【最新整理】层次分析法及案例分析
层次分析法分析和实例教程
大特征根 n旳归一化特征向量 w1, w2,, wn,且
n
wi 1
i 1
wi 表达下层第 i 个原因对上层某原因影响程度旳权值。
若成对比较矩阵不是一致阵,Saaty等人提议用其最大
特征根相应旳归一化特征向量作为权向量 w ,则
Aw w
w w1, w2,, wn
(为何?) 这么拟定权向量旳措施称为特征根法.
对总目旳Z旳排序为
A1
A2
Am
a1, a2,, am
B层n个因素对上层A中因素为Aj
B1
B2
Bn
旳层次单排序为
b1 j ,b2 j ,,bnj ( j 1,2,, m)
B 层旳层次总排序为: B1 : a1b11 a2b12 amb1m
i 即 B 层第 个原因对 B2 : a1b21 a2b22 amb2m
四 层次分析法旳优点和不足
1 系统性
层次分析法把研究对象作为一种系统,按照分解、比 较判断、综合旳思维方式进行决策 ,成为继机理分析、统计 分析之后发展起来旳系统分析旳主要工具。
2 实用性
层次分析法把定性和定量措施结合起来,能处理许多用 老式旳最优化技术无法着手旳实际问题,应用范围很广,同 时,这种措施使得决策者与决策分析者能够相互沟通,决策 者甚至能够直接应用它,这就增长了决策旳有效性。
层次分析法
Analytic Hierarchy Process
AHP
面临多种各样旳方案,要进行比较、判断、评价、最终 作出决策。这个过程主观原因占有相当旳比重给用数学措施 处理问题带来不便。等人20世纪在七十年代提出了 一种能有效处理此类问题旳实用措施。
层次分析法(Analytic Hierarchy Process, AHP)这是 一种定性和定量相结合旳、系统化旳、层次化旳分析措施。 过去研究自然和社会现象主要有机理分析法和统计分析法两 种措施,前者用经典旳数学工具分析现象旳因果关系,后者 以随机数学为工具,经过大量旳观察数据谋求统计规律。近 年发展旳系统分析是又一种措施,而层次分析法是系统分析 旳数学工具之一。
层次分析法步骤及案例分析
层次分析法步骤及案例分析层次分析法(AHP)是一种通过对比判断不同因素的重要性来进行决策的方法。
它由匹兹堡大学的数学家托马斯·萨蒙在20世纪70年代初提出,并逐渐应用于各个领域。
本文将介绍层次分析法的步骤,并通过一个实际案例来进行分析。
一、层次分析法的步骤层次分析法主要包括以下几个步骤:1. 确定层次结构:首先,需要明确决策问题的层次结构。
将问题划分为若干个层次,从总目标到具体的子目标,形成一棵树状结构。
例如,在一个购车的决策问题中,总目标可以是“选择一辆适合自己的车”,下面的子目标可以包括“价格”、“外观”、“安全性”等因素。
2. 构造判断矩阵:在每个层次中,需要对不同因素之间的两两比较进行判断。
判断可以基于专家经验、问卷调查或实际数据。
对于两两比较,通常采用一个1到9的比较尺度,其中1表示相等,3表示略微重要,5表示中等重要,7表示强烈重要,9表示绝对重要。
如果因素A相对于因素B的重要性大于1,则B相对于A的重要性是1/A。
3. 计算权重向量:根据判断矩阵中的比较结果,可以计算出每个层次中各个因素的权重向量。
通过对判断矩阵的特征值和特征向量进行计算,可以得到各个因素的权重。
4. 一致性检验:在进行层次分析时,需要检验判断矩阵的一致性。
一致性是指在两两比较中的逻辑关系的一致性。
通常使用一致性指数和一致性比率来判断判断矩阵的一致性程度。
5. 综合评价:通过将各层次中因素的权重向量进行乘积运算,并将结果汇总得到最后的评价结果。
在这一步骤中,可以对不同的决策方案进行排序或进行多目标决策。
二、案例分析为了更好地了解层次分析法的应用,我们来看一个实际案例。
假设某公司需要选择新的供应商,供应商选择的主要考虑因素包括产品质量、交货周期和价格。
我们可以按照以下步骤进行决策:1. 确定层次结构:总目标是选择合适的供应商,下面的子目标是产品质量、交货周期和价格。
2. 构造判断矩阵:对于每个子目标,可以进行两两比较。
层次分析法实例与步骤(精)讲课教案
层次分析法实例与步骤(精)层次分析法实例与步骤结合一个具体例子,说明层次分析法的基本步骤和要点。
【案例分析】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。
除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。
1. 建立递阶层次结构应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。
AHP要求的递阶层次结构一般由以下三个层次组成:●目标层(最高层):指问题的预定目标;●准则层(中间层):指影响目标实现的准则;●措施层(最低层):指促使目标实现的措施;通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。
