文小编收集文档之变量之间的关系难题初中数学组卷

合集下载

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》测试卷(有答案解析)(4)

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》测试卷(有答案解析)(4)

一、选择题1.某品牌热水壶的成本为50元,销售商对其销量与定价的关系进行了调查,结果如下:定价/元708090100110120销量/把801001101008060A.115元B.105元C.95元D.85元2.从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前的速度随时间的增加而逐渐增大,这个问题中自变量是()A.物体B.速度C.时间D.空气3.用一水管向图中容器内持续注水,若单位时间内注入的水量保持不变,则在注满容器的过程中,容器内水面升高的速度()A.保持不变B.越来越慢C.越来越快D.快慢交替变化4.在圆的面积公式S=πr2中,是常量的是()A.S B.πC.r D.S和r5.为了增强抗旱能力,保证今年夏粮丰收,某村新修建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同)一个进水管和一个出水管的进出水速度如图(1)所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图(2)所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是()A.①③B.②③C.③D.①②6.已知△ABC的底边BC上的高为8 cm,当底边BC从16 cm变化到5 cm时,△ABC的面积 ( )A.从20 cm2变化到64 cm2B.从40 cm2变化到128 cm2C.从128 cm2变化到40 cm2D.从64 cm2变化到20 cm27.一个面积等于3的三角形被平行于一边的直线截成一个小三角形和梯形,若小三角形和梯形的面积分别是y和x,则y关于x的函数图象大致是图中的()A.B.C.D.8.早晨小强从家出发,以v1的速度前往学校,途中在一饮食店吃早点,之后以v2的速度向学校行进.已知v1> v2,如图所示的图象中表示小强从家到学校的时间t(分钟)与路程s(千米)之间的关系的是( )A.A B.B C.C D.D9.按如图的方式用火柴棒摆放正方形,若用n表示正方形个数,y表示摆放正方形所用火柴棒根数,则y与n之间的关系式为()A.y=3n+1 B.y=4n-1 C.y=4+3n D.y=n+n+(n-1) 10.下列说法不正确的是()A.表格可以准确的表示两个变量的数值关系B.图象能直观的反应两个变量之间的数量关系C.关系式是表示两个变量之间关系的唯一方法D.当关系式中的一个变量的值确定,另一个变量总有唯一的一个值与之对应11.某校组织学生到距学校6 km的光明科技馆参观.王红准备乘出租车去科技馆,出租车的收费标准如下表:里程收费(元)3千米以下(含3千米)8.003千米以上,每增加1千米 1.80则收费y(元)与出租车行驶里程数x(km)(x≥3)之间的关系式为()A.y=8x B.y=1.8x C.y=8+1.8x D.y=2.6+1.8x 12.如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为()A.y=x+2 B.y=x2+2 C.y=2x+D.y=12 x+二、填空题13.某种储蓄的月利率是0.2%,存入100元本金后,则本息和y(元)与所存月数x之间的关系式为____(不考虑利息税).14.汽车开始行驶时,油箱中有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间x(小时)的关系式为_____,该汽车最多可行驶_____小时.15.球的表面积S与半径R之间的关系是S=4πR2.对于各种不同大小的圆,请指出公式S=4πR2中常量是________ ,变量是________16.已知方程x﹣3y=12,用含x的代数式表示y是______.17.由于地球引力和月球引力的不同,因此,同一物体在地球上的重量和在月球上的重量是不相等的.同一物体在月球上的重量y(千克)与同一物体在地球上的重量x(千克)之间的关系式为y=16x,则在地球上重量为120千克的物体,在月球上重量减少了_______千克.18.某航空公司行李的托运费按行李的质量收取,30 kg以下免费,30 kg及以上按图中所示的关系来计算,若某人行李的质量为200 kg,则他需要付托运费____________.19.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ __℃.20.函数f(x)=+3-2xx的定义域是________.三、解答题21.如图所示,是反映了爷爷每天晚饭后从家中出发去散步的时间与距离之间的关系的一幅图.(1)下图反映了哪两个变量之间的关系?(2)爷爷从家里出发后20分钟到30分钟可能在做什么?(3)爷爷每天散步多长时间?(4)爷爷散步时最远离家多少米?(5)分别计算爷爷离开家后的20分钟内、30分钟内、45分钟内的平均速度.22.观察下图,回答问题.(1)反映了哪两个变量之间的关系?(2)点A,B分别表示什么?(3)说一说速度是怎样随时间变化而变化的;(4)你能找到一个实际情境,大致符合下图所刻画的关系吗?23.某广场用如图1所示的同一种地砖拼图案,第一次拼成的图案如图2所示,共用地砖+⨯=;第3次拼成的图案如图4 4块;第2次拼成的图案如图3所示,共用地砖42412+⨯+⨯=,….所示,共用地砖4242624(1)直接写出第4次拼成的图案共用地砖________块;(2)按照这样的规律,设第n次拼成的图案共用地砖的数量为y块,求y与n之间的函数表达式24.为了解某品牌轿车的耗油情况,将油箱加满后进行了耗油实验,得到如下数据:轿车行驶的路程010203040···()s km油箱剩余5049.248.447.646.8···油量()w L (1)该轿车油箱的容量为 L ,行驶100km 时,油箱剩余油量为 L(2)根据上表的数据,写出油箱剩余油量()w L 与轿车行驶的路程()s km 之间的表达式w = .(3)某人将油箱加满后,驾驶该轿车从A 地前往B 地,到达B 地时油箱剩余油量为26L ,求,A B 两地之间的距离?25.星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在右面的平面直角坐标系中,画出符合他们行驶的路程S (千米)与行驶时间t (时)之间的函数图象.26.青春期男、女生身高变化情况不尽相同,如图是小军和小蕊青春期身高的变化情况.(1)如图反映了哪两个变量之间的关系?自变量是什么?因变量是什么? (2)A ,B 两点表示什么? (3)小蕊10岁时身高多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据表格中定价的变化和销量的变化即可解答.【详解】解:由表中数据可知,定价为90元时,销量达到最大为110把,而销售105把水壶,销量位于100把到110把之间,而当定价在80元到90元时,定价每增加1元,销量增加1把,销量呈递增趋势,当定价在90元到100元时,定价每增加1元,销量减少1把,销量呈递减趋势,故定价约为80+(105-100)÷1=85元,故选:D.【点睛】本题考查了用表格法表示两个变量之间的关系,解答的关键是读懂题意,能从表格中找到有效信息解决问题.2.C解析:C【分析】根据函数的定义解答.【详解】解:因为速度随时间的变化而变化,故时间是自变量,速度是因变量,即速度是时间的函数.故选C.【点睛】本题考查了常量与变量,关键是掌握函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数.3.C解析:C【分析】此容器不是一个圆柱体,从下到上直径越来越小,因为相同体积的水在直径较大的地方比在直径较小的地方的高度低,因此,若单位时间内注入的水量保持不变,容器内水面上升的速度会越来越快.【详解】由图可知:此容器不是一个圆柱体,从下到上直径越来越小∵相同体积的水在直径较小的地方比在直径较大的地方的高度更高∴若单位时间内注入的水量保持不变,容器内水面上升的速度会越来越快故答案选:C【点睛】本题考查了体积、直径、高之间的关系,寻找出三者之间的变化关系是解题关键.4.B解析:B【分析】根据常量、变量的定义,可得答案.【详解】在圆的面积公式S=πr2中,π是常量,S、r是变量,故选B.【点睛】本题考查常量与变量,常量是在事物的变化中保持不变的量.5.C解析:C【分析】根据图象1可知进水速度小于出水速度,结合图2中特殊点的实际意义即可作出判断.【详解】①0点到1点既进水,也出水;②1点到4点同时打开两个管进水,和一只管出水;③4点到6点只进水,不出水.正确的只有③.故选C.【点睛】本题考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.6.D解析:D【分析】根据S=12(底×高)计算分别计算得出最值即可.【详解】当△ABC的底边BC上的高为8cm,底边BC=16cm时,S1=(8×16)÷2=64cm2;底边BC=5cm时,S2=(5×8)÷2=20cm2.故选D.【点睛】此题主要考查了函数关系,利用极值法得出△ABC的最大值和最小值是解题关键.7.A解析:A【解析】根据题意小三角形的面积减小,梯形的面积增大,而且x与y满足一次函数关系.故选A.8.A【解析】由题意可知,符合实际情况的是A 选项中的图象,而选项B 、C 、D 中的图象都与实际情况不符. 故选A.9.A解析:A 【解析】 观察可知:当n=1时,y=4=3×1+1, 当n=2时,y=7=3×2+1, 当n=3时,y=10=3×3+1, ……所以有n 个正方形时,y=3n+1, 故选A.【点睛】本题考查了规律型——图形的变化类,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.10.C解析:C 【解析】A. 表格可以准确的表示两个变量的数值关系,正确;B. 图象能直观的反应两个变量之间的数量关系,正确;C. 两个变量间的关系能用关系式表示,还能用列表法和图象法表示,故错误;D. 当关系式中的一个变量的值确定,另一个变量总有唯一的一个值与之对应,正确, 故选C.11.D解析:D 【解析】∵3千米以上每增加1千米收费1.80元,∴出租车行驶里程数x(x≥3)与收费y 之间的关系式为: y=8+1.8(x-3)=1.8x+2.6. 故选D.12.C解析:C 【解析】试题分析:A .2y x =+,x 为任意实数,故错误; B .22y x =+,x 为任意实数,故错误;C .y =20x +≥,即2x ≥-,故正确;D .12y x =+,20x +≠,即2x ≠-,故错误; 故选C .考点:1.函数自变量的取值范围;2.在数轴上表示不等式的解集.二、填空题13.【分析】根据题目所给的数据和利息公式即可得答案【详解】解:某种储蓄的月利率是02存入100元本金后则本息和y (元)与所存月数x 之间的关系式为:y=02x+100故答案为:y=100+02x 【点睛】本 解析:1000.2y x =+【分析】根据题目所给的数据和利息公式,即可得答案. 【详解】解:某种储蓄的月利率是0.2%,存入100元本金后,则本息和y (元)与所存月数x 之间的关系式为: y=0.2x+100,故答案为:y=100+0.2x . 【点睛】本题主要考查了函数关系式,利用利息公式和题目数据列出关系式是解题关键.14.y =40﹣5x8【分析】根据:油箱内余油量=原有的油量﹣x 小时消耗的油量可列出函数关系式进而得出行驶的最大路程【详解】依题意得油箱内余油量y (升)与行驶时间x (小时)的关系式为:y =40﹣5x 当y =解析:y =40﹣5x 8【分析】根据:油箱内余油量=原有的油量﹣x 小时消耗的油量,可列出函数关系式,进而得出行驶的最大路程. 【详解】依题意得,油箱内余油量y (升)与行驶时间x (小时)的关系式为:y =40﹣5x , 当y =0时,40﹣5x =0, 解得:x =8,即汽车最多可行驶8小时. 故答案为:y =40﹣5x ,8. 【点睛】本题考查了列函数关系式以及代数式求值.关键是明确油箱内余油量,原有的油量,x 小时消耗的油量,三者之间的数量关系,根据数量关系可列出函数关系式.15.4πS 和R 【解析】【分析】变量是指在程序的运行过程中随时可以发生变化的量常量是数值始终不变的量根据定义即可确定【详解】解:公式是S=4πR2中常量是4π变量是S 和R 故答案是:4π;S 和R 【点睛】本题解析:4π S和R【解析】【分析】变量是指在程序的运行过程中随时可以发生变化的量,常量是数值始终不变的量,根据定义即可确定.【详解】解:公式是S=4πR2中常量是4π,变量是S和R.故答案是: 4π;S和R.【点睛】本题考查了常量与变量的定义,属于简单题,理解定义是关键.16.y=x﹣4【解析】要用含x的代数式表示y就要将二元一次方程变形用一个未知数表示另一个未知数先移项再将系数化为1即可解:移项得:﹣3y=12﹣x 系数化为1得:y=x﹣4故答案为y=x﹣4解析:y=13x﹣4【解析】要用含x的代数式表示y,就要将二元一次方程变形,用一个未知数表示另一个未知数.先移项,再将系数化为1即可.解:移项得:﹣3y=12﹣x,系数化为1得:y=x﹣4.故答案为y=x﹣4.17.100【解析】当x=120时y=x==20120-20=100即在月求上重量减少了100千克故答案为:100解析:100【解析】当x=120时,y=16x=11206=20,120-20=100,即在月求上重量减少了100千克,故答案为:100.18.340元【解析】根据题意可知行李质量的大小为自变量x托运费为因变量y 结合图形可知当行李质量为200kg时y=2×200-60=340即他需要付托运费340元故答案为340元解析:340元【解析】根据题意可知,行李质量的大小为自变量x,托运费为因变量y,结合图形可知,当行李质量为200kg时,y=2×200-60=340即他需要付托运费340元.故答案为340元19.-40【详解】试题分析:当y=x时解得x=-40故答案为-40考点:求代数式的值解析:-40【详解】试题分析:当y=x时,9325x x=+,解得x=-40.故答案为-40考点:求代数式的值.20.x≥-3且x≠2【解析】由题意可得x+3≥0且x-2≠0即x≥-3且x≠2解析:x≥-3且x≠2【解析】由题意可得x+3≥0且x-2≠0,即x≥-3且x≠2.三、解答题21.(1)爷爷散步的时间与距离之间的关系;(2)可能在某处休息;(3)爷爷每天散步45分钟;(4)爷爷散步时最远离家为900米;(5)爷爷离开家后:20分钟内平均速度是45米/分;30分钟内平均速度是30米/分;45分钟内平均速度是40米/分.【分析】(1)根据图象中的横纵坐标的意义解答即可;(2)根据图象可看出20分钟到30分钟之间,时间在增加,而路程不变,据此解答即可;(3)根据图象可得45分钟后爷爷离家的距离为0,说明回到了家中,由此可得答案;(4)图象最高点的纵坐标即为爷爷散步时最远离家的距离,据此即可解答;(5)利用时间=路程÷速度求解即可.【详解】解:(1)爷爷散步的时间与距离之间的关系;(2)可能在某处休息.(3)爷爷每天散步45分钟(4)爷爷散步时最远离家为900米(5)爷爷离开家后:①20分钟内平均速度:900÷20=45(米/分);②30分钟内平均速度:900÷30=30(米/分);③45分钟内平均速度:9002⨯÷45=40(米/分).【点睛】本题考查了利用图象表示变量之间的关系,属于常考题型,正确理解图象的横纵坐标表示的意义是解题关键.22.(1)反映速度与时间的关系;(2)A点表示当时间过了3分钟后,速度为40千米/时,B 点表示当时间为15分钟时,速度为0;(3)见解析;(4)见解析【分析】(1)根据横坐标和纵坐标进行判断即可;(2)根据图象进行判断即可;(3)根据图象进行判断即可;(4)根据图象写出一个实际情境即可.【详解】(1)由图象可得,该图象反映速度与时间的关系;(2)A 点表示当时间过了3分钟后,速度为40千米/时,B 点表示当时间为15分钟时,速度为0;(3)当时间在0~3分钟时,速度随时间的增加而增大,当时间在3~6分钟时,速度保持40千米/时不变,6到7.5分钟时速度从40千米/时增加到60千米/时,7.5到9分钟时保持60千米/时,9到10.5分钟时,从60千米/时降到40千米/时,10.5到12分钟时,保持40千米/时,12到15分钟时,速度从40千米/时降到0;(4)小明从家开车到图书馆借书,汽车从启动到速度为40km/h 用了3分钟,此后3分钟匀速行驶,然后用了1.5分钟加速到60km/h ,然后再匀速行驶1.5分钟,随后用1.5分钟减速到40km/h ,然后再匀速行驶1.5分钟,最后用3分钟减速行驶到停止.【点睛】本题考查了图象与变量的问题,掌握图象与变量的关系是解题的关键.23.(1)40;(2)()21y n n =+.【分析】(1)根据拼成图案的地砖块数规律,即可得到答案;(2)根据()4212=⨯⨯,()12223=⨯⨯,()24234=⨯⨯,()40=24⨯⨯5,……,进而得到y 与n 之间的函数表达式.【详解】(1)∵第一次拼成的图案,共用地砖4块;第2次拼成的图案,共用地砖42412+⨯=;第3次拼成的图案,共用地砖4242624+⨯+⨯=,…,∴第4次拼成的图案,共用地砖424262840+⨯+⨯+⨯=.故答案是:40;(2)第1次拼成如图2所示的图案共用4块地砖,即()4212=⨯⨯,第2次拼成如图3所示的图案共用12块地砖,即()12223=⨯⨯,第3次拼成如图4所示的图案共用24块地砖,即()24234=⨯⨯,第4次拼成的图案共用40块地砖,即()40=24⨯⨯5,……第n 次拼成的图案共用地砖:()21y n n =+,∴y 与n 之间的函数表达式为:()21y n n =+.【点睛】本题主要考查探究图案与数的规律,找到图案与数的规律,是解题的关键.24.(1)50,42;(2)500.08w s =-;(3)A 、B 两地之间的距离是300km.【分析】(1)由表格中的数据可知,该轿车的油箱容量为50L ,汽车每行驶10km ,油量减少0.8L ,据此可求油箱剩余油量;(2)由表格中的数据可知汽车每行驶10km ,油量减少0.8L ,据此可求w 与s 的关系式; (3)把w =26代入(2)中的关系式求得相应的s 值即可.【详解】解:(1)由表格中的数据可知,该轿车的油箱容量为50L ,行驶100km 时,油箱剩余油量为100500.84210-⨯=(L ); 故答案是50,42; (2)观察表格在的数据可知,汽车每行驶10km ,油量减少0.8L ,据此可得w 与s 的关系式为500.08w s =-;故答案为500.08w s =-;(3)当w =26时,50-0.08s =26,解得s =300.答:A 、B 两地之间的距离是300km.【点睛】本题考查的是一次函数的应用,关键是读懂题意,找出规律,正确列出w 与s 的关系式,明确行驶路程为0时,即为油箱的容量.25.详见解析.【解析】第一阶段匀速行驶1.5小时的时候,这段时间路程是时间的正比例函数;修车,用了半个小时,这段时间路程不随时间的变化而变化;然后以原速继续前行,行驶1小时到达目的地,这一段应是一个一次函数,函数图象与第一段平行.利用描点法即可求解. 解:如图(4分)26.(1)反映了身高和年龄的关系,自变量是年龄,因变量是身高;(2)A 点表示小军和小蕊在11岁半时身高都是143 cm,B 点表示小军和小蕊在15岁时身高都是156 cm ;(3)127cm【解析】试题分析:(1)根据横坐标与纵坐标表示的量解答;(2)根据交点的纵坐标相等可知二人身高相等;(3)根据平面直角坐标系确定横坐标为10时的身高值即可.试题解:(1)反映了身高随年龄的变化而变化的关系,自变量是年龄,因变量是身高;(2)A点表示小军和小蕊在11岁半时身高都是143厘米,B点表示小军和小蕊在15岁时身高都是156厘米;(3)小蕊10岁时身高127厘米.点睛:本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的解决.。

