北航2010-2015年研究生数值分析期末模拟试卷与真题

合集下载

北航研究生数值分析作业第一题

北航研究生数值分析作业第一题

北航研究⽣数值分析作业第⼀题北航研究⽣数值分析作业第⼀题:⼀、算法设计⽅案1.要求计算矩阵的最⼤最⼩特征值,通过幂法求得模最⼤的特征值,进⾏⼀定判断即得所求结果;2.求解与给定数值接近的特征值,可以该数做漂移量,新数组特征值倒数的绝对值满⾜反幂法的要求,故通过反幂法即可求得;3.反幂法计算时需要⽅程求解中间过渡向量,需设计Doolite分解求解;4.|A|=|B||C|,故要求解矩阵的秩,只需将Doolite分解后的U矩阵的对⾓线相乘即为矩阵的Det。

算法编译环境:vlsual c++6.0需要编译函数:幂法,反幂法,Doolite分解及⽅程的求解⼆、源程序如下:#include#include#include#includeint Max(int value1,int value2);int Min(int value1,int value2);void Transform(double A[5][501]);double mifa(double A[5][501]);void daizhuangdoolite(double A[5][501],double x[501],double b[501]); double fanmifa(double A[5][501]); double Det(double A[5][501]);/***定义2个判断⼤⼩的函数,便于以后调⽤***/int Max(int value1,int value2){return((value1>value2)?value1:value2);}int Min(int value1,int value2){return ((value1}/*****************************************//***将矩阵值转存在⼀个数组⾥,节省空间***/void Transform(double A[5][501],double b,double c){int i=0,j=0;A[i][j]=0,A[i][j+1]=0;for(j=2;j<=500;j++)A[i][j]=c;i++;j=0;A[i][j]=0;for(j=1;j<=500;j++)A[i][j]=b;i++;for(j=0;j<=500;j++)A[i][j]=(1.64-0.024*(j+1))*sin(0.2*(j+1))-0.64*exp(0.1/(j+1)); i++;for(j=0;j<=499;j++)A[i][j]=b;A[i][j]=0;i++;for(j=0;j<=498;j++)A[i][j]=c;A[i][j]=0,A[i][j+1]=0;}/***转存结束***///⽤于求解模最⼤的特征值,幂法double mifa(double A[5][501]){int s=2,r=2,m=0,i,j;double b2,b1=0,sum,u[501],y[501];for (i=0;i<=500;i++){u[i] = 1.0;}do{sum=0;if(m!=0)b1=b2;m++;for(i=0;i<=500;i++)sum+=u[i]*u[i];for(i=0;i<=500;i++)y[i]=u[i]/sqrt(sum);for(i=0;i<=500;i++){u[i]=0;for(j=Max(i-r,0);j<=Min(i+s,500);j++)u[i]=u[i]+A[i-j+s][j]*y[j];}b2=0;for(i=0;i<=500;i++)b2=b2+y[i]*u[i];}while(fabs(b2-b1)/fabs(b2)>=exp(-12));return b2;}//带状DOOLITE分解,并且求解出⽅程组的解void daizhuangdoolite(double A[5][501],double x[501],double b[501]) { int i,j,k,t,s=2,r=2;double B[5][501],c[501];for(i=0;i<=4;i++){for(j=0;j<=500;j++)B[i][j]=A[i][j];}for(i=0;i<=500;i++)c[i]=b[i];for(k=0;k<=500;k++){for(j=k;j<=Min(k+s,500);j++){for(t=Max(0,Max(k-r,j-s));t<=k-1;t++)B[k-j+s][j]=B[k-j+s][j]-B[k-t+s][t]*B[t-j+s][j]; }for(i=k+1;i<=Min(k+r,500);i++){for(t=Max(0,Max(i-r,k-s));t<=k-1;t++)B[i-k+s][k]=B[i-k+s][k]-B[i-t+s][t]*B[t-k+s][k]; B[i-k+s][k]=B[i-k+s][k]/B[s][k];}}for(i=1;i<=500;i++)for(t=Max(0,i-r);t<=i-1;t++)c[i]=c[i]-B[i-t+s][t]*c[t];x[500]=c[500]/B[s][500];for(i=499;i>=0;i--){x[i]=c[i];for(t=i+1;t<=Min(i+s,500);t++)x[i]=x[i]-B[i-t+s][t]*x[t];x[i]=x[i]/B[s][i];}}//⽤于求解模最⼤的特征值,反幂法double fanmifa(double A[5][501]){int s=2,r=2,m=0,i;double b2,b1=0,sum=0,u[501],y[501];for (i=0;i<=500;i++){u[i] = 1.0;}do{if(m!=0)b1=b2;m++;sum=0;for(i=0;i<=500;i++)sum+=u[i]*u[i];for(i=0;i<=500;i++)y[i]=u[i]/sqrt(sum);daizhuangdoolite(A,u,y);b2=0;for(i=0;i<=500;i++)b2+=y[i]*u[i];}while(fabs(b2-b1)>=fabs(b1)*exp(-12));return 1/b2;}//⾏列式的LU分解,U的主线乘积即位矩阵的DET double Det(double A[5][501]) {int i,j,k,t,s=2,r=2;for(k=0;k<=500;k++){for(j=k;j<=Min(k+s,500);j++){for(t=Max(0,Max(k-r,j-s));t<=k-1;t++)A[k-j+s][j]=A[k-j+s][j]-A[k-t+s][t]*A[t-j+s][j];}for(i=k+1;i<=Min(k+r,500);i++){for(t=Max(0,Max(i-r,k-s));t<=k-1;t++)A[i-k+s][k]=A[i-k+s][k]-A[i-t+s][t]*A[t-k+s][k];A[i-k+s][k]=A[i-k+s][k]/A[s][k];}}double det=1;for(i=0;i<=500;i++)det*=A[s][i];return det;}void main(){double b=0.16,c=-0.064,p,q;int i,j;double A[5][501];Transform(A,b,c); //进⾏A的赋值cout.precision(12); //定义输出精度double lamda1,lamda501,lamdas;double k=mifa(A);if(k>0) //判断求得最⼤以及最⼩的特征值.如果K>0,则它为最⼤特征值值,//并以它为偏移量再⽤⼀次幂法求得新矩阵最⼤特征值,即为最⼤ //与最⼩的特征值的差{lamda501=k;for(i=0;i<=500;i++)A[2][i]=A[2][i]-k;lamda1=mifa(A)+lamda501;for(i=0;i<=500;i++)A[2][i]=A[2][i]+k;}else //如果K<=0,则它为最⼩特征值值,并以它为偏移量再⽤⼀次幂法//求得新矩阵最⼤特征值,即为最⼤与最⼩的特征值的差{lamda1=k;for(i=0;i<=500;i++)A[2][i]=A[2][i]-k;lamda501=mifa(A)+lamda1;for(i=0;i<=500;i++)A[2][i]=A[2][i]+k;}lamdas=fanmifa(A);FILE *fp=fopen("result.txt","w");fprintf(fp,"λ1=%.12e\n",lamda1);fprintf(fp,"λ501=%.12e\n",lamda501);fprintf(fp,"λs=%.12e\n\n",lamdas);fprintf(fp,"\t要求接近的值\t\t\t实际求得的特征值\n");for(i=1;i<=39;i++) //反幂法求得与给定值接近的特征值{p=lamda1+(i+1)*(lamda501-lamda1)/40;for(j=0;j<=500;j++)A[2][j]=A[2][j]-p;q=fanmifa(A)+p;for(j=0;j<=500;j++)A[2][j]=A[2][j]+p;fprintf(fp,"µ%d: %.12e λi%d: %.12e\n",i,p,i,q);}double cond=fabs(mifa(A)/fanmifa(A));double det=Det(A);fprintf(fp,"\ncond(A)=%.12e\n",cond);fprintf(fp,"\ndetA=%.12e\n",det);}三、程序运⾏结果λ1=-1.069936345952e+001λ501=9.722283648681e+000λs=-5.557989086521e-003要求接近的值实际求得的特征值µ1: -9.678281104107e+000 λi1: -9.585702058251e+000µ2: -9.167739926402e+000 λi2: -9.172672423948e+000µ3: -8.657198748697e+000 λi3: -8.652284007885e+000µ4: -8.146657570993e+000 λi4: -8.0934********e+000µ5: -7.636116393288e+000 λi5: -7.659405420574e+000µ6: -7.125575215583e+000 λi6: -7.119684646576e+000µ7: -6.615034037878e+000 λi7: -6.611764337314e+000µ8: -6.104492860173e+000 λi8: -6.0661********e+000µ9: -5.593951682468e+000 λi9: -5.585101045269e+000µ10: -5.0834********e+000 λi10: -5.114083539196e+000µ11: -4.572869327058e+000 λi11: -4.578872177367e+000µ12: -4.062328149353e+000 λi12: -4.096473385708e+000µ13: -3.551786971648e+000 λi13: -3.554211216942e+000µ14: -3.0412********e+000 λi14: -3.0410********e+000µ15: -2.530704616238e+000 λi15: -2.533970334136e+000µ16: -2.020*********e+000 λi16: -2.003230401311e+000µ17: -1.509622260828e+000 λi17: -1.503557606947e+000µ18: -9.990810831232e-001 λi18: -9.935585987809e-001µ19: -4.885399054182e-001 λi19: -4.870426734583e-001µ20: 2.200127228676e-002 λi20: 2.231736249587e-002µ21: 5.325424499917e-001 λi21: 5.324174742068e-001µ22: 1.043083627697e+000 λi22: 1.052898964020e+000µ23: 1.553624805402e+000 λi23: 1.589445977158e+000µ24: 2.064165983107e+000 λi24: 2.060330427561e+000µ25: 2.574707160812e+000 λi25: 2.558075576223e+000µ26: 3.0852********e+000 λi26: 3.080240508465e+000µ27: 3.595789516221e+000 λi27: 3.613620874136e+000µ28: 4.106330693926e+000 λi28: 4.0913********e+000µ29: 4.616871871631e+000 λi29: 4.603035354280e+000µ30: 5.127413049336e+000 λi30: 5.132924284378e+000µ31: 5.637954227041e+000 λi31: 5.594906275501e+000µ32: 6.148495404746e+000 λi32: 6.080933498348e+000µ33: 6.659036582451e+000 λi33: 6.680354121496e+000µ34: 7.169577760156e+000 λi34: 7.293878467852e+000µ35: 7.680118937861e+000 λi35: 7.717111851857e+000µ36: 8.190660115566e+000 λi36: 8.225220016407e+000µ37: 8.701201293271e+000 λi37: 8.648665837870e+000µ38: 9.211742470976e+000 λi38: 9.254200347303e+000µ39: 9.722283648681e+000 λi39: 9.724634099672e+000cond(A)=1.925042185755e+003detA=2.772786141752e+118四、分析如果初始向量选择不当,将导致迭代中X1的系数等于零.但是,由于舍⼊误差的影响,经若⼲步迭代后,.按照基向量展开时,x1的系数可能不等于零。