然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。
在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。
最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。
明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。
层次分析法
bn1
bn2 ……
bnn
bij是对于Ak而言,Bi对Bj的相对重要性的数值表示。
Bij通常取1、3、5、7、9及其他们的倒数,其含义为:
尺度
1 3 5 7 9
含义
第i个因素与第j个因素的影响相同 第i个因素比第j个因素的影响稍强 第i个因素比第j个因素的影响强 第i个因素比第j个因素的影响明强 第i个因素比第j个因素的影响绝对地强
层次分析法
一 问题的提出
例1 购物 买钢笔,一般要依据质量、颜色、实用性、价格、
外形等方面的因素选择某一支钢笔。 下馆子,则要依据馆子的饭菜质量、区位条件、档
次、饭菜价格、服务质量等方面因素来选择。
例2 旅游 假期旅游,是去风光秀丽的苏州,还是去迷人的
北戴河,或者是去山水甲天下的桂林,一般会依据景 色、费用、食宿条件、旅途等因素选择去哪个地方。
课题D2
课题可行性B3
难
研财
易
究政
程
周支
度
期持
c3
c4
c5
课题D3
层次分解时注意事项:
如果所选的要素不合理,其含义混淆不清,或 要素间的关系不正确,都会降低AHP法的结果质量, 甚至导致AHP法决策失败。 为保证递阶层次结构的合理性,需注意以下问题: 1、要对问题的影响因素有充分的理解,必要的时 候可以咨询相关的专家; 2、分解简化问题时把握主要因素,不漏不多 3、注意相比较元素之间的强度关系,相差太悬殊 的要素不能在同一层次比较。 4、以上均为完全层次
层次总排序的一致性检验
(1)
(2)
(3)
在(1)式中,CI为层次总排序的一致性指标,CIj为与aj对应 的B层次中判断矩阵的一致性指标;在(2)式中,RI为层次总排 序的随机一致性指标,RIj为与aj对应的B层次中判断矩阵的随 机一致性指标;在(3)式中,CR为层次总排序的随机一致性比例。
层次分析法及案例分析
1.769 Aw 0.974
Aw w
1 (1.769 0.974 0.268) 3.009
3 0.587 0.324 0.089
0.268 精确结果:w=(0.588,0.322,0.090)T, =3.010
四、层次总排序及其一致性检验
• 计算某一层次所有因素对于最高层(总目标)相对重要性的 权值,称为层次总排序。
素相互比较的困难,以提高准确度。
判断矩阵是表示本层所有因素针对上一层某一个因素的 相对重要性的比较。判断矩阵的元素aij用Santy的1—9标 度方法给出。
心理学家认为成对比较的因素不宜超过9个,即每层 不要超过9个因素。
判断矩阵元素aij的标度方法
标度 1 3 5 7 9
2,4,6,8 倒数
含义 表示两个因素相比,具有同样重要性 表示两个因素相比,一个因素比另一个因素稍微重要 表示两个因素相比,一个因素比另一个因素明显重要 表示两个因素相比,一个因素比另一个因素强烈重要 表示两个因素相比,一个因素比另一个因素极端重要
• 层次分析法(AHP法) 是一种解决多目标的复杂问题的定性与定 量相结合的决策分析方法。该方法将定量分析与定性分析结合 起来,用决策者的经验判断各衡量目标能否实现的标准之间的 相对重要程度,并合理地给出每个决策方案的每个标准的权数, 利用权数求出各方案的优劣次序,比较有效地应用于那些难以 用定量方法解决的课题。
即 B 层第 i 个因素对总目标
的权值为: m
a jbij
(影响加和)j 1
B1 : a1b11 a2b12 amb1m B2 : a1b21 a2b22 amb2m Bn : a1bn1 a2bn2 ambnm
层次分析法具体案例
层次【2 】剖析法实例与步骤联合一个具编制子,解释层次剖析法的根本步骤和要点.【案例剖析】合理购置电脑决议计划:层次剖析法问题提出许多的电脑小白须要对购置哪个品牌的电脑进行决议计划,可选择的计划是购置戴尔公司临盆的笔记本(简称购置戴尔)或购置联想公司临盆的笔记本(简称购置联想).除了斟酌主板起源外,还要斟酌CPU机能.显卡方法等身分,等于多准则决议计划问题,斟酌应用层次剖析法解决.1. 树立递阶级次构造【案例剖析】合理购置电脑决议计划:树立递阶级次构造在购置哪个品牌的电脑决议计划问题中,许多电脑小白愿望经由过程选择不同的电脑品牌使性价比最高,即决议计划目的是“合理购置电脑使性价比最高”.为了实现这一目的,须要斟酌的重要准则有三个,即主板起源,CPU机能,显卡方法.但问题毫不这么简略.经由过程深刻思虑,还以为还必须斟酌本工场自产.代工场供给.主频的大小.焦点数.自力式显卡.集成式显卡等身分(准则),从互相关系上剖析,这些身分附属于重要准则,是以放鄙人一层次斟酌,并且分属于不同准则.