人教版高中数学必修一《方程的根与函数的零点》教学设计(省一等奖)
《方程的根与函数的零点》一等奖说课稿
《方程的根与函数的零点》一等奖说课稿《《方程的根与函数的零点》一等奖说课稿》这是优秀的说课稿文章,希望可以对您的学习工作中带来帮助!1、《方程的根与函数的零点》一等奖说课稿各位评委老师,各位同事,下午好!我是来自,今天我说课的题目是《方程的根与函数的零点》第一课时,选自人教版《普通高中课程标准实验教科书》A版必修1第三章第一节。
下面我将从教材分析、教学目标分析、重难点分析、教法与学法分析、教学过程设计五个方面来进行阐述。
【教材分析】函数是中学数学的核心概念,核心的原因之一就在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。
本节课是在学生学习了基本初等函数及其相关性质,具备初步的数形结合的能力基础之上,利用函数图象和性质来判断方程的根的存在性及根的个数,从而掌握函数在某个区间上存在零点的判定方法,为下节“用二分法求方程的近似解”和后续学习奠定基础。
因此本节内容具有承前启后的作用,地位至关重要.【教学目标分析】根据本节课的教学内容以及新课标对本节课的教学要求,结合以上对教材以及学情的分析,我制定以下教学目标:知识与技能目标:理解方程的根与函数零点之间的关系,学会函数零点存在的判定方法,理解利用函数单调性判断函数零点的个数。
过程与方法目标:经历“类比——归纳——应用”的过程,培养学生分析问题探究问题的能力,感悟由具体到抽象的研究方法,培养学生的归纳概括能力。
能力与情感目标:培养学生自主探究,合作交流的能力,激发学生的学习兴趣并培养学生严谨的.科学态度。
【重难点分析】教学重点:判定函数零点的存在及其个数的方法。
教学难点:探究发现函数零点的存在性,及利用函数的图像和性质判别函数零点的个数。
【教法分析和学法指导】结合本节课的教学内容和学生的认知水平:在教法上,我借助多媒体和几何画板软件,采用“启发—探究—讨论”的教学模式。
充分发挥教师的主导作用,引导、启发、充分调动学生学习的主动性,让学生真正成为教学活动的主体。
全国一等奖方程的根与函数的零点教学设计
全国一等奖方程的根与函数的零点教学设计教学设计:全国一等奖方程的根与函数的零点一、教学目标:1.知识目标:学生能够理解方程的根与函数的零点的含义,并能够熟练求解方程和函数的零点。
2.能力目标:培养学生运用方程的根和函数的零点解决实际问题的能力。
3.情感目标:激发学生对数学的兴趣和学习的积极态度。
二、教学内容:1.方程的根与函数的零点的定义和概念。
2.求解一次方程和一元二次方程的方法。
3.求解函数的零点的方法。
4.实际问题中方程和函数零点的应用。
三、教学过程:第一步:导入新内容(10分钟)1.引导学生回顾方程的定义和相关概念。
2. 展示一些实际问题,如:“小明从家到学校的路程是10公里,他骑自行车速度为10km/h,求他从家到学校需要多长时间?”第二步:引入方程的根(10分钟)1.解释方程的根与方程的解的关系。
2.给出一些示例方程,如:“x+5=10”,引导学生找出这个方程的根。
第三步:解一次方程(20分钟)1.教师展示解一次方程的基本步骤,并以例子加以说明。
2.学生在教师的指导下自主完成一些简单的一次方程的解答。
第四步:引入函数的零点(10分钟)1.解释函数的零点与函数的图像和方程的根的关系。
2.给出一些示例函数,如:“f(x)=x^2-4”,引导学生找出这个函数的零点。
第五步:解二次方程(20分钟)1.教师展示解二次方程的基本步骤,并以例子加以说明。
2.学生在教师的指导下自主完成一些简单的二次方程的解答。
第六步:解函数的零点(20分钟)1.教师介绍求解函数的零点的方法,如图表法、试位法等,并以例子加以说明。
2.学生在教师的指导下自主完成一些简单函数的零点的求解。
第七步:实际问题的应用(20分钟)1.教师提供一些实际问题,如:“一家餐馆每天卖出x份饭菜,售价为10元每份,总收入为500元,求每天卖出多少份饭菜?”引导学生运用方程的根和函数的零点解答问题。
2.学生自主解答其他类似的实际问题。
四、教学手段:1.板书、幻灯片和多媒体。
方程的根与函数的零点教案
一、《方程的根与函数的零点》二、教学目标:1. 了解方程的根与函数的零点的概念及关系;2. 掌握求解一元二次方程的方法;3. 学会利用函数的零点判断方程的解的情况;4. 能够运用方程的根与函数的零点解决实际问题。
三、教学重点与难点:1. 重点:方程的根与函数的零点的概念及关系,求解一元二次方程的方法;2. 难点:利用函数的零点判断方程的解的情况,运用方程的根与函数的零点解决实际问题。
四、教学方法:1. 采用问题驱动法,引导学生思考方程与函数之间的关系;2. 利用数形结合法,让学生直观地理解函数的零点与方程的根;3. 运用实例分析法,培养学生解决实际问题的能力。
五、教学内容:1. 方程的根与函数的零点的概念介绍;2. 求解一元二次方程的公式法与因式分解法;3. 利用函数的零点判断方程的解的情况;4. 方程的根与函数的零点在实际问题中的应用实例。
教案内容依次按照教学步骤、教学活动、教学评价进行设计。
六、教学步骤:1. 引入新课:通过回顾前面的知识,引导学生思考方程与函数之间的关系,引出本节课的主题——方程的根与函数的零点。
2. 讲解概念:讲解方程的根与函数的零点的概念,让学生理解两者之间的关系。
3. 求解一元二次方程:引导学生学习求解一元二次方程的公式法与因式分解法,并通过例题让学生掌握这两种方法。
4. 利用函数的零点判断方程解的情况:讲解如何利用函数的零点判断方程的解的情况,并通过图形让学生直观地理解。
5. 实际问题应用:通过实例分析,让学生学会运用方程的根与函数的零点解决实际问题。
七、教学活动:1. 小组讨论:让学生分组讨论方程的根与函数的零点之间的关系,并分享各自的观点。
2. 例题讲解:让学生上台演示求解一元二次方程的过程,并讲解解题思路。
3. 函数零点判断:让学生通过图形判断给定方程的解的情况。
4. 实际问题解决:让学生分组讨论实际问题,并运用方程的根与函数的零点找出解决方案。
八、教学评价:1. 课堂提问:通过提问了解学生对equation 的根与function 的零点的概念的理解程度。
方程的根与函数的零点教案
方程的根与函数的零点教案第一章:方程的根与函数的零点概念引入1.1 教学目标让学生理解方程的根与函数的零点的概念。
让学生掌握方程的根与函数的零点之间的关系。
培养学生运用数形结合的思想方法解决问题的能力。
1.2 教学内容引入方程的根的概念,引导学生理解方程的根是使方程左右两边相等的未知数的值。
