西门康可控硅选型

合集下载

三相电力调整器使用说明

三相电力调整器使用说明

使用说明书磊强自动化Leiqiang Automatio三相功率控制器型号:LQ3000系列上海磊强实业有限公司目录使用注意项.................................11.产品特点.................................22.技术规格...............................2-33.装箱清单.................................44.产品选型及外形尺寸.......................45.订货说明.................................46.电路示意图及输出波形...................5-67.安装及使用须知...........................68.接假负载调试.............................69.接实际负载调试...........................710.控制板常见接线组合......................711.调试中的问题及故障排除................7-812.加热器特性..............................813.不同负载的控制策略......................914.LQ3000控制器的基本特性图示..............915.调功、调压一体化功能...................1016.安装尺寸............................10-111.使用注意事项1. 请不要用手触及电力调整器内部,以防触电。

2. 请不要堵塞散热器上方,不要让杂物进入散热器内部。

否则可能影响机器使用寿命。

3. 在切断电源后一段时间内。

电力调整器的散热器,铜排等有可能处于高温状态,故请不要触摸,以免烫伤。

系列智能型电力调整器LQ3000系列电力调整器是大功率晶闸管模块应用技术的新产品。

低压配电柜技术规格书

低压配电柜技术规格书

低压配电柜技术规格书2.2甲方的工作范围(1)甲方对乙方的设计进行审查,确定符合工艺技术要求;(2)甲方对乙方的采购、制造、指导安装、试验等阶段的进度和质量的监督。

3采用的标准和规范低压开关柜的设计、制造、检验和验收应采用如下标准规范,规范所使用的各标准如有新版本,以最新版本(包括规范标准中的附录以及补充、修订的内容)为准;国内设计和采购的设备材料应满足中国相关的国家(GB)和工业标准规范;国外设计和采购的设备材料应满足相关的国际(IEC)和国外标准规范,但不得低于国内标准。

当不同的标准规范发生冲突时,应统一满足最严格的规范标准要求。

乙方应根据国际标准ISO9001和ISO9003的程序要求对产品的所有硬件设备和软件程序质量提供证明和保证。

除了另外特别说明以外,电气设备的设计、设备组装、材料和安装至少满足相关最新版本标准规范的最低要求。

GB10233-2022低压成套开关设备基本试验方法GB7251.1-2022低压成套开关设备和控制设备GB/T5877低压固定封闭式成套开关设备GB14048.2低压开关设备和控制设备低压断路器GB14048.6-2022低压断路器低压成套开关设备和控制设备GB7947-2022绝缘导体和裸导体的颜色标志IEC439-1-1992低压成套开关设备和控制设备IEC60947-2-4低压成套开关设备和控制设备、断路器、接触器GB1208-2022电流互感器GB/T2423.4-2022电工电子产品基本环境试验规程试验Db:交变湿热试方法。

(eqvIEC60068-2-30:1980)GB/T2828-2003逐批检查计数抽样程序及抽样表(适用于连续批的检查)GB/T2900.19-1994电工名词术语高电压试验技术和绝缘配合GB/T2900.20-1994电工术语中压开关设备GB/T3797-2022电气控制设备JB/T7601.2-2022电线电缆专用设备基本技术要求电缆设备基本技术要求GB4208-2022外壳防护等级GB/T13384-2022机电产品包装通用技术条件JB3284-1983电机、电器产品运输、贮存基本环境及试验条件GB/T191-2022包装储运图示标志当上述规定和标准不适用某些设备和材料时,或乙方欲采用其它标准规范取代时,需呈交甲方确认后方可采用。

动态无功补偿技术要求1

动态无功补偿技术要求1

动态无功补偿技术要求一、采用标准GB50227-95 《并联电容器成套装置设计规范》GB3986.2-89 《高压并联电容器》JB7111-93 《高压并联电容器装置》DL/T604-1996 《高压并联电容器装置订货技术条件》《高压并联电容器串联电抗器订货技术条件》JB5346-1998 《串联电抗器》GB 6450-86 《干式电力变压器》GB/T15576 《低压无功功率补偿装置总技术条件》GB4208-1993 《外壳防护等级(IP代码)》GB12747 《自愈式低压并联电容器》以上标准规范应执行最新版本一般技术参数要求系统标准电压:0.4KV额定绝缘电压:1KV额定频率:50Hz电容器接线型式:内三角型相数:3功率因数:0.95以上补偿方式:三相共补二、总体技术要求1.应采用单独可控硅模块实现对多级电容器组的无触点、无浪涌、无过渡投切;2.要求触发系统采用光电触发方式,实现一次系统和二次系统隔离,解决谐波干扰问题,高可靠性,控制简单,技术达到国际先进水平;3.实现电流过零投切,电容投切过程中无浪涌冲击、无操作过电压、无电弧重燃现象,使用寿命长;4.能够根据负荷无功功率的大小及功率因数的实际运行水平自动投切,动态补偿无功功率,响应速度小于20ms,保证系统功率因数在0.95以上。

5.补偿装置要求一次系统主要元件:可控硅、电容器、电抗器、快速熔断器等采用单相设计器件,全部连接于角内回路,实现真正的电容过零投切并做到控制简单,设计合理及高可靠性工作。

6.动态抑制系统谐波,针对电力系统谐波源影响,要求采用光触发控制和谐波抑制技术,保证可靠、安全运行。

7.对控制器、电抗器、驱动器进行特殊设计,要求选用串联电抗器,从根本上解决与系统发生串联、并联谐振,避免使谐波放大,实现无功补偿的谐波抑制并举的功能,操作没有涌流和过电压,可任意频繁操作。

可自动手动切换,输出编码为1:2:4:4方式投切。

8.控制器实现全数字化,大屏幕液晶显示,以及各种电能参数;具有联网通讯功能,控制应具有高可靠性,而且操作简单,与系统联结时,不需要考虑交流系统相序,不会因为相序接错而带来烧坏可控硅或其他器件的现象;9.为了便于操作、观察监视,要求控制器界面在补偿器正面柜门上显示,做到不用开门即可进行控制器参数设置、调整,保护操作人员人身安全;10.能就地补偿、稳定系统电压、抑制电压闪变,改善电能质量;11.根据负载无功和负荷波动情况,在规定的动态响应时间内,多级补偿一次到位;12.补偿器保护措施齐全,自动化程度高,能在外部故障或停电时自动退出工作,送电后能自动恢复运行,整套设备设有过电压、欠压、过流等保护。

双向可控硅参数表

双向可控硅参数表

双向可控硅参数表
双向可控硅的参数主要包括以下几项:
1.断态重复峰值电压(VDRM):这是指双向可控硅在断态(或阻断状态)下能够承
受的最大反向电压。

2.反向重复峰值电压(VRRM):这是指双向可控硅在反向工作状态下能够承受的最
大电压。

3.通态平均电流(IT):这是指在通态工作状态下,双向可控硅能够承受的平均电流
值。

4.通态不承复浪涌电流(IrsM):这是指在通态工作状态下,双向可控硅能够承受的
浪涌电流峰值。

5.额定结温(Tjm):这是指双向可控硅的额定工作温度,一般在110°C左右。

6.贮存温度(Tstg):这是指双向可控硅的贮存温度范围,一般在-55°C到150°C之
间。

7.门极触发电流(IGT)和门极触发电压(VGT):这是指触发双向可控硅所需要的
最小电流和电压值。

8.断态重复峰值电压(VDRM)和反向重复峰值电压(VRRM):这是指双向可控硅
在断态和反向工作状态下能够承受的最大电压峰值。

此外,还有通态峰值电压、维持电流等参数也是衡量双向可控硅性能的重要指标。

不同的型号和应用场合会有不同的参数要求,具体可查阅相关产品规格书或咨询专业人士。

可控硅型号与参数表

可控硅型号与参数表

可控硅型号与参数表描述一.可控硅简介可控硅是一种大功率电器元件,也称晶闸管。

它具有体积小、效率高、寿命长等优点。

在自动控制系统中,可作为大功率驱动器件,实现用小功率控件控制大功率设备。

它在交直流电机调速系统、调功系统及随动系统中得到了广泛的应用。

可控硅图结构、外形和图形符可控硅的三个电极分别叫阳极(A)、阴极(K)和控制极(G)。

当器件的阳极接负电位(相对阴极而言)时,从符号图上可以看出PN 结处于反向,具有类似二极管的反向特性。

当器件的阳极上加正电位时(若控制极不接任何电压),在一定的电压范围内,器件仍处于阻抗很高的关闭状态。

但当正电压大于某个电压(称为转折电压)时,器件迅速转变到低阻通导状态。

加在可控硅阳极和阴极间的电压低于转折电压时,器件处于关闭状态。

此时如果在控制极上加有适当大小的正电压(对阴极),则可控硅可迅速被激发而变为导通状态。

可控硅一旦导通,控制极便失去其控制作用。

就是说,导通后撤去栅极电压可控硅仍导通,只有使器件中的电流减到低于某个数值或阴极与阳极之间电压减小到零或负值时,器件才可恢复到关闭状态。

图3-30是可控硅的伏安特性曲线。

图中曲线I为正向阻断特性。

无控制极信号时,可控硅正向导通电压为正向转折电压(UB0);当有控制极信号时,正向转折电压会下降(即可以在较低正向电压下导通),转折电压随控制极电流的增大而减小。