假设本问题只斟酌这些准则,接下来须要明白为了实现决议计划目的.在上述准则下可以有哪些计划.依据题中所述,本问题有两个解决计划,即购置戴尔或购置联想,这两个身分作为措施层元素放在递阶级次构造的最基层.很显著,这两个计划于所有准则都相干.将各个层次的身分按其高低关系摆放好地位,并将它们之间的关系用连线衔接起来.同时,为了便利后面的定量表示,一般从上到下用A.B.C.D...代表不同层次,统一层次从左到右用1.2.3.4...代表不同身分.如许组成的递阶级次构造如下图.目的层A准则层B 准则层C合理购置电脑使性价比最高(A)显卡方法(B3)本工场自产(C1)代工场供给(C2)主频的大小(C3)焦点数(C4)自力式显卡(C5)集成式显卡(C6)措施层D图1 递阶级次构造示意图2. 构造断定矩阵并赋值【案例剖析】合理购置电脑决议计划:构造断定矩阵并填写3. 层次单排序(盘算权向量)与磨练【案例剖析】合理购置电脑决议计划:盘算权向量及磨练 上例盘算所得的权向量及磨练成果见下:可以看出,所有单排序的C.R.<0.1,以为每个断定矩阵的一致性都是可以接收的.4. 层次总排序与磨练【案例剖析】合理购置电脑决议计划:层次总排序及磨练上例层次总排序及磨练成果见下:层次总排序(CR = 0.0000)可以看出,总排序的C.R.<0.1,以为断定矩阵的整体一致性是可以接收的5. 成果剖析经由过程对排序成果的剖析,得出最后的决议计划计划.【案例剖析】合理购置电脑决议计划:成果剖析从计划层总排序的成果看,购置联想(D2)的权重(0.6592)远弘远于购置戴尔(D1)的权重(0.3408),是以,最终的决议计划计划是购置联想.依据层次排序进程剖析决议计划思绪.对于准则层B的3个因子,主板起源(B1)的权重最低(0.1429),cpu(B2)和显卡(B3)的权重都比较高(皆为0.4286),解释在决议计划中比较重视cpu和显卡.对于不重视的主板,其影响的两个因子本工场(C1).代工场(C2)单排序权重都是购置戴尔远弘远于购置联想,对于比较重视的cpu和显卡,其影响的四个因子中有三个因子的单排序权重都是购置联想远弘远于购置戴尔,由此可以推出,购置联想计划因为cpu和显卡较为凸起,权重也会相对凸起.从准则层C总排序成果也可以看出,主频数(C3).自力显卡(C5)是权重值较大的,而假如单独斟酌这两个身分,计划排序都是购置联想远弘远于购置戴尔.由此我们可以剖析出决议计划思绪,即决议计划比较重视的是cpu和显卡,不太重视主板,是以对于具体因子,主频数和自力显卡成为重要斟酌身分,对于这两个身分,都是购置联想计划更佳,由此,最终的计划选择购置联想也就瓜熟蒂落了.。
层次分析法及其案例分析
2 层次分析法应用实例
5、计算各项指标结构的权值(归一化特征向量) 按照上述第四小点中说明,可将特征值的归一化特征向量作为权重。 计算最大特征向量除高数中讲到的数学方法外,有一个较为简便的方法,即 “求和法" (1)按照纵列求和
A
B1 B2 B3 B4 B5 求和
B1
1 5 0.33333 0.33333 0.142857 6.809524
2、建立层次结构图
为了简化计算步骤,本文在供应商决策分析时,只做关键指标的分析,具体的层 次结构如下图:
目标层(A) 指标层(B) 方案层(C)
合格的供应商
价格指标 质量指标 交货指标 服务指标 硬件资质
供应商1
供应商2
2 层次分析法应用实例
3、建立判断矩阵
(1)建立B层次与A层次的矩阵关系 A、首先对各项指标进行打分( B1: B2,即价格指标、质量指标、交货指标、服 务指标、硬件资质)
B、进行一致性检测,以确保打分时不出现前后的逻辑错误
(1)计算上述矩阵的最大特征值= 5.08
(2)计算一致性指标: CI= - n =0.08/4=0.02( n=5,矩阵的阶 n -1
数),原则上比n越大,说明不一致性越严重
(3)查询随机性一致性指标: RI
n 1 2 3 4 5 6 7 8 9 10
RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49
11
1.51
当n=5时,RI=1.12 (4)计算一致性比率:CR=CI/RI=0.02/1.12=0.01785<0.1,一致性成立。 一般认为当CR< 0.1时,认为矩阵的不一致程度在容许范围之内,可用其归一化特 征向量作为权向量,否则要重新构造成对比较矩阵。
经典层次分析法分析及实例教程
A2
A3
A4
A5
A1
A2
A3
A4
A5
1
1/2
4
3
3
2
1
7
5
5
1/4
1/7
1
1/2
1/3
1/3
1/5
2
1
1
1/31Βιβλιοθήκη 5311分别表示 景色、费用、 居住、饮食、 旅途。
由上表,可得成对比较矩阵
单击此处添加小标题
旅游问题的成对比较矩阵共有6个(一个5阶,5个3阶)。
单击此处添加小标题
问题:两两进行比较后,怎样才能知道,下层各因素对上 层某因素的影响程度的排序结果呢?
