1CD(2)由在正三棱柱ABC﹣A1B1C1中,点D是AB中点,可得CD⊥面AA1B1B.⇒CD⊥B1M,∴要使B1M⊥平面A1CD,只需DA1⊥MB即可,如下图,当DA1⊥MB时,△ADA1∽△A1MB1,⇒,又∵3AB=2AA1,DAB为中点∴⇒∴即当t=时,B1M⊥平面A1CD.17.如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在上,且OM∥AC.(Ⅰ)求证:平面MOE∥平面PAC;(Ⅱ)求证:平面PAC⊥平面PCB.【解答】(本小题满分10分)证明:(1)因为点E为线段PB的中点,点O为线段AB的中点,所以OE∥PA.因为PA⊂平面PAC,OE⊄平面PAC,所以OE∥平面PAC.因为OM∥AC,又AC⊂平面PAC,OM⊄平面PAC,所以OM∥平面PAC.因为OE⊂平面MOE,OM⊂平面MOE,OE∩OM=O,所以平面MOE∥平面PAC.…(5分)(2)因为点C在以AB为直径的⊙O上,所以∠ACB=90°,即BC⊥AC.因为PA⊥平面ABC,BC⊂平面ABC,所以PA⊥BC.因为AC⊂平面PAC,PA⊂平面PAC,PA∩AC=A,所以BC⊥平面PAC.因为BC⊂平面PBC,所以平面PAC⊥平面PBC.…(10分)18.如图,在直三棱柱ABC﹣A1B1C1中,底面△ABC为等边三角形,AB=4,AA1=5,点M是BB1中点(Ⅰ)求证:平面A1MC⊥平面AA1C1C(Ⅱ)求点A到平面A1MC的距离.【解答】(Ⅰ)证明:记AC1与A1C的交点为E.连结ME.如图∵直三棱柱ABC﹣A1B1C1,点M是BB1中点,∴MA1=MA=MC1=MC=.因为点E是AC1,A1C的中点,所以ME⊥AC1且ME⊥A1C,…(4分)从而ME⊥平面AA1C1C.因为ME⊂平面A1MC,所以平面A1MC⊥平面AA1C1C.…(6分)(Ⅱ)解:过点A作AH⊥A1C于点H,如图,由(Ⅰ)知平面A1MC⊥平面AA1C1C,平面A1MC∩平面AA1C1C=A1C,而AH⊥平面AA1C1C∴AH即为点A到平面A1MC的距离.…(9分)在△A1AC中,∠A1AC=90°,A 1A=5,AC=4∴∴AH=即点A到平面A1MC的距离为.…(12分)。

相关文档
最新文档