当控制极电流大到一定程度时,就不再出现正向阻断状态了。

曲线Ⅱ为导通工作特性。

可控硅导通后内阻很小,管子本身压降很低,外加电压几乎全部降在外电路负载上,并流过比较大的负载电流,特性曲线与二极管正向导通特性相似。

若阳极电压减小(或负载电阻增加),致使阳极电流小于维持电流IH时,可控硅从导通状态立即转为正向阻断状态,回到曲线I状态。

曲线Ⅲ为反向阻断特性。

当器件的阳极加以反向电压时,尽管电压较高,但可控硅不会导通(只有很小的漏电流)。

只有反向电压达到击穿电压时,电流才突然增大,若不加限制器件就会烧毁。

DYNEX,SEMIKRON(西门康)IGBT模板各系列参数表

DYNEX,SEMIKRON(西门康)IGBT模板各系列参数表

三相整流桥+斩波+三相逆变桥+PTC
型号 SkiiP11NAB065V1 SkiiP14NAB065V1 三相逆变桥+PTC SkiiP14AC065V1 SkiiP26AC065V1 SkiiP27AC065V1
深圳德意志工业库存 295 283
基本参数 12A/600V 25A/600V
型号 SKiiP26NAB065V1 SKiiP38NAB065V1
SKM300GB126D SKM400GB126D
144 275
2单元,300A/1200V 2单元,400A/1200V
SKM400GB176D
标准系列(频率:4-12KHZ) 型号 SKM300GA123D SKM400GA123D SKM500GA123D SKM500GA123DS SKM400GA173D SKM75GB063D SKM100GB063D SKM145GB063DN SKM150GB063D SKM195GB063DN SKM200GB063D SKM300GB063D SKM75GB123D SKM100GB123D SKM145GB123D SKM150GB123D 深圳德意志工业库存 273 108 231 259 235 186 211 290 176 215 102 179 206 124 127 100 基本参数 1单元, 300A/1200V 1单元, 400A/1200V 1单元, 500A/1200V 1单元, 500A/1200V 1单元, 400A/1700V 2单元,75A/600V 2单元,100A/600V 2单元,145A/600V 2单元,150A/600V 2单元,195A/600V 2单元,200A/600V 2单元,300A/600V 2单元,75A/1200V 2单元, 100A/1200V 2单元, 145A/1200V 2单元, 150A/1200V 型号 SKM200GB123D SKM300GB123D SKM400GB123D SKM75GB173D SKM100GB173D SKM150GB173D SKM200GB173D SKM22GD123D SKM40GD123D SKM75GD123D SKM75GD123DL SKM40GD123D SKM75GD123D SKD40GA123D SKD75GA123D SKD100GA123D

y65kphot可控硅参数解读

y65kphot可控硅参数解读

y65kphot可控硅参数解读
(实用版)
目录
1.可控硅的基本概念与结构
2.可控硅的参数及其含义
3.y65kphot 型号可控硅的主要参数解读
4.y65kphot 型号可控硅的应用领域
5.结论
正文
一、可控硅的基本概念与结构
可控硅,全称为可控硅控整流器,是一种四层三端的半导体器件,具有电压控制的开关特性。

它主要由 p 型半导体、n 型半导体以及控制极组成,结构如图 1 所示。

可控硅广泛应用于交流调速、逆变器、斩波器、恒流源等领域。

二、可控硅的参数及其含义
可控硅的参数主要包括:额定电压、额定电流、控制极触发电流、动态响应特性等。

1.额定电压:可控硅在正向导通状态下,所能承受的最大电压。

2.额定电流:可控硅在正向导通状态下,所能承受的最大电流。

3.控制极触发电流:也称为门限电流,是指控制极电流达到一定值时,可控硅开始导通的最小电流。

4.动态响应特性:可控硅从关态到导态的切换速度。

三、y65kphot 型号可控硅的主要参数解读
y65kphot 型号可控硅是一款常见的可控硅型号,其主要参数如下:
1.额定电压:600V
2.额定电流:50A
3.控制极触发电流:50μA
4.动态响应特性:快速
四、y65kphot 型号可控硅的应用领域
y65kphot 型号可控硅广泛应用于工业控制、交流调速、逆变器、斩波器、恒流源等领域,具有较强的通用性和稳定性。

