基于混合遗传算法求解非线性方程组

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

 万方数据

 万方数据

 万方数据

基于混合遗传算法求解非线性方程组

作者:田巧玉, 古钟璧, 周新志, TIAN Qiao-yu, GU Zhong-bi, ZHOU Xin-zhi

作者单位:四川大学,电子信息学院,四川,成都,610064

刊名:

计算机技术与发展

英文刊名:COMPUTER TECHNOLOGY AND DEVELOPMENT

年,卷(期):2007,17(3)

被引用次数:6次

1.赵明旺基于牛顿法和遗传算法求解非线性方程组的混合计算智能方法 1997(11)

2.周明.孙树冻遗传算法原理及应用 1999

3.雷英杰.张善文.李续武.周创明MATLAB遗传算法工具箱及应用 2005

4.曾毅浮点遗传算法在非线性方程组求解中的应用[期刊论文]-华东交通大学学报 2005(01)

5.胡小兵.吴树范.江驹一种基于遗传算法的求解代数方程组数值的新方法[期刊论文]-控制理论与应用 2002(04)

6.罗亚中.袁端才.唐国全求解非线性方程组的混合遗传算法[期刊论文]-计算力学学报 2005(01)

1.期刊论文郭海燕.金鑫.胡小兵.Guo Haiyan.Jin Xin.Hu Xiaobing基于微粒群优化的非线性方程组求解研究-计算机工程与应用2006,42(15)

在科学技术和工程应用中经常遇到求解非线性方程组的问题.提出了一种求解非线性方程组的通用数值方法.将非线性方程组的求解问题转化为函数优化问题,通过微粒群优化对其进行求解,最终得到非线性方程组较高精度的解.一系列测试实例显示了该算法在求解非线性方程组时具有简单性、高效性和普适性.

2.学位论文向占宏一类基于区域分裂的演化算法及应用2006

区域分裂法的基本思想是将定义在复杂的大区域上的问题分解成若干小区域上的问题分别求解,然后通过迭代得到整个区域上的解,该方法能分解大型问题为小型问题、复杂区域问题为简单区域问题。

演化算法在求解函数优化问题很有效。长期以来演化算法在应用中主要存在两大缺陷:一是对某些问题演化算法求解速度太慢;二是演化算法容易产生早熟现象,而且对于单峰函数优化问题,目前的演化算法还没有鲁棒性。有研究表明用杂交算子求解实数优化问题时可以得到较好的结果。目前对实数函数优化问题的研究中,很多人致力于研究如何找到一个有效的杂交算子。

本文介绍了演化算法的基本结构和研究现状,给出了演化算法的基本结构,介绍了各种杂交算子,分析了他们的优点和缺陷,详细分析了GT算子及带子空间的GT算法的性能。将GT多父体杂交算子进行改造,应用于求解非线性方程组,提出了求解非线性方程组的GT算法。

分析了常微分方程边值问题及其数值解法、有限元方法和区域分裂法的基本原理,给出了利用区域分裂法、有限元方法在小区域上离散一维常微分方程边值问题具体过程,给出了基于区域分裂和有限元离散的求解常微分方程边值问题的演化算法。

给出了郭涛算法求解非线性方程组的算例以及利用区域分裂法、有限元法和郭涛算法求解常微分方程边值问题的算例并对结果进行了分析。本文改进了求解非线性方程组的GT算法。该算法可以在演化过程中自适应调整搜索空间和种群从而加快收敛,并以它为基础提出了一类新的求解常微分方程边值问题的数值解的演化算法。

3.期刊论文贺春华.张湘伟.吕文阁.HE Chun-hua.ZHANG Xiang-wei.LV Wen-ge竞选优化算法求解非线性方程组的应用研究-计算机工程与应用2010,46(14)

针对非线性方程组的求解在工程上具有广泛的实际意义,经典的数值求解方法存在其收敛性依赖于初值而实际计算中初值难确定的问题,将复杂非线性方程组的求解问题转化为函数优化问题,引入竞选优化算法进行求解.同时竞选优化算法求解时无需关心方程组的具体形式,可方便求解几何约束问题.通过对典型非线性测试方程组和几何约束问题实例的求解,结果表明了竞选优化算法具有较高的精确性和收敛性,是应用于非线性方程组求解的一种可行和有效的算法.

4.学位论文刘丽芳粒子群算法的改进及应用2008

粒子群优化算法是在对鸟群捕食行为模拟的基础上提出的一种群集智能算法,是进化计算领域中一个新的分支。它的主要特点是原理简单、参数少、收敛速度较快、易于实现。因此,该算法一提出就吸引了的广泛关注,逐渐成为一个新的研究热点。目前,粒子群优化算法应用于神经网络的训练、函数优化、多目标优化等领域并取得了较好的效果,有着广阔的应用前景。

论文的主要工作有:

(1)对粒子群优化算法的理论基础和研究现状作了简要的介绍,分析了粒子群优化算法的原理及算法流程,对算法参数的选择做了详细的研究,并进行了相应的仿真实验。

(2)分析了粒子群优化算法存在的问题,主要包括:参数设置问题、算法“早熟”问题和算法稳定性问题。在粒子群优化算法中,参数的设置会影响算法优化的结果,因此,如何选择合适的参数达到最好的优化结果是算法需要解决的问题。“早熟”问题是优化算法普遍存在的问题。如果粒子在搜索最优值时过早收敛,就会使算法的寻优停滞在局部最小值,无法找到全局最优解。由于算法中粒子的初始位置、速度和一些参数是被随机初始化的,因此每一次算法运行的结果并不相同,有时结果的差别很大,这样就导致了算法优化结果不稳定。

(3)针对粒子群优化算法存在的问题,论文提出了一种新的改进算法——基于粒子进化的多粒子群优化算法。该算法采用局部版的粒子群优化方法,从“粒子进化”和“多种群”两个方面对标准粒子群算法进行改进。多个粒子群彼此独立地搜索解空间,保持了粒子种群的多样性,从而增强了全局搜索能力;而适当的“粒子进化”可以使陷入局部最优的粒子迅速跳出,有效的避免了算法“早熟”,提高了算法的稳定性。通过对测试函数进行仿真实验,验证了该算法的有效性。

(4)将基于粒子进化的多粒子群优化算法应用于线性瞬时混合的盲源分离。将该算法的仿真实验结果与标准粒子群优化算法的结果相比,前者在分离混合信号时所需要的迭代次数少,算法的稳定性高。

(5)将基于粒子进化的多粒子群优化算法用于求解非线性方程组。该算法求解精度高、收敛速度快,而且克服了一些算法对初值的敏感和需要函数可导的困难,能较快地求出复杂非线性方程组的最优解。数值仿真结果显示了该算法的有效性和可行性,为求解非线性方程组提供了一种实用的方法。

相关文档
最新文档