北师大版七年级数学下册第4章《变量之间的关系》单元测试试卷及答案(2).doc

北师大版七年级数学下册第4章《变量之间的关系》单元测试试卷及答案(2).doc

北师大版七年级数学下册第4章《变量之间的关系》单元测试试卷及答案(2)(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.在用图象表示变量之间的关系时,下列说法最恰当的是()A.用水平方向的数轴上的点表示因变量B.用竖直方向的数轴上的点表示自变量C.用横轴上的点表示自变量D.用横轴或纵轴上的点表示自变量2.已知变量x、y满足下面的关系,则x,y之间用关系式表示为()x y ……-31-21.5-131-32-1.53-1……A.y=3x3xB.y=C.y=D.y= x3x33.在关系式y=3x+5中,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④用关系式表示的不能用图象表示;⑤y与x的关系还可以用列表法和图象法表示,其中正确的是()A.①②⑤B.①②④C.①③⑤D.①④⑤4.从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前速度随时间的增大而逐渐增大,这个问题中自变量是()A.物体B.速度C.时间D.空气5.如图,是反映两个变量关系的图,下列四个情境比较合适该图的是()A.一杯热水放在桌子上,它的水温与时间的关系B.一辆汽车从启动到匀速行驶,速度与时间的关系C.一架飞机从起飞到降落的速度与时间的关系D.踢出足球的时间与速度的关系O6.如图,是广州市某一天内的气温变化图,根据图象,下列说法中错误的是()A.这一天中最高气温是26℃B.这一天中最高气温与最低气温的差为18℃C.这一天中2时至14时之间的气温在逐渐升高D.这一天中只有14时至24时之间的气温在逐渐降低1当长一定时, 是常量, 是变量.了该公司产品的销售成本与销售量的关系,当该公司盈利(收 入大于成本)时,销售量 .7.变量 y 与 x 之间的关系式是 y =12x 2+1 ,当自变量 x=2 时,因变量 y 的值是( )A .-2B .-1C .1D .38.小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点 B ,最后走下坡路到达工作单 位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的 速度分别保持和上班时一致,那么他从单位到家门口需要的时间是( ) A .12 分钟 B .15 分钟 C .25 分钟 D .27 分钟9.三军受命,我解放军各部队奋力抗战在救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某 重灾小镇,甲队先出发,从部队基地到该小镇只有唯一通道,且路程为 24 km ,如图是他们行走的路 程 与 时 间 的 图 象 , 四 位 同 学 观 察 此 图 象 得 出 有 关 信 息 , 其 中 正 确 的 个 数 是( ).. . .A . 1B .2C .3D .410.下面的图表是护士统计的一位病人一天的体温变化情况,通过图表,估计这个病人下午 16:00 时 的体温是( )O第 10 题图A .38.0 ℃B .39.1 ℃C .37.6 ℃D .38.6 ℃ 二、填空题(每小题 3 分,共 24 分)11. 长方形的面积为 S ,则长 a 和宽 b 之间的关系为 ,612.如图,l 1 反映了某公司的销售收入与销售量的关系,l 2 反映54 3 (1)小于 3 t (2)大于 3 t 2 (3)小于 4 t (4)大于 4 t 1 13.在“变量之间的关系”一章中,我们学习的“变量”是指自变量 和因变量,而表达它们之间的关系通常有三种方法,这三种方 法是指 、 和 .14. 找出能反映下列两个变量间的关系图象,并将代号填在横 线上.2一辆匀速行驶的汽车,其速度与时间的关系.对应的图象是.15.变量y与x之间的对应关系如下表所示,则y与x之间的关系可表示为.x y ……1 1.5264334…2 1.5…16.某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图所示,那么乙播种机参与播种的天数是天.(1公顷=15亩)17.如图所示的图象反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小明离他家的距离,则小明从学校回家的平均速度为千米∕时.耗油量(升)18.某型号汽油的耗油量与相应金额的关系如图所示,那么这种汽油的单价是每升元.三、解答题(共46分)19.(6分)父亲告诉小明:“距离地面越远,温度越低,”并给小明出示了下面的表格.距离地面高度(千米)温度(℃)02011428324-45-10根据上表,父亲还给小明出了下面几个问题,你和小明一起回答.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你知道距离地面6千米的高空温度是多少吗?20.(6分)下表是某公共电话亭打长途电话的几次收费记录:时间(分)电话费(元)10.621.231.842.453.063.674.2(1)上表反映了哪两个变量间的关系?哪个是自变量?哪个是因变量?(2)如果用x表示时间,y表示电话费,那么随x的变化,y的变化趋势是什么?3s t(3)丽丽打了5分钟电话,那么电话费需付多少元?21.(6分)心理学家发现,学生对概念的接受能力y与提出概念所用时间x(单位:分)之间有如下关系(其中0≤x≤30).提出概念所用时间(x)257101213141720对概念的接受能力(y)47.853.556.35959.859.959.858.355(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强?(3)从表格中可知,当提出概念所用时间x在什么范围内时,学生的接受能力逐步增强?当提出概念所用时间x在什么范围内时,学生的接受能力逐步降低?22.(6分)张爷爷晚饭以后外出散步,碰到老邻居,交谈了一会儿,返回途中在读报栏前看了一会儿报,下图是据此情景画出的图象,(m)表示张爷爷离开家的距离,(min)表示外出散步的时间.请你回答下面的问题:(1)张爷爷是在什么地方碰到老邻居的?交谈了多长时间?(2)读报栏大约离家多少路程?(3)图中反映了哪些变量之间的关系?其中哪个是自变量?哪个是因变量?23.(8分)在如图所示的三个图象中,有两个图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a,b所对应的图象分别是、(填写序号);(2)请你为剩下的图象写出一个合适的情境.24.(8分)如图,反映了小明从家到超市的时间与距离之间关系的一幅图.(1)图中反映了哪两个变量之间的关系?超市离家多远?(2)小明到达超市用了多少时间?小明仅往返(不考虑中间的等待时间)花了多少时间?(3)小明出发后20分钟到30分钟内可能在做什么?(4)小明从家到超市的平均速度是多少?返回时的平均速度是多少?25.(6分)某县从2007年开始实施退耕还林,每年退耕还林的面积如下表:时间/年面积/亩200735020083802009420201050020116002012720(1)上表反映的是哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)从表中可知,随时间的变化,退耕还林面积的变化趋势是什么?(3)从2007年到2012年底,该县已完成退耕还林面积多少亩?(1公顷=15亩)45位到家门口需要的时间是2÷1参考答案1.C解析:用水平方向的横轴上的点表示自变量,用竖直方向的纵轴上的点表示因变量.故选C.2.C解析:观察表中数据知=,故x,y之间用关系式表示为y=3 x.3.A解析:①x是自变量,y是因变量,正确;②x的数值可以任意选择,正确;③y是变量,它的值与x无关,错误,因为y随x的变化而变化;④用关系式表示的不能用图象表示,错误;⑤y与x的关系还可以用列表法和图象法表示,正确.故选A.4.C解析:因为速度随时间的变化而变化,故时间是自变量,速度是因变量,故本题选C.5.B解析:题中给的图象变化情况为先是y随x的增大而增大,后随着x的增加y不变.A.热水的水温先是随时间的增加而下降,后不变,所以不符合.B.汽车启动的过程中,速度是随着时间的增长从0增大的,而匀速后,速度随时间的增加是不变的,故符合题意.C.飞机起飞的过程中速度是随着时间的增加而增大的,而降落的过程中,速度是随着时间的增加而减少的,所以不符合题意.D.踢出的足球的速度是随着时间的增加而减小的,所以不符合题意.故选B.6.D解析:0时至2时之间和14时至24时之间的气温在逐渐降低,剩下时段气温逐渐上升,A、B、C的说法都是正确的,故选D.7.D解析:当x=2时,y=12x2+1=2+1=3.故选D.1118.B解析:先算出平路、上坡路和下坡路的速度分别为千米/分、千米/分和千米/分,∴他从单35211+1÷+1÷=15(分钟).故选B.5239.D解析:由图可知:甲队、乙队的起始时间分别为0h和2h,因此甲队比乙队早出发2h;在3h-4 h这段时间内,甲队的图象与x轴平行,因此在行进过程中,甲队停顿了1h;两个图象有两个交点:①甲行驶4.5h、乙行驶2.5h时,两图象相交,因此乙队出发2.5h后追上甲队;②甲队行驶6h、乙队行驶4h后,两图象相交,此时两者同时到达目的地.在整个行进过程中,乙队用的时间为4,行驶的路程为24km,因此乙队的平均速度为66 x6 km/h .这四个同学的结论都正确,故选 D.10.D 解析:由图表可知,这个病人下午 14:00~18:00 时的体温差是 39.1-38.0=1.1(℃),平均每小时体温增加 1.1÷4≈0.3(℃),因此估计这个病人下午 16:00 时的体温是 38.0+0.3×2=38.6(℃).故选 D.11. a ;a ;S ,b 解析:由题意,得 a ,在该关系式中,当长一定时,a 是常量,S ,b 是变量.12.(4) 解析:盈利时收入大于成本,即l 1>l 2,在图上应是 l 1 在上面,在交点右边的部分满足条件,故填(4).13.表格法;关系式法;图象法 解析:表示两个变量之间的关系时,通常有三种方法:表格法、关系式法、图象法.14.a解析:匀速时速度和时间之间的关系不变,故选 a.15. y = 6 6解析:∵ x 与 y 的乘积是定值 6,∴ xy =6,即 y = ,所以 y 与 x 之间的关系可表示为 y = .x x16. 4解析:600÷150=4(天).17. 6 解析:平均速度为 6÷1=6(千米/时).18. 7.79解析:单价为 779÷100=7.79(元/升),故填 7.79.19.解:(1)反映了温度和距离地面高度之间的关系,高度是自变量,温度是因变量.(2)由表可知,每上升 1 千米,温度降低 6 ℃,可得关系式为 y=20-6x.(3)将=6 代入=206 得=2036=16,即距离地面 6 千米的高空温度是 16 ℃.20.解:(1)反映的是时间和电话费两个变量之间的关系,时间是自变量,电话费是因变量;(2)根据表格中的数据得出:每增加 1 分钟,电话费增加 0.6 元;(3)由表格中的数据直接得出:丽丽打了 5 分钟电话,电话费需付 3 元.21. 解:(1)反映了提出概念所用时间 x 和对概念的接受能力 y 两个变量之间的关系;其中 x 是自变量,y 是因变量.(2)提出概念所用时间为 13 分钟时,学生的接受能力最强.(3)当 x 在 2 分钟至 13 分钟内时,学生的接受能力逐步增强;当 x 在 13 分钟至 20 分钟内时,学生的接受能力逐步降低.22.解:由图象可知:(1)张爷爷是在距家 600 的地方碰到老邻居的,交谈了 25-15=10(min );(2)读报栏离家 300 ;(3)反映了离开家的距离与外出散步的时间之间的关系,时间 t 是自变量,离开家的距离是因变量.23.解:(1)∵ 情境 a :小芳离开家不久,即离家一段路程,此时①②③都符合,发现把作业本忘在家里,于是返回家里找到了作业本,即又返回家,离家的距离是 0,又去学校,即7(离家越来越远,此时只有③符合,∴ 只有③符合情境 a ;∵ 情境 b :小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进,即离家越来越远,且没有停留,∴ 只有①符合,(2)情境是小芳离开家不久,休息了一会儿,又走回了家.24. 解:根据图形可知:(1)图中所反映的是时间与距离之间的关系;超市离家 900 米.(2)小明到达超市用了 20 分钟;返回用了 15 分钟,往返共用了 35 分钟.(3)小明出发后 20 分钟到 30 分钟可能在超市购物或休息.(4)小明到超市的平均速度是 900÷20=45(米/分),返回时的平均速度是 900÷15=60(米/分).25.解: 1)反映了时间和退耕还林的面积之间的关系,其中时间是自变量,退耕还林的面积是因变量. (2)由表中数据可知退耕还林面积的变化趋势是逐年增加.(3)由题意得,从 2007 年到 2012 年底,该县已完成退耕还林面积 350+380+420+500+600+720=2 970(亩).8。

完整)七年级数学下册-变量之间的关系测试题

完整)七年级数学下册-变量之间的关系测试题

完整)七年级数学下册-变量之间的关系测试题1.给定一个圆珠笔盒子,其中有12支圆珠笔,售价为18元。

用y表示圆珠笔的售价,x表示圆珠笔的支数,则y与x 之间的关系为y=1.5x。

2.如果物体运动的路程s与时间t的关系式为s=3t+2t+1,则当t=4时,该物体所经过的路程为28米。

3.给定两个变量m和v之间的4组对应数据,求m与v 之间的关系。

根据数据,最接近的关系式为v=2m-2.4.龟兔赛跑的故事中,兔子睡觉后被乌龟追上,最终乌龟先到达终点。

用S1和S2分别表示乌龟和兔子所行的路程,t 为时间,则与故事情节相符的图象为S1-S2随时间t的变化曲线,前半段曲线较平缓,后半段曲线较陡峭。

5.给定XXX一天内的体温变化情况,图象反映了24小时内小红的体温变化。

下列说法错误的是B,即下午5时体温最高。

6.小王设计了一个程序,输入和输出数据如表所示。

根据数据,当输入数据8时,输出的数据为xxxxxxxx。

7.给定某汽车在行驶过程中的速度与时间的关系曲线,描述了汽车在不同时间的速度变化情况。

根据图象,说法错误的是B,即第12分时汽车的速度是千米/时。

8.给定一个,向其中注水,注满为止。

注水量V与水深h 之间的关系的图象大致如图3所示,则这个是图中的D。

18.XXX晨骑车从家到学校,路程如图7所示,先上坡后下坡。

如果他返回时上下坡的速度不变,那么他从学校骑车回家需要多长时间?(答案需要填写在空白处)19.一根弹簧的原长为13厘米,挂物体质量不得超过16千克,每挂1千克就会伸长0.5厘米。

当挂物体质量为10千克时,弹簧长度为多少厘米?挂物体质量X(千克)与弹簧长度y(厘米)的关系式是什么?(不考虑X的取值范围)20.如图6-31,表示一骑自行车者与一骑摩托车者沿相同路线由甲地到乙地行驶的图像,两地间的距离是100千米。

请回答以下问题:1)谁出发的时间更早?早了多少时间?谁先到达乙地?提前了多少时间?2)两人在途中行驶的速度分别是多少?3)在什么时间段内,两辆车都在途中行驶?在这段时间内,自行车在摩托车前面,两辆车相遇,自行车在摩托车后面分别是什么时候?21.下表是三家电器厂2007年上半年每个月的产量:x/月 | y/台。

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》检测题(有答案解析)(4)

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》检测题(有答案解析)(4)

一、选择题1.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据温度/℃﹣20﹣100102030声速/m/s318324330336342348A.这个问题中,空气温度和声速都是变量B.空气温度每降低10℃,声速减少6m/sC.当空气温度为20℃时,声音5s可以传播1710mD.由数据可以推测,在一定范围内,空气温度越高,声速越快2.一个长方形的周长为30,则长方形的面积y与长方形一边长x的关系式为() A.y=x(15-x) B.y=x(30-x) C.y=x(30-2x) D.y=x(15+x) 3.已知变量x,y满足下面的关系:x…-3-2-1123…y…1 1.53-3-1.5-1…则x,y之间的关系用函数表达式表示为()A.y=3xB.y=-3xC.y=-3xD.y=3x4.从甲地到乙地的铁路路程约为615千米,高铁速度为300千米/小时,直达;动车速度为200千米/小时,行驶180千米后,中途要停靠徐州10分钟,若动车先出发半小时,两车与甲地之间的距离y(千米)与动车行驶时间x(小时)之间的函数图象为()A.B.C.D.5.如图,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误的是()A.第3分时汽车的速度是40千米/时B.第12分时汽车的速度是0千米/时C.从第3分到第6分,汽车行驶了120千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时6.甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地之间的路程为20km,他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示,根据图象信息,下列说法正确的是()A.甲的速度是4km/h B.甲比乙晚到B地2h C.乙的速度是10km/h D.乙比甲晚出发2h7.一个面积等于3的三角形被平行于一边的直线截成一个小三角形和梯形,若小三角形和梯形的面积分别是y和x,则y关于x的函数图象大致是图中的()A.B.C.D.8.按如图的方式用火柴棒摆放正方形,若用n表示正方形个数,y表示摆放正方形所用火柴棒根数,则y与n之间的关系式为()A.y=3n+1 B.y=4n-1 C.y=4+3n D.y=n+n+(n-1)9.在三角形面积公式S=ah,a=2cm中,下列说法正确的是()A.S,a是变量,h是常量B.S,h是变量,是常量C.S,h是变量,a是常量D.S,h,a是变量,是常量10.某校组织学生到距学校6 km的光明科技馆参观.王红准备乘出租车去科技馆,出租车的收费标准如下表:里程收费(元)3千米以下(含3千米)8.003千米以上,每增加1千米 1.80则收费y(元)与出租车行驶里程数x(km)(x≥3)之间的关系式为()A.y=8x B.y=1.8x C.y=8+1.8x D.y=2.6+1.8x 11.在关于圆的面积的表达式S=πr2中,变量有( )A.4个B.3个C.2个D.1个12.函数y=中自变量x的取值范围是( )A.x≤2B.x≥2C.x<2 D.x>2二、填空题13.某种储蓄的月利率是0.2%,存入100元本金后,则本息和y(元)与所存月数x之间的关系式为____(不考虑利息税).14.随着各行各业有序复工复产,企业提倡员工实行“两点一线”上下班模式,减少不必要km h的平均速度行驶20min到达单位,下班按原路返的聚集.小华爸爸早上开车以60/km h)之回,若返回时平均速度为v,则路上所用时间t(单位:h)与速度v(单位:/间的关系可表示为________.15.一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图所示,则慢车比快车早出发______小时,快车追上慢车行驶了______千米,快车比慢车早______小时到达B地.从A地到B地快车比慢车共少用了______小时.16.梯形的上底长是2,下底长是8,则梯形的面积y关于高x之间的关系式是______,自变量是____,因变量是______.17.如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD,设AB的长为x米,则菜园的面积y(平方米)与x(米)的函数表达式为________.(不要求写出自变量x的取值范围)18.日常生活中,“老人”是一个模糊概念.可用“老人系数”表示一个人的老年化程度.“老人系数”的计算方法如下表:人的年龄x(岁)x≤6060<x<80x≥80“老人系数”06020x1按照这样的规定,“老人系数”为0.6的人的年龄是__岁.19.由于地球引力和月球引力的不同,因此,同一物体在地球上的重量和在月球上的重量是不相等的.同一物体在月球上的重量y(千克)与同一物体在地球上的重量x(千克)之间的关系式为y=16x,则在地球上重量为120千克的物体,在月球上重量减少了_______千克.20.若一个函数图象的对称轴是y轴,则该函数称为偶函数.那么在下列四个函数:①y=2x;②y=6x;③y=x2;④y=(x﹣1)2+2中,属于偶函数的是______(只填序号).三、解答题21.如图①所示,在△ABC中,AD是三角形的高,且AD=6 cm,E是一个动点,由B向C移动,其速度与时间的变化关系如图②所示,已知BC=8 cm.(1)求当E点在运动过程中△ABE的面积y与运动时间x之间的关系式;(2)当E点停止后,求△ABE的面积.22.某地移动公司的通话时间(分)和需要的电话费(元)之间有如下表所示的关系:通话时1234567…间/分电话费0.40.81.21.62.02.42.8…/元(2)用x表示通话时间,用y表示电话费,请写出随着x的变化,y的变化趋势是什么?23.下面的统计图反映了某中国移动用户5月份手机的使用情况,该用户的通话对象分为三类:市内电话,本地中国移动用户,本地中国联通用户。

变量之间的关系难题初中数学组卷

变量之间的关系难题初中数学组卷

变量之间得关系得初中数学组卷一.选择题(共7小题)1.(2015•荆州)如图,正方形ABCD得边长为3cm,动点P从B点出发以3cm/s得速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s得速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ得面积为y(cm2),则y关于x得函数图象就是()A.ﻩB.ﻩC.ﻩD.2.(2015•北京)一个寻宝游戏得寻宝通道如图1所示,通道由在同一平面内得AB,BC,CA,OA,OB,OC组成.为记录寻宝者得行进路线,在BC得中点M处放置了一台定位仪器.设寻宝者行进得时间为x,寻宝者与定位仪器之间得距离为y,若寻宝者匀速行进,且表示y与x得函数关系得图象大致如图2所示,则寻宝者得行进路线可能为( )A.A→O→B B.B→A→C C.B→O→CﻩD.C→B→O3.(2015•盘锦)如图,边长为1得正方形ABCD,点M从点A出发以每秒1个单位长度得速度向点B运动,点N从点A出发以每秒3个单位长度得速度沿A→D→C→B得路径向点B 运动,当一个点到达点B时,另一个点也随之停止运动,设△AMN得面积为s,运动时间为t 秒,则能大致反映s与t得函数关系得图象就是( )A. B. C.ﻩD.4.(2015•广元)如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C得方向在AB与BC上移动.记PA=x,点D到直线PA得距离为y,则y关于x得函数大致图象就是( )A.ﻩB. C.D.5.(2015•淄博模拟)已知:如图,点P就是正方形ABCD得对角线AC上得一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD得边长为x,矩形PEBF得周长为y,在下列图象中,大致表示y与x之间得函数关系得就是()A.ﻩB. C. D.6.(2014•新泰市模拟)众志成城,预防“禽流感”.在这场没有硝烟得战斗中,科技工作者与医务人员通过探索,把某种药液稀释在水中进行喷洒,消毒效果较好,并且发现当稀释到某一浓度a 时,效果最好而不就是越浓越好.有一同学把效果与浓度得关系绘成曲线,您认为正确得就是()A.ﻩB.C. D.7.(2014•阜宁县模拟)如图,某电信公司提供了A,B两种方案得移动通讯费用y(元)与通话时间x(元)之间得关系,则下列结论中正确得有( )(1)若通话时间少于120分,则A方案比B方案便宜20元;(2)若通话时间超过200分,则B方案比A方案便宜12元;(3)若通讯费用为60元,则B方案比A方案得通话时间多;(4)若两种方案通讯费用相差10元,则通话时间就是145分或185分.A.1个 B.2个 C.3个ﻩD.4个二.填空题(共20小题)8.(2014•徐州)如图①,在正方形ABCD中,点P沿边DA从点D开始向点A以1cm/s 得速度移动;同时,点Q沿边AB、BC从点A开始向点C以2cm/s得速度移动.当点P移动到点A时,P、Q同时停止移动.设点P出发xs时,△PAQ得面积为ycm2,y与x得函数图象如图②,则线段EF所在得直线对应得函数关系式为.9.(2013•咸宁)“龟兔首次赛跑”之后,输了比赛得兔子没有气馁,总结反思后,与乌龟约定再赛一场.图中得函数图象刻画了“龟兔再次赛跑”得故事(x表示乌龟从起点出发所行得时间,y1表示乌龟所行得路程,y2表示兔子所行得路程).有下列说法:①“龟兔再次赛跑”得路程为1000米;②兔子与乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确得说法就是.(把您认为正确说法得序号都填上)10.(2013•武汉模拟)如图,甲、乙两车同时从A地出发,以各自得速度匀速向B地行驶,甲车先到达B地,在B地停留1小时后,沿原路以另一个速度匀速返回,若干时间后与乙车相遇,乙车得速度为每小时60千米.如图就是两车之间得距离y(千米)与乙车行驶得时间x(小时)之间函数得图象,则甲车返回得速度就是每小时千米.11.(2013•成都模拟)如图,lA,l B分别表示A步行与B骑车在同一路上行驶得路程S与时间t得关系.(1)B出发时与A相距千米.(2)走了一段路后,自行车发生故障,进行修理,所用得时间就是小时.(3)B出发后小时与A相遇.(4)若B得自行车不发生故障,保持出发时得速度前进,小时与A相遇.12.(2013•尤溪县质检)如图所示,已知正方形ABCD得边长为4,E就是BC边上得一个动点,AE⊥EF,EF交DC于点F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x得函数图象就是(填序号)13.(2012•苏州)如图①,在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/s 得速度沿着A→B→C→D得方向不停移动,直到点P到达点D后才停止.已知△PAD得面积S(单位:cm2)与点P移动得时间(单位:s)得函数如图②所示,则点P从开始移动到停止移动一共用了秒(结果保留根号).14.(2012•湖北模拟)小明早晨从家骑车到学校,先上坡后下坡,行程情况如图,若返回时上、下坡得速度保持不变,那么小明从学校骑车回家用得时间就是分钟.15.(2012•宁德)五一节某超市搞促销活动:①一次性购物不超过150元不享受优惠;②一次性购物超过150元但不超过500元一律九折;③一次性购物超过500元一律八折.王宁两次购物分别付款120元、432元,若王宁一次性购买与上两次相同得商品,则应付款元.16.(2012•江夏区校级模拟)甲、乙两个工程队分别同时开挖两段河渠,所挖河渠得长度y(m)与挖掘时间x(h)之间关系如图:当x=h时,甲、乙两个工程队所挖河渠得长度相等.17.(2011•咸宁)火车匀速通过隧道时,火车在隧道内得长度y(米)与火车行驶时间x(秒)之间得关系用图象描述如图所示,有下列结论:①火车得长度为120米;②火车得速度为30米/秒;③火车整体都在隧道内得时间为25秒;④隧道长度为750米.其中正确得结论就是.(把您认为正确结论得序号都填上)18.(2011•朝阳)亮亮骑自行车到距家9千米得体育馆瞧一场球赛,开始以正常速度匀速行驶,途中自行车出故障,她只好停下来修车.车修好后,她加速继续匀速赶往体育馆,其速度为原正常速度得倍,结果正好按预计时间(如果自行车不出故障,以正常速度匀速行驶到达体育馆得时间)到达.亮亮行驶得路程s(千米)与时间t(分)之间得函数关系如图所示,那么她修车占用得时间为分.19.(2011•衡阳)如图1所示,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA 运动至点A停止,设点P运动得路程为x,△ABP得面积为y,如果y关于x得函数图象如图2所示,那么△ABC得面积就是.20.(2011•武汉校级模拟)如图,OA、BA分别表示甲、乙两名学生匀速跑步运动得一次函数,图中S与t分别表示运动路程与时间,根据图象判断跑步快者比慢者每秒快(m).21.(2010•金东区模拟)图中得圆点就是有规律地从里到外逐层排列得.设y为第n层(n为正整数)圆点得个数,则y与n之间得函数关系式y=.22.(2010•博野县二模)廊坊某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资得速度均保持不变).储运部库存物资S(吨)与时间t(小时)之间得函数关系如图所示,这批物资从开始调进到全部调出需要得时间就是小时.23.(2010•李沧区二模)小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用得时间与路程得关系如图所示.下班后,如果她沿原路返回,且走平路、上坡路、下坡路得速度分别保持与去上班时一致,那么她从单位到家门口需要得时间就是分钟.24.(2009•荆州模拟)小华从家里出发,到超市购物,然后回家,回家时比去时每分钟慢10米,如图就是她离家得距离y(米)关于离家得时间x(分钟)得函数图象.那么C处得值就是.25.(2007•绵阳)如图所示得函数图象反映得过程就是:小明从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小明离她家得距离,则小明从学校回家得平均速度为千米∕小时.26.(2007•绍兴)绍兴黄酒就是中国名酒之一.某黄酒厂得瓶酒车间先将散装黄酒灌装成瓶装黄酒,再将瓶装黄酒装箱出车间,该车间有灌装、装箱生产线共26条,每条灌装、装箱生产线得生产流量分别如图1,2所示.某日8:00~11:00,车间内得生产线全部投入生产,图3表示该时段内未装箱得瓶装黄酒存量变化情况,则灌装生产线有条.27.(2007•滨州)如图所示表示“龟兔赛跑”时路程与时间得关系,已知龟、兔上午8:00从同一地点出发,请您根据图中给出得信息,算出乌龟在点追上兔子.三.解答题(共3小题)28.(2010•宿迁二模)如图甲,在正方形ABCD中,AB=6cm,点P、Q从A点沿边AB、BC、CD运动,点M从A点沿边AD、DC、CB运动,点P、Q得速度分别为1cm/s,3cm/s,点M得速度2cm/s.若它们同时出发,当点M与点Q相遇时,所有点都停止运动.设运动得时间为ts,△PQM得面积为Scm2,则S关于t得函数图象如图乙所示.结合图形,完成以下各题: (1)当t为何值时,点M与点Q相遇?(2)填空:a= ;b= ;c=.(3)当2<t≤3时,求S与t得函数关系式;(4)在整个运动过程中,△PQM能否为直角三角形?若能,请求出此时t得值;若不能,请说明理由.29.(2005•宁德)如图,已知直角梯形ABCD中,AD∥BC,B=90°,AB=12cm,BC=8cm,D C=13cm,动点P沿A→D→C线路以2cm/秒得速度向C运动,动点Q沿B→C线路以1cm/秒得速度向C运动.P、Q两点分别从A、B同时出发,当其中一点到达C点时,另一点也随之停止.设运动时间为t秒,△PQB得面积为ym2.(1)求AD得长及t得取值范围;(2)当1、5≤t≤t0(t0为(1)中t得最大值)时,求y关于t得函数关系式;(3)请具体描述:在动点P、Q得运动过程中,△PQB得面积随着t得变化而变化得规律.30.(2009•岳阳一模)阅读下面材料,再回答问题.一般地,如果函数y=f(x)对于自变量取值范围内得任意x,都有f(﹣x)=f(x).那么y=f(x)就叫偶函数.如果函数y=f(x)对于自变量取值范围内得任意x,都有f(﹣x)=﹣f(x).那么y=f(x)就叫奇函数.例如:f(x)=x4当x取任意实数时,f(﹣x)=(﹣x)4=x4∴f(﹣x)=f(x)∴f(x)=x4就是偶函数.又如:f(x)=2x3﹣x.当x取任意实数时,∵f(﹣x)=2(﹣x)3﹣(﹣x)=﹣2x3+x=﹣(2x3﹣x)∴f(﹣x)=﹣f(x)∴f(x)=2x3﹣x就是奇函数.问题1:下列函数中:①y=x2+1②③④⑤y=x﹣2﹣2|x|就是奇函数得有;就是偶函数得有(填序号)问题2:仿照例证明:函数④或⑤就是奇函数还就是偶函数(选择其中之一)变量之间得关系得初中数学组卷参考答案一.选择题(共7小题)1.C;2.C;3.D;4.D;ﻩ5.A;ﻩ6.B; 7.C;二.填空题(共20小题)8.y=-3x+18; 9.①③④; 10.90; 11.10; 1;ﻩ3;ﻩ; 12.①;ﻩ13.(4+2);1ﻩ4.37、2; 15.480元或528;16.4;17.②③; 18.5; 19.10;20ﻩ.1、5; 21.4n;22.4、4;ﻩ23.15; 24.18;2ﻩ;25.6ﻩ6.14;ﻩ;27.18:00ﻩ三.解答题(共3小题)28.8; 12;13、5;ﻩ29.;ﻩ;②④.30ﻩ①⑤;。