五、结论
可控硅作为一种重要的半导体器件,其参数对器件性能和应用范围具有重要影响。

可控硅输出光电耦合器选型参数表

可控硅输出光电耦合器选型参数表

可控硅输出光电耦合器选型参数表60.6A0.9A9A 1.2AAQ-H 可控硅输出光电耦合器可控硅光耦过零非过零0.6A 型0.3A 型过零非过零过零非过零过零非过零商品名称方式类型0.9A 型 1.2A 型2.1pF (typ )输入/输出间容量50G Ω以上输入/输出间绝缘电阻3.96.49.783.66.49.78DIP 8脚600V10mA 以下50V 以下−50V 以下−50V 以下−0.1ms 以下2.5V 以下5,000V AC −30℃〜+85℃0.3A输出端实效导通电流2A −1.5A −1A −0.9A −0.8A −0.7A −0.6A −0.5A −100μA 以下重复峰值关闭电流重复峰值关闭电压导通电压3A 6A12A浪涌导通电流LED 触发电流动作时间备注过零电压耐电压使用环境温度−40℃〜+125℃保存温度AQH0213AQH0223AQH1213AQH1223AQH3213AQH3223AQH2213AQH2223订购产品号50V 以下−标准P/C 板端子表面安装端子TOP VIEW50mA 6V 1A1.3V 以下(I F =20mA 时)输入端最大允许LED 电流LED 反向电压正向峰值电流LED 压降UL 、C-UL 、VDE0.56g −管装包装、盘装包装目录记载页P.40国外标准质量(重量)(约)选件7.627.626.42.542.548.31.91.52.542.542.54外形尺寸高度包括支架尺寸单位mm端子排列和印刷电路板加工图(BOTTOM VIEW )7可控硅输出光电耦合器选型参数表可控硅光耦4.3g2.7g4.3g2.7g商品名称方式类型A CD C输入端输出端安装方式最大允许负载电流20A −15A −10A −8A −5A −3A −2A −1A −负载电压漏电流浪涌导通电流额定操作电压(DC )输入阻抗(约)动作电压复位电压动作时间复位时间耐电压使用环境温度内置缓冲电路工作指示灯PC 板插入式面板安装端子排列和板料加工图(BOTTOM VIEW )国外标准质量(重量)(约)选件备注 4.524.520.54.524.513.52A 型非过零1A 型2A1A30A8A19.2〜28.8V 1.6k Ω19.2V 以下9.6〜14.4V 0.8k Ω9.6V 以下4〜6V 0.3k Ω4V 以下1ms 以下19.2〜28.8V 1.6k Ω19.2V 以下9.6〜14.4V 0.8k Ω9.6V 以下4〜6V 0.3k Ω4V 以下AQ-G 可控硅输出光电耦合器2A 型过零1A 型−75〜264V AC2A1AUL 、C-UL 、VDE插座※−−−−1.5mA 以下30A8A19.2〜28.8V 1.6k Ω19.2V 以下9.6〜14.4V 0.8k Ω9.6V 以下4〜6V0.3k Ω4V 以下19.2〜28.8V 1.6k Ω19.2V 以下9.6〜14.4V 0.8k Ω9.6V 以下4〜6V 0.3k Ω4V 以下1V 以上3,000V AC ●●−30℃〜+80℃ 周期+1ms 以下12/ 周期+1ms 以下12/2.5410.167.621.24.524.520.54.524.513.5外形尺寸高度包括支架尺寸单位mm8可控硅输出光电耦合器选型参数表商品名称方式类型输入端输出端安装方式最大允许负载电流负载电压漏电流浪涌导通电流额定操作电压(DC )输入阻抗(约)动作电压复位电压动作时间复位时间耐电压使用环境温度内置缓冲电路工作指示灯PC 板插入式面板安装端子排列和板料加工图(BOTTOM VIEW )国外标准质量(重量)(约)选件备注外形尺寸高度包括支架尺寸单位mm窄长型扁平型A CD C20A-15A-10A-8A-5A-3A-2A-1A-过零※13A 型—3A5mA 以下80A4〜32V —4V 以下1.0V 以上输入和输出间:4,000V AC 输入/输出和接地间:2,500VAC10A 型75〜250V—(要散热器)10A100A●—●——26g 散热器有非过零型 周期+1ms 以下12/ 周期+1ms 以下12/4- 1.225.412.75.087.622- 3.54- 1.225.45.087.6212344- 1.225.410.1612.7202012.79.11026331225335426窄长型AQ1可控硅输出光电耦合器光电晶体管、可控硅光耦1A (DC 输出)型—10〜200V 1A—2A (DC 输出)型3〜60V 2A1mA 以下5A (1sec.)3〜28V 1.6k Ω3V 以下0.8V 以上0.5ms 以下2ms 以下3,000V AC −30℃〜+80℃−30℃〜+80℃——●——19g —19g ——4- 1.425.412.75.087.62102633102633UL 、CSA 、※TUVUL 、C-UL 、VDE..9可控硅输出光电耦合器选型参数表商品名称方式类型输入端输出端安装方式最大允许负载电流负载电压漏电流浪涌导通电流额定操作电压(DC )输入阻抗(约)动作电压复位电压动作时间复位时间耐电压使用环境温度内置缓冲电路工作指示灯PC 板插入式面板安装端子排列和板料加工图(BOTTOM VIEW )国外标准质量(重量)(约)选件备注外形尺寸高度包括支架尺寸单位mm非过零3A 型2A 型3A 型75〜125V 75〜250V75〜125V 75〜250V75〜125V 75〜250V———3A3A2A5mA 以下5mA 以下5mA 以下80A30A80A 4〜6V 4〜6V 4〜6V 0.18k Ω0.3k Ω0.3k Ω4V 以下4V 以下4V 以下0.5V 以上0.5V 以上0.5V 以上1ms 以下9.8g6.8g9.8g9.6〜14.4V 21.6〜26.4V 1.2V 以上2.4V 以上1.2V 以下2.4V 以下1.2V 以上2.4V 以上1.2V 以上2.4V 以上9.6〜14.4V 21.6〜26.4V 9.6〜14.4V 21.6〜26.4V 9.6〜14.4V 21.6〜26.4V 0.55k Ω 1.4k Ω9.6V 以下21.6V 以下0.55k Ω9.6V 以下21.6V 以下0.8k Ω 1.8k Ω9.6V 以下21.6V 以下0.8k Ω 1.8k Ω9.6V 以下21.6V 以下A CD C20A-15A-10A-8A-5A-3A-2A-1A-AQ8可控硅输出光电耦合器可控硅光耦过零2A 型75〜125V 75〜250V—2A5mA 以下30A4〜6V 0.18k Ω4V 以下0.5V 以上3,000V AC −30℃〜+80℃●—●——UL 、CSA 、※TUV6.8g—— 周期+1ms 以下12/ 周期+1ms 以下12/7.62432112.7(30.48)4-0.810.165.08432112.7(27.94)4-0.8输入端子间5.08mm10.16输入端子间7.62mm924459324392445932431.4k Ω..10可控硅输出光电耦合器选型参数表商品名称方式类型输入端输出端安装方式最大允许负载电流负载电压漏电流浪涌导通电流额定操作电压(DC )输入阻抗(约)动作电压复位电压动作时间复位时间耐电压使用环境温度内置缓冲电路工作指示灯PC 板插入式面板安装端子排列和板料加工图(BOTTOM VIEW )国外标准质量(重量)(约)选件备注外形尺寸高度包括支架尺寸单位mmAQ-F 可控硅输出光电耦合器光电晶体管过零2A (AC 输出)型3A (AC 输出)型75〜250V 3〜28V 1.6k Ω3V 以下5mA 以下80A5mA 以下80A0.8V 以上2,000V AC ●−−●−+周期1ms 以下12/+周期1ms 以下12/2A3A35.22127.4A CD C40A −25A −20A −15A −10A −5A −2A −1A −−UL 、CSA 32g HC 端子台、插座−1mA 以下6A2A (DC 输出)型3A (DC 输出)型3〜60V −3〜28V 1.6k Ω3V 以下1mA 以下2A3A5A0.8V 以上2,000V AC −−−●−0.5ms 以下2ms 以下35.22127.4−75〜264V172838AQ-J 可控硅输出光电耦合器可控硅光耦过零※ 15A 型10A 型25A 型−5mA 以下10A(要散热器)(要散热器)100A10〜18V 18〜28V 4〜6V 0.26k Ω4V 以下0.8k Ω10V 以下30g带输入逆连接保护功能、有非过零型1.6k Ω18V 以下4V 以下10V 以下18V 以下4V 以下10V 以下18V 以下10〜18V 18〜28V 4〜6V 0.26k Ω0.8k Ω1.6k Ω10〜18V 18〜28V 4〜6V 0.26k Ω0.8k Ω1.6k Ω5mA 以下150A5mA 以下250A1V 以上输入和输出间:3,000V AC 、输入/输出和接地间:2,500V AC●−−−●周期+1ms 以下12/周期+1ms 以下12/15A(要散热器)25A散热器、DIN 导轨安装板UL 、C-UL 、TUV输入端子:#110插片输出端子:#250插片−30℃〜+80℃−30℃〜+80℃−30℃〜+80℃..11可控硅输出光电耦合器选型参数表商品名称方式类型输入端输出端安装方式最大允许负载电流负载电压漏电流浪涌导通电流额定操作电压(DC )输入阻抗(约)动作电压复位电压动作时间复位时间耐电压使用环境温度内置缓冲电路工作指示灯PC 板插入式面板安装端子排列和板料加工图(BOTTOM VIEW )国外标准质量(重量)(约)选件备注外形尺寸高度包括支架尺寸单位mm过零※AQ-J 可控硅输出光电耦合器可控硅光耦−−散热器一体型、有非过零型250g280g●(可用DIN 导轨进行安装)75〜264V5mA 以下100A250A100A 250A 1V 以上输入和输出间:3,000V AC 、输出和接地间:2,500V AC●−−−1ms 周期+以下12/1ms 周期+以下12/10A15A10A20AA CD C40A −25A −20A −15A −10A −5A −2A −1A −10A 型(输出构成:1a )20A 型(输出构成:1a )输入端子:#110插片输出端子:#250插片10A 型(输出构成:1a×2)15A 型(输出构成:1a×2)4〜6V 0.26k Ω4V 以下10〜18V 0.8k Ω10V 以下18〜28V 1.6k Ω18V 以下4〜6V 0.26k Ω4V 以下10〜18V 0.8k Ω10V 以下18〜28V 18V 以下4〜6V0.26k Ω4V 以下10〜18V 0.8k Ω10V 以下18〜28V 18V 以下4〜6V 0.26k Ω4V 以下10〜18V 0.8k Ω10V 以下18〜28V 1.6k Ω18V 以下−2- 4.6或M490±0.2611328100113281001.6k Ω 1.6k Ω−30℃〜+80℃输入端子:#110插片输出端子:#250插片12可控硅输出光电耦合器选型参数表商品名称方式类型输入端输出端安装方式最大允许负载电流负载电压漏电流浪涌导通电流额定操作电压(DC )输入阻抗(约)动作电压复位电压动作时间复位时间耐电压使用环境温度内置缓冲电路工作指示灯PC 板插入式面板安装端子排列和板料加工图(BOTTOM VIEW )国外标准质量(重量)(约)选件备注外形尺寸高度包括支架尺寸单位mm过零非过零AQ-A 可控硅输出光电耦合器可控硅光耦——70g●●75〜250V10mA 以下400A150A4〜32V 250A 1V 以上4V 以下—输入和输出间:4,000V AC 、输入/输出和接地间:2,500V AC●(LED 指示灯型)—— 周期+1ms 以下12/ 周期+1ms 以下12/40A15A25AA CD C40A −25A −20A −15A −10A −5A −2A −1A −15A 型25A 型40A 型—新−20℃〜+85℃散热器、DIN 安装板25.5405813可控硅输出光电耦合器选型参数表UL 、C-UL 、※TUV商品名称方式类型输入端输出端安装方式最大允许负载电流负载电压漏电流浪涌导通电流额定操作电压(DC )输入阻抗(约)动作电压复位电压动作时间复位时间耐电压使用环境温度内置缓冲电路工作指示灯PC 板插入式面板安装端子排列和板料加工图(BOTTOM VIEW )国外标准质量(重量)(约)选件备注外形尺寸高度包括支架尺寸单位mmAQ-K 可控硅输出光电耦合器可控硅光耦过零−4.5V 以下−−1002210225A 型15A 型75〜250V4.5〜30V9mA 以下/施加200V150A250A1V 以上2,500V AC/4,000V AC 周期+1ms 以下12/ 周期+1ms 以下12/15A25A−215g●●−−●(可用DIN 导轨安装)90.010.8A CD C40A −25A −20A −15A −10A −5A −2A −1A −−30℃〜+80℃..14可控硅输出光电耦合器选型参数表商品名称方式类型输入端输出端安装方式最大允许负载电流负载电压漏电流浪涌导通电流额定操作电压(DC )输入阻抗(约)动作电压复位电压动作时间复位时间耐电压使用环境温度内置缓冲电路工作指示灯PC 板插入式面板安装端子排列和板料加工图(BOTTOM VIEW )国外标准质量(重量)(约)选件备注外形尺寸高度包括支架尺寸单位mmAQ-C 可控硅输出光电耦合器光电晶体管──DC 输入型−1V 以上2,500V AC —0.5ms 以下AC 输入型4〜32V −−−−10V AC 以上20ms 以下20ms 以下80V AC 以下3V 以下25mA25mA5μA 以下12.8102012.820109.6〜14.4V21.6〜26.4V9.6〜14.4V 21.6〜26.4V9.6〜14.4V 21.6〜26.4V1.2k Ω2.8k Ω9.6V 以下21.6V 以下0.8k Ω 1.8k Ω9.6V 以下21.6V 以下1.2V 以上 2.4V 以上1.2V 以上2.4V 以上9.6V 以下21.6V 以下0.8k Ω 1.8k ΩA CD C20A-15A-10A-8A-5A-3A-2A-1A-可控硅光耦过零1A (AC 输出)型75〜125V 75〜250V—1A1.1mA 以下20A4〜6V 0.3k Ω4V 以下0.5V 以上非过零1A (AC 输出)型1A 4〜6V 0.3k Ω4V 以下0.5V 以上1ms 以下●—●——4.3g—光电晶体管—1A (DC 输出)型—3〜60V1A0.1mA 以下1.5A4〜6V 0.43k Ω4V 以下0.8V 以上0.5ms 以下1ms 以下— 周期+1ms 以下12/ 周期+1ms 以下12/10.167.627.6212.8102012.81020UL 、CSA 、※TUV80〜250V AC3〜32V 插座、接口终端(PC 终端)0.5ms 以下−30℃〜+80℃..15可控硅输出光电耦合器选型参数表商品名称方式类型输入端输出端安装方式最大允许负载电流负载电压漏电流浪涌导通电流额定操作电压(DC )输入阻抗(约)动作电压复位电压动作时间复位时间耐电压使用环境温度内置缓冲电路工作指示灯PC 板插入式面板安装端子排列和板料加工图(BOTTOM VIEW )国外标准质量(重量)(约)选件备注外形尺寸高度包括支架尺寸单位mm—插座13g UL 、CSA ——●●(带工作指示灯)●—−30〜+80℃4,000V AC 5ms 以下2ms 以下5ms 以下0.5ms 以下0.8V 以上0.8V 以上0.8V 以上—过零—DC 输入模块AC 输出模块DC 输出模块—75〜125V 75〜250V —4〜15V 10〜32V—3〜60V 10〜200V2A2A15mA1A100μA 以下5mA 以下1mA 以下—30A5A (1秒間)3〜32V 3〜15、4〜15、10〜32V— 1.6、1.7、5、6 k Ω3V 以下3V(4V)以下3V(4V)以下160〜280V AC—160V AC 以下A CD C20A-15A-10A-8A-5A-3A-2A-1A-I/O 输出光电耦合器光电晶体管—AC 输入模块80〜140V AC—20ms 以下20ms 以下— 周期+1ms 以下12/ 周期+1ms 以下12/5- 1.210.165.085.0812.7(33.02)4- 1.210.165.0812.7(27.94)1020.543104320.51020.5431020.54380V AC 以下10V AC 以上20V AC 以上。

可控硅选型手册

可控硅选型手册

1500 2.35
1000 2.19
1500 1.44
1500 1.41
1000 1.90
1500 1.18
1500 1.92
1500 2.37
1500 1.35
3000 2.51
1500 1.20
1500 1.73
1500 2.13
3000 1.94
1500 1.07
1500 1.90
3000 2.11
1500 1.52
3000 1.50
3000 1.71
6000 3.62
3000 1.85
VTO @ TVJM V 0.93 1.20 1.20 0.85 1.04 1.15 0.94 0.98 1.03 0.87 0.92 0.87 0.80 0.93 1.15 1.22 0.87 0.90 1.12 0.86 1.08 1.20 0.96 1.15 0.92 1.10 1.18 1.05 0.86 1.30 1.15 1.02 0.96 1.00 1.40 1.26
型号
TYPE
××=VRRM/100
IT (AV) @TC=70℃
A
VDR M VRR M
V
ITSM @TVJM &10ms
kA
KP300-xx
300
1200-1600
4.3
KP300-xx
300
4400-5200
5.5
KP300-xx
300
4800-6500
4.8
KP400-××
400
600-1200
1800-2200
7.1
KP700-xx
700
400-1200