引入函数的零点的概念,引导学生理解函数的零点是使函数值为零的未知数的值。
引导学生理解方程的根与函数的零点之间的关系。
1.3 教学活动通过实际例子,让学生初步理解方程的根与函数的零点的概念。
引导学生进行思考和讨论,深化对方程的根与函数的零点之间关系的理解。
布置练习题,巩固学生对方程的根与函数的零点的理解和运用。
第二章:一元二次方程的根与二次函数的零点2.1 教学目标让学生掌握一元二次方程的根与二次函数的零点之间的关系。
让学生学会运用一元二次方程的根的判别式解决实际问题。
培养学生运用数形结合的思想方法解决问题的能力。
2.2 教学内容引导学生理解一元二次方程的根与二次函数的零点之间的关系。
引导学生掌握一元二次方程的根的判别式及其应用。
引导学生运用一元二次方程的根的判别式解决实际问题。
2.3 教学活动通过实际例子,让学生理解一元二次方程的根与二次函数的零点之间的关系。
引导学生进行思考和讨论,深化对一元二次方程的根的判别式的理解和运用。
布置练习题,巩固学生对一元二次方程的根与二次函数的零点的理解和运用。
第三章:方程的根与函数的零点的判定定理3.1 教学目标让学生掌握方程的根与函数的零点的判定定理。
培养学生运用判定定理判断方程的根与函数的零点的情况。
3.2 教学内容引导学生掌握方程的根与函数的零点的判定定理。
引导学生运用判定定理判断方程的根与函数的零点的情况。
3.3 教学活动通过实际例子,让学生理解方程的根与函数的零点的判定定理。
引导学生进行思考和讨论,深化对判定定理的理解和运用。
布置练习题,巩固学生对判定定理的掌握。
第四章:方程的根与函数的零点的求解方法4.1 教学目标让学生掌握方程的根与函数的零点的求解方法。
人教版高中教材数学必修一《方程的根与函数的零点》教学设计
《方程的根与函数的零点》的教学设计教学内容:《人教课标A版数学必修I》的第三章3.1.1方程的根与函数的的零点。
教学目标:知识和技能目标:掌握函数零点的概念;了解函数零点与方程根的关系;学会在某区间上图象连续的函数存在零点的判定方法。
过程与方法目标:由二次函数的图象与x轴的交点的横坐标和对应的一元二次方程为突破口,探究方程的根与函数的零点的关系,以探究的方法发现在某区间上图象连续的函数存在零点的判定方法;在课堂探究中体会数形结合的数学思想,从特殊到一般的归纳思想。
情感、态度、价值观目标:在函数与方程的联系中体验数学中的转化思想的意义和价值.在教学中让学生体验探究的过程、发现的乐趣,在数学教学中培养学生的辨证思维的思想,以及分析问题解决问题的能力。
教材分析:函数与方程是中学数学的重要内容,既是初等数学的基础,又是出等数学与高等数学的连接纽带。
在现实生活实践中,函数与方程都有着十分的应用,在注重理论与实践相结合的今天,有着无可替代的作用,在加上函数与方程还是中学数学四大数学思想之一。
因此函数与方程在高一乃止整个高中数学教学中,占有非常重要的地位。
本节课要求学生通过对二次函数的图象的研究,去判断一元二次方程根的存在性以及根的个数,近而了解函数的零点与一元二次方程根的联系。
它既揭示了初中两大知识方程与函数的内在联系,是对本章函数知识的加深与总结,同时也是对函数知识的总深拓展。
把函数在解方程中加以应用,从而还可以渗透中学的重要数学思想:方程与函数的思想,数形结合的思想。
教学重点难点:1.重点:函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法。
2.难点:发现与理解方程的根与函数零点的关系;探究发现函数存在零点的方法。
教学方法:采用以学生活动为主,自主探究,师生互动的教学方法。
教学流程:一、创设情境、引出问题:1.渗透数学文化:在人类用智慧架设的无数座从未知通向已知的金桥中,方程的求解是其中璀璨的一座,虽然今天我们可以从教科书中了解各式各样方程的解法,但这一切却经历了相当漫长的岁月。
“方程的根与函数的零点”教学教案设计
方程的根与函数的零点教学教案设计一、教学目标1. 让学生理解方程的根与函数的零点的概念及其联系。
2. 让学生掌握求解一元二次方程的方法,并能够运用到实际问题中。
3. 培养学生运用数学知识解决实际问题的能力。
二、教学内容1. 方程的根与函数的零点的概念及其联系。
2. 一元二次方程的求解方法。
3. 实际问题中的应用。
三、教学重点与难点1. 教学重点:方程的根与函数的零点的概念及其联系,一元二次方程的求解方法。
2. 教学难点:一元二次方程的求解方法在实际问题中的应用。
四、教学方法与手段1. 采用问题驱动法,引导学生主动探究方程的根与函数的零点的关系。
2. 使用多媒体课件,帮助学生直观地理解一元二次方程的求解过程。
3. 开展小组讨论,培养学生合作解决问题的能力。
五、教学过程1. 导入新课:通过生活中的实例,引导学生思考方程的根与函数的零点的关系。
2. 讲解概念:介绍方程的根与函数的零点的概念,并解释它们之间的联系。
3. 演示求解过程:利用多媒体课件,演示一元二次方程的求解过程,让学生了解求解方法。
4. 练习与讲解:让学生独立完成练习题,对其中出现的问题进行讲解。
5. 实际问题应用:引导学生运用所学知识解决实际问题,巩固所学内容。
7. 布置作业:布置一些有关方程的根与函数的零点的练习题,巩固所学知识。
六、教学评估1. 课堂问答:通过提问的方式,了解学生对方程的根与函数的零点的理解和掌握程度。
2. 练习题:布置课后练习题,评估学生对一元二次方程求解方法的掌握情况。
3. 小组讨论:观察学生在小组讨论中的表现,了解他们对于实际问题应用的掌握情况。
七、教学拓展1. 介绍一元二次方程的其他求解方法,如配方法、因式分解法等。
2. 探讨方程的根与函数的零点在实际问题中的应用,如物理学、工程学等领域的应用。
八、教学反馈1. 学生反馈:收集学生对课堂内容的反馈意见,了解他们的学习需求和困惑。
2. 教学反思:根据学生的反馈和课堂表现,反思教学过程中的不足之处,并进行改进。
方程的根与函数的零点(公开课)省公开课获奖课件市赛课比赛一等奖课件
课堂练习3
1.函数 f (x) x3 3x 5的零点所在的大致区间为( )
A.(-2,0) B.(1,2) C.(0,1) D.(0,0.5)
小结
函数旳零点定义:
对于函数y=f(x), 使f(x)=0旳实数x 叫做函数 y=f(x)旳零点。
概念反思
问题1:函数f(x)在区间(a,b)上有f(a)f(b)<0,那么函数f(x)
在区间(a,b)上是否一定存在零点,请举例阐明。
问题2:函数f(x)在区间(a,b)上有f(a)f(b)<0,且有零点,那么一
定只有一种吗?请举例阐明。
问题3:函数y=f(x) 在区间(a, b)内有零点,一定有f(a)·f(b)<0吗?