数值分析期末考试和答案

数值分析期末考试和答案

数值分析期末考试和答案一、单项选择题(每题2分,共20分)1. 在数值分析中,下列哪个方法用于求解线性方程组?A. 插值法B. 迭代法C. 直接法D. 拟合法答案:C2. 以下哪个数值方法是用于求解非线性方程的?A. 高斯消元法B. 牛顿迭代法C. 线性插值法D. 拉格朗日插值法答案:B3. 在数值积分中,梯形法则的误差与下列哪个因素无关?A. 被积函数的二阶导数B. 积分区间的长度C. 积分区间的划分数量D. 被积函数的一阶导数答案:D4. 以下哪个数值方法是用于求解常微分方程的?A. 欧拉方法B. 牛顿迭代法C. 拉格朗日插值法D. 高斯消元法答案:A5. 在数值分析中,下列哪个方法用于求解特征值问题?A. 高斯消元法B. 幂迭代法C. 牛顿迭代法D. 梯形法则答案:B6. 以下哪个数值方法是用于求解线性最小二乘问题的?A. 高斯消元法B. 梯形法则C. 正交分解法D. 牛顿迭代法答案:C7. 在数值分析中,下列哪个方法用于求解非线性方程组?A. 高斯消元法B. 牛顿迭代法C. 线性插值法D. 欧拉方法答案:B8. 在数值分析中,下列哪个方法用于求解偏微分方程?A. 有限差分法B. 牛顿迭代法C. 线性插值法D. 梯形法则答案:A9. 在数值分析中,下列哪个方法用于求解优化问题?A. 高斯消元法B. 梯形法则C. 牛顿迭代法D. 单纯形法答案:D10. 在数值分析中,下列哪个方法用于求解插值问题?A. 高斯消元法B. 梯形法则C. 牛顿迭代法D. 拉格朗日插值法答案:D二、填空题(每题2分,共20分)1. 在数值分析中,求解线性方程组的直接法包括______消元法和______消元法。