调功器

调功器

调功器字体大小:大- 中- 小wangch7535发表于09-08-21 18:41 阅读(478) 评论(0)分类:BHC6M-2型三相可控硅调功调压器是运用数字电路触发可控硅实现调压和调功。

调压采用移相控制方式,调功有定周期调功和变周期调功两种方式。

该控制板带锁相环同步电路、自动判别相位、缺相保护、上电缓起动、缓关断、散热器超温检测、恒流输出、电流限制、过流保护、串行工作状态指示等功能。

该控制板的触发有两种方式:直接触发可控硅模块、触发移相型固态继电器BHC6M-2控制板的特点:十位A/D,输出线性化程度高,输出起控点低。

BHC6M-2系列三相电力调整器(说明书中简称BHC6M-2整机)由BHC6M-2触发板、BHC6M-2专用散热器、风机、外壳等组成。

核心部分使用BHC6M-2控制板与德国西门康可控硅模块;散热系统采用高效散热器、低噪音风机。

整机带有控制板所有的功能。

整机电流容量从40A到800A有7个等级。

该电力调整器与带0-5V、4-20mA的智能PID调节器或PLC配套使用;主要用与工业电炉的加热控制、大型风机水泵软启动节能运行控制、。

负载类型可以是三相阻性负载、三相感性负载及三相变压器负载;三相负载可以是中心接地负载、中心不接地负载、内三角形负载及外三角形负载。

如:盐浴炉、工频感应炉、淬火炉温控;热处理炉温控;玻璃生产过程温控;金刚石压机加热;大功率充磁/退磁设备;半导体工业舟蒸发源;航空电源调压;真空磁控溅射电源;中央空调电加热器温控;纺织机械;水晶石生产;粉末冶金机械;隧道电窑集散温控系统;彩色显像管生产设备;冶金机械设备;交直流电机拖动;石油化工机械;电压、电流、功率、灯光等无级平滑调节,恒压恒流恒功率控制等领域。

一.技术规格1.控制板电源与功耗电源:380V AC ±10% 50HZ, 要求与负载电源同相位(取线电压)功耗:5W最大外形尺寸:长×宽×高=175×150×40mm2.控制输入4~20mA DC输入, 接收阻抗120Ω(默认输入信号,输入端子C+、C-)以下三种输入定货时需说明(输入端子也是C+、C-):0~10V DC 输入, 输入电阻> 450KΩ0~5V DC 输入, 输入电阻> 450KΩ0~20mA DC 输入, 输入电阻> 450KΩ3.控制输出方式调压控制:连续调压调功控制:1、阻性过零调功;2、PWM占空比输出0~100%4.调节输出分辨率(采用十位A/D转换):调相0.1°,调功10ms规格:1组常开接点,1A 250V AC 纯阻输出端子:CN8-2、CN8-311.调功/调压切换(选件)外接开关U1端:CN9-3端子,GND端:CN9-4端子U1和GND短路:调压(出厂设置), 开路:调功12.串行状态发送(选件)电流环串行状态发送,配DDR-R串行状态接收器发送端子:SD+(CN9-1)、SD-(CN9-2)五种状态输出:运行、散热器超温、过流、缺相、控制板电源13.三相相位检测三个红色LED灯指示,自动判别相位红灯亮:相电压正常;红灯灭:相电压异常14.负载电源三相380V AC ±10% 50HZ15.负载电流容量40,80, 150, 225, 300A 400 500A AC16.风机电源电压:220V AC 电流:0.5 A以下17.工作环境和存储温度温度范围:0~40℃湿度范围:90% RH最大,无结露海拔高度:1000 m以下存储温度:-10~55℃其它要求:通风良好,不受日光直射或热辐射,无腐蚀性、可燃性气体18.安装形式和要求壁挂式,垂直安装19.绝缘电阻/介电强度绝缘电阻:模块输出端与外壳,500VDC 20MΩ最小控制板电源端与外壳,500VDC 20MΩ最小控制输入端与外壳,500VDC 20MΩ最小控制板输入端与电源端,500VDC 20MΩ最小介电强度:模块输出端与外壳之间,2000VAC 1分钟⑤DCT1功能说明A.是功能选件,若需要过流保护功能或者限流功能,都必须配DCT1(订货时声明)。

三相电力调整器使用说明

三相电力调整器使用说明

使用说明书磊强自动化Leiqiang Automatio三相功率控制器型号:LQ3000系列上海磊强实业有限公司目录使用注意项.................................11.产品特点.................................22.技术规格...............................2-33.装箱清单.................................44.产品选型及外形尺寸.......................45.订货说明.................................46.电路示意图及输出波形...................5-67.安装及使用须知...........................68.接假负载调试.............................69.接实际负载调试...........................710.控制板常见接线组合......................711.调试中的问题及故障排除................7-812.加热器特性..............................813.不同负载的控制策略......................914.LQ3000控制器的基本特性图示..............915.调功、调压一体化功能...................1016.安装尺寸............................10-111.使用注意事项1. 请不要用手触及电力调整器内部,以防触电。

2. 请不要堵塞散热器上方,不要让杂物进入散热器内部。

否则可能影响机器使用寿命。

3. 在切断电源后一段时间内。

电力调整器的散热器,铜排等有可能处于高温状态,故请不要触摸,以免烫伤。

系列智能型电力调整器LQ3000系列电力调整器是大功率晶闸管模块应用技术的新产品。

双向可控硅选型表

双向可控硅选型表

双向可控硅为什么称为“TRIAC”?三端:TRIode(取前三个字母)交流半导体开关:AC-semiconductor switch(取前两个字母)以上两组名词组合成“TRIAC”,或“TRIACs”中文译意“三端双向可控硅开关”。

由此可见“TRIAC”是双向可控硅的统称。

另:双向:Bi-directional(取第一个字母)控制:Controlled (取第一个字母)整流器:Rectifier (取第一个字母)再由这三组英文名词的首个字母组合而成:“BCR”,中文译意:双向可控硅。

以“BCR”来命名双向可控硅的典型厂家如日本三菱,如:BCR1AM-12、BCR8KM、BCR08AM等等。

--------------双向:Bi-directional (取第一个字母)三端:Triode (取第一个字母)由以上两组单词组合成“BT”,也是对双向可控硅产品的型号命名,典型的生产商如:意法ST公司、荷兰飞利浦-Philips公司,均以此来命名双向可控硅.代表型号如:PHILIPS 的 BT131-600D、BT134-600E、BT136-600E、BT138-600E、BT139-600E、、等。

这些都是四象限/非绝缘型/双向可控硅;Philips公司的产品型号前缀为“BTA”字头的,通常是指三象限的双向可控硅。

三象限的品种主要应用于电机电路、三相市电输入的电路、承受的瞬间浪涌电流高。

-------------------而意法ST公司,则以“BT”字母为前缀来命名元件的型号,并且在“BT”后加“A”或“B”来表示绝缘与非绝缘。

组成:“BTA”、“BTB”系列的双向可控硅型号,如:四象限、绝缘型、双向可控硅:BTA06-600C、BTA08-600C、BTA10-600B、BTA12-600B、BTA16-600B、BTA41-600、、、等等;四象限、非绝缘、双向可控硅:BTB06-600C、BTB08-600C、BTB10-600B、BTB12-600B、BTB16-600B、BTB41-600、、、等等;ST公司所有产品型号的后缀字母(型号最后一个字母)带“W”的,均为“三象限双向可控硅”。