引例1:判断下列方程是否有跟,有几种实数根?
(1) x2 2x 3 0
(2) x2 2x 1 0
(3) x2 2x 3 0
知识探究(一):方程旳根与函数旳零点
方程 函数
x2-2x-3=0 x2-2x+1=0 x2-2x+3=0 y= x2-2x-3 y= x2-2x+1 y= x2-2x+3
函
数
y
.
.
旳
2
图
.1 .
-1 0 1 2 3 x
象
-1 -2
-3
. -4
方程旳实数根 x1=-1,x2=3
函数旳 图象
(-1,0)、(3,0)
y
.2
.
1. .
. -1 0 1 2
x
x1=x2=1 (1,0)
y
.5 4
.
“方程的根与函数的零点”教学教案设计一等奖
3、“方程的根与函数的零点”教学设计一等奖教学目标:1、能够结合二次函数的图像判断一元二次方程根的存在性及根的个数。
2、理解函数的零点与方程的联系。
3、渗透由特殊到一般的认识规律,提升学生的抽象和概括能力。
教学重点、难点:1、重点:理解函数的零点与方程根的联系,使学生遇到一元二次方程根的问题时能顺利联想函数的思想和方法。
2、难点:函数零点存在的条件。
教学过程:1、问题引入探究一元二次方程与相应二次函数的关系。
出示表格,引导学生填写表格,并分析填出的表格,从二次方程的`根和二次函数的图像与x轴的交点的坐标,探究一元二次方程与相应二次函数的关系。
一元二次方程f(1)=12 -2*1-3=1-2-3=-4f(2)* f(1)=-4*5=-20﹤0问题2:在区间[2,4]呢?解:f(2)=(2)2-2*2-3=-3f(4)=42-2*4-3=5f(4)*f(2)=(-3)* 5=-15﹤0归纳:f(2)* f(1)﹤0,函数=x2-2x-3在[-2,1]内有零点x=-1;f(2)* f(4)﹤0,函数=x2-2x-3在[2,4]内有零点x=3,它们分别是方程=x2-2x-3的两个根。
结论:如果函数在区间上的图像是连续不断的一条曲线并且有,那么,函数在区间内有零点,即存在,使得,这个也就是方程的根。
①图像在上的图像是连续不断的②③函数在区间内至少有一个零点4、习题演练利用函数图像判断下列二次函数有几个零点①=-x2+3x+5 ,②=2x(x-2)+3解:①令f(x)=-x2+3x+5,做出函数f(x)的图像,如下②=2x(x-2)+3可化为做出函数f(x)的图像,如下:(图4-2)它与x轴没有交点,所以方程2x(x-2)=-3无实数根,则函数=2x(x-2)+3没有零点。
4、“方程的根与函数的零点”教学设计一等奖一、内容和内容解析本节课是在学生学习了《基本初等函数(Ⅰ)》的基础上,学习函数与方程的第一课时,本节课中通过对二次函数图象的绘制、分析,得到零点的概念,从而进一步探索函数零点存在性的判定,这些活动就是想让学生在了解初等函数的基础上,利用计算机描绘函数的图象,通过对函数与方程的探究,对函数有进一步的认识,解决方程根的存在性问题,为下一节《用二分法求方程的近似解》做准备.从教材编写的顺序来看,《方程的根与函数的零点》是必修1第三章《函数的应用》一章的开始,其目的是使学生学会用二分法求方程近似解的方法,从中体会函数与方程之间的联系.利用函数模型解决问题,作为一条主线贯穿了全章的始终,而方程的根与函数的零点的关系、用二分法求方程的近似解,是在建立和运用函数模型的大背景下展开的.方程的根与函数的零点的关系、用二分法求方程的近似解中均蕴涵了“函数与方程的思想”和“数形结合的思想”,建立和运用函数模型中蕴含的“数学建模思想”,是本章渗透的主要数学思想.从知识的应用价值来看,通过在函数与方程的联系中体验数学中的转化思想的意义和价值,体验函数是描述宏观世界变化规律的基本数学模型,体会符号化、模型化的思想,体验从系统的角度去思考局部问题的思想.基于上述分析,确定本节的教学重点是:了解函数零点的概念,体会方程的根与函数零点之间的联系,掌握函数零点存在性的判断.二、目标和目标解析1.通过对二次函数图象的描绘,了解函数零点的概念,渗透由具体到抽象思想,领会函数零点与相应方程实数根之间的关系,2.零点知识是陈述性知识,关键不在于学生提出这个概念。
最新人教版高中数学《方程的根与函数的零点》教学设计
方程的根与函数的零点一、教材地位和作用本节课是普通高中实验教科书人教A版必修1第三章第一单元第一节,是后继学习二分法的理论准备。
学生通过了解函数零点与方程根的联系,从而把求方程根的问题转化为求函数零点的问题。
作为函数应用的第一课时,就是要让学生认识到函数与其他数学知识的联系,让学生用函数的图象这个“形”来研究方程的根这个“数”,深刻体会“以形助数”的思想方法二、学情分析(1)知识基础:学生已经熟练掌握一次、二次方程的求解方法,掌握了一些基本初等函数图象的画法,并能从图象中获取一定信息,这是学习本节课的知识基础。
(2)心理准备:公式法求解高次、超越方程的思维受挫是学生学习本节课的内在动机。
三、教学目标1、知识与技能:结合具体的二次函数图象,判断二次方程根的存在性,从而了解函数的零点与方程根的联系,形成函数零点的概念及零点存在的判定方法。
2、过程与方法:在应用函数研究方程的过程中,体会函数与方程思想,数形结合思想以及化归思想;把从特殊函数零点存在的判定方法上升到一般函数,体现了从特殊到一般的研究方法。
3、情感态度价值观:在求解方程根的“山穷水尽”,到研究函数零点的“柳暗花明”,学生了解数学的发展史,感受探究的乐趣。
四、教学重点、难点与关键(1)重点:零点存在定理的发现。
(2)难点:零点存在定理的发现与准确理解。
(3)关键:引导学生运用函数的观点研究方程的根。