当 时,认为层次总排序通过一致性检验。到 此,根据最下层(决策层)的层次总排序做出最后决策。
层次分析法的基本步骤归纳如下
该结构图包括目标层,准则层,方案层。
1.建立层次结构模型
对每个成对比较矩阵计算最大特征值及其对应的特征向量,利用一致性指标、随机一致性指标和一致性比率做一致性检验。若检验通过,特征向量(归一化后)即为权向量;若不通过,需要重新构造成对比较矩阵。
比较尺度:(1~9尺度的含义)
2,4,6,8表示第 个因素相对于第 个因素的影响介于上述 两个相邻等级之间。不难定义以上各尺度倒数的含义, 根据 。
由上述定义知,成对比较矩阵
则称为正互反阵。 比如,例2的旅游问题中,第二层A的各因素对目标层Z 的影响两两比较结果如下:
满足一下性质
Z
单击此处添加小标题
,即令
04
d) 对于预先给定的精度 ,当下式成立时
STEP 03
STEP 01
STEP 02
层次分析法实例范文
层次分析法实例范文下面我将以一个实例来说明层次分析法的应用。
假设你是一家公司的项目经理,需要在三个设计方案中选择一个最适合的方案。
你希望通过层次分析法来评估并选择最佳方案。
首先,你需要确定准则层。
准则层是评估和比较设计方案的标准。
在本实例中,准则层可以包括三个因素:成本、技术易用性和效果。
其次,你需要对每个准则进行两两比较。
你需要确定哪个准则对你更重要,换句话说,你需要对准则之间的重要性进行评估。
你可以使用一个1到9的尺度来进行评估,其中1表示相对重要性相同,9表示相对重要性非常不同。
在这个例子中,假设你认为成本对你更重要,因此可以给成本的评估为9,而技术易用性和效果的评估都为5接下来,你需要对每个准则的子准则进行两两比较。
对于成本来说,可能的子准则可以包括材料成本、人力成本和设备成本。
你需要评估这些子准则之间的重要性,同样使用1到9的尺度进行评估。
假设你认为人力成本对成本的影响最大,你可以给予人力成本的评估为9、材料成本和设备成本则分别给出评估5和3对于技术易用性和效果这两个准则,你需要进行类似的比较和评估。
比如,你可能认为技术易用性中的用户友好性对你最重要,效果中的创新性最重要。
完成这些比较和评估后,你需要计算总体权重。
通过层次分析法计算权重的方法是对准则之间的比较矩阵进行归一化处理,即计算每列的平均值,然后将每个条目除以其所在列的平均值。
最后,求每行的平均值得到每个准则的权重。
例如,对于成本准则,对应的比较矩阵为:1591/5131/91/31计算每列的平均值为:1/35/95/3然后将每个条目除以其所在列的平均值,得到:15/93/53/511/35/33/11最后,求每行的平均值得到每个准则的权重:0.48780.25920.2529重复这个过程,你可以得到技术易用性和效果的权重。
最后,你可以将每个设计方案在每个准则上进行评估。
同样使用1到9的尺度进行评估,并对每个准则乘以其对应的权重得到总体分数。
层次分析法具体应用及实例
层次分析法步骤与实例1 层次分析法的思想:将所有要分析的问题层次化;根据问题的性质和所要到达的总目标,将问题分为不同的组成因素,并按照这些因素间的关联影响即其隶属关系,将因素按不同层次聚集组合,形成一个多层次分析结构模型;最后,对问题进行优劣比较排序.2 次分析法的步骤:3 以一个具体案例进行说明:【案例分析】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。
除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。
【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。
为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。
但问题绝不这么简单。
通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。
假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。
根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。
很明显,这两个方案于所有准则都相关。
将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。
同时,为了方便后面的定量表示,一般从上到下用A 、B 、C 、D 。
代表不同层次,同一层次从左到右用1、2、3、4。
代表不同因素。
这样构成的递阶层次结构如下图。
目标层A准则层B准则层C措施层D图1 递阶层次结构示意图2.构造判断矩阵(成对比较阵)并赋值根据递阶层次结构就能很容易地构造判断矩阵。
层次分析法案例
层次分析法案例层次分析法(Analytic Hierarchy Process, AHP)是一种常用的决策分析方法,由美国运筹学家托马斯·L·萨蒂(Thomas L. Saaty)在20世纪70年代提出。
该方法通过将决策问题分解为更小的部分,并通过比较这些部分的重要性来帮助决策者做出最终选择。
下面是一个层次分析法的案例分析。
首先,决策者需要明确决策目标,然后将其分解为多个层次,包括目标层、准则层和方案层。