七年级数学下册 第三章《变量之间的关系》测试卷习题课件下册数学课件

七年级数学下册 第三章《变量之间的关系》测试卷习题课件下册数学课件

m1 2 345 6
v 2.01 4.1 6.04 x 9.93 10.2
A.3.2
B.7.4
C.8.3
D.9.1
12/6/2021
7. (2018·青海)均匀地向一个容器注水,最后将容器 注满.在注水过程中,水的高度 h 随时间 t 的变化规律 如图所示,这个容器的形状可能是( D )
12/6/2021
12/6/2021
5. 如果一盒圆珠笔有 12 支,售价 18 元,用 y(元)
表示圆珠笔的售价,x 表示圆珠笔的支数,那么 y 与 x
之间的关系应该是( D )
A.y=12x
B.y=18x
C.y=32x
D.y=32x
12/6/2021
6. 某次实验中,测得两个变量 v 和 m 的对应数据如
下表,则表中 x 的值最可能是( C )
12/6/2021
16. (本题 8 分)下面四个图象表示某汽车在行驶过程 中,速度与时间之间的关系在不同状态下的表现.请把 图象的序号填在相应语句后的横线上.
(1)汽车起动速度越来越快 A ;
12/6/2021
(2)汽车在匀速行驶中遇到一坑地速度逐步降下来, 越过坑地后速度加大 C ;
(3)行驶过程中速度保持不变 B ; (4)汽车到达目的地,速度逐步减小,最后停下来 D (每一种状态都在某段时间里).
12/6/2021
解:(1)BE=2x; (2)y=12×6×(8-2x),化简得 y=24-6x; (3)当 y=18 cm2 时,x=1 秒.
12/6/2021
20. (本题 10 分)如图,AB 两地相距 50 千米.甲于某 日下午 1 时骑自行车从 A 地出发驶往 B 地.乙也于同日 下午骑摩托车按同路从 A 地出发骑往 B 地.图中的折线 PQR 和线段 MN 分别表示甲,乙所行驶的路程与时间之 间的关系.根据图象回答下列问题:

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》检测题(含答案解析)(1)

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》检测题(含答案解析)(1)

一、选择题1.圆的周长公式C=2πR中,下列说法正确的是()A.π、R是自变量,2是常量B.C是因变量,R是自变量,2π为常量C.R为自变量,2π、C为常量D.C是自变量,R为因变量,2π为常量2.根据科学研究表明,在弹簧的承受范围内,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下表的关系:下列说法不正确的是()x/kg012345y/cm2020.52121.52222.5A.弹簧不挂重物时的长度为0cmB.x与y都是变量,且x是自变量,y是因变量C.随着所挂物体的重量增加,弹簧长度逐渐边长D.所挂物体的重量每增加1kg,弹簧长度增加0.5cm3.从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前的速度随时间的增加而逐渐增大,这个问题中自变量是()A.物体B.速度C.时间D.空气4.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内的余油量Q (升)与行驶时间t(小时)之间的函数关系的图象是()A.B.C.D.5.如图,y与x之间的关系式为()A.y=x+60 B.y=x+120 C.x=60+y D.y=30+x6.某市大部分地区今年5月中下旬的天气情况是:前5天小雨,后5天暴雨.那么能反映该市主要河流水位变化情况的图象大致是()A.B.C.D.7.某商店进了一批玩具,出售时要在进价的基础上加一定的利润,其销售个数x与售价y 如下表:个数x/个1234…售价y/元8+0.316+0.624+0.932+1.2…下列用销售个数x表示售价y的关系式中,正确的是 ( )A.y=(8+0.3)x B.y=8x+0.3 C.y=8+0.3x D.y=8+0.3+x8.李钰同学利用计算机设计了一个程序,输入和输出的数据如下表:输入…12345…输出…25101726…那么,当输入数据8时,输出的数据是()A.61 B.63 C.65 D.679.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量Q(升)与流出时间t(分钟)的函数关系是( )A.Q=0.2t B.Q=20﹣0.2tC.t=0.2Q D.t=20﹣0.2Q10.柿子熟了,从树上落下来.下面的()图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况.A.B.C.D.11.甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,两人行驶的路程y(km)与甲出发的时间x(h)之间的函数图象如图所示.根据图象得到如下结论,其中错误的是()A.甲的速度是60km/h B.乙比甲早1小时到达C.乙出发3小时追上甲D.乙在AB的中点处追上甲12.一个函数的图象如图,给出以下结论:①当x=0时,函数值最大;②当0<x<2时,函数y随x的增大而减小;③存在0<x0<1,当x=x0时,函数值为0.其中正确的结论是()A.①② B.①③ C.②③ D.①②③二、填空题13.球的表面积S与半径R之间的关系是S=4πR2.对于各种不同大小的圆,请指出公式S=4πR2中常量是________ ,变量是________14.一辆汽车出发时邮箱内有油48升,出发后每行驶1 km耗油0.6升,如果设剩油量为y(升),行驶路程为x(km).则y与x的关系式为_________________;这辆汽车行驶35 km 时,汽车剩油____升;当汽车剩油12升时,行驶了_______千米.15.某城市自来水收费实行阶梯水价,收费标准如下表所示,用户5月份交水费45元,则所用水为__方.月用水量不超过12方部分超过12方不超过18吨部分超过18方部分收费标准(元/2 2.53方)16.甲、乙两人在一条直线道路上分别从相距1500米的A,B两点同时出发,相向而行,当两人相遇后,甲继续向点B前进(甲到达点B时停止运动),乙也立即向B点返回.在整个运动过程中,甲、乙均保持匀速运动.甲、乙两人之间的距离y(米)与乙运动的时间x(秒)之间的关系如图所示.则甲到B点时,乙距B点的距离是_____米.17.小明早晨从家骑车到学校,先上坡,后下坡,行驶情况如图所示,如果返回时上、下坡的速度与去学校时上、下坡的速度相同,那么小明从学校骑车回家用的时间是____________.18.小雨画了一个边长为3cm的正方形,如果将正方形的边长增加xcm那么面积的增加值y(cm2)与边长的增加值x(cm)之间的关系式为_____.19.如图,梯形的上底长是5 cm,下底长是11 cm.当梯形的高由大变小时,梯形的面积也随之发生变化.(1)在这个变化过程中,自变量是____________,因变量是____________;(2)梯形的面积y(cm2)与高x(cm)之间的关系式为____________;(3)当梯形的高由10 cm变化到1 cm时,梯形的面积由____________变化到____________. 20.若一个函数图象的对称轴是y轴,则该函数称为偶函数.那么在下列四个函数:①y=2x;②y=6x;③y=x2;④y=(x﹣1)2+2中,属于偶函数的是______(只填序号).三、解答题21.如图是甲、乙两人同一地点出发后,路程随时间变化的图象.(1)此变化过程中,是自变量,是因变量;(2)甲的速度乙的速度(大于、等于、小于);(3)6时表示;(4)路程为150km,甲行驶了小时,乙行驶了小时;(5)9时甲在乙的(前面、后面、相同位置);(6)乙比甲先走了3小时,对吗? .22.如图,自行车每节链条的长度为2.5cm,交叉重叠部分的圆的直径为0.8cm.(1)观察图形,填写下表:链条的节数/234节链条的长度/cm(2)如果x节链条的长度是y,那么y与x之间的关系式是什么?(3)如果一辆某种型号自行车的链条(安装前)由60节这样的链条组成,那么这辆自行车上的链条(安装后)总长度是多少?23.如图,它表示甲乙两人从同一个地点出发后的情况.到十点时,甲大约走了13千米.根据图象回答:(1)甲是几点钟出发?(2)乙是几点钟出发,到十点时,他大约走了多少千米?(3)到十点为止,哪个人的速度快?(4)两人最终在几点钟相遇?(5)你能将图象中得到信息,编个故事吗?24.某市为了节约用水,采用分段收费标准.若某户居民每月应交水费y(元)与用水量x(吨)之间关系的图象如图,根据图象回答:(1)该市自来水收费时,若使用不足5吨,则每吨收费多少元?超过5吨部分每吨收费多少元?(2)若某户居民每月用水3.5吨,应交水费多少元?若某月交水费17元,该户居民用水多少吨?25.如图,反映了小明从家到超市的时间与距离之间关系的一幅图.(1)图中反映了哪两个变量之间的关系?超市离家多远?(2)小明到达超市用了多少时间?小明往返花了多少时间?(3)小明离家出发后20分钟到30分钟内可以在做什么?(4)小明从家到超市时的平均速度是多少?返回时的平均速度是多少?26.假定甲、乙两人在一次赛跑中,路程s与时间t的关系如图所示,我们可以知道:(1)这是一次__________米赛跑.(2)甲、乙两人中__________先到达终点.(3)乙在这次赛跑中速度为__________米/秒.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量.解:圆的周长公式C=2πR中,C是因变量,R是自变量,2π为常量,故选B.点评:本题主要考查了常量,变量的定义,是需要识记的内容.2.A解析:A【分析】根据图表信息即可解题.【详解】解:由题可知当x=0时,y=20,说明当弹簧不挂重物时的长度为20cm,故A选项错误,故选A.【点睛】本题考查了用表格表示两个变量之间的关系,属于简单题,在表格中提取有效信息是解题关键. 3.C解析:C【分析】根据函数的定义解答.【详解】解:因为速度随时间的变化而变化,故时间是自变量,速度是因变量,即速度是时间的函数.故选C.【点睛】本题考查了常量与变量,关键是掌握函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数.4.B解析:B【分析】根据油箱内余油量=原有的油量-t小时消耗的油量,可列出函数关系式,得出图象.【详解】解:由题意得,油箱内余油量Q(升)与行驶时间t(小时)的关系式为:Q=40-5t(0≤t≤8),结合解析式可得出图象:故选:B.【点睛】此题主要考查了函数图象中由解析式画函数图象,特别注意自变量的取值范围决定图象的画法.5.A解析:A【解析】【分析】由三角形外角性质可得结论.【详解】∵三角形一个外角等于与它不相邻的两个内角和,∴y=x+60.故选:A.【点睛】考查了三角形外角的性质,解题关键是运用三角形一个外角等于与它不相邻的两个内角和得出关系式.6.B解析:B【解析】【分析】正确理解函数图象与实际问题的关系.【详解】根据题意:天气情况是:前5天小雨,河流水位较慢上升;后5天暴雨,河流水位较快上升.故选:B.【点睛】本题要求能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢7.A解析:A【解析】【分析】本题通过观察表格内的x与y的关系,可知y的值相对x=1时是成倍增长的,由此可得出方程.【详解】依题意得:y=(8+0.3)x;故选A.【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.8.C解析:C【分析】观察表格发现,输入的数字是几,输出数就是输入数的平方加1+由此求解.【详解】输入8,输出数就是82+1=64+1=65;故选C.【点睛】解决本题关键是找出输入数据与输出的数据之间的关系,再由此进行求解.9.B解析:B【分析】根据“油箱中剩余的油量=原有存油量-流出的油量”结合题中已知条件列式表达即可.【详解】由题意可得:Q=20-0.2t.故选B.【点睛】读懂题意,知道“油箱中剩余的油量=原有存油量-流出的油量”是解答本题的关键.10.A解析:A【解析】根据物理上的自由落体运动的规律,速度越来越大,故选A.11.C解析:C【解析】A.根据图象得:360÷6=60km/h,故正确;B. 根据图象得,乙比甲早到1小时;C.乙的速度为:360÷4=90km/h,设乙a小时追上甲,90a=60(a+1)解之得a=2,故不正确;D. ∵90×2=180km, ∴乙在AB的中点处追上甲,故正确;12.C解析:C【解析】试题分析:看图,可知当X为0时函数不是最大值;当0<x<2时,函数的y随x的增大而减小,故②正确;如图可知在0<x0<1,当x=x0时,函数值为0.解:函数值大,就是对应的点高,因而①当x=0时,函数值最大;不正确.②当0<x<2时,函数对应的点函数对应的点越向右越向下,即y随x的增大而减小.函数在大于0并且小于1这部分,存在值是0的点,即图象与x轴有交点,③存在0<x0<1,当x=x0时,函数值为0,正确.故选C.考点:函数的图象.二、填空题13.4πS和R【解析】【分析】变量是指在程序的运行过程中随时可以发生变化的量常量是数值始终不变的量根据定义即可确定【详解】解:公式是S=4πR2中常量是4π变量是S和R故答案是:4π;S和R【点睛】本题解析:4π S和R【解析】【分析】变量是指在程序的运行过程中随时可以发生变化的量,常量是数值始终不变的量,根据定义即可确定.【详解】解:公式是S=4πR2中常量是4π,变量是S和R.故答案是: 4π;S和R.【点睛】本题考查了常量与变量的定义,属于简单题,理解定义是关键.14.y=48-06x2760【解析】(1)由题意可得y与x的关系式是:y=48−06x;(2)当x=35时y=48−06×35=48−21=27当y=12时12=48−06x解得x=60即这辆汽车行驶3解析:y=48-0.6x 27 60【解析】(1)由题意可得,y与x的关系式是:y=48−0.6x;(2)当x=35时,y=48−0.6×35=48−21=27,当y=12时,12=48−0.6x,解得,x=60,即这辆汽车行驶35km时,剩油27升;汽车剩油12升时,行驶了60千米。

(word)七年级数学下第三章变量之间关系专题练习试题

(word)七年级数学下第三章变量之间关系专题练习试题

Word格式七年级数学下---第三章变量之间的关系专题练习一、根底知识回忆:1、表示两个变量之间关系的方法有〔〕、〔〕、〔〕.2.图象法表示两个变量之间关系的特点是〔〕3.用图象法表示两个变量之间关系时,通常用水平方向的数轴〔横轴〕上的点表示〔〕,用竖直方向的数轴〔纵轴〕上的点表示〔〕.专题一、速度随时间的变化1、汽车速度与行驶时间之间的关系可以用图象来表示,以下列图中A、B、C、D四个图象,可以分别用一句话来描述:〔1〕在某段时间里,速度先越来越快,接着越来越慢。

〔〕〔2〕在某段时间里,汽车速度始终保持不变。

〔〕〔3〕在某段时间里,汽车速度越来越快。

〔〕〔4〕在某段时间里,汽车速度越来越慢。

〔〕速度速度速度速度oA 时间o时间时间BoC Do2、描述一名跳水运发动从起跳到落水这一运动过程中,速度v与时间t之间关系的图象大致是〔〕V V V VOOOtOtt3、李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修好后,因怕耽误时间,于是加快了车速.如用s表示李明离家的距离,t为时间.在下面给出的表示s与t的关系图6—41中,符合上述情况的是()完美整理Word格式4、一辆轿车在公路上行驶,不时遇到各种情况,速度随之改变,先加速,再匀速又遇到情况而减速,过后再加速然后匀速,下公路、上小路,到达目的地.图6—43哪幅图象可近似描述上面情况()5、“龟兔赛跑〞讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉。

当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.用S1、S2分别表示乌龟和兔子所行的路程,t为时间,那么以下列图象中与故事情节相吻合的是〔〕s S1s1sS S1s1SS2S S222SA tB tC tD t6、星期天晚饭后,小红从家里出发去散步,以下列图描述了她散步过程中离家的距离s〔米〕与散步所用的时间t〔分〕之间的关系,依据图象下面描述符合小红散步情景的是〔〕42·Q/升36·30·24·18·12·6············1234567891011t/时A.从家出发,到了一个公共阅读报栏,看了一会儿报,就回家了.B.从家出发,到了一个公共阅报栏,看了一会儿报,继续向前走了一段后,然后回家了.C.从家里出发,一直散步〔没有停留〕,然后回家了D.从家里出发,散了一会儿步,就找同学去了,18分钟后才开始返回.7、某机动车辆出发前油箱中有油42升,行驶假设干小时后,在途中加油站加油假设干.油箱中余油量Q(升)与行驶时间t(时)之间的关系如图,请根据图像填空:⑴机动车辆行驶了小时后加油.⑻中途加油升.⑵加油后油箱中的油最多可行驶小时.⑶如果加油站距目的地还有230公里,机动车每小时走40公里,油箱中的油能否使机动车到达目的地?答:。

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》测试(答案解析)(2)

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》测试(答案解析)(2)