答案:高斯;LU2. 牛顿迭代法的收敛速度是______阶的。

答案:二3. 梯形法则的误差与被积函数的______阶导数有关。

答案:二4. 欧拉方法是一种求解______阶常微分方程的数值方法。

答案:一5. 幂迭代法是求解______特征值问题的数值方法。

北航研究生数值分析试题

北航研究生数值分析试题

∗⎞ ⎟的 A1 ⎠
矩阵。
三、(12 分)试用高斯列主元素法求解线性方程组
⎡ 1 3 −2 −4 ⎤ ⎡ x1 ⎤ ⎡3 ⎤ ⎢ 2 6 −7 −10 ⎥ ⎢ x ⎥ ⎢ −2 ⎥ ⎢ ⎥⎢ 2⎥ = ⎢ ⎥ ⎢ −1 −1 5 9 ⎥ ⎢ x3 ⎥ ⎢14 ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ x4 ⎦ ⎥ ⎣ −6 ⎦ ⎣ −3 −5 0 15 ⎦ ⎣ 四、(12 分)利用矩阵 A 的三角分解 A = LU 求解下列方程组 ⎛ 1 2 1 ⎞ ⎛ x1 ⎞ ⎛ 0 ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ 2 2 3 ⎟ ⎜ x2 ⎟ = ⎜ 3 ⎟ ⎜ −1 −3 0 ⎟ ⎜ x ⎟ ⎜ 2 ⎟ ⎝ ⎠⎝ 3 ⎠ ⎝ ⎠
第一章
1、近似数 x = 0.231 关于真值 x = 0.229 有( (1)1;(2)2;(3)3;(4)4。

绪论
一、选择题(四个选项中仅有一项符合题目要求,每小题 3 分,共计 15 分) )位有效数字。
2、取 3 ≈ 1.732 计算 x = ( 3 − 1) ,下列方法中哪种最好?(
4

Ax
∞和
A ∞ 的值分别为(

3
(1) 8 , 8 ;
(2) 8 , 7 ;
(3) 8 , 6 ;
(4) 7 , 7 。
5 、若解线性代数方程组的 Gauss 部分选主元方法第二步得到的系数矩阵的第三列向量为
(2
6 3 2 −5 4 2 ) ,则第三步主行是(
T
) (4) 第 6 行。
(1) 第 2 行;
1 − cos x , sin x
x ≠ 0且 x << 1 ;
(2)
1 1− x , − 1+ 2x 1+ x

2015年北航期末试卷A

2015年北航期末试卷A

北京航空航天大学2014-2015 学年第二学期期末《机械原理》考试A 卷班级______________学号_________姓名______________成绩_________2015年7月6 日一、(本题14分)已知三杆EH,FI,GJ相互平行且长度相等,计算图示机构的自由度。

如有复合铰链、局部自由度、虚约束必须指出。

二、(本题14分)在图示机构中,已知构件1以角速度ω1沿逆时针方向转动。

在图示瞬间,试用瞬心法求构件2的角速度ω2和构件6的速度V6的大小及方向(只需写出表达式)。

三、(本题15分)已知曲柄摇杆机构中摇杆CD的长度l CD=75mm,机架AD的长度l AD=100mm,行程速度变化系数K=1.25,摇杆的右极限位置与机架间的夹角φ= 45°。

重新作图,求曲柄和连杆的长度l AB、l BC。

(长度比例尺μ=0.001m/mm)四、(本题14分)根据图示凸轮机构,回答下列问题:(1)标出该凸轮的基圆。

(2)标出凸轮从图示位置转过90º时凸轮机构的压力角α。

(3)标出凸轮从图示位置转过 90 º时从动件的摆角ψ。

五、(本题15分)在相距160mm的O1、O2两轴间,欲采用两个渐开线标准直齿圆柱齿轮作外啮合传动,设m=8mm,α = 20º,*1h=,z1=18,z2=21。

要求:a(1)计算两个齿轮分度圆、基圆及齿顶圆半径;(2)计算两个齿轮的节圆半径;(3)通过作图计算重合度,判断能否连续转动。

六、(本题14分)在下图所示轮系中,已知各轮齿数分别为Z1=21,Z2=35,Z2'=18,Z3=20,Z4=40,Z4'=35,Z5=63,Z5'=32,Z6=17,Z7=32,齿轮1的转速为n1=750r/min,转向如下图。

求齿轮7的转速n7,并指出其转向。

七、(本题14分)在图示的剪床机构中,作用在O2主轴上的等效阻力矩M r的变化规律如图所示,其大小为M´r = 20Nm,M "r = 1600Nm,轴O1上施加的驱动力矩M1为常量。

北航数值分析大作业3(学硕)

北航数值分析大作业3(学硕)

《数值分析》作业三院系:机械学院学号:SY1307145姓名:龙安林2013年11 月24 日1. 算法设计1) 开始;2) 计算数组[][]0.08,0.050.5,0,1,2,,10;0,1,2,,20x i i y j j i j ==+=⋯=⋯(); 3) 将点[][],0,1,2,,10;0,1,2,,20x i y j i j =⋯=⋯(),()带入非线性方程组: 0.5cos 2.670.5sin 1.070.5cos 3.740.5sin 0.79t u v w x t u v w y t u v w x t u v w y +++-=⎧⎪+++-=⎪⎨+++-=⎪⎪+++-=⎩ 得出相应的点,t u (); 4) 选择拉格朗日插值法,将,t u ()作为中间变量,在题目所给出的二维数表中进行二次代数插值,得到[][],)(z f x i y j =;5) 输出数表:[][][][]()()0,1,2,,10;0,1,2,,20,,,x i y j f x i y j i j =⋯=⋯; 6) 令k=0;7) 以()()(),,,0,1,r r r s x x y y r s ϕψ===…,k 为拟合基函数,将上述数表作为拟合条件,对于给定的k 值,得到矩阵B 、G 、U ;8) 令-1-1(),()T T T A B B B U C AG G G ==,用选主元的LU 分解法分别计算矩阵A 和C 的各列,最后得到系数矩阵C ;9) 以公式:()()()00,k ki j rs r i s j s r p x y C x y ϕψ===∑∑计算每个点的拟合值;10) 利用公式:()()()2102000,,i j i j i j f x y p x y σ===-∑∑计算拟合误差,当σ≤10-7时,循环结束,否则k=k+1,转(6);11) 令[][]()**0.10.50.2 1,2,81,2,5x i i y j j i j ==+=⋯=⋯;,;,;12) 计算()()()******,,,,,i j i j i jf x y p x y delta x y ,输出数表,观察逼近效果; 13) 结束。