目标层是决策的最终目的,准则层是影响决策的因素,方案层是可供选择的具体方案。
在本案例中,假设一个公司需要决定投资哪个研发项目。
目标层即为“选择最佳研发项目”。
准则层可能包括“技术可行性”、“市场潜力”、“成本效益”和“风险评估”。
方案层则是公司正在考虑的四个研发项目:A、B、C和D。
接下来,决策者需要对准则层的各个因素进行两两比较,并根据其相对重要性给出评分。
评分通常采用1-9的标度,其中1表示两个因素同等重要,9表示一个因素比另一个因素重要得多。
例如,如果认为“市场潜力”比“技术可行性”更重要,可以给出一个大于1的分数,如3或5。
完成准则层的两两比较后,决策者需要对方案层的每个方案根据每个准则进行评估。
这一步骤同样采用1-9的标度进行评分。
然后,利用层次分析法的计算方法,对准则层和方案层的评分矩阵进行一致性检验。
如果一致性比率在可接受范围内(通常小于0.1),则认为评分矩阵具有一致性,可以继续进行下一步计算;否则,需要重新评估评分。
一致性检验通过后,计算准则层和方案层的权重。
这通常是通过计算每个因素或方案在所有比较中的相对重要性来实现的。
最后,将方案层的权重与准则层的权重相乘,得到每个方案的综合得分。
根据综合得分,决策者可以选择得分最高的方案作为最终决策。
在这个案例中,如果项目C的综合得分最高,那么公司应该选择投资项目C。
层次分析法的优势在于它能够系统地处理复杂的决策问题,并通过量化的方式帮助决策者理解各个因素和方案的相对重要性。
层次分析法步骤及案例分析
层次分析法步骤及案例分析层次分析法(Analytic Hierarchy Process,简称AHP)是一种用于解决决策问题的定性与定量相结合的方法。
该方法通过建立分层结构模型,对各个因素进行比较和权重分配,从而帮助决策者做出较为科学的决策。
本文将介绍层次分析法的步骤,并通过一个实际案例进行分析。
一、层次分析法的步骤层次分析法的步骤主要包括问题定义、建立层次结构模型、构建判断矩阵、计算权重和一致性检验等。
下面将详细介绍每个步骤。
1. 问题定义在使用层次分析法前,首先需要明确要解决的问题。
通过明确问题的目标和约束条件,可以确定出适合使用层次分析法的决策问题。
2. 建立层次结构模型在问题定义的基础上,需要建立层次结构模型,将整个问题分解为若干层次,并确定各个层次之间的关系。
通常,层次结构包括目标层、准则层和方案层。
目标层表示要达到的最终目标,准则层表示实现目标所需的评价因素,方案层表示可供选择的备选方案。
3. 构建判断矩阵构建判断矩阵是层次分析法的核心步骤。
判断矩阵用于比较和评价不同层次的因素,确定它们之间的重要性。
通过专家判断或问卷调查等方式,将各个因素两两进行比较,并赋予相应的重要性权值。
根据专家判断或调查结果,可以构建出一个全排列的判断矩阵。
4. 计算权重通过计算判断矩阵,可以获取各个因素的权重值。
常用的计算方法包括特征向量法、层次递推法和最大特征值法等。
根据计算结果,可以得到每个因素的相对权重值,从而进行比较和排序。
5. 一致性检验为了确保判断矩阵的一致性,需要进行一致性检验。
一致性指标主要包括一致性比率和一致性指数。
一致性比率用于评估判断矩阵的不一致程度,一致性指数用于判断判断矩阵是否满足一致性要求。
如果一致性比率超过一定阈值,表明判断矩阵存在较大的不一致性,需要重新调整判断矩阵。
二、案例分析为了更好地理解层次分析法的应用,下面以选择旅游目的地为例进行案例分析。
假设你准备进行一次旅行,有三个备选目的地:A、B和C。
层次分析法具体应用及实例
层次分析法步骤与实例1 层次分析法的思想:将所有要分析的问题层次化;根据问题的性质和所要到达的总目标,将问题分为不同的组成因素,并按照这些因素间的关联影响即其隶属关系,将因素按不同层次聚集组合,形成一个多层次分析结构模型;最后,对问题进行优劣比较排序.2 次分析法的步骤:3 以一个具体案例进行说明:【案例分析】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。
除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。
【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。
为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。
但问题绝不这么简单。
通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。
假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。
根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。
很明显,这两个方案于所有准则都相关。
将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。
同时,为了方便后面的定量表示,一般从上到下用A 、B 、C 、D 。
代表不同层次,同一层次从左到右用1、2、3、4。
代表不同因素。
这样构成的递阶层次结构如下图。