一、选择题1.下表反映的是某地区电的使用量x(千瓦时)与应交电费y(元)之间的关系,下列说法不正确的是()A.x与y都是变量,且x是自变量,y是x的函数B.用电量每增加1千瓦时,电费增加0.55元C.若用电量为8千瓦时,则应交电费4.4元D.y不是x的函数2.在圆的面积公式S=πr2中,是常量的是()A.S B.πC.r D.S和r3.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种关系,其关系图象大致为()A.B.C.D.4.五一节,小丽独自一人去老家玩,家住在车站附近的姑姑到车站去接小丽.因为担心小丽下车后找不到路,姑姑一路小跑来到车站,结果客车晚点,休息一阵后,姑姑接到小丽,和小丽一起慢慢的走回了家.下列图象中,能反映以上过程中小丽姑姑离家的距离s 与时间t的关系的大致图象是()A.B.C.D.5.下列说法中正确的是 ( )A.变量 x , y 满足 x + 3y = 1 ,则 y 是 x 的函数B.变量 x , y 满足23y x=--,则 y 是 x 的函数C.变量 x , y 满足∣ y ∣= x ,则 y 是 x 的函数D.变量 x , y 满足 y2 = x ,则 y 是 x 的函数6.已知两个变量x和y,它们之间的3组对应值如下表,则y与x之间的函数关系式可能是()A.y=3x B.y=x-4 C.y=x2-4 D.y=3 x7.小明周六参加绘画兴趣班,爸爸开车送他从家去公交车站,先加速行驶一段时间后匀速行驶,过了一段时间到达公交车站,等待一段时间后上了公交车,公交车一开始先加速,一段时间后又开始匀速行驶,下面可以近似地刻画出小明在这段时间内的速度变化情况的图象是( )A.B.C.D.8.某校组织学生到距学校6 km的光明科技馆参观.王红准备乘出租车去科技馆,出租车的收费标准如下表:里程收费(元)3千米以下(含3千米)8.003千米以上,每增加1千米 1.80则收费y(元)与出租车行驶里程数x(km)(x≥3)之间的关系式为()A.y=8x B.y=1.8x C.y=8+1.8x D.y=2.6+1.8x9.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量Q(升)与流出时间t(分钟)的函数关系是( )A.Q=0.2t B.Q=20﹣0.2tC.t=0.2Q D.t=20﹣0.2Q10.一辆慢车以50千米/小时的速度从甲地驶往乙地,一辆快车以75千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间的函数图象是()A.B.C.D.11.在关于圆的面积的表达式S=πr2中,变量有( )A.4个B.3个C.2个D.1个12.如图1,已知点E,F,G,H是矩形ABCD各边的中点,AB=2.39,BC=3.57.动点M从点A出发,沿A→B→C→D→A匀速运动,到点A停止.设点M运动的路程为x,点M到四边形EFGH的某一个顶点的距离为y,如果表示y关于x的函数关系的图象如图2所示,那么四边形EFGH的这个顶点是( )A.点E B.点F C.点G D.点H二、填空题13.如果一个三角形的底边固定,高发生变化时,面积也随之发生改变.现已知底边长为10,则高从3变化到10时,三角形的面积变化范围是____.14.函数y=中自变量x的取值范围是________.3x+15.一个三角形的面积始终保持不变,它的一边的长为xcm,这边上的高为ycm,y与x的关系如下图,从图像中可以看出:(1)当x越来越大时,y越来越________;(2)这个三角形的面积等于________cm2;-(3)可以想像:当x非常大非常大时,y一定非常小非常小,这个三角形显得很“扁”,但无论x 多么的大,y总是_______零(填“大于”、“小于”、“大于或等于”之一).16.李老师带领x名学生到某动物园参观,已知成人票每张20元,学生票每张10元.设门票的总费用为y元,则y=________.17.如图所示,梯形的上底长是5厘米,下底长是13厘米,当梯形的高由大变小时,梯形的面积也随之发生变化.(1)在这个变化过程中,自变量是__________,因变量是__________. (2)梯形的面积2(cm )y 与高x (厘米)之间的关系式为__________. (3)当梯形的高由10厘米变化到1厘米时,梯形的面积由__________2cm 变化到__________2cm .18.如图,梯形的上底长是5 cm,下底长是11 cm.当梯形的高由大变小时,梯形的面积也随之发生变化.(1)在这个变化过程中,自变量是____________,因变量是____________; (2)梯形的面积y(cm 2)与高x(cm)之间的关系式为____________;(3)当梯形的高由10 cm 变化到1 cm 时,梯形的面积由____________变化到____________. 19.如图①,在直角梯形ABCD 中,动点P 从点B 出发,沿BC 、CD 运动至点D 停止,设点P 运动的路程为x ,△ABP 的面积为y .若y 关于x 的函数图象如图②所示,则△BCD 的面积是__.20.如图,是小明从学校到家里行进的路程s (米)与时间t (分)的函数图象.观察图象,从中得到如下信息: ①学校离小明家1000米; ②小明用了20分钟到家; ③小明前10分钟走了路程的一半; ④小明后10分钟比前10分钟走得快,其中正确的有_____(填序号).三、解答题21.某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25min ,于是立即步行回家取票同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.如图中线段AB 、OB 分别表示父子俩送票、取票过程中离体育馆的路程()s m 与所用时间(min)t 之间的图像,结合图像解答下列问题(假设骑自行车和步行的速度始终保持不变):(1)图中O 点表示________;A 点表示________;B 点表示________.(2)从图中可知,小明家离体育馆________m ,父子俩在出发后________min 相遇. (3)你能求出父亲与小明相遇时距离体育馆还有多远? (4)小明能否在比赛开始之前赶回体育馆?22.一根长80cm 的弹簧,一端固定,如果另一端挂上物体,那么在弹性范围内,物体的质量每增加1kg ,弹簧伸长2cm . (1)填写下表: 所挂物体的质量/kg 1234… 弹簧的总长度/cm…(2)如何表示在弹性范围内所挂物体的质量(kg)与弹簧的总长度(cm)之间的数量关系? 23.为了解某品牌轿车的耗油情况,将油箱加满后进行了耗油实验,得到如下数据: 轿车行驶的路程10 20 30 40 ···()s km油箱剩余油量()w L 50 49.2 48.4 47.6 46.8 ···(1)该轿车油箱的容量为 L ,行驶100km 时,油箱剩余油量为 L(2)根据上表的数据,写出油箱剩余油量()w L 与轿车行驶的路程()s km 之间的表达式w = .(3)某人将油箱加满后,驾驶该轿车从A 地前往B 地,到达B 地时油箱剩余油量为26L ,求,A B 两地之间的距离?24.下图表示购买某种商品的个数与付款数之间的关系 (1)根据图形完成下列表格 购买商品个数(个) 2 4 6 7 付款数(元)(2)请写出表示付款数y (元)与购买这种商品的个数x (个)之间的关系式.25.甲、乙两人从少年宫出发,沿相同的路线分别以不同的速度匀速跑向体育馆,甲先跑一段路程 后,乙开始出发,当乙超出甲 150 米时,乙停在原地等候甲,两人相遇后乙又继续以原来的速度跑向体育馆.如图所示是甲、乙两人在跑步的全过程中经过的路程 y (米)与甲出发的时间 x (秒)之间关系的图象.(1) 在跑步的全过程中,甲一共跑了 米,甲的速度为 米/秒.(2)求图中标注的 a 的值及乙跑步的速度.(3)乙在途中等候了多少时间?26.已知函数y=y1+y2,其中y1与x成反比例,y2与x﹣2成正比例,函数的自变量x的取值范围是x≥12,且当x=1或x=4时,y的值均为32.请对该函数及其图象进行如下探究:(1)解析式探究:根据给定的条件,可以确定出该函数的解析式为:.(2)函数图象探究:①根据解析式,补全下表:x 121322523468…y 1343213122120763273…②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象.(3)结合画出的函数图象,解决问题:①当x=34,214,8时,函数值分别为y1,y2,y3,则y1,y2,y3的大小关系为:;(用“<”或“=”表示)②若直线y=k与该函数图象有两个交点,则k的取值范围是,此时,x的取值范围是.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】结合表格中数据变化规律进而得出y是x的函数且用电量每增加1千瓦时,电费增加0.55元.【详解】A、x与y都是变量,且x是自变量,y是x的函数,正确,不合题意;B、用电量每增加1千瓦时,电费增加0.55元,正确,不合题意;C、若用电量为8千瓦时,则应交电费4.4元,正确,不合题意;D、y不是x的函数,错误,符合题意.故选:D.【点睛】此题主要考查了函数的概念以及常量与变量,正确获取信息是解题关键.2.B解析:B【解析】【分析】根据常量、变量的定义,可得答案.【详解】在圆的面积公式S=πr2中,π是常量,S、r是变量,故选B.【点睛】本题考查常量与变量,常量是在事物的变化中保持不变的量.3.B解析:B【分析】理解洗衣机的四个过程中的含水量与图象的关系是关键.【详解】因为进水时水量增加,函数图象的走势向上,所以可以排除D,清洗时水量大致不变,函数图象与x轴平行,排水时水量减少,函数图象的走势向下,排除C,对于A、B,因为题目中明确说明了一开始时洗衣机内无水.故选B.【点睛】本题考查了函数的图象,关键是理解题意,从图象中准确读取信息.4.A解析:A【解析】【分析】根据每段中路程s随时间t的变化情况即可作出判断.【详解】姑姑在车站休息的一段时间,路程不随时间的变化而变化,因而这一段的图象应该平行于横轴;姑姑一路小跑来到车站,这段是正比例函数关系,回家的过程是一次函数关系,且s岁t的增大而减小,因而B、D错误;回家的过程比姑姑一路小跑来到车站的过程速度要慢,即s随t的变化要慢,因而图象要平缓,故A正确,C错误.故选A.【点睛】正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.5.A解析:A【解析】A选项中,“若变量x、y满足x+3y=1,则y是x的函数”这种说法是正确的;B选项中,因为无论x取何值,式子y=都无意义;所以“若变量x、y满足y=,则y是x的函数”的说法是错误的;C选项中,因为当x的值为正时,和它对应的y的值有两个,所以“变量 x , y 满足| y ∣= x ,则 y 是 x 的函数”的说法是错误的;D选项中,因为当x的值为正时,和它对应的y的值有两个,所以“变量 x , y 满足 y2 = x ,则 y 是 x 的函数”的说法是错误的.故选A.点睛:判断一个含有两个变量x、y的关系式中,变量y是否是变量x的函数,需注意以下两点:(1)变量x的取值要使式子要有意义;(2)对于变量x每取定的一个值,变量y 都有唯一确定的值与之对应.6.C解析:C【解析】选项A,y=3x,根据表格对应数据代入得出y≠3x,选项A错误;选项B,y=x-4,根据表格对应数据代入得出y≠x-4,选项B错误;选项C,y=x2-4,根据表格对应数据代入得出y=x2-4,选项C正确;选项D,y= 3x,根据表格对应数据代入得出y≠3x,选项D错误.故选C.7.C解析:C【解析】试题分析:先加速行驶,可得速度变快,图象从原点开始,成上升趋势;再匀速行驶,可得速度不变,图象平行于x轴;到达公交车站,汽车减速,速度变慢,直至变为0,图象成下降趋势;根据等车,可得速度为零;根据公交加速,可得速度变快,图象成上升趋势;根据匀速行驶,可得速度不变,图象平行于x轴.由此可知只有选项C符合题意.故选C.点睛:本题考查了函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数值随自变量的增大是增大还是减小.8.D解析:D【解析】∵3千米以上每增加1千米收费1.80元,∴出租车行驶里程数x(x≥3)与收费y之间的关系式为:y=8+1.8(x-3)=1.8x+2.6.故选D.9.B解析:B【分析】根据“油箱中剩余的油量=原有存油量-流出的油量”结合题中已知条件列式表达即可.【详解】由题意可得:Q=20-0.2t.故选B.【点睛】读懂题意,知道“油箱中剩余的油量=原有存油量-流出的油量”是解答本题的关键.10.C解析:C【解析】因为慢车和快车从相距500千米的甲乙两地同时出发,则时间为0小时,两车相距距离为500千米,经过4小时,两车相遇,则此时两车相距距离为0,相遇之后快车经过小时先到达甲地,此时两车相距(75+50) ×=千米>250千米,然后再经过小时,慢车到达乙地,此时两车相距500千米,故选C.11.C解析:C【解析】在圆的面积公式S=πr2中,属于常量的是π,属于变量的是S和r,有2个.故选C. 12.C解析:C【解析】∵2.39+3.57+1.185=7.145,∴点M运动的路程为7.145时,到达G点,这个顶点是点G.故选C二、填空题13.变为【分析】根据三角形面积公式利用底边和高之积的一半即三角形的面积进行计算即可得到答案【详解】解:三角形的面积最小值为最大值为故三角形的面积变化范围是三角形的面积由15变为50故答案为:变为【点睛】解析:15变为50【分析】根据三角形面积公式利用底边和高之积的一半即三角形的面积进行计算,即可得到答案.【详解】解:三角形的面积最小值为1310 2⨯⨯,最大值为1101050 2⨯⨯=,故三角形的面积变化范围是三角形的面积由15变为50.故答案为:15变为50.【点睛】本题主要考查了三角形的面积公式,能利用三角形面积公式计算三角形面积的是解题的关键.14.x>﹣3【解析】【分析】根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时应该是取让两个条件都满足的公共部分【详解】根据题意得到:x+3>0解得x>-3故答案为x>-3解析:x>﹣3【解析】【分析】根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.【详解】根据题意得到:x+3>0,解得x>-3,故答案为x>-3.【点睛】本题考查了函数自变量的取值范围问题,判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母不等于0混淆.15.(1)小;(2)2;(3)大于【分析】根据三角形的面积公式及函数图象的特征即可得到结果【详解】(1)当x越来越大时y越来越小;(2)这个三角形的面积等于xy=2cm2;(3)无论x多么的大y总是大于解析:(1)小;(2)2;(3)大于【分析】根据三角形的面积公式及函数图象的特征即可得到结果.【详解】(1)当x 越来越大时,y 越来越小;(2)这个三角形的面积等于12xy=2cm 2; (3)无论x 多么的大,y 总是大于零. 考点:本题考查的是三角形的面积公式,函数的图象【点睛】解答本题的关键是读懂题意,得到图象的特征及规律,再根据这个规律解决问题. 16.10x +20【解析】根据总费用=成人票用钱数+学生票用钱数可得y=10x+20故答案为10x+20解析:10x +20【解析】根据总费用=成人票用钱数+学生票用钱数,可得y=10x+20.故答案为10x+20.17.梯形的高梯形的面积909【解析】(1)自变量是梯形的高因变量是梯形的面积;(2)梯形的面积y(cm²)与高x(cm)之间的关系式为:y=(5+13)x×=9x ;(3)当梯形的高是l0cm 时y=9×1解析:梯形的高 梯形的面积 9y x = 90 9【解析】(1)自变量是梯形的高,因变量是梯形的面积;(2)梯形的面积y(cm²)与高x(cm)之间的关系式为:y=(5+13)x×12=9x ; (3)当梯形的高是l0cm 时,y=9×10=90,当梯形的高是l0cm 时,y=9×1=9,梯形的面积由90cm²变化到9cm².故答案为:梯形的高, 梯形的面积, y=9x , 90, 9. 18.梯形的高梯形的面积y=8x80cm28cm2【解析】(1)由题意可知:在上述变化过程中自变量是梯形的高;因变量是梯形的面积;(2)梯形的面积y(cm2)与高x(cm)之间的关系式为:;(3)∵当梯形解析:梯形的高 梯形的面积 y=8x 80cm 2 8cm 2【解析】(1)由题意可知:在上述变化过程中,自变量是“梯形的高”;因变量是“梯形的面积”;(2)梯形的面积y(cm 2)与高x(cm)之间的关系式为:1(511)82y x x =+=; (3)∵当梯形的高10x =时,梯形的面积10880y =⨯=(cm 2), 当梯形的高1x =时,梯形的面积188y =⨯=(cm 2),∴当梯形的高由10cm 变化到1cm 时,梯形的面积由80cm 2变化到8cm 2.故答案为:(1). 梯形的高 (2). 梯形的面积 (3). y=8x (4). 80cm 2 (5). 8cm 2.19.3【解析】动点P 从直角梯形ABCD 的直角顶点B 出发沿BCCD 的顺序运动则△ABP面积y在BC段随x的增大而增大;在CD段△ABP的底边不变高不变因而面积y不变化由图2可以得到:BC=2CD=3∴S△解析:3【解析】动点P从直角梯形ABCD的直角顶点B出发,沿BC,CD的顺序运动,则△ABP面积y在BC段随x的增大而增大;在CD段,△ABP的底边不变,高不变,因而面积y不变化,由图2可以得到:BC=2,CD=3,∴S△BCD=12×2×3=3,故答案为:3.【点睛】本题考查了动点问题的函数图象,理解问题,弄清题意,能够通过图象知道随自变量的增大,函数值是增大还是减小是解题的关键.20.①②④【解析】①由图象的纵坐标可以看出学校离小明家1000米故①正确;②由图象的横坐标可以看出小明用了20到家故②正确;③由图象的纵横坐标可以看出小明前10分钟走的路程较少故③错误;④由图象的纵横坐解析:①②④【解析】①由图象的纵坐标可以看出学校离小明家1000米,故①正确;②由图象的横坐标可以看出小明用了20到家,故②正确;③由图象的纵横坐标可以看出,小明前10分钟走的路程较少,故③错误;④由图象的纵横坐标可以看出,小明后10分钟比前10分钟走得快,故④正确;故答案为①,②,④.点睛: 主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.三、解答题21.(1)体育馆,小明家,小明与他父亲相遇的地方;(2)3600,15;(3)父亲与小明相遇时距离体育馆还有900m;(4)小明能在比赛开始之前赶回体育馆.【分析】(1)观察图象得到图中线段AB、OB分别表示父、子送票、取票过程,于是得到O点表示体育馆,A点表示小明家;B点表示小明与他父亲相遇的地方;(2)观察图象得到小明家离体育馆有3600米,小明到相遇地点时用了15分钟,则得到父子俩在出发后15分钟相遇;(3)设小明的速度为x米/分,则他父亲的速度为3x米/分,利用父子俩在出发后15分钟相遇得到15×x+3x×15=3600,解得x=60米/分,则父亲与小明相遇时距离体育馆还有15x=900米;(4)由(3)得到从B点到O点的速度为3x=180米/秒,则从B点到O点的所需时间=900180=5(分),得到小明取票回到体育馆用了15+5=20分钟,小于25分钟,可判断小明能在比赛开始之前赶回体育馆.【详解】解:(1)∵图中线段AB 、OB 分别表示父、子送票、取票过程,∴O 点表示体育馆,A 点表示小明家;B 点表示小明与他父亲相遇的地方;(2)∵O 点与A 点相距3600米,∴小明家离体育馆有3600米,∵从点O 点到点B 用了15分钟,∴父子俩在出发后15分钟相遇;(3)设小明的速度为x 米/分,则他父亲的速度为3x 米/分,根据题意得15×x+3x×15=3600,解得x=60米/分,∴15x=15×60=900(米)即父亲与小明相遇时距离体育馆还有900米;(4)∵从B 点到O 点的速度为3x=180米/秒, ∴从B 点到O 点的所需时间=900180=5(分), 而小明从体育馆到点B 用了15分钟, ∴小明从点O 到点B ,再从点B 到点O 需15分+5分=20分,∵小明从体育馆出发取票时,离比赛开始还有25分钟,∴小明能在比赛开始之前赶回体育馆.故答案为:体育馆,小明家,小明与他父亲相遇的地方;3600,15;900;小明能在比赛开始之前赶回体育馆.【点睛】本题考查了函数图象:函数图象反映两个变量之间的变化情况,结合图象信息,读懂题目意思,从复杂的信息中分离出数学问题即相遇问题是解决本题的关键.22.(1)82 84 86 88;(2)(802)cm y x =+【解析】【分析】(1)根据题意,运用代数法即可完成.(2)根据弹簧的总长度等于弹簧挂重物伸长的长度加弹簧的长度,可得函数解析式.【详解】解:(1)80+1×2=82;80+2×2=84;80+3×2=86;80+4×2=88;故答案为:82 、84 、86 、88.(2)设所挂物体的质量为(0)kg x x ,弹簧从长度为y ;那么弹簧伸长的长度为2cm x ,所以弹簧的总长度: (802)cm y x =+.【点睛】本题考查了函数解析式,利用了弹簧的总长度等于弹簧挂重物伸长的长度加弹簧的长度;解题的关键在于正确的审题.23.(1)50,42;(2)500.08w s =-;(3)A 、B 两地之间的距离是300km.【分析】(1)由表格中的数据可知,该轿车的油箱容量为50L ,汽车每行驶10km ,油量减少0.8L ,据此可求油箱剩余油量;(2)由表格中的数据可知汽车每行驶10km ,油量减少0.8L ,据此可求w 与s 的关系式; (3)把w =26代入(2)中的关系式求得相应的s 值即可.【详解】解:(1)由表格中的数据可知,该轿车的油箱容量为50L ,行驶100km 时,油箱剩余油量为100500.84210-⨯=(L ); 故答案是50,42; (2)观察表格在的数据可知,汽车每行驶10km ,油量减少0.8L ,据此可得w 与s 的关系式为500.08w s =-;故答案为500.08w s =-;(3)当w =26时,50-0.08s =26,解得s =300.答:A 、B 两地之间的距离是300km.【点睛】本题考查的是一次函数的应用,关键是读懂题意,找出规律,正确列出w 与s 的关系式,明确行驶路程为0时,即为油箱的容量.24.(1)4;8;12;14;(2)付款数y (元)与购买这种商品的个数x (个)之间的关系式为y =2x .【解析】【分析】根据折线统计图即可写得答案根据题意可得关系式为y =kx ,代入x 与y 的值即可解得k 为2,及关系式为y =2x .【详解】(1)当购买商品个数为2个时,付款数为4元;当购买商品个数为4个时,付款数为8元;当购买商品个数为6个时,付款数为12元;当购买商品个数为7个时,付款数为14元;故答案为:4;8;12;14;(2)设付款数y (元)与购买这种商品的个数x (个)之间的关系式为y =kx , 根据题意得:4=2k ,解得k =2,∴付款数y (元)与购买这种商品的个数x (个)之间的关系式为y =2x .【点睛】本题考查一元一次方程,根据题意列出关系式并解出k 的值是解题的关键.25.(1) 900;1.5;(2)a 的值为 750 米,乙的跑步速度为 2.5(米 / 秒);(3)100 秒【解析】试题分析:(1)由图中信息可知,甲一共跑了900米,用时600秒,由此即可求得甲的速度为1.5米/秒;(2)由图中的信息可知,第500秒时,甲共跑了a 米,由此结合(1)中所得甲的速度即可求得a 的值;(3)由图中信息结合(2)中所得a 的值,可知乙在60秒内跑了150米,由此可得乙的速度为:2.5米/秒,由此即可计算出乙从出发到休息时所用时间为750÷2.5=300(秒);由图中信息结合(1)中所得甲的速度可知,乙是在甲出发100秒后出发的;这样结合图中信息就可得乙在中途等候的时间为:500-100-300=100(秒).试题(1)由图中信息可知,甲一共跑了900米,用时600秒,∴甲的速度为:900÷600=1.5(米/秒);(2)由图中信息可得,图中:a=1.5×500=750(米);(3)由图中信息结合a=750可得:乙的速度为:(900-750)÷(560-500)=2.5(米/秒),由图中信息可得:乙出发时甲已经跑了:150÷1.5=100(秒),乙从出发到中途等候时共跑了750÷2.5=300(秒),∴乙在中途等候的时间为:500-100-300=100(秒).点睛:本题解题的要点是弄清函数图象中以下几个点的实际意义:(1)点A 表示甲跑完150米时所用的时间,也是乙出发的时间;(2)B 表示乙跑完a 米,开始休息时的时间;(3)C 点表示甲跑完a 米,追上乙时所对应的时间为500秒;(4)D 表示乙跑完全程900米时,所对应的时间是第560秒;(5)E 表示甲跑完全程900米,用时600秒. 26.(1)2112y x x =+-;(2)①见解析;②见解析;(3)①y 2<y 1<y 3;②1<k ≤134,12≤x ≤8. 【解析】【分析】(1)根据题意设11k y x=,y 2=k 2(x ﹣2),则12(2)k y k x x =+-,即可解答 (2)将表中数据代入2112y x x =+-,即可解答 (3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y 随x 增大而减小;在该点右侧y 随x 增大而增大,即可解答②观察图象得:x ≥12 ,图象最低点为(2,1),再代入即可 【详解】(1)设11k y x= ,y 2=k 2(x ﹣2),则12(2)k y k x x =+- ,由题意得:1212323242k k k k ⎧-=⎪⎪⎨⎪+=⎪⎩ ,解得:12212k k =⎧⎪⎨=⎪⎩, ∴该函数解析式为2112y x x =+- , 故答案为2112y x x =+-, (2)①根据解析式,补全下表: x 12 1 322 5234 6 8 … y 134 32 1312 1 2120 76 32 73 134 …(3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y 随x 增大而减小;在该点右侧y 随x 增大而增大,∴y 2<y 1<y 3,故答案为y 2<y 1<y 3,②观察图象得:x ≥12,图象最低点为(2,1), ∴当直线y =k 与该图象有两个交点时,1<k ≤134 , 此时x 的范围是:12≤x ≤8. 故答案为1<k ≤134,12≤x ≤8. 【点睛】 此题考查待定系数法求反比例函数的解析式,列出方程式解题关键。

七年级下册数学变量之间的关系测试题三篇

七年级下册数学变量之间的关系测试题三篇

七年级下册数学变量之间的关系测试题三篇篇一:20XX—20XX学年度七年级数学单元测试卷变量之间的关系(说明:本试题考试时间90分钟,满分150分)班级:姓名:成绩:一、选择题:(每小题4分,共48分)1、骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,因变量是() A、沙漠 B、体温 C、时间 D、骆驼2、弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x (kg)间有下面的关系:x 0 1 2 3 4 5y 10 10.5 11 11.5 12 12.5下列说法不正确的是()A、x与y都是变量,且x是自变量,y是因变量B、弹簧不挂重物时的长度为0cmC、物体质量每增加1kg,弹簧长度y增加0.5cmD、所挂物体质量为7kg时,弹簧长度为13.5cm3、在关系式y=3x+5中,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④用关系式表示的不能用图象表示;⑤y与x的关系还可以用列表法和图象法表示,其中说法正确的是()A、①②⑤B、①②④C、①③⑤D、①④⑤4、如果每盒圆珠笔有12支,售价18元,用y(元)表示圆珠笔的售价,x表示圆珠笔的支数,那么y与x之间的关系应该是()A、y=12xB、y=18xC、y=D、y=5、已知△ABC的底边BC上的高为8cm,当它的底边BC从16cm变化到5cm时,△ABC的面积()A、从20cm2变化到64cm2B、从64c m2变化到20cm2C、从128cm2变化到40cm2D、从40cm2变化到128cm26、“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉。

当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……。

用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是()7、下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b与下降高度d的关系,下面能表示这种关系的式子是()d 50 80 100 150b 25 40 50 75A 、2b d =B 、2b d =C 、D 、25b d =+8、小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》测试卷(含答案解析)(1)

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》测试卷(含答案解析)(1)