北航2010-2015年研究生数值分析报告期末模拟试卷与真题

北航2010-2015年研究生数值分析报告期末模拟试卷与真题

北航2010-2015年研究生数值分析报告期末模拟试卷与真题数值分析模拟卷A一、填空(共30分,每空3分)1 设-=1511A ,则A 的谱半径=)(a ρ______,A 的条件数)(1A cond =________. 2 设 ,2,1,0,,53)(2==+=k kh x x x f k ,则],,[21++n n n x x x f =________, ],,[321+++n n n n x x x x f ,=________.3 设≤≤-++≤≤+=21,1210,)(2323x cx bx x x x x x S ,是以0,1,2为节点的三次样条函数,则b=________,c=________.4 设∞=0)]([k k x q 是区间[0,1]上权函数为x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x q ,则?=10)(dx x xq k ________,=)(2x q ________.5 设=11001a a a a A ,当∈a ________时,必有分解式,其中L 为下三角阵,当其对角线元素)3,2,1(=i L ii 满足条件________时,这种分解是唯一的.二、(14分)设49,1,41,)(21023====x x x x x f , (1)试求)(x f 在]49,41[上的三次Hermite 插值多项式)(x H 使满足2,1,0),()(==i x f x H i i ,)()(11x f x H '='.(2)写出余项)()()(x H x f x R -=的表达式.三、(14分)设有解方程0cos 2312=+-x x 的迭代公式为n n x x cos 3241+=+,(1)证明R x ∈?0均有?∞→=x x n x lim (?x 为方程的根);(2)取40=x ,用此迭代法求方程根的近似值,误差不超过,列出各次迭代值;(3)此迭代的收敛阶是多少?证明你的结论.四、(16分) 试确定常数A ,B ,C 和,使得数值积分公式有尽可能高的代数精度. 试问所得的数值积分公式代数精度是多少?它是否为Gauss 型的?五、(15分)设有常微分方程的初值问题=='00)(),(y x y y x f y ,试用Taylor 展开原理构造形如)()(11011--++++=n n n n n f f h y y y ββα的方法,使其具有二阶精度,并推导其局部截断误差主项.六、(15分)已知方程组b Ax =,其中= ??=21,13.021b A ,(1)试讨论用Jacobi 迭代法和Gauss-Seidel 迭代法求解此方程组的收敛性.(2)若有迭代公式)()()()1(b Ax a x x k k k ++=+,试确定一个的取值围,在这个围任取一个值均能使该迭代公式收敛.七、(8分)方程组,其中,A 是对称的且非奇异.设A 有误差,则原方程组变化为,其中为解的误差向量,试证明 .其中1λ和2λ分别为A 的按模最大和最小的特征值.数值分析模拟卷B填空题(每空2分,共30分)1. 近似数231.0=*x 关于真值229.0=x 有____________位有效数字;2. 设)(x f 可微,求方程)(x f x =根的牛顿迭代格式是_______________________________________________;3. 对1)(3++=x x x f ,差商=]3,2,1,0[f _________________;=]4,3,2,1,0[f ________;4. 已知???? ??-='-=1223,)3,2(A x ,则=∞||||Ax ________________,=)(1A Cond ______________________ ;5. 用二分法求方程01)(3=-+=x x x f 在区间[0,1]的根,进行一步后根所在区间为_________,进行二步后根所在区间为_________________;6. 求解线性方程组=+=+04511532121x x x x 的高斯—赛德尔迭代格式为_______________________________________;该迭代格式迭代矩阵的谱半径=)(G ρ_______________;7. 为使两点数值求积公式:?-+≈111100)()()(x f x f dx x f ωω具有最高的代数精确度,其求积节点应为=0x _____ , =1x _____,==10ωω__________.8. 求积公式)]2()1([23)(30f f dx x f +≈?是否是插值型的__________,其代数精度为___________。

数值分析(秘籍考试必过个人整理)

数值分析(秘籍考试必过个人整理)

例1:构造求解下列方程组收敛的Gauss-Seidel 迭代格式(不计算),并说明收敛的理由。

⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----456401-1-51-1-1-6645116401151321321x x x x x x 同解变换为GS 迭代格式为⎪⎪⎪⎩⎪⎪⎪⎨⎧+=++=++=+++++141151511616111133********k k kk k kk k x x x x x x x x ,k=0,1,2,…其中)0(3)0(2)0(1,,x x x 为初值。

因为变换后的系数矩阵为严格对角占优阵,所以GS 迭代格式收敛。

公式:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--=∑∑-≠=+=++111111i i j j ni j i k j ij k j ij ii k i b x a x a a x 收敛性:1.若A 主对角元占优,则收敛。

2.若A 对称正定,则收敛。

3.若1〈G ,则收敛 4.收敛1)(<⇔G ρ例2:用Doolittle (LU )分解法求解如下线性方程组:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---203214511121321x x x 解:设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=203,214511121b A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==332322131211323121111u u u u u u l l l LU A 公式n k i u u l a l n k k j u l a u kk sk k s is ik ik sj k s ks kj kj ,...,1,/)(,,...,1,,1111+=-=+=-=∑∑-=-= 由矩阵相等得:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=1263121,1374111U L由Ly=b ,解得:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333321y y y ,由Ux=y, 解得:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡4/12/34/1321x x x注:Crout 分解:A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111231312333231222111u u u l l l l l l LU ),...,1,(11n k k i u l a l tk k t it ik ik +=-=∑-=,),,...,2,1(,/)(11n k n k k j l u l a u kk k t tj kt kj kj <++=-=∑-=例3:用Euler 法求初值问题:⎩⎨⎧==≤≤-=1.0,0)0(5.00,,h y x y x y 解:1)Euler 公式:⎩⎨⎧=-=+=+001)(1,...,1,0),,(y x y n i y x hf y y i i i i公式:))(,()(,i i i x y x f x y =,对于[]))(,()(,,,x y x f x y b a x =∈∀ 这里ih x y x y x f h b a y n i =-======,),(,1.0,5.0,0,0,50 注:因为x 最大能取到0.5,步长h=0.1,所以n=5i y y i y y i i i i 01.09.0)1.0(1.01+=-+=+2)算得:=====54321,,,,y y y y y例4:(Householder)设Ta )4,3,1,0,7(-=求H 使5,)0,,1,0,7(±=-=σσTHa解:设T b )0,,1,0,7(σ-=(取σ=5,(σ符号的选取应使2b a -的值尽可能大,σ与1+m a 同号))T b a )4,8,0,0,0(-=-∴, 54)4(8222=-+=-baT b a b a V )1,2,0,0,0(512-=--=, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-=5/35/45/45/3235I VV I H T公式:设Ha=b ,计算T VV I H b a ba Vb a b a 2,,,22-=--=--( , ||m a x ||||111∑=≤≤=ni ij nj a A (列范数) 的最大特征值矩阵A A A T =2||||)例5:利用householder 把下列矩阵化为拟上三角矩阵。