目标层A准则层B准则层C措施层D图1 递阶层次结构示意图2.构造判断矩阵(成对比较阵)并赋值根据递阶层次结构就能很容易地构造判断矩阵。
层次分析法实例分析:以奶茶店的选取为例
层次分析法实例分析:以奶茶店的选取为例一、明确问题南苑市场有三家比较受欢迎的奶茶店,这是我们的分析对象;我们分析的内容是如何在三家奶茶店中选择。
我们通过价格合理、品种丰富。
服务良好三个维度进行测量,在进行一致性检验过后确定三个方案的排序。
二、建立递阶层次分析结构图三、建立要素两两充分对比的判断矩阵目标或上层某指标下一层指标或方案首先作出单层结构图目标层准则层方案层(递阶层次分析结构图)(一)1—9标度表如下(二)按1~9标度赋值建立判断矩阵A 1、 A 2 、A 3,。
1、价格合理(A 1)2、品种丰富(U2)3、服务良好(U3)1 3 1/41/3 1 1/54 5 14、奶茶店选择M的权重向量四、确定矩阵A 1 A 2 A 3 A的最大特征根λmax 对应的特征向量。
1、价格合理A1==w11/3 1 1/54 5 10.2311 0.1036 0.66532、品种齐全(同上计算)3、服务良好(同上计算)4、奶茶店选择五、一致性检验 1、对A 1进行检验:λmax=1/3[0.7082/0.2311+0.3129/0.1036+2.1077/0.6653] =3.084CI=(3.084-3)/(3-1)=0.042 R.I=0.58CR=0.042/0.58=0.0724﹤0.1 A 1通过检验。
2、对A 2进行检验λmax=1/3[1.9478/0.6484+0.3664/0.1223+0.6878/0.2293] =3CI=(3-3)/(3-1)=0 R.I=0.58CR=0/0.58=0﹤0.1 A 2通过检验.3、对A 3进行检验λmax=1/3[1.0188/0.334+0.4262/0.1407+1.6154/0.5253] =3.0515CI=(3.0515-3)/(3-1)=0.0258 R.I=0.58CR=0.0258/0.58=0.04﹤0.1 A 3通过检验。
4、对A 进行检验λmax=1/3[0.7872/0.26+1.944/0.634+0.3186/0.106] =3.033CI=(3.033-3)/(3-1)=0.0165 R.I=0.58CR=0.0165/0.58=0.0284﹤0.1 A 通过检验。
层次分析法实例-PPT
谓动宾 |
动宾 定 中
|
)
定 )中
状〕中
动|宾 动|宾
量短
定) 联+合
层次分析法实例
9
层次分析法实例
10
层次分析法实例
11
‖
谓
中 动| 宾
定 )中 动| 宾 定)中
层次分析法实例
12
层次分析法实例
13
Bye Bye
层次分析法实例
14
定 )中 定 ) 中
定 )中
定)中
动| 宾 定) 中 联+合
主
‖
谓
定) 中
状〕 中
定) 中
动| 宾
定)中
联+合
层次分析法实例
主‖ 谓 兼语
动|宾
主‖谓
状〕中
6
漫的前沿阵地上 连长马上返回军部开会 历史的书我只看过一本 大伙儿批评了他一顿
(从大到小的层次分析法)
中〈
补 介词短语
方位短语 定) 中 主‖谓 定 )中
的层次分析原则 来的各个成分都必须有意义。例如: 昨天没有去√
层次分析法实例
昨天没有去 (前一部分没有意义) ※
写来的信
(虚词,如连词、结构助词 语气词要独立出来)
1
2
层次分析法实例
有意义,但
语法上不能搭配)
/蛋※ 咬死了猎人的狗”中,后一种切分就不能成立。
层次分析法实例
3
层次分析法实例
4
质文化生活水平 应该珍惜自己的青春年华 发明针灸的国家 把你的打算向人们讲清楚
主‖
谓
状〕 中
连 ┊谓
动|宾
主 定) 中
‖谓
层次分析法案例
层次分析法案例层次分析法(Analytic Hierarchy Process,AHP)是一种多目标决策方法,它通过构建层次结构、建立判断矩阵、计算权重和一致性检验等步骤,帮助决策者进行系统化的决策分析。
下面我们通过一个案例来详细介绍层次分析法的具体应用。
案例背景:某公司准备引进一款新的生产设备,但在选择适合的设备时面临多个因素的考量,比如设备的性能、价格、维护成本等。
为了做出最合理的决策,公司决定采用层次分析法来进行决策分析。
步骤一,构建层次结构。
首先,公司将引进新设备的决策问题分解为三个层次,目标层、准则层和方案层。
目标层是引进新设备,准则层包括设备性能、价格和维护成本,方案层则是具体的设备选项。
在这个案例中,我们假设有A、B、C三种设备可供选择。
步骤二,建立判断矩阵。
接下来,公司需要对准则层和方案层进行两两比较,以确定它们之间的相对重要程度。
通过专家意见调查或者问卷调查,公司得到了比较矩阵,比如设备性能对价格的重要程度、设备性能对维护成本的重要程度等。
步骤三,计算权重。
利用AHP的计算方法,公司可以根据比较矩阵计算出每个准则和方案的权重。
这些权重可以帮助公司确定对于引进新设备而言,性能、价格和维护成本的重要程度,以及A、B、C三种设备的优劣。
步骤四,一致性检验。
在计算权重之后,公司需要进行一致性检验,以确保比较矩阵的合理性和可靠性。
如果比较矩阵通过一致性检验,则可以继续进行下一步决策分析。
步骤五,综合分析。
最后,公司可以利用计算出的权重,对三种设备进行综合分析,以确定最佳的选择。