一、选择题1.圆的周长公式C=2πR 中,下列说法正确的是( )A .π、R 是自变量,2是常量B .C 是因变量,R 是自变量,2π为常量 C .R 为自变量,2π、C 为常量D .C 是自变量,R 为因变量,2π为常量 2.从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前的速度随时间的增加而逐渐增大,这个问题中自变量是( )A .物体B .速度C .时间D .空气3.是饮水机的图片.饮水桶中的水由图1的位置下降到图2的位置的过程中,如果水减少的体积是y ,水位下降的高度是x ,那么能够表示y 与x 之间函数关系的图象可能是( )A .B .C .D . 4.长方形的周长为24cm ,其中一边长为()x cm ,面积为2ycm 则长方形中y 与x 的关系式为( )A .2y xB .2(12)y x =-C .(12)y x x =-D .2(12)y x =- 5.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种关系,其关系图象大致为( )A .B .C .D . 6.五一节,小丽独自一人去老家玩,家住在车站附近的姑姑到车站去接小丽.因为担心小丽下车后找不到路,姑姑一路小跑来到车站,结果客车晚点,休息一阵后,姑姑接到小丽,和小丽一起慢慢的走回了家.下列图象中,能反映以上过程中小丽姑姑离家的距离s 与时间t 的关系的大致图象是( )A .B .C .D . 7.一个面积等于3的三角形被平行于一边的直线截成一个小三角形和梯形,若小三角形和梯形的面积分别是y 和x ,则y 关于x 的函数图象大致是图中的( )A.B.C.D.8.在一张边长为 30 cm 的正方形纸片的四角上分别剪去一个边长为 x cm 的小正方形,然后将剩余部分折叠成一个无盖的长方体.则使得长方体的体积最大的 x 的取值是 ( ) A.7 B.6 C.5 D.49.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(m2)与工作时间t (h)的函数关系的图象如图,则休息后园林队每小时绿化面积为()A.100m2B.80m2C.50m2D.40m210.如图,已知矩形ABCD的长AB为5,宽BC为4,E是BC边上的一个动点,AE⊥EF,EF交CD于点F,设BE=x,FC=y,则点E从点B运动到点C时,能表示y关于x的函数关系的大致图象是A.B.C.D.11.一个函数的图象如图,给出以下结论:①当x=0时,函数值最大;②当0<x<2时,函数y随x的增大而减小;③存在0<x0<1,当x=x0时,函数值为0.其中正确的结论是()A.①② B.①③ C.②③ D.①②③12.一根弹簧原长12 cm,它所挂的重量不超过10 kg,并且挂重1 kg就伸长1.5 cm,写出挂重后弹簧长度y(cm)与挂重x(kg)之间的函数关系式是()A.y=1.5(x+12)(0≤x≤10)B.y=1.5x+12(0≤x≤10)C.y=1.5x+12(x≥0)D.y=1.5(x-12)(0≤x≤10)二、填空题13.将长为23cm、宽为10cm的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为2cm,设x张白纸粘合后的总长度为ycm,y与x的函数关系式为___________.14.圆柱的高是10 cm,圆柱底面圆的半径为r cm,圆柱的侧面展开图的面积Scm2.圆柱侧面展开图的面积s与圆柱底面半径r之间的关系式是___.15.拖拉机工作时,油箱中的余油量Q(升)与工作时间t(时)的关系式为Q=40- 6t.当t=4时,Q=__,从关系式可知道这台拖拉机最多可工作__小时.16.在一定条件下,若物体运动的路程s(m)与时间t(s)之间的关系式为s=5t2+2t,则当t=4时,该物体所经过的路程为__.17.某农场租用收割机收割小麦,甲收割机单独收割2天后,又调来乙收割机参与收割,直至完成800亩的收割任务.收割亩数与天数之间的关系如图所示,那么乙参与收割________天.18.某兴趣小组从学校出发骑车去植物园参观,先经过一段上坡路后到达途中一处景点,停车10分钟进行参观,然后又经一段下坡路到达植物园,行程情况如图,若他们上、下坡路速度不变,则这个兴趣小组的同学按原路返回所用的时间为________分钟.(途中不停留)19.如图是甲、乙两名运动员在自行车比赛中所走路程与时间的关系图象,则甲的速度____________乙的速度(用“>”“=”或“<”填空).20.如图,圆柱的高是3cm,当圆柱的底面半径由小到大变化时,圆柱的体积也随之发生了变化.(1)在这个变化中,自变量是______,因变量是______;(2)当底面半径由1cm变化到10cm时,圆柱的体积增加了______cm3.三、解答题21.如图,它表示甲乙两人从同一个地点出发后的情况.到十点时,甲大约走了13千米.根据图象回答:(1)甲是几点钟出发?(2)乙是几点钟出发,到十点时,他大约走了多少千米?(3)到十点为止,哪个人的速度快?(4)两人最终在几点钟相遇?(5)你能将图象中得到信息,编个故事吗?22.某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的):x(人)50010001500200025003000…y(元)﹣3000﹣2000﹣1000010002000…(1)在这个变化过程中,______是自变量,______是因变量;(2)观察表中数据可知,每月乘客量达到_______人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3500人时,每月利润为多少元?23.已知x为实数.y、z与x的关系如表格所示:根据上述表格中的数字变化规律,解答下列问题:(1)当x为何值时,y=430?(2)当x为何值时,y=z?x y z………330×3+702×1×8430×4+702×2×9530×5+702×3×10630×6+702×4×11………24.如图,反映了小明从家到超市的时间与距离之间关系的一幅图.(1)图中反映了哪两个变量之间的关系?超市离家多远?(2)小明到达超市用了多少时间?小明往返花了多少时间?(3)小明离家出发后20分钟到30分钟内可以在做什么?(4)小明从家到超市时的平均速度是多少?返回时的平均速度是多少?25.如图所示的图象记录了某地一月份某天的温度随时间变化.的情况,请你仔细观察图象回答下面的问题:(1)20时的温度是℃,温度是0℃时的时刻是时,最暖和的时刻是时,温度在-3℃以下的持续时间为时;(2)从图象中还能获取哪些信息?(写出1~2条即可)26.光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物,并释放出氧气的过程.如图是夏季的白天7时~18时的一般的绿色植物的光合作用强度与时间之间的关系的曲线,分析图象回答问题:观察:(1)大约几时的光合作用最强?(2)大约几时的光合作用最弱?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量.解:圆的周长公式C=2πR中,C是因变量,R是自变量,2π为常量,故选B.点评:本题主要考查了常量,变量的定义,是需要识记的内容.2.C解析:C【分析】根据函数的定义解答.【详解】解:因为速度随时间的变化而变化,故时间是自变量,速度是因变量,即速度是时间的函数.故选C.【点睛】本题考查了常量与变量,关键是掌握函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数.3.C解析:C【分析】水位随着水减少而下降,且饮水机是圆柱形,是同等变化的下降.【详解】根据图片位置分析:水减少的体积随着水位下降的高度而增加,且饮水机是圆柱形,所以故答案选:C【点睛】本题考查用图象法表示变量之间的关系,掌握变量之间的变化关系解题关键. 4.C解析:C【分析】根据周长关系求出另一边的长,再用面积公式即可表示y 与x 的函数.【详解】∵长方形的周长为24cm ,其中一边长为()x cm ,∴另一边为12-x ,故面积2ycm 则长方形中y 与x 的关系式为(12)y x x =- 故选C【点睛】此题主要考查函数的表示,解题的关键是熟知长方形的周长与面积公式.5.B解析:B【分析】理解洗衣机的四个过程中的含水量与图象的关系是关键.【详解】因为进水时水量增加,函数图象的走势向上,所以可以排除D ,清洗时水量大致不变,函数图象与x 轴平行,排水时水量减少,函数图象的走势向下,排除C ,对于A 、B ,因为题目中明确说明了一开始时洗衣机内无水.故选B .【点睛】本题考查了函数的图象,关键是理解题意,从图象中准确读取信息.6.A解析:A【解析】【分析】根据每段中路程s 随时间t 的变化情况即可作出判断.【详解】姑姑在车站休息的一段时间,路程不随时间的变化而变化,因而这一段的图象应该平行于横轴;姑姑一路小跑来到车站,这段是正比例函数关系,回家的过程是一次函数关系,且s 岁t 的增大而减小,因而B 、D 错误;回家的过程比姑姑一路小跑来到车站的过程速度要慢,即s 随t 的变化要慢,因而图象要平缓,故A 正确,C 错误.【点睛】正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.7.A解析:A【解析】根据题意小三角形的面积减小,梯形的面积增大,而且x 与y 满足一次函数关系. 故选A.8.C解析:C【解析】设长方体的体积为y ,则由题意可得:2(302)y x x =-,当x=7时,y=1792;当x=6时,y=1944;当x=5时,y=2000;当x=4时,y=1936; ∴当x=5时,y 的值最大.故选C. 9.D解析:D【解析】由纵坐标看出:休息前绿化面积是50平方米,休息后绿化面积是170−50=120(平方米), 所以120÷3=40(平方米/时)故选:D.10.A解析:A【分析】利用三角形相似求出y 关于x 的函数关系式,根据函数关系式进行分析求解.【详解】解:∵BC=4,BE=x ,∴CE=4﹣x .∵AE ⊥EF ,∴∠AEB+∠CEF=90°,∵∠CEF+∠CFE=90°,∴∠AEB=∠CFE .又∵∠B=∠C=90°,∴Rt △AEB ∽Rt △EFC , ∴, 即,整理得:y=(4x﹣x2)=﹣(x﹣2)2+∴y与x的函数关系式为:y=﹣(x﹣2)2+(0≤x≤4)由关系式可知,函数图象为一段抛物线,开口向下,顶点坐标为(2,),对称轴为直线x=2.故选A.【点睛】点评:本题考查了动点问题的函数图象问题,根据题意求出函数关系式是解题关键.11.C解析:C【解析】试题分析:看图,可知当X为0时函数不是最大值;当0<x<2时,函数的y随x的增大而减小,故②正确;如图可知在0<x0<1,当x=x0时,函数值为0.解:函数值大,就是对应的点高,因而①当x=0时,函数值最大;不正确.②当0<x<2时,函数对应的点函数对应的点越向右越向下,即y随x的增大而减小.函数在大于0并且小于1这部分,存在值是0的点,即图象与x轴有交点,③存在0<x0<1,当x=x0时,函数值为0,正确.故选C.考点:函数的图象.12.B解析:B【分析】根据函数的概念:函数中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,解答即可.【详解】解:设挂重为x,则弹簧伸长为1.5x,挂重后弹簧长度y(cm)与挂重x(kg)之间的函数关系式是:y=1.5x+12 (0≤x≤10).故选B.【点睛】关键在于根据题意列出等式,然后再变形为要求的形式.二、填空题13.y=21x+2【分析】等量关系为:纸条总长度=23×纸条的张数-(纸条张数-1)×2把相关数值代入即可求解【详解】每张纸条的长度是23cmx张应是23xcm由图中可以看出4张纸条之间有3个粘合部分那解析:y=21x+2【分析】等量关系为:纸条总长度=23×纸条的张数-(纸条张数-1)×2,把相关数值代入即可求解.【详解】每张纸条的长度是23cm,x张应是23xcm,由图中可以看出4张纸条之间有3个粘合部分,那么x张纸条之间有(x-1)个粘合,应从总长度中减去.∴y与x的函数关系式为:y=23x-(x-1)×2=21x+2.故答案为:y=21x+2.【点睛】此题考查函数关系式,找到纸条总长度和纸条张数的等量关系是解题的关键.14.s=20πr【解析】【分析】圆柱的侧面展开图是长方形首先计算出圆周的底面周长在根据长方形的面积=长×宽可得圆柱侧面展开图的面积s与圆柱底面半径r之间的关系式【详解】圆柱底圆的半径为rcm则周长为2π解析:s=20πr【解析】【分析】圆柱的侧面展开图是长方形,首先计算出圆周的底面周长,在根据长方形的面积=长×宽可得圆柱侧面展开图的面积s与圆柱底面半径r之间的关系式.【详解】圆柱底圆的半径为rcm,则周长为2πrcm,∵圆柱的高是10cm,∴圆柱侧面展开图的面积s与圆柱底面半径r之间的关系式是:s=2πr×10=20πr,故答案为:s=20πr.【点睛】考查了列函数关系式,关键是掌握圆周的侧面展开图的形状是矩形.15.【分析】将t=4代入计算Q即可令Q=0即可求出工作时间【详解】当t=4时Q=40-24=16;令Q=0则40-6t=0得t=故当t=4时Q=16这台拖拉机最多可工作小时【点睛】本题考查了一次函数在生解析:20 3【分析】将t=4代入计算Q即可,令Q=0即可求出工作时间.【详解】当t=4时,Q=40-24=16;令Q=0则40-6t=0得t=203.故当t=4时,Q=16,这台拖拉机最多可工作203小时.【点睛】本题考查了一次函数在生活中的应用.注意油量不可能小于0.16.m【解析】【分析】把自变量t=4代入函数解析式计算即可【详解】当t=4时s=5t2+2t=5×42+2×4=80+8=88m故答案为:88m【点睛】本题考查了函数值的求解把自变量的值代入函数解析式计解析:m【解析】【分析】把自变量t=4代入函数解析式计算即可.【详解】当t=4时,s=5t2+2t=5×42+2×4=80+8=88m.故答案为:88m.【点睛】本题考查了函数值的求解,把自变量的值代入函数解析式计算即可.17.4【解析】试题分析:由图可知甲乙收割机每天共收割350-200=150亩共同收割600亩所以乙参与收割的天数是600÷150=4天故答案为:4点睛:此题主要考查学生的读图获取信息的能力要注意分析其中解析:4【解析】试题分析:由图可知,甲、乙收割机每天共收割350-200=150亩,共同收割600亩,所以,乙参与收割的天数是600÷150=4天.故答案为:4.点睛:此题主要考查学生的读图获取信息的能力,要注意分析其中的“关键点”.18.【解析】试题分析:去植物园上坡路120×25=3000(米)下坡路180×(45-35)=1800(米)返回时的上坡路是1800米下坡路是3000米返回时的时间是=(分钟)故答案为点睛:本题考查了函解析:95 3【解析】试题分析:去植物园上坡路120×25=3000(米),下坡路180×(45-35)=1800(米),返回时的上坡路是1800米,下坡路是3000米,返回时的时间是18003000120180+=953(分钟), 故答案为953. 点睛:本题考查了函数图象,从函数图象获得上坡的时间、速度,下坡的时间、速度是解题关键,注意去时的上坡路是返回时的下坡路,去时的下坡路是返回时的上坡路. 19.>【解析】根据题意:甲的位移增加得快故甲的速度大于乙的速度故答案为>点睛:此题主要考查了函数图象正确理解函数图象横纵坐标表示的意义理解问题的过程能够通过图象得到函数是随自变量的增大知道函数值是增大还 解析:>【解析】根据题意:甲的位移增加得快,故甲的速度大于乙的速度.故答案为>.点睛:此题主要考查了函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.20.半径体积297π【解析】(1)由题意可知:在上述变化过程中自变量是圆柱的底面半径因变量是圆柱的体积;(2)设圆柱的底面半径为体积为则由题意可得:∴当时当时∵∴当底面半径由1cm 变化到10cm 时圆柱的解析:半径 体积 297π【解析】(1)由题意可知:在上述变化过程中,自变量是“圆柱的底面半径”,因变量是“圆柱的体积”;(2)设圆柱的底面半径为r ,体积为v ,则由题意可得:23v r π=,∴当1r =时,2313v ππ=⨯=,当10r =时,2310300v ππ=⨯=,∵3003297πππ-=,∴当底面半径由1cm 变化到10cm 时,圆柱的体积增加了297πcm 3.故答案为:(1). 半径 (2). 体积 (3). 297π.三、解答题21.(1)8点;(2)9点;13米;(3)乙;(4)12点;(5)甲8时骑车从家出发,3小时后改乘汽车;乙骑摩托车9时开始追赶,12时追上甲.【分析】从图象可知:甲做变速运动,8时到11时走了20千米,速度为每小时208,11时到12时走了20千米,速度为每小时20千米;乙做的是匀速运动,9时到12时走了40千米,速度是每小时403千米,结合图表的信息即可得到答案;【详解】解:根据图象信息可知:(1)甲8点出发;(2)乙9点出发,到10时他大约走了13千米;(3)到10时为止,乙的速度快;(4)在12时时,两人路程一样,故两人最终在12时相遇;(5)甲8时骑车从家出发,3小时后改乘汽车,乙骑摩托车9时开始追赶,12时追上甲.【点睛】本题主要考查从图像得到信息,图中反映的是甲乙两人行驶的路程与时间之间的关系,甲的速度有变化,乙是匀速运动的,能看懂图中的信息是解题的关键.22.(1)x, y;(2)观察表中数据可知,每月乘客量达到2000;(3)每月乘车人数为3500人时,每月利润为3000元.【解析】【分析】(1)直接利用常量与变量的定义分析得出答案;(2)直接利用表中数据分析得出答案;(3)利用由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,进而得出答案.【详解】解:(1)在这个变化过程中,每月的乘车人数x是自变量,每月的利润y是因变量;故答案为每月的乘车人数x,每月的利润y;(2)观察表中数据可知,每月乘客量达到观察表中数据可知,每月乘客量达到2000人以上时,该公交车才不会亏损;故答案为观察表中数据可知,每月乘客量达到2000;(3)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,每月利润为0元,则当每月乘车人数为3500人时,每月利润为3000元.【点睛】本题考查常量与变量以及函数的表示方法,正确把握函数的定义是解题关键.23.(1)x=12;(2)x=-3或15【解析】【分析】由图片中的信息可得出:当x为n(n3)时,y应该表示为30×n+70,z就应该表示为2×(n-2)(5+n);那么由此可得出(1)(2)中所求的值.【详解】解:∵y=30×x+70,z=2×(x﹣2)(5+x)(1)当x=12时,y=30×12+70=430;(2)∵y=z,即30×x+70=2×(x﹣2)(5+x),解得:x=﹣3或15.【点睛】本题考查了用表格表示变量之间的关系,中等难度,从例子中找到规律是解题关键. 24.(1)距离与时间,超市离家900米;(2)20分钟; 35分钟;(3)超市购物或休息;(4)45米/分钟;60米/分钟.【解析】【分析】(1)根据纵轴和横轴,知图中反映了小明从家到超市的距离与时间之间的关系,显然超市离家900米;(2)小明到达超市用了20分钟,小明从超市回到家花了15分钟;(3)这一段时间内表明离家的距离没有变化,因此可能是在超市购物,也可能是在休息(只要合理即可);(4)根据速度=路程÷时间进行计算.【详解】根据图形可知:(1)图中反映了小明从家到超市的距离与时间之间的关系;超市离家900米;(2)小明到达超市用了20分钟;返回用了45-30=15分钟,往返共用了20+15=35分钟;(3)小明离家出发后20分钟到30分钟可以在超市购物或休息;(4)小明到超市的平均速度是900÷20=45米/分钟;返回的平均速度是900÷15=60米/分钟.【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.25.(1)-1,12,14,8;(2)见解析.【解析】试题分析:(1)找到图象上与相应时间(或温度)对应的点的纵坐标(或横坐标)即可得到本题答案;(2)本题答案不唯一,符合函数图象所反映的实际情况的信息都可以.试题(1)由图象可知:①20时的温度是“-1℃”;②温度是0℃的时刻是12时;③最暖和的时刻是14时;④温度在-3℃以下持续的时间为8小时;(2)从图象中还能获取:从4时到14时,温度逐渐升高;最低气温约为-4.5℃;最高气温是2℃;温度在0℃以上的时刻是在12时到18时等信息.26.(1)上午10时;(2)早上7时和晚上18时.【解析】【分析】分析曲线图可知,光合作用强度随光照强度增强而增强;在夏日中午10时;光合作用强度随光照强度减弱而减弱,早上7时和晚上18时的光合作用最弱.【详解】观察得到:(1)大约上午10时的光合作用最强;(2)大约早上7时和晚上18时的光合作用最弱.【点睛】此题考查函数图象问题,关键是根据图象分析得出的信息.。

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》测试题(含答案解析)(1)

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》测试题(含答案解析)(1)