西门康可控硅介绍

西门康可控硅介绍

SEMIPACK® Thyristor/Diode Modules Features•Modules with isolated baseplate and thyristor and/or diode chips for currents up to 1200A and reverse voltages up to 2200 V•Available as single component elements or as double packs with internal, functional interconnection •Case with copper baseplate in 7 sizesSEMIPACK® 0: 61 x 21 mm, module height 23.2 mm SEMIPACK® 1: 93 x 20 mm, module height 30 mmSEMIPACK® 2: 94 x 29 mm, module height 30 mmSEMIPACK® 3: 115 x 51 mm, module height 52 mm SEMIPACK® 4: 101 x 50 mm, module height 52 mm SEMIPACK® 5: 150 x 60 mm, module height 52 mm SEMIPACK® 6: 104 x 70 mm, module height 90 mm SEMITRANS® 4: 107 x 62 mm, module height 37 mm (fast, high-current modules SKKE 330F, SKKE 600F with CAL diodes)•Screw connections for power interconnect (SEMI-PACK® 0: Fast-on tabs)•Semiconductor chips soldered onto ceramic isolated metal baseplate (SEMIPACK® 0...2 and some SEMI-PACK® 3, SEMITRANS® 4 modules) or pressure con-tact modules (SEMIPACK® 3, 4, 5, 6) with very high load cycle capability•Optimum heat transfer to heat sink thanks to ceramic isolated metal baseplate with Al2O3 (SEMIPACK® 0, 1,2) or AlN (SEMIPACK® 3, 4, 5, 6) insulating substrateand copper baseplate•No hard mould (Exceptions: SEMIPACK® 0 and some SEMIPACK® 1 modules•Thyristor chips in SEMIPACK® 3...6 with amplifying gate to reduce the gate current•Fast diode modules with diodes in diffusion, Epitaxial and CAL (Controlled Axial Lifetime) technology up to 600 A and 1700 V•Insulation voltage up to 4 kVrms for 1 min., 4.8kV rms for 1 s•UL approval in accordance with UL1557, Reference no. E63532Technical ExplanationsThe terms in [ ] apply to thyristors onlyInsulation voltage V isolThe insulation voltage of SEMIPACK® modules is a gua-ranteed value for the insulation between the terminals and the baseplate. The limiting value 3.6kV rms specified for 1s is subject to 100 % production testing.All terminals - including the gate connections - must be interconnected during dielectric testing. All specifications for the final product's dielectric test voltage are described in the IEC publications IEC60146-1-1:1991 and EN60146-1-1:1994 Section 4.2.1 (=VDE0558 T1-1: 1993), EN 50178:11.1997 (= DIN EN50178 (VDE 0160): 1998, as well as in UL1557: 1997. For railway applications, for instance, please refer to the specificati-ons of the IEC61287-1 standard.Non-repetitive peak reverse voltage V RSM; [Non-repeti-tive peak off-state voltage V DSM]Maximum permissible value for non-repetitive, occasio-nally transient peak voltages.Repetitive peak reverse voltage V RRM [and off-state voltage V DRM]Maximum permissible value for repetitive transient off-state and reverse voltages.Direct blocking voltages V R, [V D] for continuous duty Maximum permissible direct reverse voltage for stationary operation for diodes (V R) [or thyristors (V D, V R)]. This value is 0.7 V RRM [0.7 V DRM].Mean forward [on-state] current I FAV, [I TAV]The symbols I FAV, [I TAV] are used to refer to both the mean current values in general and the current limits. The limi-ting values are absolute maximum continuous values for the on-state current load of a diode [thyristor] for a given current waveform and given cooling conditions (e.g. case temperature T c). At this current value, the maximum per-missible junction temperature is reached, with no margins for overload or worst-case reserves. The recommended maximum continuous current is therefore approximately 0.8 I TAV . For operation frequencies of between 40 Hz and 200 Hz the maximum mean on-state current can be taken from Fig. 1 of the datasheet. If standard diodes and thyri-stors (diodes/thyristors for line application) are operated at frequencies of between 200 Hz and 500 Hz, further cur-rent reductions should be carried out to compensate for the switching losses that are no longer negligible.RMS forward [on-state] current I FRMS, [I TRMS]The symbols I FRMS, [I TRMS] are used to refer to both the mean current values and the current limits. The limiting values are absolute maximum values for the continuous on-state current for any chosen current waveform and cooling conditions.Surge forward [on-state] current I FSM [I TSM]Crest value for a surge current in the form of a single sinu-soidal half wave which lasts for 10 ms. After occasional current surges with current values up to the given surge forward current, the diode [thyristor] can withstand the119120© by SEMIKRONreverse voltages specified in Fig. 8 or Fig. 16 of the data sheets.Surge current characteristics I F(OV), [I T(OV)]Crest values for full or part sinusoidal half wave currents lasting between 1 ms and 10 ms or for sequential sinusoi-dal half wave currents with a maximum duration of 10 ms,permissible under fault conditions only, i.e. the diode [thy-ristor] may only be subjected to this value occasionally;the controllability of a thyristor may be lost during over-load. The overload current depends on the off-state voltage value across the component (cf. Fig. 8 or Fig. 16of the data sheets).i 2t valueThis value is given to assist in the selection of suitable fuses to provide protection against damage caused by short circuits and is given for junction temperatures of 25°C and 125 °C. The i 2t value of the fuse for the intended input voltage and the prospective short circuit in the device must be lower than the i 2t of the diode [thyristor] for t =10ms. When the operating temperature increases, the i 2t value of the fuse falls more rapidly than the i 2 t value of the diode [thyristor], a comparison between the i 2t of the diode (thyristor) for 25 °C and the i 2t value of the (unloaded) fuse is generally sufficient.[Critical rate of rise of on-state current (di/dt)cr ]Immediately after the thyristor has been triggered, only part of the chips conducts the current flow, meaning that the rate rise of the on-state current has to be limited. The critical values specified apply to the following conditions:repetitive loads of between 50 and 60 Hz; a peak current value corresponding to the crest value of the permissible on-state current for sinusoidal half waves; a gate trigger current that is five times the peak trigger current with a rate of rise of at least 1 A/μs. The critical rate of rise for on-state current falls as the frequency increases, but rises as the peak on-state current decreases. For this reason, for fre-quencies >60 Hz and pulses with a high rate of rise of cur-rent, the peak on-state current must be reduced to values below those given in the datasheets.[Critical rate of rise of off-state voltage (dv/dt)cr ]The values specified apply to an exponential increase in off-state voltage to 0.66 V DRM . If these values are excee-ded, the thyristor can break over and self trigger.Direct reverse [off-state] current I RD [I DD ]Maximum reverse or off-state [for thyristors] current for the given temperature and maximum voltage. This value depends exponentially on the temperature.Direct forward [on-state] voltage V F [V T ]Maximum forward voltage across the main terminals for a given current at 25°C.Threshold voltage V (TO) [V T(TO)] and Forward [on-state] slope resistance r TThese two values define the forward characteristics (upper value limit) and are used to calculate the instanta-neous value of the forward power dissipation P F [P T ] or the mean forward power dissipation P FAV [P TAV ]:P F[T] = V T(TO) * I F[T] + r T * i 2F[T]P F[T]AV = V T(TO) * I F[T]AV + r T * I 2F[T]RMS I 2F[T]RMS / I 2F[T]AV = 360° / Θfor square-wave pulses I 2F[T]RMS / I 2F[T]AV = 2.5 orI 2F[T]RMS / I 2F[T]AV = (π/2)2 * 180° / Θfor [part] sinusoidal half waves Θ: Current flow anglei F[T]: Instantaneous forward current value I F[T]RMS : RMS forward [on-state] current I F[T]AV : Mean forward [on-state] current [Latching current I L ]Minimum anode current which at the end of a triggering pulse lasting 10 μs will hold the thyristor in its on-state. The values specified apply to the triggering conditions stipula-ted in the section on "Critical rate of rise of on-state cur-rent".[Holding current I H ]Minimum anode current which will hold the thyristor in its on-state at a temperature of 25 °C. If the thyristor is swit-ched on at temperatures below 25 °C, the values specified may be exceeded.Recovery charge Q rrQ rr is the total charge which flows through the main circuit (current-time area) during commutation against the reverse recovery time t rr . The corresponding characteristic in the datasheet shows this value's dependence on the forward current threshold value I FM [I TM ] before commuta-tion, as well as the forward current rate of fall di/dt (cf.Fig.1).Fig. 1 Current curve during diode/thyristor turn-off© by SEMIKRONModules – Explanations – SEMIPACK121The following relations exist between t rr , Q rr , the current fall time t f and the peak reverse recovery current I RM (cf.Fig. 1):t rr = I RM / (- di F[T]/dt) + t fI RM = 2 * Q rr / t rrIf the fall rate of the forward current I F [I T] is very low, t f will be small in comparison to t rrand the equations can be sim-plified as follows:Further details, in particular with regard to fast diode swit-ching, can be found in the section "Fast rectifier diodes"under "Diode turn-off".[Circuit commutated turn-off time t q ]The circuit commutated turn-off time lies in the range of several hundred μs and constitutes the time required for a thyristor to discharge to allow it to take on forward voltage again. This value is defined as the time that elapses bet-ween zero crossing of the commutation voltage and the earliest possible load with off-state voltage. In the case of thyristors for phase-commutated converters and a.c. con-verters, the circuit commutated turn-off time is usually of no significance. For this reason, the datasheets contain typical values only, and no guarantee is given for these values.[Gate trigger voltage V GT and Gate trigger current I GT ]Minimum values for square-wave triggering pulses lasting longer than 100 μs or for d.c. with 6 V applied to the main terminals. These values will increase if the triggering pul-ses last for less than 100 μs. For 10 μs, for instance, the gate trigger current I GT would increase at least by a factor of between 1.4 and 2. It´s recommended that firing circuits should therefore be arranged in such as way that trigger current values are 4 to 5 times larger than I GT . If the thyri-stor is loaded with reverse blocking voltage, no trigger voltage may be applied to the gate in order to avoid a non-permissible increase in off-state power losses and the for-mation of hot spots on the thyristor chip.[Gate non-trigger voltage V GD und Non-trigger current I GD ]These trigger voltage and current values will not cause the thyristor to fire within the permissible operating tempera-ture range. Inductive or capacitive interference in the trig-gering circuits must be kept below these values.[Time definitions for triggering]Fig. 2 shows the characteristics of gate trigger signal V Gand anode-cathode voltage V AK which define the time intervals for the triggering process.Fig. 2 Time definitions for thyristor triggering[Gate-controlled delay time t gd ]: Time interval between the start of a triggering pulse and the point at which the anode-cathode voltage falls to 90 % of its starting value.The datasheet specifies a typical value which is applica-ble, provided the following conditions are fulfilled:- Square-wave gate pulse, duration 100 μs - Anode-cathode starting voltage 0.5 V DRM- On-state current after firing approx. 0.1 I TAV @ 85 °C - Junction temperature during firing approx. 25 °C [Gate controlled rise time t gr ]: Period within which the anode-cathode voltage falls from 90 % to 10 % of its star-ting value during firing.[Gate current pulse duration t gt ]: The sum of the gate controlled delay time t gd and the gate controlled rise time t gr .Thermal resistances R th(x-y) and thermal impedances Z th(x-y)For SEMIPACK ® modules, thermal resistances/impedan-ces are given for the heat flow between points "x" and "y".The indices uses are as follows:j - junction c - case/baseplate s - sinkr - reference point a - ambientThe contact thermal resistance case to heatsink R th(c-s)applies provided the assembly instructions are followed. In such cases, the given dependences of the internal thermal resistance junction to case R th(j-c) on the current waveformand the current flow angle should take into account any deviations from the maximum instantaneous value of the mean junction temperature calculated. The values given in the datasheet tables apply to sinusoidal half waves only. Values for other current wave forms can be taken from Fig.7 of the datasheet.The thermal resistance junction to ambient R th(j-a) to be used in Fig. 1 and Fig.11 of the datasheet comprises the following components:R th(j-a) = R th(j-c) + R th(c-s) + N * R th(s-a)where N: the number of thyristors or diodes operating simultaneously on one heat sink.The thermal resistance R th(s-a) of the heat sink decreases as the following items increase: power dissipation, the cooling air flow rate, the number of SEMIPACK® modules mounted and the distance between the individual modu-les.The transient thermal impedances in the SEMIPACK®modules Z th(j-c) and Z th(j-s) are shown in the diagrams shown in Fig. 6 and Fig 14 of the datasheets as a function of the time t. For times > 1 s, the transient thermal impe-dance Z th(s-a) of the heat sink must be added to this in order to calculate the total thermal impedance. For this purpose, the datasheets for SEMIKRON heat sinks normally con-tain a diagram illustrating the given thermal impedance Z th(s-a) or Z th(c-a) as a function of the time t. When several components are being mounted on one heat sink, in order to calculate the transient thermal impedance of one com-ponent, the thermal heat sink impedance must be multip-lied by the total number of components N. TemperaturesThe most important referential value for calculating limiting values is the maximum permissible virtual junction tempe-rature T vj. At most in the event of a circuit fault (e.g. when a fuse is activated) may this value be exceeded briefly (cf. "Surge on-state current"). Another important reference point for the permissible current capability is the case tem-perature T c. In SEMIPACK® modules, the measuring point for T c (Reference point/Reference temperature T cref) is the hottest point of the baseplate beneath the hottest chip, measured through a hole in the heat sink. The heat sink temperature