五、教法与学法(一)教法设计:本节课借鉴发现教学法,强调教师学生双主体,采用“创设问题情景——师生共同探究——形成概念结论——应用巩固提高”的探究模式,使学生在获得知识的同时,能够掌握方法、提升能力(二)学法指导:让学生在自主探究中,学会发现问题并解决问题,逐步形成敢于发现、敢于质疑的科学态度。
、函数零点的定义:对于函数()y f x =,把使0=的实数x 叫做函数(y f x =_x_ - 1_0 _ - 1 _ - 2_3 _2 _1_4_3_2_1设计理念:本节课借鉴发现教学法,强调教师学生双主体,采用“创设问题情景——师生共同辨析研讨——形成概念结论——应用举例巩固提高”的探究模式,教师真正担当学习情境的创设者,学生探究中的引导者,学生学习中的合作者;而学生则成为新知识的探索者、发现者、建构者,使学生在获得知识的同时,能够掌握学习数学的思维方法、提升进一步学习新知识的能力。
人教版高中《数学必修1》第三章《方程的根与函数的零点》优质比赛教学设计
《方程的根与函数的零点》教学设计一、教学内容解析“方程的根与函数的零点”是人教版高中《数学必修1》第三章“函数的应用”的起始课.本节通过研究一元二次方程的根及相应的函数图像与x 轴交点的横坐标的关系,导出函数零点的概念;以具体函数在某区间上存在零点的特点,探究在某区间上图像连续的函数存在零点的判定方法,体现了从特殊到一般、从具体到抽象的认知过程.教学时,教师应从“数”和“形”两方面入手,一方面引导学生注意函数(x)y f =当(x)0f =即为方程,说明方程是函数的一个特例;另一方面通过在函数的图像与x 轴的交点之间架起桥梁,让学生自主得到方程的根和函数零点的等价关系.教师要引导学生用联系的观点看待函数零点的有关概念,让学生体会函数零点是解决超越方程的必备条件也是学生形成用函数观点处理方程、不等式、算法等内容的一个支撑点.本节课渗透了化归与转化、数形结合、函数与方程的数学思想对于学生认识数学的科学价值、文化价值形成理性思维等方面具有基础性的作用.二、教学目标设置(1)知识与技能:1.结合二次函数的图像理解函数零点的定义,会判断一元二次方程根的存在性及根的个数;2.了解方程的实根与其相应函数零点之间的联系;3.了解判定函数的零点存在的条件,能找到零点所在的区间.(2)过程与方法:1. 体验二次函数的图象与x 轴的交点的横坐标和对应的一元二次方程根的关系,探究方程的根与函数的零点的联系;2.经历从特殊到一般从具体到抽象的研究过程,提高发现问题、提出问题、解决问题的能力;3. 在课堂探究中领会化归与转化、数形结合、函数与方程的思想,并能用该思想主动来研究问题.(3)情感、态度与价值观:在函数与方程的联系中体验数学中的转化思想的意义和价值.目标解析:“经历”就是让学生亲眼所见或亲身去做,在这里教师可以采用《几何画板》、PPT 等手段来演示,让学生体会知识的发生、发展过程,学生不仅收获了概念,还“体验”到了数与形的转化,即函数零点与方程的根之间的关系是通过函数的图像与x 轴的交点来建立的.建构主义学习理论,强调数学的学习是螺旋式上升的过程.教学时,教师要明确学生学习的“最近发展区”给学生提供探究的情境,让学生自己发现并归纳出结论“一元二次方程20(0)ax bx c a ++=≠的根是相应二次函数2y ax bx c =++(0)a ≠的图像与x 轴交点的横坐标”.方程的根与其相应函数零点之间的等价关系是贯穿本节课的主线,如果不理解这个概念,就没办法层层递进的理解函数与方程思想.由学生熟悉的一元二次方程及其相应函数的关系过渡到一般的方程及其相应函数的关系中培养学生观察、抽象概括问题的能力.在理清函数与方程的关系的过程中体验数学的转化思想的意义和价值.学生在获得知识的同时,也学会了思考问题的方法,形成能够自主发现问题、提出问题、解决问题的能力.基于上述分析得到本节的教学重点:1、理解方程的根与函数零点的等价关系,形成用函数处理问题意识;2、“函数零点存在的条件”.三、学生学情分析学生已有的认知基础是初中学习过的二次函数和二次方程,并且解决过当函数值为零时求相应自变量值的问题,掌握了部分基本初等函数的图像与性质,这为本节课利用函数图像判断方程根的存在性提供了一定的知识基础.学生的数学能力发展正处于形象思维向抽象思维转换阶段但还是更注重形象思维,而且初中函数教学要求较低,初中生的运算能力有所不高.教学过程中可能遇到的障碍体现在以下三个方面:一是引导学生画函数图像发现方程的根与函数零点关系中,学生可能会设法通过画出图像找到所有函数可能存在的零点,但并不f f<,是所有函数的图像都能具体的描绘出;二是零点存在性定理的教学中因为(a)(b)0f在区间[a,b]上有零点的充分而非必要条件,这且图像在区间[a,b]上连续不断是函数(x)容易引起思维的混乱;三是学生容易将“方程的根”与“函数的零点”混为一谈,要让学生明确尽管它们有密切的联系,之所以介绍通过求函数的零点求方程的根,是因为函数的图像和性质,为理解函数的零点提供了直观认识,并为判定零点是否存在和求出零点提供了支持,这就使方程的求解与函数的变化形成联系,有利于分析问题的本质. 教师应该通过引导让学生逐渐认识和理解函数零点的内涵从而突破的难点.基于上述分析,确定本节课的教学难点是:探究“函数零点存在性定理”.四、教学策略分析零点概念意义的建构的两个层面:一是通过具体一元二次方程的根与其相应二次函数图像与x轴交点横坐标的关系,引出零点的概念,让学生理解零点是一个数而不是点,二是用零点存在性定理判断零点存在的区间.需要以下条件的支持才能较好的完成.学生方面,主动参与到教学活动的每个环节中,能够积极发现问题、分析问题、解决问题,在教师引导下能自己探索出数学结论.教师方面,考虑到学生的知识水平和理解能力,教师可借助多媒体和几何画板制作动态直观的课件让学生观察、讨论、画图,自主探索,在函数与方程的联系中体验数形结合思想、转化思想的意义和价值,发展学生对高中数学的认识,体会函数在高中的核心作用.例f=+-的零点所在的区间能使教学更富趣味性和生动如:演示如何找到函数(x)lnx2x6性.教法选择:以问题串的形式,从“创设情境,自主探究,巩固升华,归纳小结,分层作业布置”进行教学;学法指导:采用开放式的自主学习方式让学生在教师的引导下,观察,探究,体验知识的形成、发展过程.教学用具:多媒体课件、几何画板、三角板.五、教学过程因为本节课是第三章的起始课,所以有一个本章导入。