一、选择题1.下列各情景分别可以用哪一幅图来近似的刻画?正确的顺序是()①汽车紧急刹车(速度与时间的关系)②人的身高变化(身高与年龄的关系)③跳过运动员跳跃横杆(高度与时间的关系)④一面冉冉上升的红旗(高度与时间的关系)A.abcd B.dabc C.dbca D.cabd2.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的图象,那么符合小明行驶情况的图象大致是( )A.B.C.D.3.圆的面积公式S=πr2中的变量是()A.S,πB.S,π ,r C.S,r D.πr24.某市一周平均气温(℃)如图所示,下列说法不正确的是()A.星期二的平均气温最高B.星期四到星期日天气逐渐转暖C.这一周最高气温与最低气温相差4 ℃D.星期四的平均气温最低5.已知A,B两地相距4千米,上午8:00,甲从A地出发步行到B地,8:20乙从B地出发骑自行车到A地,甲、乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息知,乙到达A地的时刻为()A.8:30 B.8:35 C.8:40 D.8:456.用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是A.B.C.D.7.李钰同学利用计算机设计了一个程序,输入和输出的数据如下表:输入…12345…输出…25101726…那么,当输入数据8时,输出的数据是()A.61 B.63 C.65 D.678.一个面积等于3的三角形被平行于一边的直线截成一个小三角形和梯形,若小三角形和梯形的面积分别是y和x,则y关于x的函数图象大致是图中的()A.B.C.D.9.按如图的方式用火柴棒摆放正方形,若用n表示正方形个数,y表示摆放正方形所用火柴棒根数,则y与n之间的关系式为()A.y=3n+1 B.y=4n-1 C.y=4+3n D.y=n+n+(n-1) 10.如图是某市一天的气温T(℃)随时间t(时)变化的图象,那么这天的()A.最高气温是10 ℃,最低气温是2 ℃B.最高气温是6 ℃,最低气温是2 ℃C.最高气温是6 ℃,最低气温是-2 ℃D.最高气温是10 ℃,最低气温是-2 ℃11.下列各曲线中表示y是x的函数的是()A.B.C.D.12.一个函数的图象如图,给出以下结论:①当x=0时,函数值最大;②当0<x<2时,函数y随x的增大而减小;③存在0<x0<1,当x=x0时,函数值为0.其中正确的结论是()A.①② B.①③ C.②③ D.①②③二、填空题13.夏季高山上的温度从山脚起每升高100米降低0.7℃,已知山脚下的温度是23℃,则温度y(℃)与上升高度x(米)之间的关系式为_____________.14.夏天高山上的气温从山脚起每升高l00m降低0.7℃,已知山脚下的气温是23℃,则气温y(℃)与上升的高度x(m)之间的关系式为____;当x=500时,y=__;当y=16时,x=__.15.如图所示的是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的关系图象.下列说法:①买2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买乙家的1件售价约为3元.其中正确的说法是__.16.“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是______,因变量是______.17.函数y=23xx-+中自变量x的取值范围是________.18.一种豆子在市场上出售,豆子的总售价与所售豆子的数量之间的关系如下表:所售豆子数量/千克00.51 1.52 2.53 3.54总售价/元012345678(1)上表反映的变量是____________,________是因变量,______随____________的变化而变化;(2)若出售2.5千克豆子,则总售价应为________元;(3)根据你的预测,出售________千克豆子,可得总售价12元.19.某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的关系:______________.20.根据如图所示的计算程序计算变量y的对应值,若输入变量x的值为﹣12,则输出的结果为_____三、解答题21.在等腰梯形ABCD中,AD∥BC,AB=CD,梯形的周长为28,底角为30°,高AH=x,上下底的和为y,写出y与x之间的函数关系式.22.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系:(其中0≤x≤30)提出概念所用时间257101213141720(x)对概念的47.853.556.359.059.859.959.858.355.0接受能力(y)(1)上表中反映了哪两个变量之间的关系?(2)当提出概念所用时间是5分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强?(4)从表中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?23.已知某函数图象如图所示,请回答下列问题:(1)自变量x的取值范围是(2)函数值y的取值范围是;(3)当x=0时,y的对应值是;(4)当x为时,函数值最大;(5)当y随x增大而增大时,x的取值范围是;(6)当y随x的增大而减少时,x的取值范围是.24.商店在出售某商品时,在进价的基础上增加一定的利润,其质量x与售价y之间的关系如下表所示:质量x/千克1234…售价y/元8+0.416+0.824+1.232+1.6…(1)请根据表中提供的信息,写出y与x的关系式;(2)求x=2.5时,y的值;(3)当x取何值时,y=126?25.某学校的复印任务原来由甲复印社承包,其收费y(元)与复印页数x(页)的关系如下表:x(页)1002004001000…y(元)4080160400…(1)根据表格信息写出y与x之间的关系式;(2)现在乙复印社表示:若学校每月先付200元的承包费,则可按每页0.15元收费.乙复印社每月收费y(元)与复印页数x(页)之间的关系式为_______________;(3)若学校每月复印页数在1200页左右,应选择哪个复印社?26.如图所示的图象记录了某地一月份某天的温度随时间变化.的情况,请你仔细观察图象回答下面的问题:(1)20时的温度是℃,温度是0℃时的时刻是时,最暖和的时刻是时,温度在-3℃以下的持续时间为时;(2)从图象中还能获取哪些信息?(写出1~2条即可)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题分析:A、根据人的身高变化关系;B、根据红旗高度与时间的关系;C、跳过运动员跳跃横杆时高度与时间的关系;D、汽车紧急刹车时速度与时间的关系.解:A、人的身高随着年龄的增加而增大,到一定年龄不变,故与②符合;B、红旗升高随着时间的增加而增大,到一定时间不变,故与④符合;C、运动员跳跃横杆时高度在上升到最大高度然后上升到最大高度之后高度减小,与③符合;D、汽车紧急刹车时速度随时间的增大而减小,与①符合.故选C.2.D解析:D【分析】由于开始以正常速度匀速行驶,接着停下修车,后来加快速度匀驶,所以开始行驶路S是均匀减小的,接着不变,后来速度加快,所以S变化也加快变小,由此即可作出选择.【详解】解:因为开始以正常速度匀速行驶---停下修车---加快速度匀驶,可得S先缓慢减小,再不变,在加速减小.故选D.【点睛】此题主要考查了学生从图象中读取信息的能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.3.C解析:C【分析】根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行解答即可【详解】解:在圆的面积计算公式S=πr2中,变量为S,r.故选C.【点睛】本题考查变量和常量,圆的面积S随半径r的变化而变化,所以S,r都是变量,其中r是自变量,S是因变量.4.C解析:C【解析】【分析】根据图象分析判断即可.【详解】由图象可得:星期二的平均气温最高,故A正确;星期四到星期日天气逐渐转暖,故B正确;这一周最高气温与最低气温相差12-4=8℃,故C错误;星期四的平均气温最低,故D正确;故选C.【点睛】此题考查函数图象问题,关键是根据函数图象得出信息进行分析解答.5.C解析:C【解析】根据甲60分走完全程4千米,求出甲的速度,再由图中两图象的交点可知,两人在走了2千米时相遇,从而可求出甲此时用了0.5小时,则乙用了(0.5-13)小时,所以乙的速度为:2÷16,求出乙走完全程需要时间,此时的时间应加上乙先前迟出发的20分,即可求出答案.【详解】因为甲60分走完全程4千米,所以甲的速度是4千米/时,由图中看出两人在走了2千米时相遇,那么甲此时用了0.5小时,则乙用了(0.5-13)小时,所以乙的速度为:2÷16=12,所以乙走完全程需要时间为:4÷12=13(时)=20分,此时的时间应加上乙先前迟出发的20分,现在的时间为8点40.故选C.【点睛】本题主要考查了函数图象的应用.做题过程中应根据实际情况和具体数据进行分析.本题应注意乙用的时间和具体时间之间的关联.6.C解析:C【解析】容器上粗下细,杯子里水面的高度上升应是先快后慢.故选C.7.C解析:C【分析】观察表格发现,输入的数字是几,输出数就是输入数的平方加1+由此求解.【详解】输入8,输出数就是82+1=64+1=65;故选C.【点睛】解决本题关键是找出输入数据与输出的数据之间的关系,再由此进行求解.8.A解析:A【解析】根据题意小三角形的面积减小,梯形的面积增大,而且x与y满足一次函数关系.故选A.9.A解析:A观察可知:当n=1时,y=4=3×1+1,当n=2时,y=7=3×2+1,当n=3时,y=10=3×3+1,……所以有n个正方形时,y=3n+1,故选A.【点睛】本题考查了规律型——图形的变化类,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.10.D解析:D【解析】试题横轴表示时间,纵轴表示温度.温度最高应找到函数图象的最高点所对应的x值与y值:为12时,10℃,;温度最低应找到函数图象的最低点所对应的x值与y值:为4时,-2℃.D正确.故选D.11.D解析:D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.12.C解析:C【解析】试题分析:看图,可知当X为0时函数不是最大值;当0<x<2时,函数的y随x的增大而减小,故②正确;如图可知在0<x0<1,当x=x0时,函数值为0.解:函数值大,就是对应的点高,因而①当x=0时,函数值最大;不正确.②当0<x<2时,函数对应的点函数对应的点越向右越向下,即y随x的增大而减小.函数在大于0并且小于1这部分,存在值是0的点,即图象与x轴有交点,③存在0<x0<1,当x=x0时,函数值为0,正确.故选C.考点:函数的图象.二、填空题13.y=23-0007x【解析】【分析】每升高l00m降低07℃则每上升1m降低0007℃则上升的高度xm下降0007x℃据此即可求得函数解析式【详解】每升高l00m降低07℃则每上升1m降低0007℃解析:【解析】【分析】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则上升的高度xm,下降0.007x℃,据此即可求得函数解析式.【详解】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则关系式为:y=23-0.007x;故答案为:y=23-0.007x.【点睛】本题考查了列函数解析式,理解每升高l00m降低0.7℃,则每上升1m,降低0.007℃是关键.14.y=23-0007x1951000【解析】【分析】每升高l00m降低07℃则每上升1m 降低0007℃则上升的高度xm下降0007x℃据此即可求得函数解析式;当x=500时把x=500代入解析式求得y解析:y=23-0.007x 19.5 1000【解析】【分析】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则上升的高度xm,下降0.007x℃,据此即可求得函数解析式;当x=500时,把x=500代入解析式求得y的值;当y=16时,把y=16代入解析式求得x的值.【详解】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则关系式为:y=23-0.007x;当x=500时,y=23-0.007×500=19.5;当y=16时,23-0.007x=16,解得:x=1000.【点睛】考查了列函数解析式,理解每升高l00m降低0.7℃,则每上升1m,降低0.007℃是关键.15.①②③【分析】分析图象x=2时y值相等故买两件时售价一样当买1件时乙家的售价比甲家低买3件时甲家较合算【详解】分析题意和图象可知:①售2件时甲乙两家售价一样故此题正确;②买1件时买乙家的合算故此题正解析:①②③【分析】分析图象,x=2时y值相等,故买两件时售价一样,当买1件时乙家的售价比甲家低.买3件时,甲家较合算.【详解】分析题意和图象可知:①售2件时甲、乙两家售价一样,故此题正确;②买1件时买乙家的合算,故此题正确;③买3件时买甲家的合算,故此题正确;④买乙家的1件售价约为1元,故此题错误.故答案为①②③.【点睛】本题考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.16.时间温度【解析】【分析】早穿皮袄午穿纱围着火炉吃西瓜这句谚语中早午晚是时间早穿皮袄说明早上冷午穿纱说明中午热说明温度随着时间在变化【详解】早穿皮袄午穿纱围着火炉吃西瓜这句谚语反映了我国新疆地区一天中解析:时间温度【解析】【分析】“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语中早、午、晚是时间,早穿皮袄说明早上冷,午穿纱说明中午热,说明温度随着时间在变化.【详解】“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是时间,因变量是温度.故答案为时间、温度.【点睛】本题考查了正比例好反比例的意义,一个量在变化另一个量也在变化,时间好温度都在变化.17.x>﹣3【解析】【分析】根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时应该是取让两个条件都满足的公共部分【详解】根据题意得到:x+3>0解得x>-3故答案为x>-3解析:x>﹣3【解析】【分析】根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.【详解】根据题意得到:x+3>0,解得x>-3,故答案为x>-3.【点睛】本题考查了函数自变量的取值范围问题,判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母不等于0混淆.18.所售豆子数量和总售价总售价总售价所售豆子数量56【分析】根据表中数据售价与所售数量成正比例关系售价=所售豆子的数量×单价【详解】(1)表反映的变量是所售豆子数量和售价售价是因变量售价随所售豆子数量的解析:所售豆子数量和总售价总售价总售价所售豆子数量 5 6【分析】根据表中数据,售价与所售数量成正比例关系.售价=所售豆子的数量×单价.【详解】(1)表反映的变量是所售豆子数量和售价,售价是因变量,售价随所售豆子数量的变化而变化的;(2)5;(3)根据题意设解析式为y=kx,则0.5k=1,解得k=2,∴y=2x,当y=12时2x=12,解得x=6.故答案为所售豆子数量和总售价;总售价;总售价;所售豆子数量;5;6.【点睛】函数的意义是本题考查的重点.明确变量及变量之间的关系是解好本题的关键.19.【分析】本题采取分段收费根据20本及以下单价为25元20本以上超过20本的部分打八折分别求出付款金额y与购书数x的函数关系式再进行整理即可得出答案【详解】解:根据题意得:y=整理得:y=;故答案为y=解析:25x(0x20) y{20x100(x>20)≤≤=+【分析】本题采取分段收费,根据20本及以下单价为25元,20本以上,超过20本的部分打八折分别求出付款金额y与购书数x的函数关系式,再进行整理即可得出答案.【详解】解:根据题意得:y=,整理得:y=;故答案为y=.20.-15【详解】∵-2<<1∴x=时y=x-1=故答案为解析:-1.5【详解】∵-2<12-<1, ∴x=12-时,y=x-1=13122--=-, 故答案为32-. 三、解答题21.428y x =-+【分析】首先解直角三角形求得腰长,然后根据等腰梯形的周长即可求得y 与x 之间的函数关系式.【详解】解:如图∵底角为30°,高AH=x ,∴在RT △ABH 中,AB=2x ,∵梯形为等腰梯形,梯形的周长为28,上下底的和为y ,∴12(28-y )=2x , ∴y=-4x+28.【点睛】 此题考查了等腰梯形的性质以及直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.22.(1)提出概念所用的时间x 和对概念接受能力y 两个变量;(2)当时间是5分钟时,学生的接受能力是53.5;(3)当提出概念13分钟时,学生的接受能力最强59.9(4)当2≤x≤13时,y 值逐渐增大,学生的接受能力逐步增强;当13≤x≤20时,y 值逐渐减小,学生的接受能力逐步降低【分析】(1)根据x,y 表示的意义以及函数的概念即可判定;(2)学生的接受能力最强,即y 的值最大,即可确定x 的值;(3)根据表格信息即可直接写出;(4)根据表格可以得到y 的值超过13分钟以后越来越小,即可解题.【详解】解:(1)反映了提出概念所用的时间x 和对概念接受能力y 两个变量之间的关系;其中x是自变量,y是因变量;(2)提出概念所用的时间为5分钟时, 学生的接受能力是53.5;(3)当x在2分钟至13分钟的范围内,学生的接受能力逐步增强,当x在13分钟至20分钟的范围内,学生的接受能力逐步降低,∴当提出概念13分钟时,学生的接受能力最强为59.9;(4)当2≤x≤13时,y值逐渐增大,学生的接受能力逐步增强;当13≤x≤20时,y值逐渐减小,学生的接受能力逐步降低.【点睛】本题主要考查了变量的定义,以及正确读表,中等难度,正确理解表中的变量的意义是解题的关键.23.(1)﹣4≤x≤3;(2)﹣2≤y≤4;(3)3;(4)1;(5)﹣2≤x≤1(6)﹣4≤x≤﹣2和1≤x≤3.【解析】【分析】根据自变量的定义,函数值的定义以及二次函数的最值和增减性,观察函数图象分别写出即可.【详解】解:(1)自变量x的取值范围是﹣4≤x≤3;(2)函数y的取值范围是﹣2≤y≤4;(3)当x=0时,y的对应值是3;(4)当x为1时,函数值最大;(5)当y随x的增大而增大时,x的取值范围是﹣2≤x≤1.(6)当y随x的增大而减少时,x的取值范围是﹣4≤x≤﹣2和1≤x≤3;故答案为(1)﹣4≤x≤3;(2)﹣2≤y≤4;(3)3;(4)1;(5)﹣2≤x≤1(6)﹣4≤x≤﹣2和1≤x≤3.【点睛】本题考查二次函数的性质,函数图象,熟练掌握函数自变量的定义,函数值的定义以及函数的增减性并准确识图是解题关键.24.(1) y=8x+0.4x=8.4x;(2)当x=2.5时,y=21(元);(3)当y=126时, x=15.【解析】【分析】(1)根据表格中数据得出y与x的函数关系式即可;(2)将x=2.5千克时,代入求出即可;(3)将y=126代入求出x即可.【详解】(1)由表中数据规律可知:y=8x+0.4x=8.4x.(2)当x=2.5时,y=8.4×2.5=21(元).(3)当y=126时,由8.4x=126,解得x=15.【点睛】本题考查了函数关系式的求法,要注意观察、比较和归纳,本题的解题过程体现了从特殊到一般,再从一般到特殊的数学思想方法.25.(1)y =0.4x (x ≥0且x 为整数).(2)y =0.15x +200(x ≥0且x 为整数).(3)若学校每月复印页数在1200页左右,应选择乙复印社.【分析】(1)待定系数法设一次函数关系式,把任意两点代入,求得相应的函数解析式,看其余点的坐标是否适合即可.(2)根据乙复印社每月收费=承包费+按每页0.15元的复印费用,可得相应的函数解析式;(3)先画出函数图象,找到交点坐标,即可作出判断.【详解】(1)设解析式为y=kx+b ,将(100,40),(200,80)代入得1004020080k b k b +⎧⎨+⎩==, 解得0.40k b ==⎧⎨⎩. 故y=0.4x (x >0且为整数);(2)乙复印社每月收费y (元)与复印页数x (页)的函数关系为:y=0.15x+200(x≥0且为整数).(3)在同一坐标系中画出两函数图象,如下图,由图形可知每月复印页数在1200左右应选择乙复印社.【点睛】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的作图能力.注意自变量的取值范围不能遗漏.26.(1)-1,12,14,8;(2)见解析.【解析】试题分析:(1)找到图象上与相应时间(或温度)对应的点的纵坐标(或横坐标)即可得到本题答案;(2)本题答案不唯一,符合函数图象所反映的实际情况的信息都可以.试题(1)由图象可知:①20时的温度是“-1℃”;②温度是0℃的时刻是12时;③最暖和的时刻是14时;④温度在-3℃以下持续的时间为8小时;(2)从图象中还能获取:从4时到14时,温度逐渐升高;最低气温约为-4.5℃;最高气温是2℃;温度在0℃以上的时刻是在12时到18时等信息.。

变量之间的关系难题初中数学组卷

变量之间的关系难题初中数学组卷

变量之间的闭系的初中数教组卷之阳早格格创做一.采用题(共7小题)1.(2015•荆州)如图,正圆形ABCD的边少为3cm,动面P 从B面出收以3cm/s的速度沿着边BC﹣CD﹣DA疏通,到达A面停止疏通;另一动面Q共时从B面出收,以1cm/s的速度沿着边BA背A面疏通,到达A面停止疏通.设P面疏通时间为x(s),△BPQ的里积为y(cm2),则y闭于x 的函数图象是()A.B.C.D.2.(2015•北京)一个觅宝游戏的觅宝通讲如图1所示,通讲由正在共一仄里内的AB,BC,CA,OA,OB,OC组成.为记录觅宝者的前进门路,正在BC的中面M处搁置了一台定位仪器.设觅宝者前进的时间为x,觅宝者与定位仪器之间的距离为y,若觅宝者匀速前进,且表示y与x的函数闭系的图象大概如图2所示,则觅宝者的前进门路大概为()A.A→O→B B.B→A→C C.B→O→C D.C→B→O3.(2015•盘锦)如图,边少为1的正圆形ABCD,面M从面A出收以每秒1个单位少度的速度背面B疏通,面N从面A出收以每秒3个单位少度的速度沿A→D→C→B的路径背面B疏通,当一个面到达面B时,另一个面也随之停止疏通,设△AMN的里积为s,疏通时间为t秒,则能大概反映s与t的函数闭系的图象是()A.B.C.D.4.(2015•广元)如图,矩形ABCD中,AB=3,BC=4,面P 从A面出收,按A→B→C的目标正在AB战BC上移动.记PA=x,面D到直线PA的距离为y,则y闭于x的函数大概图象是()A.B.C.D.5.(2015•淄专模拟)已知:如图,面P是正圆形ABCD的对付角线AC上的一个动面(A、C除中),做PE⊥AB于面E,做PF⊥BC于面F,设正圆形ABCD的边少为x,矩形PEBF的周少为y,正在下列图象中,大概表示y与x之间的函数闭系的是()A.B.C.D.6.(2014•新泰市模拟)寡志成乡,防止“禽流感”.正在那场不硝烟的战斗中,科技处事者战医务人员通过探索,把某种药液密释正在火中举止喷洒,消毒效验较佳,而且创造当密释到某一浓度a时,效验最佳而不是越浓越佳.有一共教把效验与浓度的闭系画成直线,您认为精确的是()A.B.C.D.7.(2014•阜宁县模拟)如图,某电疑公司提供了A,B二种规划的移动通讯费用y(元)与通话时间x(元)之间的闭系,则下列论断中精确的有()(1)若通话时间少于120分,则A规划比B规划廉价20元;(2)若通话时间超出200分,则B规划比A规划廉价12元;(3)若通讯费用为60元,则B规划比A规划的通话时间多;(4)若二种规划通讯费用出进10元,则通话时间是145分或者185分.A.1个B.2个C.3个D.4个二.挖空题(共20小题)8.(2014•缓州)如图①,正在正圆形ABCD中,面P沿边DA从面D启初背面A以1cm/s的速度移动;共时,面Q沿边AB、BC从面A启初背面C以2cm/s的速度移动.当面P 移动到面A时,P、Q共时停止移动.设面P出收xs时,△PAQ 的里积为ycm2,y与x的函数图象如图②,则线段EF天圆的直线对付应的函数闭系式为.9.(2013•咸宁)“龟兔尾次赛跑”之后,输了角逐的兔子不气馁,归纳深思后,战黑龟约定再赛一场.图中的函数图象描画了“龟兔再次赛跑”的故事(x表示黑龟从起面出收所止的时间,y1表示黑龟所止的路途,y2表示兔子所止的路途).有下列道法:①“龟兔再次赛跑”的路途为1000米;②兔子战黑龟共时从起面出收;③黑龟正在途中戚息了10分钟;④兔子正在途中750米处逃上黑龟.其中精确的道法是.(把您认为精确道法的序号皆挖上)10.(2013•武汉模拟)如图,甲、乙二车共时从A天出收,以各自的速度匀速背B天止驶,甲车先到达B天,正在B天停顿1小时后,沿本路以另一个速度匀速返回,若搞时间后与乙车相逢,乙车的速度为每小时60千米.如图是二车之间的距离y(千米)与乙车止驶的时间x(小时)之间函数的图象,则甲车返回的速度是每小时千米.11.(2013•成皆模拟)如图,lA,lB分别表示A步止与B骑车正在共一路上止驶的路途S与时间t的闭系.(1)B出收时与A相距千米.(2)走了一段路后,自止车爆收障碍,举止建理,所用的时间是小时.(3)B出收后小时与A相逢.(4)若B的自止车不爆收障碍,脆持出收时的速度前进,小时与A相逢.12.(2013•尤溪县量检)如图所示,已知正圆形ABCD的边少为4,E是BC边上的一个动面,AE⊥EF,EF接DC于面F,设BE=x,FC=y,则当面E从面B疏通到面C时,y闭于x的函数图象是(挖序号)13.(2012•苏州)如图①,正在梯形ABCD中,AD∥BC,∠A=60°,动面P从A面出收,以1cm/s的速度沿着A→B→C→D的目标连接移动,直到面P到达面D后才停止.已知△PAD的里积S(单位:cm2)与面P移动的时间(单位:s)的函数如图②所示,则面P从启初移动到停止移动一共用了秒(截止死存根号).14.(2012•湖北模拟)小明早朝从家骑车到书籍院,先上坡后下坡,路程情况如图,若返回时上、下坡的速度脆持稳定,那么小明从书籍院骑车回家用的时间是分钟.15.(2012•宁德)五一节某超市搞促销活动:①一次性买物不超出150元不享受劣惠;②一次性买物超出150元但是不超出500元一律九合;③一次性买物超出500元一律八合.王宁二次买物分别付款120元、432元,若王宁一次性买买与上二次相共的商品,则草率款元.16.(2012•江夏区校级模拟)甲、乙二个工程队分别共时启掘二段河渠,所掘河渠的少度y(m)与掘掘时间x(h)之间闭系如图:当x=h时,甲、乙二个工程队所掘河渠的少度相等.17.(2011•咸宁)火车匀速通过隧讲时,火车正在隧讲内的少度y(米)与火车止驶时间x(秒)之间的闭系用图象形貌如图所示,有下列论断:①火车的少度为120米;②火车的速度为30米/秒;③火车完齐皆正在隧讲内的时间为25秒;④隧讲少度为750米.其中精确的论断是.(把您认为精确论断的序号皆挖上)18.(2011•背阳)明明骑自止车到距家9千米的体育馆瞅一场球赛,启初以仄常速度匀速止驶,途中自止车出障碍,他只佳停下去建车.车建佳后,他加速继承匀速赶往体育馆,其速度为本仄常速度的倍,截止正佳按预计时间(如果自止车不出障碍,以仄常速度匀速止驶到达体育馆的时间)到达.明明止驶的路途s(千米)与时间t(分)之间的函数闭系如图所示,那么他建车占用的时间为分.19.(2011•衡阳)如图1所示,正在矩形ABCD中,动面P 从面B出收,沿BC、CD、DA疏通至面A停止,设面P疏通的路途为x,△ABP的里积为y,如果y闭于x的函数图象如图2所示,那么△ABC的里积是.20.(2011•武汉校级模拟)如图,OA、BA分别表示甲、乙二名教死匀速跑步疏通的一次函数,图中S战t分别表示疏通路途战时间,根据图象推断跑步快者比缓者每秒快(m).21.(2010•金东区模拟)图中的圆面是有顺序天从里到中逐层排列的.设y为第n层(n为正整数)圆面的个数,则y 与n之间的函数闭系式y=.22.(2010•专家县二模)廊坊某储运部慢迫调拨一批物资,调进物资共用4小时,调进物资2小时后启初调出物资(调进物资与调出物资的速度均脆持稳定).储运部库存物资S (吨)与时间t(小时)之间的函数闭系如图所示,那批物资从启初调进到局部调出需要的时间是小时.23.(2010•李沧区二模)小下从家门心骑车去单位上班,先走仄路到达面A,再走上坡路到达面B,末尾走下坡路到达处事单位,所用的时间与路途的闭系如图所示.下班后,如果他沿本路返回,且走仄路、上坡路、下坡路的速度分别脆持战去上班时普遍,那么他从单位到家门心需要的时间是分钟.24.(2009•荆州模拟)小华从家里出收,到超市买物,而后回家,回家时比去时每分钟缓10米,如图是他离家的距离y (米)闭于离家的时间x(分钟)的函数图象.那么C处的值是.25.(2007•绵阳)如图所示的函数图象反映的历程是:小明从家去书籍店,又去书籍院与启疑后赶快回家,其中x表示时间,y表示小明离他家的距离,则小明从书籍院回家的仄衡速度为千米∕小时.26.(2007•绍兴)绍兴黄酒是华夏名酒之一.某黄酒厂的瓶酒车间先将集拆黄酒灌拆成瓶拆黄酒,再将瓶拆黄酒拆箱出车间,该车间有灌拆、拆箱死产线共26条,每条灌拆、拆箱死产线的死产流量分别如图1,2所示.某日8:00~11:00,车间内的死产线局部加进死产,图3表示该时段内已拆箱的瓶拆黄酒存量变更情况,则灌拆死产线有条.27.(2007•滨州)如图所示表示“龟兔赛跑”时路途与时间的闭系,已知龟、兔上午8:00从共一天面出收,请您根据图中给出的疑息,算出黑龟正在面逃上兔子.三.解问题(共3小题)28.(2010•宿迁二模)如图甲,正在正圆形ABCD中,AB=6cm,面P、Q从A面沿边AB、BC、CD疏通,面M从A面沿边AD、DC、CB疏通,面P、Q的速度分别为1cm/s,3cm/s,面M的速度2cm/s.若它们共时出收,当面M与面Q相逢时,所有面皆停止疏通.设疏通的时间为ts,△PQM 的里积为Scm2,则S闭于t的函数图象如图乙所示.分离图形,完毕以下各题:(1)当t为何值时,面M与面Q相逢?(2)挖空:a=;b=;c=.(3)当2<t≤3时,供S与t的函数闭系式;(4)正在所有疏通历程中,△PQM是可为直角三角形?若能,哀供出此时t的值;若不克不迭,请道明缘由.29.(2005•宁德)如图,已知直角梯形ABCD中,AD∥BC,B=90°,AB=12cm,BC=8cm,DC=13cm,动面P沿A→D→C 线路以2cm/秒的速度背C疏通,动面Q沿B→C线路以1cm/秒的速度背C疏通.P、Q二面分别从A、B共时出收,当其中一面到达C面时,另一面也随之停止.设疏通时间为t秒,△PQB的里积为ym2.(1)供AD的少及t的与值范畴;(2)当1.5≤t≤t0(t0为(1)中t的最大值)时,供y闭于t 的函数闭系式;(3)请简直形貌:正在动面P、Q的疏通历程中,△PQB的里积随着t的变更而变更的顺序.30.(2009•岳阳一模)阅读底下资料,再回问问题.普遍天,如果函数y=f(x)对付于自变量与值范畴内的任性x,皆有f(﹣x)=f(x).那么y=f(x)便喊奇函数.如果函数y=f(x)对付于自变量与值范畴内的任性x,皆有f(﹣x)=﹣f(x).那么y=f(x)便喊奇函数.比圆:f(x)=x4当x与任性真数时,f(﹣x)=(﹣x)4=x4∴f(﹣x)=f(x)∴f(x)=x4是奇函数.又如:f(x)=2x3﹣x.当x与任性真数时,∵f(﹣x)=2(﹣x)3﹣(﹣x)=﹣2x3+x=﹣(2x3﹣x)∴f(﹣x)=﹣f(x)∴f(x)=2x3﹣x是奇函数.问题1:下列函数中:①y=x2+1②③④⑤y=x ﹣2﹣2|x|是奇函数的有;是奇函数的有(挖序号)问题2:仿照例道明:函数④或者⑤是奇函数仍旧奇函数(采用其中之一)变量之间的闭系的初中数教组卷参照问案一.采用题(共7小题)1.C;2.C;3.D;4.D;5.A;6.B;7.C;二.挖空题(共20小题)8.y=-3x+18;9.①③④;10.90;11.10;1;3;;12.①;13.(4+2);14.37.2;15.480元或者528;16.4;17.②③; 18.5;19.10;20.1.5;21.4n;22.4.4;23.15;24.18;25.6;26.14;27.18:00;三.解问题(共3小题)28.8;12;13.5;29.;30.②④;①⑤;。