T s is of particular interest for defining power dissipation and heat sink. In SEMIPACK® modules the measuring point for T s (Reference point/Reference tempe-rature T sref) is the hottest point of the heat sink besides the baseplate, measured from above on the side wall of the module (cf. also IEC60747-1, Am. 1 to Am. 3 and IEC60747-15 cls.7.4.3).The permissible ambient conditions without current or voltage stress are described, among other things, by the maximum permissible storage temperature T stg. The para-meter T stg is also the maximum permissible case tempera-ture which must not be exceeded as a result of internal or external temperature rise.Mechanical limiting valuesThe limiting values for mechanical load are specified in the datasheets, e.g.:Mn : Max. tightening torque for terminal screws and faste-nersFt : Max. permissible mounting force (pressure force) forcapsule devicesa : Max. permissible amplitude of vibration or shock acce-leration in x, y and z direction.If SEMIPACK® modules with no hard mould are to be usedin rotating applications, the soft mould mass may comeaway and leak. Please contact SEMIKRON for there appli-cations.Application NotesThe terms in [ ] apply solely to thyristors.Voltage class selectionThe table below contains the recommended voltage class allocations for the repetitive peak reverse voltages V RRM,[V DRM ] of SEMIPACK® modules and (sample) rated ACinput voltage V VN (samples).As detailed in the technical explanations, the maximum permissible value for direct reverse voltages (continuousduty) across diodes (V R) [or thyristors (V D, V R)] in statio-nary operation is 0.7 V RRM [0.7 V DRM].Overvoltage protectionRC snubber circuits are often connected in parallel to thediode [thyristor] to provide protection from transient over-voltage, although in some cases varistors are used. Dueto the RC circuit the rate of rise of voltage is limited during commutation, which reduces the peak voltages across thecircuit inductors.For higher circuit requirements, the RC circuit designshould first be tested experimentally. The table below con-Rated AC voltage L-L Recommended peakreverse voltageV VN / V V RRM, [V DRM] / V60200125 400250 8003801200400 140044014004601600500 160057518006602200690 2200122123tains sample resistance and capacitance values recom-mended by SEMIKRON for standard line applications SEMIPACK ® ModulesOver-current and short circuit protectionIf short circuit protection is required for the diodes, [thyri-stors], (ultra fast) semiconductor fuses are used. These are to be dimensioned on the basis of the forward current and i 2t value.Other types of protection for high current circuits are, for example, fuses which isolate damaged diodes [thyristors]from the parallel connections. To protect components from statically non-permissible high overcurrents, it is possible to use magnetic or thermal overcurrent circuit breakers or temperature sensors on the heat sinks, although these do not detect dynamic overload within a circuit. For this rea-son, temperature sensors are used mainly with forced air cooling in order to prevent damage to the diodes [thyri-stors] in the event of fan failure.Permissible overcurrentsThe permissible forward currents for short-time or interme-diate operation, as well as for frequencies below 40 Hz are to be calculated on the basis of the transient thermal impe-dance or the thermal impedance under pulse conditions so that the virtual junction temperature T vj does not exceed the maximum permissible value at any time.Assembly instructionsIn order to ensure good thermal contact and to obtain the thermal contact resistance values specified in the datas-heets, the contact surface of the heat sink must be clean and free from dust particles, as well as fulfilling the follo-wing mechanical specifications:•Unevenness: < 20 μm over a distance of 100 mm •Roughness R Z : < 10 μmBefore assembly onto the heat sink, the module baseplate or the contact surface of the heat sink is to be evenly coated with a thin layer (approx. 50 μm) of a thermal com-V VN ≤ 250V V VN ≤ 400V V VN ≤ 500V V VN ≤ 660VSKK_15 (27)0.22μF 68Ω/ 6W 0.22μF 68Ω/ 6W0.1μF 100Ω/10W- -SKK_42...1060.22μF 33Ω/ 10W 0.22μF 47Ω/ 10W 0.1μF 68Ω/ 10W 0.1μF 100Ω/10WSKK_122...260 (on P3 heatsink)0.22μF33Ω/ 10W 0.22μF 47Ω/ 10W 0.1μF 68Ω/ 10W 0.1μF 100Ω/10W SKK_122 (260)(higher currents)0.47μF33Ω/ 25W 0.47μF 33Ω/ 25W 0.22μF 47Ω/ 25W 0.22μF 68Ω/ 50W pound such as Wacker-Chemie P 12 (silicon-based, 30 g tube: SEMIKRON ID No. 30106620). For even distribution we recommend using a hard rubber roller or a silk screen process. The SEMIPACK ® modules should be secured with the following DIN steel screws: M4 (SEMIPACK ® 0),M5 (SEMIPACK ® 1, 2, 4) or M6 (SEMIPACK ® 3, 5) (pro-perty class 8.8) in combination with suitable washers and spring lock washers or combination screws. When doing so, the torque value specified in the datasheet must be observed. The screws must be tightened in diagonal order with equal torque in several steps until the specified torque value M1 has been reached. We further recommend that the screws are retightened according to the given torque,value following a period of a few hours, as part of the heat sink compound may spread under the mounting pressure.For the electrical terminals, suitable screws, washers and spring lock washers or combination screws are to be used.We also recommend using contact rails for the power ter-minals in SEMIPACK ® modules. If connecting leads are used, suitable steps must be taken to prevent non-permis-sible tensile and shear stress on the power connections.Furthermore, the maximum and minimum thread reaches,which can be taken from the module drawings (see data sheets), and the permissible tightening torque values M2must be observed. When soldering flat plug connectors (using a grounded solder tool), a soldering temperature of T solder = 245 ± 5°C / <20sec. must be observed.All gate control cables must be kept as short as possible in order to minimise stray inductance and prevent electro-magnetic interference and oscillation from occurring. In the case of SEMIPACK ® thyristor modules with auxiliary cathode terminals, the gate and cathode control leads are to be twisted together, as far as possible.The tables below contain details on the contents of the mounting accessory kits for the respective SEMIPACK ®module (SEMIPACK ® 1...4).ContentsSEMIPACK ® 1for 12 modules SEMIKRON ID No.33403900Mounting screws 24 pcs M5x18 Z4-1 DIN 7984-8.8Connection screws 36 pcs M5x10 Z4-1 DIN 7985-4.8Plain washersPart of combi-screw Spring lock washers Part of combi-screwPush-on receptacles 48 pcs B2.8-1 for connec-tors 2.8x0.8mm Insulating sleeves48 pcs 6x3.5x20Contents SEMIPACK ® 2for 8 modulesSEMIKRON ID No.33404000Mounting screws 16 pcs M5x18 Z4-1 DIN7984-8.8Connection screws24 pcs M6x12 Z4-1 DIN7985-8.8Push-on receptacles32 pcs A2.8-0.25 for con-nectors 2.8x0.8mm Insulating caps Left and right, 8 pcs each15x9.8x6.8Contents SEMIPACK® 3for 3 modules SEMIKRON ID No.33404100Mounting screws12 pcs M5x18 Z4-1 DIN7984-8.8Connection screws9 pcs M8x16 Z4-1 DIN 933-8.8Plain washers Part of combi-screw Spring lock washers Part of combi-screwPush-on receptacles12 pcs A2.8-0.25 for con-nectors 2.8x0.8mm Insulating caps Left and right, 3 pcs each15x9.8x6.8Contents SEMIPACK® 4for 3 modules SEMIKRON ID No.33404500Mounting screws12 pcs M5x18 Z4-1 DIN7984-8.8Connection screws Threaded pin, 6 pcsM10x50 DIN 916-45 H Spring lock washers 6 x conical spring washersA10 DIN 6796Hex nut 6 pcs M10 DIN 934Push-on receptacles 6 pcs A2.8-0.25 for connec-tors 2.8x0.8 mm Insulating caps 3 pcs right SEMIPACK®: Thyristor/Diode Modules with Thyristor and Diodes for Line ApplicationType Designation Systemn o p q r s tSK K T430/22E H4n SEMIKRON componento Internal connectionE: Single elementK: followed by D, H, L or T = Series connection with centre tap (phase leg)followed by Q = Anti parallel connection (AC controller) followed by E = Single diodeM: Centre-tapped connection, common cathodeN: Centre-tapped connection, common anodep Functional elements and configurationD: All elements diodesE: Single diodeH: Thyristor (cathode-side) + diodeL: Thyristor (anode-side) + diodeQ: Anti-parallel thyristorsT: All elements thyristorsq Rated current (I TAV [A])r Voltage class (V RRM [V]/100)s dv/dt classD: 500 V/μsE: 1000 V/μst Option, where applicable, e.g. H4 = V isol 4,8 kV/1s Captions of the FiguresSEMIPACK® thyristor modulesFig. 1Left: Power dissipation P TAV as a function of the mean on-state current I TAV for d.c. (cont.), sinusoidal half waves (sin. 180) and square-wave pulses (rec. 15...180) for a sin-gle thyristor (typical values)Right: Max. permissible power dissipation P TAV as a function of the ambient temperature T a (temperature of the cooling air flow) for the total thermal resistances (junction to ambient air) R th(j-a) (typical values)Fig. 2Left: Total power dissipation P TOT of a SEMIPACK®module used in an a.c. controller application (W1C a.c.124converter) as a function of the maximum rated rms current I RMS at full conduction angle (typical values)Right: Max. permissible power dissipation P TOT and resul-tant case temperature T c as a function of the ambient tem-perature T a; Parameter: Heatsink thermal resistance case to ambient air R th(c-a) (including the total contact thermal resistance 1/2 R th(c-s) between a SEMIPACK® module and the heat sink. For the power dissipation given on the l.h.s vertical, the case temperatures given on the r.h.s. vertical are permissibleFig. 3Left: Total power dissipation P TOT of 2 SEMIPACK®modules in a two-pulse bridge connection (B2C) as a function of the output direct current I D at full conduction angle for resistive (R) and inductive (L) load (typical values)Right: Max. permissible power dissipation P TOT and resul-tant case temperature T c as a function of the ambient tem-perature T a; Parameter: Heatsink thermal resistance case to ambient air R th(c-a) (including the total contact thermal resistance 1/4 R th(c-s) between a SEMIPACK® module and the heat sink. For the power dissipation given on the l.h.s vertical, the case temperatures given on the r.h.s. vertical are permissibleFig. 4Left: Total power dissipation P TOT of 3 SEMIPACK®modules in a six-pulse bridge connection (B6C) or in an a.c. controller connection (W3C) as a function of the direct output current I D at full conduction angle resistive (R) and inductive (L) load (typical values)Right: Max. permissible power dissipation P TOT and resul-tant case temperature T c as a function of the ambient tem-perature T a; Parameter: Heatsink thermal resistance case to ambient air R th(c-a) (including the total contact thermal resistance 1/6 R th(c-s) of a SEMIPACK® module and the heat sink. For the power dissipation given on the l.h.s ver-tical, the case temperatures given on the r.h.s. vertical are permissibleFig. 5 Typical recovery charge Q rr for the max. permissible junction temperature as a function of the rate of fall of the forward current -di T/dt during turn-off, Parameter: Peak on-state current I TM before commutationFig. 6 Transient thermal impedances junction to case Z th(j-c) and junction to sink Z th(j-s) for d.c. as a function of thetime t elapsed after a step change in power dissipation, for a single thyristorFig. 7 Forward characteristics: on-state voltage V T as a function of the on-state current I T; typical and maximum values for T vj = 25 °C and T vjmaxFig. 8 Surge current characteristics: Ratio of permissible overload on-state current I T(OV) for 10 ms to surge on-state current I TSM, shown as a function of the load period t; Para-meter: Ratio V R / V RRM of the reverse voltage V R between the sinusoidal half waves, to the peak reverse voltage V RRM Fig. 9 Gate voltage V G as a function of the gate current I G, indicating the regions of possible (BMZ) and certain (BSZ) triggering for various virtual junction temperatures T vj. The current and voltage values of the triggering pulses must lie within the range of certain (BSZ) triggering, but the peak pulse power P G must not exceed that given for the pulse duration t p. Curve 20 V; 20 Ω is the output characteristic of suitable trigger equipment.SEMIPACK® diode modulesFig. 11Left: Mean power dissipation P FAV as a function of the mean continuous forward current I FAV for d.c. (cont.), sinu-soidal half waves (sin. 180) and square-wave pulses (rec.15...180) for a single diode (typical values)Right: Max. permissible power dissipation P FAV as a function of the ambient temperature T a (temperature of the cooling air flow) for different total thermal resistances (junction to ambient air) R thja (typical values)Fig. 12Left: Total power dissipation P TOT of 2 SEMIPACK®modules in a two-pulse bridge connection (B2C) as a function of the output direct current I D (typical values) Right: Max. permissible power dissipation P TOT and resul-tant case temperature T c as a function of the ambient tem-perature T a; Parameter: Heatsink thermal resistance case to ambient air R th(c-a) (including the total contact thermal resistance 1/4 R th(c-s) between a SEMIPACK® module and the heat sink. For the power dissipation given on the l.h.s vertical, the case temperatures given on the r.h.s. vertical are permissibleFig. 13Left: Total power dissipation P TOT of 3 SEMIPACK®modules in a six-pulse bridge connection (B6C) as a function of the direct output current I D (typical values) Right: Max. permissible power dissipation P TOT and resul-tant case temperature T c as a function of the ambient tem-perature T a; Parameter: Heatsink thermal resistance case to ambient air R th(c-a) (including the total contact thermal resistance 1/6 R th(c-s) between a SEMIPACK® module and the heat sink. For the power dissipation given on the l.h.s vertical, the case temperatures given on the r.h.s. vertical are permissibleFig. 14 Transient thermal impedances junction to case Z th(j-c) and junction to heat sink Z th(j-s) of a single diode for d.c. as a function of the time t elapsed after a step change in power dissipationFig. 15 Forward characteristics: forward voltage V F as a function of the forward current I F; typical and maximum values for T vj = 25 °C and T vjmaxFig. 16 Surge current characteristics: Ratio of permissible overload on-state current I T(OV) to surge on-state current I TSM for 10 ms as a function of the load period t; Parameter: Ratio V R / V RRM of the reverse voltage V R between the sinusoidal half waves, to the peak reverse voltage V RRM125。