新人教版高中数学必修一《方程的根与函数的零点》教学设计
《方程的根与函数的零点》教学设计【学习目标】1.理解函数零点的意义2.会求简单函数的零点,了解函数零点与方程根的关系【教学流程】一、复习回顾,奠定基础{课件投影}(一) 问题1 求出表中一元二次方程的实数根,画出相应的二次函数图象的简图,并写出函数的图象与x 轴的交点坐标问题2 从上面的表格,你能发现方程的实数根与函数图象和X 轴的交点具有什么样的关系吗?要求:先独立完成,画出标准函数图象,然后小组内部交流答案并派代表展示结果,其它组的同学若有不同意见请及时补充完善.设计意图:从学生熟知的、具体的二次函数入手,设置学生的最近思维发展区,使新知识与原有知识形成联系{课件投影} 若将上面特殊的一元二次方程推广到一般的一元二次方程及相应的二次函数的图象与x 轴交点的关系,上述结论是否仍然成立?(要求:请同学们根据下面的表格,独立完成。
然后小组内部交流意见和解题方法,并派代表展示结果,其它组的同学若有不同意见请及时补充完善.)方 程 x 2-2x+1=0 x 2-2x+3=0 y= x 2-2x -3 y= x 2-2x+1 函 数 函数的 图象 方程的实数x 2-2x -3=0 函数图象与X 轴的y= x 2-2x+3函数的图象函数y= ax 2 +bx+c (a>0)的图象 方程ax 2 +bx+c=0 (a>0)的根 判别式△ =b 2-4ac △>0 △=0 △<0设计意图:由具体的一元二次方程和二次函数到一般的一元二次方程和二次函数,既有利于学生掌握知识,又有助于学生抽象思维能力的形成。
二、合作探究 发现规律(一)直观感知,形成思路{课件投影} 1、零点是点吗?2、方程的实数根,函数的零点、函数y=f(x)的图象与x 轴的交点有什么关系?3、求函数零点的方法有几种?(要求:独立思考上面的问题,2分钟后小组讨论给出答案,并说明理由。
其它同学认真聆听,有不同意见及时补充完善)设计意图:让学生自己探究出函数零点的性质,以及函数的零点和方程的根之间的关系,记忆更加深刻{课件投影} 请同学们认真阅读习题,独立完成,2分钟后举手回答下列问题,其它同学如果有不同意见,请补充完善。
方程的根与函数的零点教案
方程的根与函数的零点教案本文题目:高一数学教案:方程的根与函数的零点教案学习目标1.结合二次函数的图象,判断一元二次方程根的存在*及根的个数,从而了解函数的零点与方程根的联系;2.掌握零点存在的判定定理.学习过程一、课前准备(预习教材p86~p88,找出疑惑之处)复习1:一元二次方程+bx+c=0(a0)的解法.判别式=.当0,方程有两根,为;当0,方程有一根,为;当0,方程无实根.复习2:方程+bx+c=0(a0)的根与二次函数y=ax+bx+c(a0)的图象之间有什么关系?判别式一元二次方程二次函数图象二、新课导学※学习探究探究任务一:函数零点与方程的根的关系问题:①方程的解为,函数的图象与x轴有个交点,坐标为.②方程的解为,函数的图象与x轴有个交点,坐标为.③方程的解为,函数的图象与x轴有个交点,坐标为.根据以上结论,可以得到:一元二次方程的根就是相应二次函数的图象与x轴交点的.你能将结论进一步推广到吗?新知:对于函数,我们把使的实数x叫做函数的零点(zeropoint).反思:函数的零点、方程的实数根、函数的图象与x轴交点的横坐标,三者有什么关系?试试:(1)函数的零点为;(2)函数的零点为.小结:方程有实数根函数的图象与x轴有交点函数有零点.探究任务二:零点存在*定理问题:①作出的图象,求的值,观察和的符号②观察下面函数的图象,在区间上零点;0;在区间上零点;0;在区间上零点;0.新知:如果函数在区间上的图象是连续不断的一条曲线,并且有0,那么,函数在区间内有零点,即存在,使得,这个c也就是方程的根.讨论:零点个数一定是一个吗?逆定理成立吗?试结合图形来分析.※典型例题例1求函数的零点的个数.变式:求函数的零点所在区间.小结:函数零点的求法.①代数法:求方程的实数根;②几何法:对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的*质找出零点.※动手试试练1.求下列函数的零点:(1);(2).练2.求函数的零点所在的大致区间.三、总结提升※学习小结①零点概念;②零点、与x轴交点、方程的根的关系;③零点存在*定理※知识拓展图象连续的函数的零点的*质:(1)函数的图象是连续的,当它通过零点时(非偶次零点),函数值变号.推论:函数在区间上的图象是连续的,且,那么函数在区间上至少有一个零点.(2)相邻两个零点之间的函数值保持同号.学习评价※自我评价你完成本节导学案的情况为().a.很好b.较好c.一般d.较差※当堂检测(时量:5分钟满分:10分)计分:1.函数的零点个数为().a.1b.2c.3d.42.若函数在上连续,且有.则函数在上().a.一定没有零点b.至少有一个零点c.只有一个零点d.零点情况不确定3.函数的零点所在区间为().a.b.c.d.4.函数的零点为.5.若函数为定义域是r的奇函数,且在上有一个零点.则的零点个数为.课后作业1.求函数的零点所在的大致区间,并画出它的大致图象.2.已知函数.(1)为何值时,函数的图象与轴有两个零点;(2)若函数至少有一个零点在原点右侧,求值.。