(典型题)初中数学七年级数学下册第三单元《变量之间的关系》测试题(答案解析)

(典型题)初中数学七年级数学下册第三单元《变量之间的关系》测试题(答案解析)

一、选择题1.下面说法中正确的是( )A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的数量关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对2.如图是反映两个变量关系的图,下列的四个情境比较合适该图的是()A.一杯热水放在桌子上,它的水温与时间的关系B.一辆汽车从起动到匀速行驶,速度与时间的关系C.一架飞机从起飞到降落的速度与时晨的关系D.踢出的足球的速度与时间的关系3.圆周长公式C=2πR中,下列说法正确的是()A.π、R是变量,2为常量B.C、R为变量,2、π为常量C.R为变量,2、π、C为常量D.C为变量,2、π、R为常量4.某工厂去年底积压产品a件(a>0),今年预计每月销售产品2b件(b>0),同时每月可生产出产品b件,则产品积压量y(件)与今年开工时间t(月)的关系的图象应是()A.B.C.D.5.李钰同学利用计算机设计了一个程序,输入和输出的数据如下表:输入…12345…输出…25101726…那么,当输入数据8时,输出的数据是()A.61 B.63 C.65 D.676.某品牌电饭锅成本价为 70 元,销售商对其销售与定价的关系进行了调查,结果如下:定价(元) 100 110 120 130 140 150销量(个) 80 100 110 100 80 60在这个问题中,下列说法正确的是 ( )A.定价是自变量,销量是因变量B.销量是自变量,定价是因变量C.定价为 110 元时,销量为 110 个D.定价越高,销量越大7.已知两个变量x和y,它们之间的3组对应值如下表,则y与x之间的函数关系式可能是()A.y=3x B.y=x-4 C.y=x2-4 D.y=3 x8.在三角形面积公式S=ah,a=2cm中,下列说法正确的是()A.S,a是变量,h是常量B.S,h是变量,是常量C.S,h是变量,a是常量D.S,h,a是变量,是常量9.柿子熟了,从树上落下来.下面的()图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况.A.B.C.D.10.一根蜡烛长20厘米,点燃后每小时燃烧4厘米,能大致表示燃烧时剩下的高度h(里面吗)与燃烧时间t(时)之间的变化情况的图象是()A.B.C.D.11.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种函数关系,其函数图象大致为()A.B.C.D.12.在△ABC中,若底边长是a,底边上的高为h,则△ABC的面积12S ah,当高h为定值时,下列说法正确的是( )A.S,a是变量;12,h是常量B.S,a,h是变量;12是常量C.a,h是变量;S是常量D.S是变量;12,a,h是常量二、填空题13.小明和小强进行百米赛跑,小明比小强跑得快,如果两人同时起跑,小明肯定赢,如图所示,现在小明让小强先跑_______米,直线__________表示小明的路程与时间的关系,大约_______秒时,小明追上了小强,小强在这次赛跑中的速度是________ .14.梯形的上底长是2,下底长是8,则梯形的面积y关于高x之间的关系式是______,自变量是____,因变量是______.15.在公式s=v0t+2t2(v0为已知数)中,常量是________ ,变量是________ .16.张老师带领x名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y元,则y=__________________,当学生有45人时,需要的总费用为________元.17.如图所示的函数图象反映的过程是:小红从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小红离她家的距离,则小红从学校回家的平均速度为_______________千米/小时.18.如图,圆柱的高是3cm ,当圆柱的底面半径由小到大变化时,圆柱的体积也随之发生了变化.(1)在这个变化中,自变量是______,因变量是______;(2)当底面半径由1cm 变化到10cm 时,圆柱的体积增加了______cm 3.19.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A 地到B 地,乙驾车从B 地到A 地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y (千米)与甲出发的时间x (分)之间的关系如图所示,当乙到达终点A 时,甲还需________分钟到达终点B .20.某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温y ℃与向上攀登的高度xkm 的几组对应值如表: 向上攀登的高度x/km 0.5 1.0 1.5 2.0 气温y/℃2.0﹣1.0﹣4.0﹣7.0若每向上攀登1km ,所在位置的气温下降幅度基本一致,则向上攀登的海拔高度为2.3km 时,登山队所在位置的气温约为_____℃.三、解答题21.在一次实验中,小明把一根弹簧的端固定,在其下端悬挂物体,下面是测得的弹簧的长度()y cm 与所挂物体的质量()x kg 的一组对应值:x kg012345所挂物体的质量()y cm182022242628弹簧长度()(1)在这个变化的过程中,自变量是;因变量是;(2)写出y与x之间的关系式,并求出当所挂重物为6kg时,弹簧的长度为多少?22.已知某函数图象如图所示,请回答下列问题:(1)自变量x的取值范围是(2)函数值y的取值范围是;(3)当x=0时,y的对应值是;(4)当x为时,函数值最大;(5)当y随x增大而增大时,x的取值范围是;(6)当y随x的增大而减少时,x的取值范围是.23.李明为了了解自家用电量的多少,在六月初连续几天同一时刻记录了电表显示的读数,记录如下:日期12345678电表读数/千瓦时117120124129135138142145请估计李明家六月份的总用电量是多少.24.近期,大陆相关部门对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售,某经销商销售了台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:每千克售价(元) 38 37 36 35 (20)每天销量(千克) 50 52 54 56 (86)设当单价从38元/千克下调了x元时,销售量为y千克.(1)写出y与x之间的关系式;(2)如果凤梨的进价是20元/千克,某天的销售价定为30元/千克,这天的销售利润是多少?(3)以前在两岸未直接通航时,运输要绕行,需耗时一周(七天),凤梨最长的保存期为一个月(30天),若每天售价不低于30元/千克,一次进货最多只能是多少千克?25.星期天,小宇的爸爸9点钟从家里到附近的一个银行办理业务,他走了一段路后,突然发现忘记带身份证,于是他跑步回家,拿了身份证,跑到银行办理业务,办完业务他步行回到家.他离家的路程s(米)与时间t(分)之间的关系如图7所示.(1)小宇的爸爸几点钟到达银行?他办理业务共用多长时间?(2)几点钟,小宇的爸爸发现忘记带身份证,此时,他离家多远?(3)小宇的爸爸在去银行办理业务的过程中走过的路程为多少米?(4)求小宇爸爸从银行回到家的速度.26.在数轴上,若点A,B表示的数分别为3和x,则A,B之间的距离y与x之间的关系式为3=-.y x(1)当x的值为-5时,求y的值;(2)根据关系式,完成下表:x-10123456y【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】表示函数的方法有三种:解析法、列表法和图象法.解:A、两个变量间的关系只能用关系式表示,还能用列表法和图象法表示,故错误;B、图象能直观的表示两个变量间的数量关系,故错误;C、借助表格可以表示出因变量随自变量的变化情况,正确;D、以上说法都不对,错误;故选C.2.B解析:B【分析】根据图象信息可知,是s随t的增大而增大,判断下面的四个选项判断的图象变化规律,即可得到符合此图的即可得到答案.【详解】解:题中给的图象变化情况为先是s随t的增大而增大,A:热水的水温先是随时间的增加而减少的,后不变,故不符合题意;B:汽车启动的过程中,速度是随着时间的增长从0增大的,而后匀速后,速度随时间的增加是不变的,故符合题意;C:飞机起飞的过程中速度是随着时间的增加而增大的,而降落的过程中,速度是随着时间的增加而减少的,故不符合题意;D:踢出的足球的速度是随着时间的增加而减少的,故不符合题意;故选B.【点睛】本题主要考查的是实际生活中图象的变化,要深刻理解两变量之间的变化关系,对于图象的变化要很熟练地画出是解此类题的关键.3.B解析:B【分析】根据变量是指在程序的运行过程中随时可以发生变化的量,常量是指在程序的运行过程不发生变化的量,可得答案.【详解】解:在圆周长公式C=2πR中,2、π是常量,C,R是变量.故选:B.【点睛】此题考查常量与变量,解题关键在于掌握变量是指在程序的运行过程中随时可以发生变化的量,常量是指在程序的运行过程不发生变化的量,注意π是常量.4.C解析:C【解析】【分析】开始生产时产品积压a件,即t=0时,y=a,后来由于销售产品的速度大于生产产品的速度,则产品积压量y随今年开工时间t的增大而减小,且y是t的一次函数,据此进行判断.【详解】∵开始生产时产品积压a件,即t=0时,y=a,∴B错误;∵今年预计每月销售产品2b件(b>0),同时每月可生产出产品b件,∴销售产品的速度大于生产产品的速度,∴产品积压量y随开工时间t的增大而减小,∴A错误;∵产品积压量每月减少b件,即减小量是均匀的,∴y是t的一次函数,∴D错误.故选C.【点睛】本题考查的是实际生活中函数的图形变化,属于基础题.解决本题的主要方法是先根据题意判断函数图形的大致走势,再下结论,本题无需计算,通过观察看图,做法比较新颖.5.C解析:C【分析】观察表格发现,输入的数字是几,输出数就是输入数的平方加1+由此求解.【详解】输入8,输出数就是82+1=64+1=65;故选C.【点睛】解决本题关键是找出输入数据与输出的数据之间的关系,再由此进行求解.6.A解析:A【解析】(1)观察、分析题中数据可知,在这个问题中,电饭锅的销售量是随着销售定价的变化而变化的,所以“定价是自变量,销售量是因变量”,所以A中说法正确,B中说法错误;(2)观察所给数据可知:“当定价为110元时,销售量为100个”,所以C中说法错误;(3)观察、分析所给数据可知:“销售量开始时随着定价的升高而变大,但随后随着定价的继续升高而变小”,所以D中说法错误.故选A.7.C解析:C【解析】选项A,y=3x,根据表格对应数据代入得出y≠3x,选项A错误;选项B,y=x-4,根据表格对应数据代入得出y≠x-4,选项B错误;选项C,y=x2-4,根据表格对应数据代入得出y=x2-4,选项C正确;选项D,y= 3x,根据表格对应数据代入得出y≠3x,选项D错误.故选C.8.C解析:C【解析】试题分析:根据函数的定义:对于函数中的每个值x,变量y按照一定的法则有一个确定的值y与之对应;来解答即可.解:在三角形面积公式S=,a=2cm中,a是常数,h和S是变量.故选C.点评:函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x);变量是指在程序的运行过程中随时可以发生变化的量.9.A解析:A【解析】根据物理上的自由落体运动的规律,速度越来越大,故选A.10.C解析:C【解析】燃烧时剩下高度h(cm)与燃烧时间t(小时)的关系是:h=20−4t(0⩽t⩽5),图象是以(0,20),(5,0)为端点的线段。

北师大版初中数学七年级下册第三单元《变量之间的关系》单元测试卷(困难)(含答案解析)

北师大版初中数学七年级下册第三单元《变量之间的关系》单元测试卷(困难)(含答案解析)

北师大版初中数学七年级下册第三单元《变量之间的关系》单元测试卷(困难)(含答案解析)考试范围:第三单元; &nbsp; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. 甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶.已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需分钟到达终点B.( )A. 12B. 16C. 76D. 782. 一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间.用x表示注水时间,用y表示浮子的高度,则用来表示y与x之间关系的选项是( )A. B.C. D.3. 小聪步行去上学,5分钟走了总路程的1,估计步行不能准时到校,于是他改乘出租车赶6往学校,他的行程与时间关系如图所示,(假定总路程为1,出租车匀速行驶),则他到校所花的时间比一直步行提前了分钟.( )A. 16B. 18C. 20D. 244. 明明在爬山的活动中,先快速跑步上山,累了停下来休息了一段时间后,再慢慢爬到山顶,下图中能大致反映明明离山顶的路程s与登山时间t的关系的是( )A. B.C. D.5. 早上,小明从家里步行去学校,出发一段时间后,小明妈妈发现小明的作业本落在家里,便带上作业本骑车追赶,途中追上小明两人稍作停留,妈妈骑车返回,小明继续步行前往学校,两人同时到达.设小明在途的时间为x,两人之间的距离为y,则下列选项中的图象能大致反映y与x之间关系的是( )A. B.C. D.6. 柿子熟了,从树上落下来.下面可以大致刻画柿子下落过程中(即落地前)的速度变化情况的一幅图为( )A.B.C.D.7. 一列火车由甲市驶往相距600km的乙市,火车的速度是200km/ℎ,火车离乙市的距离S(单位:km)随行驶时间t(单位:小时)变化的关系用图象表示正确的是( )A. B. C. D.8. 某少年赛车场的外围车道是圆形,如图(1)所示,点A为出发点,点O为圆心.齐齐在开第一圈时,他离圆心O的距离y与开车时间x之间的函关系的图象如图(2)所示,则齐齐开赛车的路线不可能是( )A. A→D→O→AB. A→C→O→AC. A→O→D→AD. A→O→B→C→O→A9. 开发区某消毒液生产厂家自2003年初以来,在库存m(m>0)情况下,日销售量与产量持平,从4月底抗“非典”以来,消毒液需求量猛增,在生产能力不变的情况下,消毒液一度脱销,以下表示是2003年初至脱销期间,时间t与库存量y之间关系的图象的是( )A. B.C. D.10. 如图是王大爷早晨出门散步时,离家的距离y(m)与时间x(min)之间的变化关系,若用黑点表示王大爷家的位置,则王大爷散步行走的线路可能是( )A. B. C. D.11. 小红帮弟弟荡秋千(如图1),秋千离地面的高度ℎ(m)与摆动时间t(s)之间的关系如图2所示.结合图象可以看出,秋千摆动第一个来回需要的时间是.( )A. 0.7sB. 1.4sC. 2.1sD. 2.8s12. 图①~④分别表示甲、乙两辆汽车在同一条路上匀速行驶中速度与时间的关系,小明对4个图中汽车运动的情况进行了描述,其中正确的是( )A. 图①:乙的速度是甲的2倍,甲乙的路程相等B. 图②:乙的速度是甲的2倍,甲的路程是乙的一半C. 图③:乙的速度是甲的2倍,乙的路程是甲的一半D. 图④:甲的速度是乙的2倍,甲乙的路程相等第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 甲、乙两人在同一平直的道路上同时、同起点、同方向出发,他们分别以不同的速度匀速跑步1800米(甲的速度大于乙的速度),当甲第一次超出乙300米时,甲停下来等候乙.甲、乙两人会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息.在整个跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间x(秒)之间的关系如图所示,则当甲到达终点时,乙跑了________米.14. 甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,到目的地后停止运动。

(好题)初中数学七年级数学下册第三单元《变量之间的关系》测试(有答案解析)(2)

(好题)初中数学七年级数学下册第三单元《变量之间的关系》测试(有答案解析)(2)