双向可控硅调压电路元器件的选择

双向可控硅调压电路元器件的选择

双向可控硅(bidirectional controlled silicon, BCR)调压电路是一种常见的电子调压电路,它能够实现直流电压的调节和控制。

在设计双向可控硅调压电路时,选择合适的元器件对于电路的性能和稳定性至关重要。

本文将针对双向可控硅调压电路元器件的选择进行详细讨论。

一、双向可控硅双向可控硅是一种半导体器件,具有双向触发功能,能够进行正、负向的电压调节。

它的主要特点包括触发电压低、响应速度快、耐绝缘能力强等。

在双向可控硅调压电路中,合适的双向可控硅能够有效提高电路的稳定性和可靠性。

二、双向可控硅调压电路元器件的选择1. 双向可控硅在选择双向可控硅时,需要考虑其额定电压和电流、触发电压、耐压能力等参数。

一般来说,选择额定电压和电流略大于实际需要的数值,以确保电路能够正常工作并具有一定的过载能力。

2. 电容器电容器在双向可控硅调压电路中起着滤波和稳压的作用。

选择电容器时,需要考虑其电压等级、容量、频率响应等参数。

合适的电容器能够减小电路的波纹电压和干扰,提高电路的稳定性。

3. 电感电感也是双向可控硅调压电路中常用的元器件之一,主要用于滤波和能量存储。

选择电感时,需要考虑其电流、电感值、耐压能力等参数。

合适的电感能够减小电路的电磁干扰和输出波纹,并提高电路的效率。

4. 整流二极管整流二极管用于将交流电转换为直流电,并起着保护电路的作用。

在选择整流二极管时,需要考虑其额定电压、电流、反向漏电流等参数。

合适的整流二极管能够有效减小功率损耗和提高电路的效率。

5. 电阻电阻用于限流和分压,是双向可控硅调压电路中不可或缺的元器件。

在选择电阻时,需要考虑其阻值、功率、稳定性等参数。

合适的电阻能够确保电路的稳定性和安全性。

6. 负载负载是双向可控硅调压电路中直接影响输出性能的元器件,包括电机、灯泡、电炉等。

在选择负载时,需要考虑其功率、阻抗、响应速度等参数。

合适的负载能够确保电路的输出稳定并能够适应不同的工作环境。

双向可控硅选型表(可编辑修改word版)

双向可控硅选型表(可编辑修改word版)

双向可控硅为什么称为“TRIAC”?三端:TRIode(取前三个字母)交流半导体开关:AC-semiconductor switch(取前两个字母)以上两组名词组合成“TRIAC”,或“TRIACs”中文译意“三端双向可控硅开关”。

由此可见“TRIAC”是双向可控硅的统称。

另:双向:Bi-directional(取第一个字母)控制:Controlled (取第一个字母) 整流器:Rectifier (取第一个字母)再由这三组英文名词的首个字母组合而成:“BCR”,中文译意:双向可控硅。

以“BCR”来命名双向可控硅的典型厂家如日本三菱,如:BCR1AM-12、BCR8KM、BCR08AM 等等。

双向:Bi-directional (取第一个字母)三端:Triode (取第一个字母)由以上两组单词组合成“BT”,也是对双向可控硅产品的型号命名,典型的生产商如:意法ST 公司、荷兰飞利浦-Philips 公司,均以此来命名双向可控硅.代表型号如:PHILIPS 的BT131-600D、BT134-600E、BT136-600E、BT138-600E、BT139-600E、、等。

这些都是四象限/非绝缘型/双向可控硅;Philips 公司的产品型号前缀为“BTA”字头的,通常是指三象限的双向可控硅。

三象限的品种主要应用于电机电路、三相市电输入的电路、承受的瞬间浪涌电流高。

而意法ST 公司,则以“BT”字母为前缀来命名元件的型号,并且在“BT”后加“A”或“B”来表示绝缘与非绝缘。

组成:“BTA”、“BTB”系列的双向可控硅型号,如:四象限、绝缘型、双向可控硅:BTA06-600C、BTA08-600C、BTA10-600B、BTA12-600B、、、等等;BTA16-600B、BTA41-600、四象限、非绝缘、双向可控硅:BTB06-600C、BTB08-600C、BTB10-600B、BTB12-600B、、、等等;BTB16-600B、BTB41-600、ST 公司所有产品型号的后缀字母(型号最后一个字母)带“W”的,均为“三象限双向可控硅”。

可控硅的挑选方法

可控硅的挑选方法

一、单向可控硅工作原理可控硅导通条件:一是可控硅阳极A与阴极B间必须加正向电压,二是控制极也要加正向电压。

以上两个条件必须同时具备,可控硅才会处于导通状态。

另外,可控硅一旦导通后,即使降低控制极电压或去掉控制极电压,可控硅仍然导通。

可控硅关断条件:降低或去掉加在可控硅阳极至阴极之间的正向电压,使阳极电流小于最小维持电流以下。

二、单向可控硅的引脚区分对可控硅的引脚区分,有的可从外形封装加以判别,如外壳就为阳极,阴极引线比控制极引线长。

从外形无法判断的可控硅,可用万用表R×100或R×1K挡,测量可控硅任意两管脚间的正反向电阻,当万用表指示低阻值(几百欧至几千欧的范围)时,黑表笔所接的是控制极G,红表笔所接的是阴极C,余下的一只管脚为阳极A。

三、单向可控硅的性能检测可控硅质量好坏的判别可以从四个方面进行。

第一是三个PN结应完好;第二是当阴极与阳极间电压反向连接时能够阻断,不导通;第三是当控制极开路时,阳极与阴极间的电压正向连接时也不导通;第四是给控制极加上正向电流,给阴极与阳极加正向电压时,可控硅应当导通,把控制极电流去掉,仍处于导通状态。