人教版高中必修13.1.1方程的根与函数的零点教学设计
人教版高中必修13.1.1方程的根与函数的零点教学设计一、教学目标1.了解函数的零点与方程的根的定义及其在实际生活中的应用;2.掌握方程的根与函数的零点的求解方法;3.能够应用所学知识解决实际问题。
二、教学重点1.函数的零点与方程的根的概念;2.方程的根与函数的零点的求解方法。
三、教学难点1.如何将方程转化为函数,从而求得函数的零点;2.如何将函数转化为方程,从而求得方程的根。
四、教学方法1.讲授法:通过讲授基础知识、解题技巧等,让学生掌握相关知识;2.实践法:通过实例演练、课堂讨论等方式,让学生深入理解所学知识并进行实践操作;3.合作学习法:通过小组讨论、合作完成任务等方式,培养学生合作精神和实际操作能力。
五、教学过程1. 导入(5分钟)介绍人教版高中必修13.1.1方程的根与函数的零点的教学内容,引入本课讲授目的和教学重点。
2. 讲授(30分钟)1.介绍函数的零点与方程的根的定义及其在实际生活中的应用;2.讲解方程的根与函数的零点的求解方法;3.通过范例演示,让学生掌握相关解题技巧。
3. 实践(30分钟)1.将给定方程转化为函数,并求出函数的零点;2.将给定函数转化为方程,并求出方程的根;3.学生自主解决实际问题。
4. 合作学习(20分钟)组成小组,进行合作学习,通过合作完成相关任务,培养学生合作精神和实际操作能力。
5. 总结(5分钟)回顾本节课所学内容,概括所学知识点及解题方法,引导学生进行课后巩固和练习。
六、教学工具黑板、白板、笔记本电脑、投影仪等。
七、教学评估1.课堂练习:通过课堂练习,检测学生掌握情况;2.作业与考试:通过作业和考试,评估学生对所学知识的掌握程度。
八、教学后记本节课的教学内容需要结合具体实际问题进行讲解,帮助学生更好地理解相关概念及应用。
在讲解过程中要注意引导学生掌握解题思路,培养学生分析问题、解决问题的能力,提高学生的实践操作能力。
同时,在教学结束后要及时复习巩固所学内容,并对学生的评估结果进行分析和总结,为下一步的教学提供参考依据。
【高中数学】2023-2024学年人教A版必修第一册 方程的根与函数的零点 教案
教学设计
对点练习 (1)函数f(x)=x2-x -6的零点为__________;
(2)函数f(x)=2x -4的零点为____________;
(3)函数f(x)=log4x +1的零点为________
设计意图:明确函数的零点与的根的关系的关系。
探究三:函数存在零点的条件
师:我们继续探究函数存在零点的条件
观察二次函数f(x)=x2-2x-3图象填下表
x
-2 1 2 4
f(x
)的符号
问:函数在[-2,1]上是否有零点? 在[2,4]上是否有零点?
思考:能否找到判断函数()y f x =在区间),(b a 上有零点的一般方法? 注意:学生探究与教师指导相结合,使学生得到零点存在判定定理
(2)零点存在判定定理
如果函数()y f x =在区间[]b a ,上的图象是连续不断的一条曲线,并且()()()()1
log )(44
2)(334)(21
)(122-=-=+-=+=x x f x f x x x f x x f x。
人教版教材高中数学必修一《方程的根与函数的零点》教学设计
§ 3.1.1 方程的根与函数的零点一、教学目标1、知识与技能①理解函数(结合二次函数)零点的概念。
②领会函数零点与相应方程的根的关系,掌握零点存在的判定条件。
2、过程与方法①通过观察二次函数图象,并计算函数在区间端点上的函数值之积的特点,找到连续函数在某个区间上存在零点的判断方法。
②让学生归纳整理本节所学知识。
3、情感、态度与价值观在函数与方程的联系中体验数学中的转化思想的意义和价值,培养学生的观察能力和抽象概括能力。
二、教学重点、难点重点零点的概念及存在性的判定。
难点零点的确定。
三、教学方法学生在老师的引导下,通过教师对本节内容的讲解,完成本节课的教学目标。
四、教学过程1、提出问题:一元二次方程 a x2+bx+c=0 ( a≠ 0) 的根与二次函数y=ax2+bx+c( a≠0) 的图象有什么关系?2.先来观察几个具体的一元二次方程的根及其相应的二次函数的图象:①方程 x2-2x-3=0 与函数 y=x2-2x-3,②方程 x2-2x+1=0 与函数 y=x2-2x+1③方程2x -2x+3=0与函数2y=x -2x+3y yyx0xx学生解方程,画函数图象,分析方程的根与图象和x 轴交点坐标的关系,从而引出零点的概念。
函数零点的概念:对于函数 y f ( x) ,把使 f (x) 0 成立的实数 x 叫做函数 y f ( x) 的零点。
函数零点的意义:函数 y f ( x) 的零点就是方程 f ( x) 0 实数根,亦即函数 y f ( x) 的图象与x轴交点的横坐标。
即:方程 f ( x) 0 有实数根函数y f ( x) 的图象与 x 轴有交点函数y f (x) 有零点。
函数零点的求法:求函数 y f (x) 的零点:①(代数法)求方程 f ( x)0 的实数根;②(几何法)对于不能用求根公式的方程,可以将它与函数y f (x) 的图象联系起来,并利用函数的性质找出零点。
若将上述结论推广到一般的一元二次方程和二次函数又怎样?根据函数零点的意义探索研究二次函数的零点情况,总结概括形成结论。
方程的根与函数的零点省名师优质课赛课获奖课件市赛课一等奖课件
教材分析
教法学法
教学过程
讨论探究,揭示定理
问问(a)题题·f76(:b:)观已<察0知,另函则三数f个(yx=函)在f 数(区x)图在间象区(a你,间b有)[内a什,b存么]在满发零足觉点f?吗?