北航数值分析2010-2011期末模拟试卷1-3

北航数值分析2010-2011期末模拟试卷1-3

数值分析模拟试卷1一、填空(共30分,每空3分) 1 设⎪⎪⎭⎫⎝⎛-=1511A ,则A 的谱半径=)(a ρ______,A 的条件数)(1A cond =________. 2 设,2,1,0,,53)(2==+=k kh x x x f k ,则],,[21++n n n x x x f =________,],,[321+++n n n n x x x x f ,=________.3 设⎪⎩⎪⎨⎧≤≤-++≤≤+=21,1210,)(2323x cx bx x x x x x S ,是以0,1,2为节点的三次样条函数,则b=________,c=________.4 设∞=0)]([k k x q 是区间[0,1]上权函数为x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x q ,则⎰=1)(dx x xq k________,=)(2x q________.5 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ________时,必有分解式,其中L 为下三角阵,当其对角线元素)3,2,1(=i L ii 满足条件________时,这种分解是唯一的. 二、(14分)设49,1,41,)(21023====x x x x x f , (1)试求)(x f 在]49,41[上的三次Hermite 插值多项式)(x H 使满足2,1,0),()(==i x f x H i i ,)()(11x f x H '='.(2)写出余项)()()(x H x f x R -=的表达式.三、(14分)设有解方程0cos 2312=+-x x 的迭代公式为n n x x cos 3241+=+, (1) 证明R x ∈∀0均有∙∞→=x x n x lim (∙x 为方程的根);(2) 取40=x ,用此迭代法求方程根的近似值,误差不超过,列出各次迭代值;(3)此迭代的收敛阶是多少?证明你的结论.四、(16分) 试确定常数A ,B ,C 和,使得数值积分公式有尽可能高的代数精度. 试问所得的数值积分公式代数精度是多少?它是否为Gauss 型的?五、(15分) 设有常微分方程的初值问题⎩⎨⎧=='00)(),(y x y y x f y ,试用Taylor 展开原理构造形如)()(11011--++++=n n n n n f f h y y y ββα的方法,使其具有二阶精度,并推导其局部截断误差主项.六、(15分) 已知方程组b Ax =,其中⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=21,13.021b A , (1) 试讨论用Jacobi 迭代法和Gauss-Seidel 迭代法求解此方程组的收敛性. (2) 若有迭代公式)()()()1(b Ax a x xk k k ++=+,试确定一个的取值范围,在这个范围内任取一个值均能使该迭代公式收敛. 七、(8分) 方程组,其中,A 是对称的且非奇异.设A 有误差,则原方程组变化为,其中为解的误差向量,试证明.其中1λ和2λ分别为A 的按模最大和最小的特征值.数值分析模拟试卷2填空题(每空2分,共30分)1. 近似数231.0=*x 关于真值229.0=x 有____________位有效数字; 2. 设)(x f 可微,求方程)(x f x =根的牛顿迭代格式是_______________________________________________;3. 对1)(3++=x x x f ,差商=]3,2,1,0[f _________________;=]4,3,2,1,0[f ________; 4. 已知⎪⎪⎭⎫⎝⎛-='-=1223,)3,2(A x ,则=∞||||Ax ________________,=)(1A Cond ______________________ ;5. 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根所在区间为_________,进行二步后根所在区间为_________________;6. 求解线性方程组⎪⎩⎪⎨⎧=+=+04511532121x x x x 的高斯—赛德尔迭代格式为_______________________________________;该迭代格式迭代矩阵的谱半径=)(G ρ_______________;7. 为使两点数值求积公式:⎰-+≈111100)()()(x f x f dx x f ωω具有最高的代数精确度,其求积节点应为=0x _____ , =1x _____,==10ωω__________. 8. 求积公式)]2()1([23)(3f f dx x f +≈⎰是否是插值型的__________,其代数精度为___________。

北航数值分析大作业第二题

北航数值分析大作业第二题

数值分析第二次大作业史立峰SY1505327一、 方案(1)利用循环结构将sin(0.50.2)()1.5cos( 1.2)(){i j i j ij i j i j a +≠+==(i,j=1,2,……,10)进行赋值,得到需要变换的矩阵A ;(2)然后,对矩阵A 利用Householder 矩阵进行相似变换,把A 化为上三角矩阵A(n-1)。

对A 拟上三角化,得到拟上三角矩阵A(n-1),具体算法如下:记A(1)=A ,并记A(r)的第r 列至第n 列的元素为()n r r j n i a r ij,,1,;,,2,1)(ΛΛ+==。

对于2,,2,1-=n r Λ执行 1. 若()n r r i a r ir,,3,2)(Λ++=全为零,则令A(r+1) =A(r),转5;否则转2。

2. 计算()∑+==nr i r irr a d 12)(()()r r r r r r r r r r d c a d a c ==-=++则取,0sgn )(,1)(,1若)(,12r rr r r r a c c h +-=3. 令()nTr nrr r r r r r r r R a a c a u ∈-=++)()(,2)(,1,,,,0,,0ΛΛ。

4. 计算r r T r r h u A p /)(= r r r r h u A q /)(=r r Tr r h u p t /=r r r r u t q -=ωT rr T r r r r p u u A A --=+ω)()1(5. 继续。