在这个案例中,公司可以根据性能、价格和维护成本的权重,对A、B、C 三种设备进行打分和排名,从而做出最合理的决策。
通过以上案例,我们可以看到层次分析法在多目标决策问题中的应用。
它通过构建层次结构、建立判断矩阵、计算权重和一致性检验等步骤,帮助决策者进行系统化的决策分析,提高决策的科学性和准确性。
总之,层次分析法是一种强大的决策分析工具,它不仅可以用于企业的决策问题,也可以应用于个人生活中的选择问题。
最新-层次分析法经典案例 精品
层次分析法经典案例篇一:层次分析法步骤层次分析法实例与步骤结合一个具体例子,说明层次分析法的基本步骤和要点。
【案例分析】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。
除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。
1建立递阶层次结构应用解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。
要求的递阶层次结构一般由以下三个层次组成:?目标层(最高层):指问题的预定目标;?准则层(中间层):指影响目标实现的准则;?措施层(最低层):指促使目标实现的措施;通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。
然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。
在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。
最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递1阶层次结构的最下面(最低层)。
明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“选择旅游地”中准 则层对目标的权向量 及一致性检验
最大特征根=5.073
准则层对目标的成对比较阵
1 1/ 2
2
1
A 1/ 4 1/ 7
1/ 3
1/ 5
1/ 3 1/ 5
4 3 3
7
5
5
1 1/ 2 1/ 3
2
1
1
3 1 1
权向量(特征向量)w =(0.263,0.475,0.055,0.090,0.110)T
价格
决策
位置
环境
旅游
买房子
成本
…
…
目录
1、问题提出 2、层次分析法的定义 3、层次分析法解决问题的思路 4、案例分享
层次分析法(AHP)是美国运筹学家匹茨堡大学教授萨蒂 (T.L.Saaty)于上世纪70年代初,为美国国防部研究“根据各个 工业部门对国家福利的贡献大小而进行电力分配”课题时,应 用网络系统理论和多目标综合评价方法,提出的一种层次权重 决策分析方法。
• 层次分析法(AHP法) 是一种解决多目标的复杂问题的定性与定 量相结合的决策分析方法。该方法将定量分析与定性分析结合 起来,用决策者的经验判断各衡量目标能否实现的标准之间的 相对重要程度,并合理地给出每个决策方案的每个标准的权数, 利用权数求出各方案的优劣次序,比较有效地应用于那些难以 用定量方法解决的课题。
则可得一致性指标 CI1,CI2,,CI500
RI
CI1
CI2
CI500
1 2 500
500
n
500
n 1
Saaty的结果如下
随机一致性指标 RI
n 12
3
4
5
6
7
8
9
10 11
RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51
定义一致性比率 : CR CI
A
w1
w1 w2
w1
wn
w2 w2
w2
wn
ij
i
j
满足 aij a jk aik , i, j, k 1,2,, n
的正互反阵A称一致阵。
wn
w1
wn
wn
w2
wn
一致阵 • A的秩为1,A的唯一非零特征根为n
Aw nw
性质 • 非零特征根n所对应的特征向量归一化后可作为权向量
献入 展 誉 境 境
可供选择的单位P1’ P2 , Pn
例2. 选择旅游地 如何在3个目的地中按照景色、 费用、居住条件等因素选择.
目标层
O(选择旅游地)
准则层
C1 景色
C2 费用
C3 居住
C4 饮食
C5 旅途
方案层
P1 桂林
P2 黄山
P3 北戴河
二、构造判断(成对比较)矩阵
在确定各层次各因素之间的权重时,如果只是定性的结果, 则常常不容易被别人接受,因而Santy等人提出:一致矩阵法, 即: 1. 不把所有因素放在一起比较,而是两两相互比较。 2. 对此时采用相对尺度,以尽可能减少性质不同的诸因
的权值为: m
a jbij
(影响加和)j 1
B1 : a1b11 a2b12 amb1m B2 : a1b21 a2b22 amb2m
Bn : a1bn1 a2bn2 ambnm
A B
B1 B2 Bn
A1, A2 ,, Am a1, a2 ,, am
b11 b12
b1m
b21 b22
层次分析法的步骤和方法
运用层次分析法构造系统模型时,大体可以分为以下 四个步骤:
1. 建立层次结构模型 2. 构造判断(成对比较)矩阵 3. 层次单排序及其一致性检验 4. 层次总排序及其一致性检验
一、建立层次结构模型