用万用表的欧姆挡测量可控硅的极间电阻,就可对前三个方面的好坏进行判断。

具体方法是:用R×1k或R×10k 挡测阴极与阳极之间的正反向电阻(控制极不接电压),此两个阻值均应很大。

电阻值越大,表明正反向漏电电流愈小。

如果测得的阻值很低,或近于无穷大,说明可控硅已经击穿短路或已经开路,此可控硅不能使用了。

用R×1k或R×10k挡测阳极与控制极之间的电阻,正反向测量阻值均应几百千欧以上,若电阻值很小表明可控硅击穿短路。

用R×1k或R×100挡,测控制极和阴极之间的PN结的正反向电阻在几千欧左右,如出现正向阻值接近于零值或为无穷大,表明控制极与阴极之间的PN结已经损坏。

反向阻值应很大,但不能为无穷大。

可控硅的主要参数

可控硅的主要参数
在室温下,阳极和阴极间加6V电压时,使可控硅从截止变为完全导通所需的最小控制极直流电压。
四、单向可控硅管的参数_控制极触发电流IGT
在室温下,阳极和阴极间加6V电压时,使可控硅从截止变为完全导通所需的控制极最小直流电流。
五、单向可控硅参数_断态重复峰值电压UPFV
在控制极断开和正向阻断的条件下,阳极和阴极间可重复施加的正向峰值电压。其数值规定为断态下重复峰值电压UPSM的80%。
0.8A
电压-VDRM:
≥600V
触发电流:
IGT:
5~15 uA
IGT:
30~60 uA元件.
型号MCR100-8
电流
0.8(A)
电压600(V)
触发电流10-60u(A)
结温110(℃IGT:
10~30 uA
在环境温度为+40℃及规定的散热条件、纯电阻负载、元件导通角大于己于170°电角度时,可控硅所允许的单相工频正弦半波电流在一个周期内的最大平均值。
二、单向可控硅管的参数_通态平均电压UT(AV)
在规定环境、温度散热条件下,元件通以额定通态平均电流,结温稳定时,阳极和阴极间电压平均值。三、单向可控硅参数_控制极触发电压UGT
可控硅的主要参数
可控硅的主要参数:
1额定通态电流(IT)即最大稳定工作电流,俗称电流。常用可控硅的IT一般为一安到几十安。
2反向重复峰值电压(VRRM)或断态重复峰值电压(VDRM),俗称耐压。常用可控硅的VRRM/VDRM一般为几百伏到一千伏。
3控制极触发电流(IGT),俗称触发电流。常用可控硅的IGT一般为几微安到几十毫安。
如果通过的正向电流小于此值,可控硅就不能继续保持导通而自行截止。
参数符号说明:

西门康604GB12T4S可控硅针脚定义

西门康604GB12T4S可控硅针脚定义

西门康604GB12T4S可控硅针脚定义
西门康可控硅针脚有三个脚,K/T1/T2三个极,G极是控制极,T1T2都称为主电极。

西门康可控硅针脚直接由交流220v变直流24v 不合适,因为这样西门康可控硅针脚的导通角就要非常小,内因此输容出的直流脉动非常大,不适合一般电子电器电路的使用。

理想的办法是先用一个变压器降压,再整流,具体采用什么电路还要看需要:
1)对波形有没有要求—考虑滤波;
2)对电压的稳定有没有要求—考虑稳压;
3)是否要调压并且电流多大—考虑用什么元件,小电流的用普通三极管,大电流考虑用西门康可控硅针脚,总之要考虑的方面很多。

黑表笔(正极)接k端,红表笔(负极),阻值为无穷大,表笔反过来阻值为零。

G极电阻档接k、A极阻值一大一小,属正常西门康可控硅针脚。

G极加接0.7一1.5伏电源,可作导通试验k、A端即导通(电阻档测得丶零欧姆)。

西门康可控硅针脚分单向西门康可控硅针脚和双向西门康可控硅针脚两种,都是三个电极。

单向西门康可控硅针脚有阴极(K)、阳极(A)、控制极(G)。

双向西门康可控硅针脚等效于两只单项西门康可控硅针脚反向并联。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SKM300GB174D
300A/1700V/2U
SKM200GAR123D
200A/1200V/2U
SKM50GAL123D
50A/1200V/2U
SKM300GAR123D
300A/1200V/2U
SKM75GAL123D
75A/1200V/2U
SKM400GAR124D
400A/1200V/2U
150A/1200V/2U
SKM400GAL124D(125D)
400A/1200V/2U
SKM200GB123D(124D)
200A/1200V/2U
SKM100GAL173D
100A/1700V/2U
SKM300GB123D(124D)
300A/1200V/2U
SKM145GAL174DN
145A/1700V/2U
SKKT131/12(16)E
130A/1200V(1600V)/2U
SKKQ31/12(16)
31A/1200V(1600V)双相反并联2U
SKKT132/12(16)E
130A/1200V(1600V)/2U
SKKQ45/12(16)
45A/1200V(1600V)双相反并联2U
型号(半控)
技术指标
西门康可控硅系列
西门康可控硅模块(SKKT=两可控硅串联,SKKH=二极管+高端可控硅,SKKL=低端可控硅+二极管)
型号(全控)
技术指标
型号(全控)
技术指标
SKKT15/12(16)E(D)
15A/1200V(1600V)/2U
SKKT161/12(16)E
160A/1200V(1600V)/2U
20A/1200V(1600V)/2U
SKKL161/12(16)E
160A/1200V(1600V)/2U
SKKL26(27)/12(16)E(D)
25A/1200V(1600V)/2U
SKKL162/12(16)E
160A/1200V(1600V)/2U
SKKL41(42)/12(16)E(D)
SKKT213/12(16)E
230A/1200V(1600V)/2U
SKKT41(42)/12(16)E(D)
40A/1200V(1600V)/2U
SKKT250/12(16)E
250A/1200V(1600V)/2U
SKKT56(57)/12(16)E(D)
55A/1200V(1600V)/2U
500A/1200V(1600V)/2U
SKKT92B/12/16E
SKET330/12(16)E
330A/1200V(1600V)单管可控硅
SKKT105(106)/12(16)E(D)
115A/1200V(1600V)/2U
SKET400/14(16)E
400A/1400V(1600V)单管可控硅
型号(2单元1200/1700V)IGBT
技术指标
批价(元)
型号(2单元1200/1700V)IGBT
技术指标
SKM50GB123D
50A/1200V/2U
SKM145GAL123D(124D)
145A/1200V/2U
SKM75GB123D(124D)
75A/1200V/2U
SKM150GAL123D
型号(6单元1200V)IGBT
技术指标
SKM22GD123D
22A/1200V/6U
SKM100GD123D
100A/1200V/6U
SKM40GD123D(124D)
40A/1200V/6U
SEMIX403GB128D
SKM75GD123D(124D)
75A/1200V/6U
SEMIX553UB128DC
SKM75GB124D、SKM75GB125D、SKM75GB126D、SKM75GB128D
SKM100GB123D、SKM100GB124D、SKM100GB125D、SKM100GB126D、SKM100GB128D
SKM150GB123D、SKM150GB124D、SKM150GB125D、SKM150GB126D、SKM150GB128D
SKM400GB123D(124D)
400A/1200V/2U
SKM200GAL173D
200A/1700V/2U
SKM75GB173D
75A/1700V/2U
SKM200GAR173D
200A/1700V/2U
SKM100GB173D
100A/1700V/2U
SKM75GAR123D
75A/1200V/2U
70A/1200V(1600V)/2U
SKKL250/12(16)E
250A/1200V(1600V)/2U
SKKL91(92)/12(16)E(D)
90A/1200V(1600V)/2U
SKKL253/12(16)E
250A/1200V(1600V)/2U
SKKL105(106)/12(16)E
116A/1200V(1600V)/2U
SKKT253/12(16)E
250A/1200V(1600V)/2U
SKKT71(72)/12(16)E(D)
70A/1200V(1600V)/2U
SKKT330/12(16)E
330A/1200V(1600V)/2U
SKKT91(92)/12(16)E
90A/1200V(1600V)/2U
SKKT500/12(16)E
SKM200GB123D、SKM200GB124D、SKM200GB125D、SKM200GB126D、SKM200GB128D
SKM300GB123D、SKM300GB124D、SKM300GB125D、SKM300GB126D、SKM300GB128D
SKM400GB123D、SKM400GB124D、SKM400GB125D、SKM400GB126D、SKM400GB128D。
小功率模块,安装简便,可灵活选择焊接型(SEMITOP)或压接型(MIISKIIP),具备多种整流、逆变封装,搭配自由。低热阻、高功率密度、散热好。适用于智能变频设备(变频空调、变频器、变频冰箱等)。
SK80GM063
SK40GB123
SK50GB065
SK60GB123
SK50GARL065
SK20NHMH08
SKKH26(27)/12(16)E(D)
25A/1200V(1600V)/2U
SKKH161/12(16)E
160A/1200ቤተ መጻሕፍቲ ባይዱ(1600V)/2U
SKKH41(42)/12(16)E(D)
40A/1200V(1600V)/2U
SKKH162/12(16)E
160A/1200V(1600V)/2U
SKKH56(57)/12(16)E(D)
55A/1200V(1600V)/2U
SKKH210/12(16)E
210A/1200V(1600V)/2U
SKKH71(72)/12(16)E(D)
70A/1200V(1600V)/2U
SKKH213/12(16)E
230A/1200V(1600V)/2U
型号(半控)
技术指标
SKKH15/12(16)E(D)
15A/1200V(1600V)/2U
SKKH131/12(16)E
130A/1200V(1600V)/2U
SKKH20/12(16)E(D)
20A/1200V(1600V)/2U
SKKH132/12(16)E
130A/1200V(1600V)/2U
SKBT40/12(14)
40A/1200V(1400V)/单相全控桥
SKDL100/12(16)
100A/1200V(1600V)/三相半控桥
SKBH28/12(14)
30A/1200V(1400V)/单相半控桥
SKDT60/12(16)
60A/1200V(1600V)/三相全控桥
SKBZ28/12(14)
SKM75GB063D
SKM100GAL123D
100A/1200V/2U
SKM100GB063D
100A/600V/2U
SKM145GB063DN
SKM300GB063D
300A/600V/2U
SKM195GB063DN
SKM195GAL063DN
型号(6单元1200V)IGBT
技术指标
批价(元)
西门康IGBT模块系列
西门康IGBT模块
型号(1单元1200V)IGBT
技术指标
批价(元)
型号(1单元1700V)IGBT
技术指标
SKM152GA123
150A/1200V/1U
SKM300GA173D
300A/1700V/1U
SKM200GA123D
200A/1200V/1U
SKM400GA173D
40A/1200V(1600V)/2U
SKKL210/12(16)E
210A/1200V(1600V)/2U
SKKL56(57)/12(16)E(D)
55A/1200V(1600V)/2U
SKKL213/12(16)E
210A/1200V(1600V)/2U
SKKL71(72)/12(16)E(D)
30A/1200V(1400V)/单相1臂可控
SKDT100/12(16)
100A/1200V(1600V)/三相全控桥
SKCH28/12(14)
30A/1200V(1400V)/半控+续流二极管
相关文档
最新文档