(3)使用带双步位移的QR 方法计算矩阵A (n-1)的全部特征值,也是A 的全部特征值,具体算法如下:1. 给定精度水平0>ε和迭代最大次数L 。

2. 记n n ij n a A A ⨯-==][)1()1()1(,令n m k ==,1。

3. 如果ε≤-)(1,k m m a ,则得到A 的一个特征值)(k mm a ,置1:-=m m (降阶),转4;否则转5。

北航数值分析大作业题目三

北航数值分析大作业题目三

《数值分析》第三次大作业一、算法的设计方案: (一)、总体方案设计:(1)解非线性方程组。

将给定的(,)i i x y 当作已知量代入题目给定的非线性方程组,求得与(,)i i x y 相对应的数组t[i][j],u[i][j]。

(2)分片二次代数插值。

通过分片二次代数插值运算,得到与数组t[11][21],u[11][21]]对应的数组z[11][21],得到二元函数z=(,)i i f x y 。

(3)曲面拟合。

利用x[i],y[j],z[11][21]建立二维函数表,再根据精度的要求选择适当k 值,并得到曲面拟合的系数矩阵C[r][s]。

(4)观察和(,)i i p x y 的逼近效果。

观察逼近效果只需要重复上面(1)和(2)的过程,得到与新的插值节点(,)i i x y 对应的(,)i i f x y ,再与对应的(,)i i p x y 比较即可,这里求解(,)i i p x y 可以直接使用(3)中的C[r][s]和k 。

(二)具体算法设计:(1)解非线性方程组牛顿法解方程组()0F x =的解*x ,可采用如下算法: 1)在*x 附近选取(0)xD ∈,给定精度水平0ε>和最大迭代次数M 。

2)对于0,1,k M =L 执行① 计算()()k F x和()()k F x '。

② 求解关于()k x∆的线性方程组()()()()()k k k F x x F x '∆=-③ 若()()k k x x ε∞∞∆≤,则取*()k x x ≈,并停止计算;否则转④。

④ 计算(1)()()k k k xx x +=+∆。

⑤ 若k M <,则继续,否则,输出M 次迭代不成功的信息,并停止计算。

(2)分片双二次插值给定已知数表以及需要插值的节点,进行分片二次插值的算法:设已知数表中的点为: 00(0,1,,)(0,1,,)i j x x ih i n y y j j m τ=+=⎧⎪⎨=+=⎪⎩L L ,需要插值的节点为(,)x y 。

北京航空航天大学《工科数学分析》考试试题及参考答案(2012-2013第一学期)

北京航空航天大学《工科数学分析》考试试题及参考答案(2012-2013第一学期)

f x e
'
e
cos x ln sin x
cos 2 x sin x cos x sin x ln sin x . sin x
dy dy dx cos t t sin t 4)解: . dx cos t t sin t dt dt
m 满足什么条件,函数在 x 0 可导.
2. 证明下面问题(10 分) 设 s 0, x1 0, xn1
1 s x , 证明数列 xn 单调有界,且极限为 s . n 2 x n
1 , 用 Cauchy 收敛定理证明 xn 收敛. 2n
5.
1) 用反证法证明. 假设存在 q a, b , g q 0 . 则根据拉格朗日中值定理
' g a g q g ' x1 a q 0 得到 g x1 0, x1 a, q
g b g q g ' x2 b q 0 得到 g ' x2 0, x2 q , b
7.
(10 分)证明下面问题 设 f x 定义在 a, b 上. 如果对 a, b 内任何收敛的点列 xn 都有 lim f xn 存在, 则
n
f 在 a, b 上一致连续.
8. (10 分)附加题 (下面两个题目任选其一) 1) 设函数 f
n 1 2 n cos x Cn cos 2 x 1 Cn cos n x , x Cn n1
二、第一次考试题目及答案
1. 计算下面各题(满分 40 分,每个题目 5 分) 1) 2) 计算极限 lim
x 0

北航2015级硕士研究生数理统计参考答案(B层)

北航2015级硕士研究生数理统计参考答案(B层)

2015-2016 学年 第一学期期末试卷参考答案学号 姓名 成绩 考试日期: 2016年1月15日考试科目:《数理统计》(B 层)一、填空题(本题共16分,每小题4分)1.设12,,n x x x ,是来自正态总体2(0,)N σ的简单样本,则当c = 时,统计量221()nkk x cxx η==-∑服从F -分布,其中11nk k x x n ==∑。

((1)n n -)2. 设12,,n x x x ,是来自两点分布(1,)B p 的简单样本,其中01p <<,2n ≥,则当c = 时,统计量2ˆ(1)cx x σ=-是参数()(1)q p p p =-的无偏估计,其中11nk k x x n ==∑。

(1n n -)3.设总体X 的密度函数为22,[0,](;)0,[0,]x x p x x θθθθ⎧∈⎪=⎨⎪∉⎩,其中0θ>,12,,,n x x x 是来自总体X 简单样本,则θ的充分统计量是 。

(()n x ) 4.设12,,n x x x ,是来自正态总体2(,)N μσ的简单样本,已知样本均值 4.25x =,μ的置信度为0.95的双侧置信区间下限为3.1,则μ的置信度为0.95的双侧置信区间为(,)。

((3.1,5.4))二、(本题12分)设12,,,n x x x 是来自正态总体2(1,2)N σ的简单样本。

(1)求2σ的极大似然估计2σ;(2)求2σ的一致最小方差无偏估计;(3)问2σ的一致最小方差无偏估计是否为有效估计?证明你的结论。

解(1)似然函数为22211()exp{(1)}4nnii L x σσ==--∑对数似然函数为222211ln ()(ln(4)ln )(1)24n i i n L x σπσσ==-+--∑求导,有222241ln ()1(1)24n i i L n x σσσσ=∂=-+-∂∑ 令22ln ()0L σσ∂=∂,可得θ的极大似然估计为2211ˆ(1)2n i i x n σ==-∑。

北航数值分析第三次大作业

北航数值分析第三次大作业
{ if(temp<fabs(dx[l])) temp=fabs(dx[l]);
} fx=temp;
temp=0; for(l=0;l<=3;l++)
{ if(temp<fabs(X[l])) temp=fabs(X[l]);
} fX=temp;
if(fabs(fx/fX)<Epsilon1)
{ t[i][j]=X[0]; u[i][j]=X[1];
A = (BT B)−1 BTU , DT = G(GTG)−1
对上面两式进行变形,得到如下两个线性方程组:
(BT B)A = BTU , (GTG)D = GT
通过解上述两个线性方程组,则有: C = ADT
kk
3)对于每一个 (xi , y j ) , p*(xi , y j ) =
Crs (xi )r ( y j )s 。
xi yj
−h 2
− 2

x xi y y
+ h, 2
j
+
2
2i ,2
j
n
−2 m−
2
则选择 (xk , yr )(k = i −1,i,i +1;r = j −1, j, j +1) 为插值节点。 2)计算
lk
(x)
=
i +1 t =i−1
x − xt xk − xt
/*高斯选主元消去法求解Δx*/ for(k=0;k<3;k++)
{ ik=k; for(l=k;l<=3;l++) {if(dF[ik][k]<dF[l][k]) ik=l; } /*选主元*/