• 将决策的目标、考虑的因素(决策准则)和决策对象按它们之 间的相互关系分为最高层、中间层和最低层,绘出层次结构图。
层次分析法的基本步骤归纳如下
1.建立层次结构模型 该结构图包括目标层,准则层,方案层。
2.构造成对比较矩阵 从第二层开始用成对比较矩阵和1~9尺度。
3.计算单排序权向量并做一致性检验 对每个成对比较矩阵计算最大特征值及其对应的特征向量, 利用一致性指标、随机一致性指标和一致性比率做一致性 检验。若检验通过,特征向量(归一化后)即为权向量; 若不通过,需要重新构造成对比较矩阵。
一致性指标 CI 5.073 5 0.018 5 1
随机一致性指标 RI=1.12 (查表)
一致性比率CR=0.018/1.12=0.016<0.1
通过一致 性检验
正互反阵最大特征根和特征向量的简化计算
• 精确计算的复杂和不必要
• 简化计算的思路——一致阵的任一列向量都是特征向量,
一致性尚好的正互反阵的列向量都应近似特征向量,可取
4.计算总排序权向量并做一致性检验 计算最下层对最上层总排序的权向量。
利用总排序一致性比率
CR
a1CI1 a1RI1
a2CI 2 a2 RI 2
amCI m am RI m
CR 0.1
进行检验。若通过,则可按照总排序权向量表示的结果进 行决策,否则需要重新考虑模型或重新构造那些一致性比
率 CR 较大的成对比较矩阵。
上述两相邻判断的中值 因素i与j比较的判断aij,则因素j与i比较的判断aji=1/aij
目标层
O(选择旅游地)
准则层
C1 景色
C2 费用
C3 居住
C4 饮食
C5 旅途
设要比较各准则C1,C2,… , Cn对目标O的重要性 1
Ci : C j aij A (aij )nn , aij 0, a ji a
序号 4 5
关键指标 服务指标
指标分解 技术支持 投诉处理 售后服务
能否确认层次单排序,需要进行一致性检验,所谓一致性检验是 指对A确定不一致的允许范围。
定理:n 阶一致阵的唯一非零特征根为n
定理:n 阶正互反阵A的最大特征根 n, 当且仅当 =n时A为一
致阵
由于λ 连续的依赖于aij ,则λ 比n 大的越多,A 的不一致性
越严重。用最大特征值对应的特征向量作为被比较因素对上 层某因素影响程度的权向量,其不一致程度越大,引起的判
其某种意义下的平均。
求
和法——取列向量的算术平均
行
1 2 6 列向量 0.6 0.615 0.545 和 0.587
例 A 1/ 2 1/ 6
1 1/ 4
4
归一化
1
0.3 0.308 0.364 0.1 0.077 0.091
归 一 化
0.324 w 0.089
1.769 Aw 0.974
目录
1、问题提出 2、层次分析法的定义 3、层次分析法解决问题的思路 4、案例分享
案例分享
1、确定评估项目:****类型供应商甄选
2、建立评比指标以及层次结构:
序号 1 2
3
关键指标 价格指标 质量指标
交货指标
指标分解 产品价格 提供赠品数量 货物质量 ISO质量体系
执行 交货的及时性
交货的准确率
这种方法的特点是在对复杂的决策问题的本质、影响因素 及其内在关系等进行深入分析的基础上,利用较少的定量信息 使决策的思维过程数学化,从而为多目标、多准则或无结构特 性的复杂决策问题提供简便的决策方法。 是对难于完全定量 的复杂系统作出决策的模型和方法。
• 人们在对社会、经济以及管理领域的问题进行系统分析时,面 临的经常是一个由相互关联、相互制约的众多因素构成的复杂 系统。层次分析法则为研究这类复杂的系统,提供了一种新的、 简洁的、实用的决策方法。
选 择
C1
旅 C2
C1
C2
1 1/ 2
2
1
游 地
C3 C4
A 1/ 4
1/ 3
1/ 7 1/ 5
C5
1/ 3 1/ 5
C3
C4
C5 ij
4 3 3 A~成对比较阵
7
5
5
1 1/ 2 1/ 3 A是正互反阵
2 3
1 1
1
1
稍加分析就发 现上述成对比
要由A确定C1,… , Cn对O的权向量
Aw w
1 (1.769 0.974 0.268) 3.009
3 0.587 0.324 0.089
0.268 精确结果:w=(0.588,0.322,0.090)T, =3.010
四、层次总排序及其一致性检验
• 计算某一层次所有因素对于最高层(总目标)相对重要性的 权值,称为层次总排序。
对于不一致(但在允许范围内)的成对比较阵
A, Saaty等人建议用对应于最大特征根 的特征向量作为权向量w ,即
但允许范围是 多大?如何界 定?
Aw w
三、层次单排序及其一致性检验
对应于判断矩阵最大特征根λmax的特征向量,经归一化(使向量 中各元素之和等于1)后记为W。
W的元素为同一层次因素对于上一层次因素某因素相对重要性的 排序权值,这一过程称为层次单排序。
较矩阵有问题
成对比较的不一致情况
1 1/ 2
A
2
1
4 7
不一致
a21 2 (C2 : C1)
a 4 (C : C )
13
13
一致比较
a 8 (C : C )
23
23
允许不一致,但要确定不一致的允许范围
考察完全一致的情况
W ( 1) w1, w2 ,wn 可作为一个排序向量
w1
• 最高层:决策的目的、要解决的问题。 • 最低层:决策时的备选方案。 • 中间层:考虑的因素、决策的准则。 • 对于相邻的两层,称高层为目标层,低层为因素层。