假如不y存在,你能举出一种y 反例吗?
a 0b x
图象连续是必要旳
y
Ob a
零点旳个数不唯一
教材分析
y
aO
bx
a
原理不可逆
0 by x
a
x
O bx
单调仅有一种零点
教法学法
设计意图: 经过小组 讨论,拓 展原理旳 内涵,培 养学生旳 概括归纳 能力。
教学过程
巩固深化,发展思维
用一用
例2.求函数f (x) ln x 2x 6的零点的个数.
分析一:能否拟定零点区间; 分析二:该函数有几教学过程
讨论探究,揭示定理
原
理 零点旳存在性原理:假如函数y=f(x)
在区间[a,b]上旳图象是连续不断旳一条曲线,而 且有f(a)•f(b)<0,那么,函数y=f(x)在区间(a,b) 内有零点,即存在c ∈(a,b),使得f(c)=0,这个c 也就是方程f(x)=0 旳根.
阐明:鉴定零点存在性旳措施:(1)利用图象;
教材分析 构造分析 学情分析
教学目的
知识与技能目的 过程与措施目的 情感与价值观目的
了解函数零点旳概念 了解函数零点与方程根旳联络 掌握零点存在旳鉴定措施
经历“探究—归纳—应用”旳过程 感悟由详细到抽象旳研究措施 提升由特殊到一般旳归纳思维能力
体验自主探究,合作交流旳乐趣 激发学生旳学习爱好 培养学生严谨旳科学态度
全国一等奖方程的根与函数的零点教学设计
全国一等奖方程的根与函数的零点教学设计一、教学内容分析本节课选自《普通高中课程标准实验教课书数学I必修本(A版)》第94-95页的第三章第一课时3.1.1方程的根与函数的的零点。
函数与方程是中学数学的重要内容,既是初等数学的基础,又是初等数学与高等数学的连接纽带。
在现实生活注重理论与实践相结合的今天,函数与方程都有着十分重要的应用,再加上函数与方程还是中学数学四大数学思想之一,因此函数与方程在整个高中数学教学中占有非常重要的地位。
就本章而言,本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形.它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。
之后将函数零点与方程的根的关系在利用二分法解方程中(3.1.2)加以应用,通过建立函数模型以及模型的求解(3.2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系.渗透“方程与函数”思想。
总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。
二学生学习情况分析地理位置:学生大多来自市区,学生接触面较广,个性较活跃,所以开始可采用竞赛的形式调动学生积极性;学生数学基础的差异不大,但进一步钻研的精神相差较大,所以可适当对知识点进行拓展。
程度差异性:中低等程度的学生占大多数,程度较高与程度很差的学生占少数。
知识、心理、能力储备:学生之前已经学习了函数的图象和性质,现在基本会画简单函数的图象,也会通过图象去研究理解函数的性质,这就为学生理解函数的零点提供了帮助,初步的数形结合知识也足以让学生直观理解函数零点的存在性,因此从学生熟悉的二次函数的图象入手介绍函数的零点,从认知规律上讲,应该是容易理解的。
高中数学必修一《方程的根与函数的零点》教案
方程的根与函数的零点
教材:普通高中课程标准试验教科书(人教版)必修一
一、教学目标:
知识与技能:领会函数零点的概念,领会方程的根与函数零点之间的关系,掌握函数零点的存在性定理。
培养学生自主发现、探究实践的能力。
过程与方法:以二次函数为载体,探究函数零点概念及零点存在性定理。
在具体到一般的认知过程中培养学生自主发现、探究实践能力,并渗透相
关的数学思想。
情感态度与价值观:培养学生用联系的观点看待问题;感悟由具体到抽象、由特
殊到一般的研究方法,形成严谨的科学态度。
二、重点、难点:
教学重点:①领会函数零点的概念
②领会函数的零点与方程的根之间的联系;
③掌握零点存在性定理.