一、选择题1.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据 温度/℃ ﹣20 ﹣10 0 10 20 30 声速/m/s318324330336342348A .这个问题中,空气温度和声速都是变量B .空气温度每降低10℃,声速减少6m/sC .当空气温度为20℃时,声音5s 可以传播1710mD .由数据可以推测,在一定范围内,空气温度越高,声速越快2.一个长方形的周长为30,则长方形的面积y 与长方形一边长x 的关系式为( ) A .y=x(15-x)B .y=x(30-x)C .y=x(30-2x)D .y=x(15+x)3.长方形的周长为24cm ,其中一边长为()x cm ,面积为2ycm 则长方形中y 与x 的关系式为( ) A .2yx B .2(12)y x =- C .(12)y x x =- D .2(12)y x =-4.如图是九年级某考生做的水滴入一个玻璃容器的示意图(滴水速度保持不变),能正确反映容器中水的高度(h )与时间(t )之间对应关系的大致图象是( ).A .B .C .D .5.已知△ABC 的底边BC 上的高为8 cm ,当底边BC 从16 cm 变化到5 cm 时,△ABC 的面积 ( )A .从20 cm 2变化到64 cm 2B .从40 cm 2变化到128 cm 2C .从128 cm 2变化到40 cm 2D .从64 cm 2变化到20 cm 26.已知变量x ,y 满足下面的关系: x…-3-2-1123…y…1 1.53-3-1.5-1…则x,y之间的关系用函数表达式表示为()A.y=3xB.y=-3xC.y=-3xD.y=3x7.用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是A.B.C.D.8.在一张边长为 30 cm 的正方形纸片的四角上分别剪去一个边长为 x cm 的小正方形,然后将剩余部分折叠成一个无盖的长方体.则使得长方体的体积最大的 x 的取值是 ( )A.7 B.6 C.5 D.49.下列说法中正确的是 ( )A.变量 x , y 满足 x + 3y = 1 ,则 y 是 x 的函数B.变量 x , y 满足23y x=--,则 y 是 x 的函数C.变量 x , y 满足∣ y ∣= x ,则 y 是 x 的函数D.变量 x , y 满足 y2 = x ,则 y 是 x 的函数10.已知两个变量x和y,它们之间的3组对应值如下表,则y与x之间的函数关系式可能是()A.y=3x B.y=x-4 C.y=x2-4 D.y=3 x11.某人先以v1的速度由A地出发去B地,途中在超市购买了一瓶水之后,又以v2的速度继续进行至B地,已知v1<v2,下面图象中能表示他从A地到B地的时间t(分钟)与路程s(千米)之间关系的是()A. B.C.D.12.某油箱容量为60 L的汽车,加满汽油后行驶了100 Km时,油箱中的汽油大约消耗了1,如果加满汽油后汽车行驶的路程为x Km,邮箱中剩油量为y L,则y与x之间的函数解5析式和自变量取值范围分别是()A.y=0.12x,x>0 B.y=60﹣0.12x,x>0 C.y=0.12x,0≤x≤500D.y=60﹣0.12x,0≤x≤500二、填空题13.如图所示的是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的关系图象.下列说法:①买2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买乙家的1件售价约为3元.其中正确的说法是__.14.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,则隧道长度为________米.15.张老师带领x名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y元,则y=__________________,当学生有45人时,需要的总费用为________元.16.某农场租用收割机收割小麦,甲收割机单独收割2天后,又调来乙收割机参与收割,直至完成800亩的收割任务.收割亩数与天数之间的关系如图所示,那么乙参与收割________天.17.某兴趣小组从学校出发骑车去植物园参观,先经过一段上坡路后到达途中一处景点,停车10分钟进行参观,然后又经一段下坡路到达植物园,行程情况如图,若他们上、下坡路速度不变,则这个兴趣小组的同学按原路返回所用的时间为________分钟.(途中不停留)18.某水库初始的水位高度为5米,水位在10小时内持续匀速上涨,测量可知,经过4小时,水位上涨了1米.(1)写出水库的水位高度y (米)与时间x (小时)(0≤x ≤10)之间的关系式; (2)经过______小时,水库的水位上涨到6.5米;(3)当时间由1小时变化到10小时时,水库的水位高度由______米变化到______米. 19.如图所示表示“龟兔赛跑”时路程与时间的关系,已知龟、兔上午8点从同一地点出发,请你根据图中给出的信息,算出乌龟在___点追上兔子.20.已知ABC △是等腰三角形,周长是60cm ,腰长为cm x ,底为cm y . (1)用含x 的关系式表示y :__________.(2)当腰长由20cm 变化到25cm 时,底边长由__________cm 变化到__________cm .三、解答题21.观察下图,回答问题. (1)反映了哪两个变量之间的关系? (2)点A ,B 分别表示什么?(3)说一说速度是怎样随时间变化而变化的;(4)你能找到一个实际情境,大致符合下图所刻画的关系吗?22.某地移动公司的通话时间(分)和需要的电话费(元)之间有如下表所示的关系: 通话时间/分 1234567…电话费/元0.4 0.8 1.2 1.6 2.0 2.4 2.8 …(2)用x表示通话时间,用y表示电话费,请写出随着x的变化,y的变化趋势是什么?23.商店在出售某商品时,在进价的基础上增加一定的利润,其质量x与售价y之间的关系如下表所示:质量x/千克1234…售价y/元8+0.416+0.824+1.232+1.6…(1)请根据表中提供的信息,写出y与x的关系式;(2)求x=2.5时,y的值;(3)当x取何值时,y=126?24.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分钟)之间的部分关系如图象所示.求从关闭进水管起需要多少分钟该容器内的水恰好放完.25.李明为了了解自家用电量的多少,在六月初连续几天同一时刻记录了电表显示的读数,记录如下:日期12345678电表读数/千瓦时117120124129135138142145请估计李明家六月份的总用电量是多少.26.近期,大陆相关部门对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售,某经销商销售了台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:每千克售价(元) 38 37 36 35 (20)每天销量(千克) 50 52 54 56 (86)设当单价从38元/千克下调了x元时,销售量为y千克.(1)写出y与x之间的关系式;(2)如果凤梨的进价是20元/千克,某天的销售价定为30元/千克,这天的销售利润是多少?(3)以前在两岸未直接通航时,运输要绕行,需耗时一周(七天),凤梨最长的保存期为一个月(30天),若每天售价不低于30元/千克,一次进货最多只能是多少千克?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据表格中两个变量的数据变化情况,逐项判断即可. 【详解】解:这个问题中,空气温度和声速都是变量,因此选项A 不符合题意;在一定的范围内,空气温度每降低10℃,声速减少6m/s ,表格之外的数据就不一定有这样规律,因此选项B 符合题意;当空气温度为20℃时,声速为342m/s ,声音5s 可以传播342×5=1710m ,因此选项C 不符合题意;从表格可得,在一定范围内,空气温度越高,声速越快,因此选项D 不符合题意; 故选:B . 【点睛】本题考查变量之间的关系,理解自变量、因变量之间的变化关系是正确判断的前提.2.A解析:A 【详解】∵长方形的周长为30,其中一边长为x , ∴该长方形的另一边长为:15x -, ∴该长方形的面积:(15)y x x =-. 故选A.3.C解析:C 【分析】根据周长关系求出另一边的长,再用面积公式即可表示y 与x 的函数. 【详解】∵长方形的周长为24cm ,其中一边长为()x cm , ∴另一边为12-x ,故面积2ycm 则长方形中y 与x 的关系式为(12)y x x =- 故选C 【点睛】此题主要考查函数的表示,解题的关键是熟知长方形的周长与面积公式.4.D解析:D 【解析】 【分析】先根据容器的上下的大小,判断水上升快慢和对应的图象,再对题中的每一种结论进行判断. 【详解】解:由于容器的形状是下宽上窄,所以水的深度上升是先慢后快. 表现出的函数图形为先缓,后陡. 故选:D . 【点睛】本题考查单式折线统计图,解题关键在于根据容器的上下的大小,判断水上升快慢和对应的图象5.D解析:D 【分析】 根据S=12(底×高)计算分别计算得出最值即可. 【详解】当△ABC 的底边BC 上的高为8cm ,底边BC=16cm 时, S 1=(8×16)÷2=64cm 2;底边BC=5cm 时,S 2=(5×8)÷2=20cm 2. 故选D . 【点睛】此题主要考查了函数关系,利用极值法得出△ABC 的最大值和最小值是解题关键.6.C解析:C 【解析】 【分析】由x 、y 的关系可求得其满足反比例关系,再由待定系数法即可得出解析式. 【详解】设此函数的解析式为y=kx(k≠0), 把x=-3,y=1, 代入得k=-3,故x ,y 之间用关系式表示为y=-3x. 故选:C . 【点睛】本题考查了用待定系数法求反比例函数的解析式,即图象上点的横纵坐标积为一定值.7.C解析:C 【解析】容器上粗下细,杯子里水面的高度上升应是先快后慢.故选C .8.C解析:C 【解析】设长方体的体积为y ,则由题意可得:2(302)y x x =-,当x=7时,y=1792;当x=6时,y=1944;当x=5时,y=2000;当x=4时,y=1936; ∴当x=5时,y 的值最大. 故选C.9.A解析:A 【解析】A 选项中,“若变量x 、y 满足x+3y=1,则y 是x 的函数”这种说法是正确的;B 选项中,因为无论x 取何值,式子y =都无意义;所以“若变量x 、y 满足y = ,则y 是x 的函数”的说法是错误的;C 选项中,因为当x 的值为正时,和它对应的y 的值有两个,所以“变量 x , y 满足| y ∣= x ,则 y 是 x 的函数”的说法是错误的;D 选项中,因为当x 的值为正时,和它对应的y 的值有两个,所以“变量 x , y 满足 y2 = x ,则 y 是 x 的函数”的说法是错误的. 故选A.点睛:判断一个含有两个变量x 、y 的关系式中,变量y 是否是变量x 的函数,需注意以下两点:(1)变量x 的取值要使式子要有意义;(2)对于变量x 每取定的一个值,变量y 都有唯一确定的值与之对应.10.C解析:C 【解析】选项A ,y=3x ,根据表格对应数据代入得出y≠3x ,选项A 错误;选项B,y=x-4,根据表格对应数据代入得出y≠x -4,选项B 错误;选项C ,y=x 2-4,根据表格对应数据代入得出y=x 2-4,选项C 正确;选项D,y=3x ,根据表格对应数据代入得出y≠3x,选项D 错误.故选C.11.C解析:C【解析】∵V1<V2,∴题中图象上表示为开始时图象斜率小,后来斜率大,又∵途中买了一瓶水,∴图象有一段平行于x轴,故选C.12.D解析:D【解析】试题分析:因为油箱容量为60 L的汽车,加满汽油后行驶了100 Km时,油箱中的汽油大约消耗了15,可得:15×60÷100=0.12L/km,60÷0.12=500(km),所以y与x之间的函数解析式和自变量取值范围是:y=60﹣0.12x,(0≤x≤500),故选D.考点:根据实际问题列一次函数关系式.二、填空题13.①②③【分析】分析图象x=2时y值相等故买两件时售价一样当买1件时乙家的售价比甲家低买3件时甲家较合算【详解】分析题意和图象可知:①售2件时甲乙两家售价一样故此题正确;②买1件时买乙家的合算故此题正解析:①②③【分析】分析图象,x=2时y值相等,故买两件时售价一样,当买1件时乙家的售价比甲家低.买3件时,甲家较合算.【详解】分析题意和图象可知:①售2件时甲、乙两家售价一样,故此题正确;②买1件时买乙家的合算,故此题正确;③买3件时买甲家的合算,故此题正确;④买乙家的1件售价约为1元,故此题错误.故答案为①②③.【点睛】本题考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.14.900【解析】【分析】根据图象可知火车的长度为150米火车的速度可用火车的长度除以火车本身出(或进)隧道内所用的时间即35-30=5秒列式计算即可得到火车行驶的速度;隧道的长度等于火车走过的总路程减解析:900【解析】【分析】根据图象可知,火车的长度为150米,火车的速度可用火车的长度除以火车本身出(或进)隧道内所用的时间即35-30=5秒,列式计算即可得到火车行驶的速度;隧道的长度等于火车走过的总路程减去火车的长度,可列式为35×30-150,列式计算即可得到答案.【详解】解:由图象可直接得到火车的长度为150米,火车的速度是:150÷(35−30)=150÷5=30(米/秒),隧道的长度:35×30−150=1050−150=900(米).故答案为:900.【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.15.10+5x(x为正整数)235【分析】总费用=成人票用钱数+学生票用钱数根据关系列式即可【详解】根据题意可知y=5x+10当x=45时y=45×5+10=235元故答案为5x+10;235【点睛】解解析:10+5x(x为正整数), 235【分析】总费用=成人票用钱数+学生票用钱数,根据关系列式即可.【详解】根据题意可知y=5x+10.当x=45时,y=45×5+10=235元.故答案为5x+10;235.【点睛】解决问题的关键是读懂题意,找到所求的量的等量关系.关系为:总费用=成人票用钱数+学生票用钱数.16.4【解析】试题分析:由图可知甲乙收割机每天共收割350-200=150亩共同收割600亩所以乙参与收割的天数是600÷150=4天故答案为:4点睛:此题主要考查学生的读图获取信息的能力要注意分析其中解析:4【解析】试题分析:由图可知,甲、乙收割机每天共收割350-200=150亩,共同收割600亩,所以,乙参与收割的天数是600÷150=4天.故答案为:4.点睛:此题主要考查学生的读图获取信息的能力,要注意分析其中的“关键点”.17.【解析】试题分析:去植物园上坡路120×25=3000(米)下坡路180×(45-35)=1800(米)返回时的上坡路是1800米下坡路是3000米返回时的时间是=(分钟)故答案为点睛:本题考查了函解析:95 3【解析】试题分析:去植物园上坡路120×25=3000(米),下坡路180×(45-35)=1800(米),返回时的上坡路是1800米,下坡路是3000米,返回时的时间是18003000120180=953(分钟),故答案为953.点睛:本题考查了函数图象,从函数图象获得上坡的时间、速度,下坡的时间、速度是解题关键,注意去时的上坡路是返回时的下坡路,去时的下坡路是返回时的上坡路.18.y=025x+5(0≤x≤10)6小时52575【解析】试题分析:(1)根据题意可得:水库的水位=初始水位高度+每小时上升的速度×时间即可得关系式;(2)把y=65代入(1)中的关系式即可得;(3)解析:y=0.25x+5(0≤x≤10) 6小时 5.25 7.5【解析】试题分析:(1)根据题意可得:水库的水位=初始水位高度+每小时上升的速度×时间,即可得关系式;(2)把y=6.5代入(1)中的关系式即可得;(3)把x=1、x=10分别代入(1)中的关系式,计算后即可得.试题(1)由题意得:y=5+14x=0.25x+5(0≤x≤10);(2)把y=6.5代入y=0.25x+5得:6.5=0.25x+5,解得:x=6,故答案为6;(3)当x=1时,y=0.25x+5=5.25,当x=10时,y=0.25x+5=7.5,故答案为5.25,7.5.19.18【解析】两个函数图形的交点的横坐标是10说明10小时后乌龟追上兔子此时的时间为:8+10=18时故答案为18解析:18【解析】两个函数图形的交点的横坐标是10,说明10小时后,乌龟追上兔子,此时的时间为:8+10=18时.故答案为18.20.10【解析】(1)∵2x+y=60∴y=60-2x(2)把x=20代入y=60-2x得:y=20;把x=25代入y=60-2x 得:y=10;∴当腰长由20cm 变化到25cm 时底边长由20cm 变化到1解析:602y x =-10【解析】(1)∵2x+y=60,∴y=60-2x.(2)把x=20代入y=60-2x 得:y=20;把x=25代入y=60-2x 得:y=10;∴当腰长由20cm 变化到25cm 时,底边长由20cm 变化到10cm.故答案为:(1)y=60-2x ;(2)20;10.三、解答题21.(1)反映速度与时间的关系;(2)A 点表示当时间过了3分钟后,速度为40千米/时,B 点表示当时间为15分钟时,速度为0;(3)见解析;(4)见解析【分析】(1)根据横坐标和纵坐标进行判断即可;(2)根据图象进行判断即可;(3)根据图象进行判断即可;(4)根据图象写出一个实际情境即可.【详解】(1)由图象可得,该图象反映速度与时间的关系;(2)A 点表示当时间过了3分钟后,速度为40千米/时,B 点表示当时间为15分钟时,速度为0;(3)当时间在0~3分钟时,速度随时间的增加而增大,当时间在3~6分钟时,速度保持40千米/时不变,6到7.5分钟时速度从40千米/时增加到60千米/时,7.5到9分钟时保持60千米/时,9到10.5分钟时,从60千米/时降到40千米/时,10.5到12分钟时,保持40千米/时,12到15分钟时,速度从40千米/时降到0;(4)小明从家开车到图书馆借书,汽车从启动到速度为40km/h 用了3分钟,此后3分钟匀速行驶,然后用了1.5分钟加速到60km/h ,然后再匀速行驶1.5分钟,随后用1.5分钟减速到40km/h ,然后再匀速行驶1.5分钟,最后用3分钟减速行驶到停止.【点睛】本题考查了图象与变量的问题,掌握图象与变量的关系是解题的关键.22.(1)上表反映了时间与电话费之间的关系;通话时间是自变量,电话费是因变量;(2)y 随着x 的增大而增大.【分析】(1)根据观察表格,可得变量,根据变量间的关系,可得自变量、因变量;(2)根据单价、时间、话费间的关系,可得函数关系式,根据正比例函数的性质,可得答案.【详解】解:(1)上表反映了时间与电话费之间的关系;通话时间是自变量,电话费是因变量;(2)由表格数据可知y=0.4x,y随着x的增大而增大.【点睛】本题考查变量,解题关键是能够看出两个变量之间的变化关系.23.(1) y=8x+0.4x=8.4x;(2)当x=2.5时,y=21(元);(3)当y=126时, x=15.【解析】【分析】(1)根据表格中数据得出y与x的函数关系式即可;(2)将x=2.5千克时,代入求出即可;(3)将y=126代入求出x即可.【详解】(1)由表中数据规律可知:y=8x+0.4x=8.4x.(2)当x=2.5时,y=8.4×2.5=21(元).(3)当y=126时,由8.4x=126,解得x=15.【点睛】本题考查了函数关系式的求法,要注意观察、比较和归纳,本题的解题过程体现了从特殊到一般,再从一般到特殊的数学思想方法.24.从关闭进水管起需要8分钟该容器内的水恰好放完.【解析】【分析】先根据函数图象求出进水管的进水量和出水管的出水量,由工程问题的数量关系就可以求出结论.【详解】解:由函数图象,得:进水管每分钟的进水量为:20÷4=5(升).设出水管每分钟的出水量为 m升,由函数图象,得:20+(5-m)×(12-4)=30.解得:m=15 4∴30÷154=8(分钟).即从关闭进水管起需要8分钟该容器内的水恰好放完.【点睛】本题考查利用函数的图象解决实际问题和用一元一次方程求出水管的出水量的运用,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.25.120千瓦时【解析】试题分析:根据样本估计总体的统计思想,可先求出7天中用电量的平均数,作为6月份用电量的平均数,则一个月的用电总量即可求得.试题145117 301207-⨯=(千瓦时), 所以李明家6月份的总用电量是120千瓦时.点睛:本题主要考查了用样本估计总体的知识,解决本题的关键是要求得样本的平均数. 26.(1)y =50+2x ;(2) 1518千克【解析】试题分析:(1)根据表格发现每下调一元,多销售2kg ,由此即可解决问题. (2)当x =30时,代入解析式求出销量,根据利润=售价-进价就可以求出结论;(3)根据凤梨的保存时间和运输路线的影响,凤梨的销售时间最多是23天.要想使售价不低于30元/千克,就必须在最多23天内卖完,当售价为30元/千克时,销售量已经由(2)求出,因此可以根据最多进货的量÷30元/千克时的销售量≤23天,由此来列不等式,求出最多的进货量.解:(1)由题意可知,y =2x +50.(2)由题意,得当x =30时,y =66故利润=66×(30−20)=660元;(3)由题意可得,售价越低,销量越大,即能最多的进货,设一次进货最多m 千克, 则30766m ≤-, 解得:m ≤1518, 故一次进货最多只能是1518千克。

(完整版)初一下变量之间的关系练习题

(完整版)初一下变量之间的关系练习题

(完整版)初一下变量之间的关系练习题第四章《变量之间的关系》复习题(B 卷)1、某产品生产流水线每小时生产100件产品,生产前无产品积压,生产3小时后,安排工人装箱,若每小时装150件,则未装箱产品数量y 与时间t 关系图为()A .B .C .D .2、小明一出校门先加速行驶,然后匀速行驶一段后,在距家门不远的地方开始减速,最后停止,下面的图()可以近似地刻画出他在这一过程中的时间与速度的变化情况.(A )(B )(C )(D )3、“健康重庆”就是要让孩子长得壮,老人寿命更长,全民生活得更健康.为了响应“健康重庆”的号召,小明的爷爷经常坚持饭后走一走.某天晚饭后他慢步到附近的融侨公园,在湖边亭子里休息了一会后,因家中有事,快步赶回家.下面能反映当天小明的爷爷所走的路程y 与时间x 的关系的大致图象是()4、柿子熟了从树上自然掉落下来,下面哪一幅图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况().时间时间速度时间时间速度速度速度(C ) O(D )O时间速度(B )O时间速度O时间(A )5、如图,一只蚂蚁以均匀的速度沿台阶12345A A A A A →→→→爬行,那么蚂蚁爬行的高度..h 随时间t 变化的图象大致是()5、百舸竞渡,激情飞扬. 为纪念爱国诗人屈原,长寿区在长寿湖举行了龙舟赛. 如图是甲、乙两支龙舟队在比赛时的路程s (米)与时间t (分钟)之间关系的图象,请你根据图象回答下列问题:(1)1.8分钟时,哪支龙舟队处于领先地位? (2)在这次龙舟比赛中,哪支龙舟队先到达终点?(3)比赛开始多少时间后,先到达终点的龙舟队就开始领先?6.为了鼓励小强勤做家务,培养劳动意识,小强每月的总费用等于基本生活费加上奖励(奖励由上个月他的家务劳动时间确定).已知小强4月份的家务劳动时间为20小时,他5月份获得了400元的总费用.小强每月可获得的总费用与他上月的家务劳动时间之间的关系如图所示,请根据图象回答下列问题.(1)上述变化过程中,自变量是_______,因变量是_______;(2)小强每月的基本生活费为________元.(3)若小强6月份获得了450元的总费用,则他5月份做了_______小时的家务.(4)若小强希望下个月能得到120元奖励,则他这个月需做家务________小时.3.41A 2A 3A4A 5AOh tA .Oh tB .Oh tC .OhtD .7、小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 分才乘上缆车,缆车的平均速度为180 米/分.设小亮出发x 分后行走的路程为y 米.图中的折线表示小亮在整个行走过程中y 随x 的变化关系.(1)小亮行走的总路程是________米,他途中休息了________分.(2)分别求出小亮在休息前和休息后所走的路程段上的步行速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文小编收集文档之变量之间的关系的初中数学组卷'
一.选择题(共7小题)
1.(2015•荆州)如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1 cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()
A.B.C.
D.
2.(2015•北京)一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB ,BC,CA,OA,OB,OC组成.为记录寻宝者的行进路线,在BC的中点M处放置了一台定位仪器.设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为()
A.A→O→B B.B→A→C C.B→O→C D.C→B→O
3.(2015•盘锦)如图,边长为1的正方形ABCD,点M从点A出发以每秒1个单位长度的速度向点B运动,点N从点A出发以每秒3个单位长度的速度沿A→D→C→B 的路径向点B运动,当一个点到达点B时,另一个点也随之停止运动,设△AMN的面积为s,运动时间为t秒,则能大致反映s与t的函数关系的图象是()
A. B. C.
D.
4.(2015•广元)如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()
A.B. C. D.
5.(2015•淄博模拟)已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是()
A.B.C.D.
6.(2014•新泰市模拟)众志成城,预防“禽流感”.在这场没有硝烟的战斗中,科技工作者和医务人员通过探索,把某种药液稀释在水中进行喷洒,消毒效果较好,并且发现当稀释到某一浓度a时,效果最好而不是越浓越好.有一同学把效果与浓度的关系绘成曲线,你认为正确的是()
A.B.C.
D.
7.(2014•阜宁县模拟)如图,某电信公司提供了A,B两种方案的移动通讯费用y (元)与通话时间x(元)之间的关系,则下列结论中正确的有()
(1)若通话时间少于120分,则A方案比B方案便宜20元;
(2)若通话时间超过200分,则B方案比A方案便宜12元;
(3)若通讯费用为60元,则B方案比A方案的通话时间多;
(4)若两种方案通讯费用相差10元,则通话时间是145分或185分.
A.1个B.2个C.3个D.4个
二.填空题(共20小题)
8.(2014•徐州)如图①,在正方形ABCD中,点P沿边DA从点D开始向点A以1cm/ s的速度移动;同时,点Q沿边AB、BC从点A开始向点C以2cm/s的速度移动.当点P 移动到点A时,P、Q同时停止移动.设点P出发xs时,△PAQ的面积为ycm2,y与x 的函数图象如图②,则线段EF所在的直线对应的函数关系式为.
9.(2013•咸宁)“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:
①“龟兔再次赛跑”的路程为1000米;
②兔子和乌龟同时从起点出发;
③乌龟在途中休息了10分钟;
④兔子在途中750米处追上乌龟.
其中正确的说法是.(把你认为正确说法的序号都填上)
10.(2013•武汉模拟)如图,甲、乙两车同时从A地出发,以各自的速度匀速向B 地行驶,甲车先到达B地,在B地停留1小时后,沿原路以另一个速度匀速返回,若干时间后与乙车相遇,乙车的速度为每小时60千米.如图是两车之间的距离y(千米)与乙车行驶的时间x(小时)之间
函数的图象,则甲车返回的速度是每小时千米.
11.(2013•成都模拟)如图,lA,lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.
(1)B出发时与A相距千米.
(2)走了一段路后,自行车发生故障,进行修理,所用的时间是小时.
(3)B出发后小时与A相遇.
(4)若B的自行车不发生故障,保持出发时的速度前进,小时与A相遇.
12.(2013•尤溪县质检)如图所示,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于点F,设BE=x,FC=y,则当点E从点B运动到点C 时,y关于x的函数图象是(填序号)
13.(2012•苏州)如图①,在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/s的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S(单位:cm2)与点P移动的时间(单位:s)的函数如图②所示,则点P从开始移动到停止移动一共用了秒(结果保留根号).
14.(2012•湖北模拟)小明早晨从家骑车到学校,先上坡后下坡,行程情况如图,若返回时上、下坡的速度保持不变,那么小明从学校骑车回家用的时间是分钟.
15.(2012•宁德)五一节某超市搞促销活动:①一次性购物不超过150元不享受优惠;②一次性购物超过150元但不超过500元一律九折;③一次性购物超过500元一律八折.王宁两次购物分别付款120元、432元,若王宁一次性购买与上两次相同的商品,则应付款元.
16.(2012•江夏区校级模拟)甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间关系如图:当x=h时,甲、乙两个工程队所挖河渠的长度相等.
17.(2011•咸宁)火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:
①火车的长度为120米;
②火车的速度为30米/秒;
③火车整体都在隧道内的时间为25秒;
④隧道长度为750米.
其中正确的结论是.
(把你认为正确结论的序号都填上)
18.(2011•朝阳)亮亮骑自行车到距家9千米的体育馆看一场球赛,开始以正常速度匀速行驶,途中自行车出故障,他只好停下来修车.车修好后,他加速继续匀速
赶往体育馆,其速度为原正常速度的倍,结果正好按预计时间(如果自行车不出
故障,以正常速度匀速行驶到达体育馆的时间)到达.亮亮行驶的路程s(千米)与时间t(分)之间的函数关系如图所示,那么他修车占用的时间为分.
19.(2011•衡阳)如图1所示,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,那么△ABC的面积是.
作者:中涓害
作品编号:8002GN621401526429853
创作日期:2020.12.14
三.解答题(共3小题)
2
2.??
0为(1)中t的最大值)时,求y关于t的函数关系式;
(3)请具体描述:在动点P、Q的运动过程中,△PQB的面积随着t的变化而变化的规律.
30.(2009•岳阳一模)阅读下面材料,再回答问题.
一般地,如果函数y=f(x)对于自变量取值范围内的任意x,都有f(﹣x)=f(x).那么y=f(x)就叫偶函数.如果函数y=f(x)对于自变量取值范围内的任意x,都有f(﹣x)=﹣f(x).那么y=f(x)就叫奇函数.
例如:f(x)=x4
当x取任意实数时,f(﹣x)=(﹣x)4=x4∴f(﹣x)=f(x)∴f(x)=x4是偶函数.
又如:f(x)=2x3﹣x.
当x取任意实数时,∵f(﹣x)=2(﹣x)3﹣(﹣x)=﹣2x3+x=﹣(2x3﹣x)∴f(﹣x)=﹣f(x)∴f(x)=2x3﹣x是奇函数.
问题1:下列函数中:①y=x2+1②③④⑤y=x﹣2﹣2|x|
是奇函数的有;是偶函数的有(填序号)
问题2:仿照例证明:函数④或⑤是奇函数还是偶函数(选择其中之一)
变量之间的关系的初中数学组卷
参考答案
一.选择题(共7小题)
1.C;2.C;3.D;4.D;5.A;6.B;7.C;
二.填空题(共20小题)
8.y=-3x+18;9.①③④;10.90;11.10;1;3;;12.①;
13.(4+2);14.37.2;15.480元或528;16.4;17.②③;
18.5;19.10;20.1.5;21.4n;22.4.4;23.15;
24.18;25.6;26.14;27.18:00;
三.解答题(共3小题)
28.8;12;13.5;29.;30.②④;①⑤;。

相关文档
最新文档