完整word版数值分析学期期末考试试题与答案Aword文档良心出品

完整word版数值分析学期期末考试试题与答案Aword文档良心出品

卷)期末考试试卷(A2007学年第二学期考试科目:数值分析分钟考试时间:120年级专业姓名学号分)分,共10一、判断题(每小题210001?n)( 1. 用计算机求应按照时,从小到大的顺序相加。

1000n1n?219992001?,2. 为了减少误差应将表达式进行计算。

(改写为)19992001?)( 3.用数值微分公式中求导数值时,步长越小计算就越精确。

) 4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。

(系数矩阵及其演变方式有迭代能否收敛与初始向量的选择、5. 用迭代法解线性方程组时,)(关,与常数项无关。

分)二、填空题(每空2分,共36_________.________,相对误差限为已知数a的有效数为0.01,则它的绝对误差限为1.0?110??????????AxA?x,0?21,x??5A?_____.则设______,_____,2. ?????12????1?130????35f(x)?2x?4x?5x,f[?1,1,0]?f[?3,?2,?1,1,2,3]? 3. 已知则, .331?)?Af(0)?Af(f(x)dx?Af(?)的代数精度尽量高,应使4. 为使求积公式321331?A?A?A?,此时公式具有,,次的代数精度。

132?A n)A(的关系是 5. 阶方阵A的谱半径与它的任意一种范数.??)k(X收敛的充(k?1)(k)?N(k?MX?0,1,X2,)B?AX产时,使迭代公式6. 用迭代法解线性方程组分必要条件是生的向量序列.AX?BAL和上三角矩可以分解为下三角矩阵系数矩阵时,使用消元法解线性方程组7.1 / 134?2??UA?LU.AX?BA?,则阵的乘积,即若采用高斯消元法解,其中??21??U?AX?BL?,则,______________;若使用克劳特消元法解_______________u?lu BAX?的大小关系为_____(选填:则____;若使用平方根方法解与>,,111111<,=,不一定)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值分析模拟卷A一、填空(共30分,每空3分) 1 设⎪⎪⎭⎫⎝⎛-=1511A ,则A 的谱半径=)(a ρ______,A 的条件数)(1A cond =________. 2 设,2,1,0,,53)(2==+=k kh x x x f k ,则],,[21++n n n x x x f =________,],,[321+++n n n n x x x x f ,=________.3 设⎪⎩⎪⎨⎧≤≤-++≤≤+=21,1210,)(2323x cx bx x x x x x S ,是以0,1,2为节点的三次样条函数,则b=________,c=________.4 设∞=0)]([k k x q 是区间[0,1]上权函数为x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x q ,则⎰=1)(dx x xq k________,=)(2x q ________.5 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ________时,必有分解式,其中L 为下三角阵,当其对角线元素)3,2,1(=i L ii 满足条件________时,这种分解是唯一的. 二、(14分)设49,1,41,)(21023====x x x x x f , (1)试求)(x f 在]49,41[上的三次Hermite 插值多项式)(x H 使满足2,1,0),()(==i x f x H i i ,)()(11x f x H '='.(2)写出余项)()()(x H x f x R -=的表达式.三、(14分)设有解方程0cos 2312=+-x x 的迭代公式为n n x x cos 3241+=+, (1) 证明R x ∈∀0均有∙∞→=x x n x lim (∙x 为方程的根);(2) 取40=x ,用此迭代法求方程根的近似值,误差不超过,列出各次迭代值;(3)此迭代的收敛阶是多少?证明你的结论.四、(16分) 试确定常数A ,B ,C 和,使得数值积分公式有尽可能高的代数精度. 试问所得的数值积分公式代数精度是多少?它是否为Gauss 型的?五、(15分) 设有常微分方程的初值问题⎩⎨⎧=='00)(),(y x y y x f y ,试用Taylor 展开原理构造形如)()(11011--++++=n n n n n f f h y y y ββα的方法,使其具有二阶精度,并推导其局部截断误差主项.六、(15分) 已知方程组b Ax =,其中⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=21,13.021b A , (1) 试讨论用Jacobi 迭代法和Gauss-Seidel 迭代法求解此方程组的收敛性.(2) 若有迭代公式)()()()1(b Ax a x x k k k ++=+,试确定一个的取值范围,在这个范围内任取一个值均能使该迭代公式收敛.七、(8分) 方程组,其中,A 是对称的且非奇异.设A 有误差,则原方程组变化为,其中为解的误差向量,试证明.其中1λ和2λ分别为A 的按模最大和最小的特征值.数值分析模拟卷B填空题(每空2分,共30分)1. 近似数231.0=*x 关于真值229.0=x 有____________位有效数字;2. 设)(x f 可微,求方程)(x f x =根的牛顿迭代格式是_______________________________________________;3. 对1)(3++=x x x f ,差商=]3,2,1,0[f _________________;=]4,3,2,1,0[f ________;4. 已知⎪⎪⎭⎫⎝⎛-='-=1223,)3,2(A x ,则=∞||||Ax ________________,=)(1A Cond ______________________ ;5. 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根所在区间为_________,进行二步后根所在区间为_________________;6. 求解线性方程组⎪⎩⎪⎨⎧=+=+04511532121x x x x 的高斯—赛德尔迭代格式为_______________________________________;该迭代格式迭代矩阵的谱半径=)(G ρ_______________;7. 为使两点数值求积公式:⎰-+≈111100)()()(x f x f dx x f ωω具有最高的代数精确度,其求积节点应为=0x _____ , =1x _____,==10ωω__________. 8. 求积公式)]2()1([23)(3f f dx x f +≈⎰是否是插值型的__________,其代数精度为___________。

二、(12分)(1)设LU A =,其中L 为下三角阵,U 为单位上三角阵。

已知⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=2100121001210012A ,求L ,U 。

(2)设A 为66⨯矩阵,将A 进行三角分解:LU A =,L 为单位下三角阵,U 为上三角阵,试写出L 中的元素65l 和U 中的元素56u 的计算公式。

三、(12分)设函数)(x f 在区间[0,3]上具有四阶连续导数,试确定一个次数不超过3的多项式)(x H ,满足3)1()1(,1)2()2(,1)1()1(,0)0()0(='='======f H f H f H f H ,并写出插值余项。