教学难点:探究发现函数零点存在性定理
三、教学方法与手段:
教学方法:启发式、探究式
教学手段:计算机,投影,图表,计算器
四、教学流程:
五、教学过程:
2
观察二次函数223y x x =--的图。
“方程的根与函数的零点”教学教案设计
“方程的根与函数的零点”教学教案设计第一章:引言1.1 教学目标让学生了解方程的根与函数的零点的概念。
让学生理解方程的根与函数的零点之间的关系。
1.2 教学内容介绍方程的根与函数的零点的定义。
解释方程的根与函数的零点之间的关系。
1.3 教学方法使用多媒体演示文稿进行讲解。
通过举例来说明方程的根与函数的零点之间的关系。
1.4 教学评估提问学生关于方程的根与函数的零点的概念。
让学生完成一些相关的练习题。
第二章:方程的根2.1 教学目标让学生了解方程的根的定义和性质。
让学生掌握求解方程根的方法。
2.2 教学内容介绍方程的根的定义和性质。
讲解求解方程根的方法,如因式分解法、配方法、求根公式等。
2.3 教学方法使用多媒体演示文稿进行讲解。
通过举例来说明方程的根的求解方法。
2.4 教学评估提问学生关于方程的根的定义和性质。
让学生完成一些求解方程根的练习题。
第三章:函数的零点3.1 教学目标让学生了解函数的零点的定义和性质。
让学生掌握求解函数零点的方法。
3.2 教学内容介绍函数的零点的定义和性质。
讲解求解函数零点的方法,如图像法、代数法等。
3.3 教学方法使用多媒体演示文稿进行讲解。
通过举例来说明函数的零点的求解方法。
3.4 教学评估提问学生关于函数的零点的定义和性质。
让学生完成一些求解函数零点的练习题。
第四章:方程的根与函数的零点的关系4.1 教学目标让学生了解方程的根与函数的零点之间的关系。
让学生掌握利用函数的零点来求解方程根的方法。
解释方程的根与函数的零点之间的关系。
讲解如何利用函数的零点来求解方程根。
4.3 教学方法使用多媒体演示文稿进行讲解。
通过举例来说明如何利用函数的零点来求解方程根。
4.4 教学评估提问学生关于方程的根与函数的零点之间的关系。
让学生完成一些利用函数的零点来求解方程根的练习题。
第五章:综合练习5.1 教学目标让学生巩固方程的根与函数的零点的概念和求解方法。
提高学生的解题能力。
5.2 教学内容提供一些综合性的练习题,涵盖方程的根与函数的零点的相关知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课 题:3.1.1 方程的根与函数的零点 教 材:人教A 版高中数学·必修1
【教材分析】
本节课的内容是人教版教材必修1第三章第一节,属于概念定理课。
“函数与方程”这个单元分为两节,第一节:“方程的根与函数的零点”,第二节:“用二分法求方程的近似解”。
第一节的主要内容有三个:一是通过学生已学过的一元二次方程、二次函数知识,引出零点概念;二是进一步让学生理解:“函数()y f x =零点就是方程()0f x =的实数根,即函数
()y f x =的图象与x 轴的交点的横坐标”;三是引导学生发现连续函数在某个区间上存在零
点的判定方法:如果函数()y f x =在区间[],a b 上图象是连续不断的一条曲线,并且有
()()0f a f b ⋅<,那么,函数()y f x =在区间(),a b 内有零点,即存在(),c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的根。
这些内容是求方程近似解的基础。
本节课的
教学主要是围绕如何用函数的思想解决方程的相关问题展开,从而使之函数与方程紧密联系在一起。
为后续学习二分法求方程的近似解奠定基础,本节内容起着承上启下的作用,承接以前学过的方程知识,启下为下节内容学习二分法打基础。
【教学目标】
1.理解函数零点的概念;掌握零点存在性定理,会求简单函数的零点。
2.通过体验零点概念的形成过程、探究零点存在的判定方法,提高学生善于应用所学知识研究新问题的能力。
3.通过本节课的学习,学生能从“数”“形”两个层面理解“函数零点”这一概念,进而掌握“数形结合”的方法。
【学情分析】
1.学生具备的知识与能力
(1)初中已经学过一元二次方程的根、一元二次函数的图象与x 轴的交点横坐标之间的关系。
(2)从具体到抽象,从特殊到一般的认知规律。
2. 学生欠缺的知识与能力
(1)超越函数的相关计算及其图象性质.
(2)通过对具体实例的探究,归纳概括发现的结论或规律,并将其用准确的数学语言表达出来.
【重点难点】
重点:零点的概念;零点存在的判定方法。
难点:方程的根与函数零点的关系(体现函数与方程的关系),零点存在判定方法的探究及应用(体现判定方法:条件、结论、应用)。
【教学策略】
引导学生用联系的观点理解有关内容,从二次函数入手,使学生了解函数零点的概念及零点存在的判定方法,降低难度,便于接受。
通过问题引出研究对象,通过探究生成新知,通过应用巩固新知。
本节学习的主要载体是函数图象。
为了使学生构建一个从具体到抽象的过程,除了二次函数图象外,应用几何画板作出了部分函数的图象,通过观察加深对定理的理解,提高课堂效率。
注重学生的学习体验,精心设置一个个问题,并以此为主线,由表及内、由浅入深,逐步突破重点和难点。
试用已知判断一元二次方程的根个数的方法
)0,1,)0,3(
x轴交点的横坐标
,
a
[b
a上有零点
f
f,]
b
(
)
)
(<
a
f,]
a上有零点f
[e
,
e
(<
)
(
)
f,]
a
a上有零点f
[c
,
)
)
(
(<
c
《函数的零点与方程的根》教学设计点评
《函数的零点与方程的根》是解释方程与函数的联系,用函数的观点来研究方程,将局部放入整体中研究,进而对整体和局部都有一个更深层次的理解,为后面二分法求方程近似解与解不等式等其他知识奠定基础,起着承上启下的作用。
本节内容以函数图象为主要载体,通过本节课的学习研究,使学生从“数”“形”两个层面理解函数零点这个概念,突出“数形结合”的数学思想。
田红月老师这节课的教学教学设计和实施教学中体现了以下几个方面的特点:
一、紧扣教材和大纲要求,围绕教学目标,采用“问题—探究—应用”的教学模式,通过问题串引出研究对象,通过合作探究生成新知,通过应用巩固新知,以函数图象为主要载体,运用信息技术手段,并用几何画板作出了部分超越函数的图象,通过观察加深对定理的理解,使学生构建一个从具体到抽象的过程,提高了课堂效率,有效达成教学目标。
二、充分体现以学生为主体的教学理念,学生在小组合作中不仅获得了知识,还在学习体验中学会合作和分享,符合新课程理念的新要求,教学设计贴近学生,从学生熟悉的函数建构概念,进而引发学生对知识的应有和理解。
精心设置问题链,并以此为主线,由浅入深、循序渐进,有效突破了重点难点。
三、揭示数学的本质,在实施教学过程中指导学生学习方法,注重数形结合,化归与转化等数学思想的渗透,使学生对知识的掌握不仅仅停留在浅表,还在深层次的问题上有独立思考的时间和空间。
总之,这节课比较准确地把握了学生的认知规律,数学的本质属性和数学教学的内在联系,理解准确,思路流畅,层次分明,设计紧凑,问题引领,关注过程,注重思维,是一节教学有效度很高的课。
建议在后期的教学中继续探索,并能适当降低语速,以期使每一个学生都能完全参与到教学体验中来。