四、(12分)线性方程组⎩⎨⎧=+=-22112122b x x b x x ρρ(1) 请写出解此方程组的赛德尔迭代法的迭代格式,并讨论收敛性。

(2) 设2=ρ,给定松弛因子21=ω,请写出解此方程组的SOR 方法的迭代格式,并讨论收敛性。

五、(7分)改写方程042=-+x x为2ln /)4ln(x x -=的形式,问能否用迭代法求所给方程在[1,2]内的实根?六、(7分)证明解方程0)(23=-a x 求3a 的牛顿迭代法仅为线性收敛。

七、(12分)已知.43,21,41210===x x x (1)推导以这3个点作为求积节点在[0,1]上的插值型求积公式;(2)指明求积公式具有的代数精度; (3) 用所求公式计算⎰12dx x 。

八、(8分)若i n x x x x x x x x f ),())(()(10---= 互异,求],,,[10p x x x f 的值,这里.1+≤n p数值分析模拟卷C一、填空题(每空3分,共30分)1. 设1234)(248+++=x x x x f ,则差商=]2,,2,2[810 f ; 2.在用松弛法(SOR)解线性方程组b Ax =时,若松弛因子ω满足1|1|≥-ω,则迭代法 ;3.设,0)(,0)(**≠'=x f x f 要使求*x 的Newton 迭代法至少三阶收敛,)(x f 需要满足 ;4. 设)133)(2()(23-+-+=x x x x x f ,用Newton 迭代法求21-=x 具有二阶收敛的迭代格式为________________ ;求12=x 具有二阶收敛的迭代格式为___________________; 5.已知⎪⎪⎭⎫⎝⎛--=1327A ,则=)(A ρ__________,=∞)(A Cond ______ 6. 若1>>x ,改变计算式1lg lg 2--x x =___________________,使计算结果更为精确; 7.过节点())3,2,1,0(,3=i x x i i 的插值多项式为_____________ ; 8. 利用抛物(Simpson)公式求⎰212dx x = 。

二、(14分)已知方阵⎪⎪⎪⎭⎫⎝⎛=123111122A ,(1) 证明: A 不能被分解成一个单位下三角阵L 和一个上三角阵U 的乘积;(2) 给出A 的选主元的Doolittle 分解,并求出排列阵;(3) 用上述分解求解方程组b Ax =,其中Tb )4,2,5.3(=。

三、(12分)设函数)(x f 在区间[0,3]上具有四阶连续导数,试确定一个次数不超过3的多项式)(x H ,满足40)1()1(,10)1()1(,1)1()1(,0)0()0(=''=''='='-====f H f H f H f H ,并写出插值余项。

四、(10分)证明对任意的初值0x ,迭代格式n n x x cos 1=+均收敛于方程x x cos =的根,且具有线性收敛速度。

五、(12分) 在区间[-1,1]上给定函数14)(3+=x x f ,求其在},,1{2x x Span =φ中关于权函数1)(=x ρ的最佳平方逼近多项式。

(可用数据:2123)(,)(,1)(2210-===x x p x x p x p )六、(12分)(1)试导出切比雪夫(Chebyshev)正交多项式])1,1[,,2,1,0)(arccos cos()(-∈==x n x n x T n 的三项递推关系式:⎪⎪⎩⎪⎪⎨⎧=-===-+),2,1()()(2)(,)(,1)(1110 n x T x xT x T x x T x T n n n (2)用高斯—切比雪夫求积公式计算积分dx x x x I ⎰--=22)2(1,问当节点数n 取何值时,能得到积分的精确值?并计算它。

七、(10分)验证对⎪⎪⎩⎪⎪⎨⎧-+-+=++==++=∀+))1(,)1((),(),()(2,13121311hK t y h t x f K thK y th x f K y x f K K K h y y t n n n n n n n n 为2阶格式.2013年期末考试真题参考答案A 一、1.6)(=a ρ,)(1A cond =6.2.],,[21++n n n x x x f =3,],,[321+++n n n n x x x x f ,=0. 3.b =-2,c=3.4.⎪⎩⎪⎨⎧≠=0,00,21k k ;10356)(22+-=x x x q .5.)3,2,1(0);21,21(=>-∈i l a ii二、(1) 25145023345026322514)(23-++-=x x x x H (2) ).49,41(),49()1)(41(169!41)(225∈---=-ξξx x x x R三、(1)32=L ;(2)347.3≈∙x ;(3)线性收敛. 四、512,916,910-====αB C A ;求积公式具有5次代数精度,是Gauss 型的. 五、41472110=-,=,=ββα;截断误差主项为)(833n x y h '''. 六、(1),16.0)(,6.0)(<==G S J B B ρρ因此两种迭代法均收敛.(2)当06.011>>+a 时,该迭代公式收敛.参考答案B 一、1.22.),1,0()()(1 ='-=+n x f x f x x n n n n 3.1, 0 4.7,725 5.)43,21(),1,21(6. 121,2013531)1(1)1(2)(2)1(1⎪⎩⎪⎨⎧-=-=+++k k k k x x x x 7. 32,3210=-=x x ; 1 8. 是, 1二、(1) ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡---=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡---=100431000321000211,4510003410002310002U L (2))(;)(4654356532652165155565545643563256215616565u l u l u l u l a u u u l u l u l u l a l +++-=+++-=三、 )2()1(!4)()(),2)(1(2)(2)4(--=---=x x x f x R x x x x x H ξ 四、(1) ⎪⎩⎪⎨⎧-=+=+++)1(12)1(2)(21)1(12k k k k x b x x b x ρρ, 1<ρ 时收敛(2) ⎪⎩⎪⎨⎧-+=++=+++)1(1)(22)1(2)(2)(11)1(1214212k k k k k k x x b x x x b x , 收敛 五、收敛 七、(1))43(32)21(31)41(32f f f +- (2)2 (3)31 八、110时为时为+=≤n ,p n p参考答案C 一、1.42.发散3.0)(*=''x f 4.),1,0()()(1 ='-=+n x f x f x x n n n n ,),1,0()()(31 ='-=+n x f x f x x n n n n5.2608+, 49 6.1lg2-x x7. 3x 8.37 二、(2) 先交换2、3两行,交换1、2两行,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=010001100,5.0003333.06667.00123,15.03333.0016667.0001P U L(3) )5.4,1,5.1('-三、3)4(2)1(!4)()(,)1(9)1(11)(-=-+-+-=x x f x R x x x x x x H ξ 五、10512p p +六、1=n ,2π。

相关文档
最新文档