利用matlab遗传工具箱求解非线性方程组

合集下载

非线性规划的MATLAB解法

非线性规划的MATLAB解法
特点
非线性规划问题通常具有多个局部最 优解,解的稳定性与初始条件有关, 需要使用特定的算法来找到全局最优 解。
非线性规划的应用场景
数据拟合、模型选择、参 数估计等。
生产计划、物流优化、设 备布局等。
投资组合优化、风险管理、 资本预算等。
金融
工业
科研
非线性规划的挑战与解决方法
挑战
非线性规划问题可能存在多个局部最优解,且解的稳定性与初始条件密切相关,需要使用特定的算法来找到全局 最优解。
共轭梯度法
总结词
灵活、适用于大型问题、迭代方向交替
详细描述
共轭梯度法结合了梯度下降法和牛顿法的思 想,通过迭代更新搜索方向,交替使用梯度 和共轭方向进行搜索。该方法适用于大型非 线性规划问题,具有较好的灵活性和收敛性。
04
非线性规划问题的约束 处理
不等式约束处理
处理方式
在Matlab中,可以使用 `fmincon`函数来求解非线性规划 问题,该函数可以处理不等式约 束。
要点二
详细描述
这类问题需要同时考虑多个目标函数,每个目标函数可能 有不同的优先级和权重。在Matlab中,可以使用 `gamultiobj`函数来求解这类问题。该函数可以处理具有 多个目标函数的约束优化问题,并允许用户指定每个目标 函数的权重和优先级。
谢谢观看
具体操作
将等式约束条件表示为线性方程组,并使用`Aeq`参 数指定系数矩阵,使用`beq`参数指定常数向量。
注意事项
等式约束条件需要在可行域内满足,否则会 导致求解失败。
边界约束处理
处理方式
边界约束可以通过在目标函数中添加惩罚项来处理,或者使用专门的优化算法来处理。
具体操作
在目标函数中添加惩罚项时,需要在目标函数中添加一个与边界约束相关的项,并调整 其权重以控制边界约束的重要性。

基于MATLAB遗传算法工具箱的非线性电路求解

基于MATLAB遗传算法工具箱的非线性电路求解

2 3 / 3 6
8 3 — 8 6
CN 2 2 - l 3 2 3 / N
基 于 MAT L AB遗传算法工 具箱的非线性 电路求解
姚 齐 国, 刘玉 良, 李 林 , 刘娟 意 , 叶继 英 , 胡 佳 文
( 浙 江海 洋学 院船 舶与海 洋工 程学 院 , 浙江 舟 山 3 1 6 0 0 0 )
浙 江 海 洋 学 院教 改项 目 ( 2 0 1 1 5 7 )
点交叉 并生 成 2个 个体 ; 群 体 内允 许 有 相 同的个
体 存在 。其流 程 图如图 1所示 。
2 标 准 遗 传 算 法 在 求解 非 线 性 电路 中 的
重 视[ 。 ] 。
1 遗 传 算 法 简 介
遗 传算 法 ( Ge n e t i c A l g o r i t h m, 简称 G A) 的 原 理 启迪 于 自然 界 生物 进 化 的过 程 , 是 以达 尔 文 的生
遗 传算法 的两 大主 要特点 是群 体搜 索策 略和 群 体 中个 体之 间的信 息相互 交换 。它 实际 上是模 拟 由 个 体组 成 的群 体 的整 体 学 习过 程 , 其 中每 个 个 体 表 示 一个解 点 。遗传 算 法 的 实现 包 含 5个 基 本要 素 : 参 数编码 ; 初 始群 体 的设 定 ; 适 应 度 函数 的设 计 ; 遗 传 操作 ( 选择 、 交叉 、 变异 ) 设计 ; 控 制参数 设定 。GA 从 任一 初始化 的群 体 出发 , 通 过随 机选择 ( 使 群体 中

策 方 面也 有很 好 的应 用 实例 , 是2 l 世 纪有关 智 能计
收 稿 H期 : 2 0 1 3 —0 5 —1 3 基 金项 目 : 国家 星 火 计 划 项 目( 2 0 1 I GA7 0 0 I 9 0 ) 浙 江 省 自然 科 学 罐 金 项 目 ( L Y1 2 E 0 9 0 0 4 ) 浙江海洋学院科研项 目( 浙 海 院研 [ 2 0 1 2 1 2 0号 )

MATLAB应用 求解非线性方程

MATLAB应用 求解非线性方程

第7章 求解非线性方程7.1 多项式运算在MATLAB 中的实现一、多项式的表达n 次多项式表达为:n a +⋯⋯++=x a x a x a p(x)1-n 1-n 1n 0,是n+1项之和 在MATLAB 中,n 次多项式可以用n 次多项式系数构成的长度为n+1的行向量表示[a0, a1,……an-1,an]二、多项式的加减运算 设有两个多项式na +⋯⋯++=x a x a x a p1(x)1-n 1-n 1n 0和m b +⋯⋯++=x b x b x b p2(x)1-m 1-m 1m 0。

它们的加减运算实际上就是它们的对应系数的加减运算。

当它们的次数相同时,可以直接对多项式的系数向量进行加减运算。

当它们的次数不同时,应该把次数低的多项式无高次项部分用0系数表示。

例2 计算()()1635223-+++-x x x xa=[1, -2, 5, 3]; b=[0, 0, 6, -1]; c=a+b例 3 设()6572532345++-+-=x x x x x x f ,()3532-+=x x x g ,求f(x)+g(x)f=[3, -5, 2, -7, 5, 6]; g=[3, 5, -3]; g1=[0, 0, 0, g];%为了和f 的次数找齐f+g1, f-g1三、多项式的乘法运算conv(p1,p2)例4 在上例中,求f(x)*g(x)f=[3, -5, 2, -7, 5, 6]; g=[3, 5, -3]; conv(f, g)四、多项式的除法运算[Q, r]=deconv(p1, p2)表示p1除以p2,给出商式Q(x),余式r(x)。

Q,和r 仍为多项式系数向量 例4 在上例中,求f(x)/g(x)f=[3, -5, 2, -7, 5, 6]; g=[3, 5, -3]; [Q, r]=deconv(f, g) 五、多项式的导函数p=polyder(P):求多项式P 的导函数 p=polyder(P,Q):求P ·Q 的导函数[p,q]=polyder(P,Q):求P/Q 的导函数,导函数的分子存入p ,分母存入q 。

应用MATLAB进行非线性回归分析

应用MATLAB进行非线性回归分析

应用MATLAB进行非线性回归分析摘要早在十九世纪,英国生物学家兼统计学家高尔顿在研究父与子身高的遗传问题时,发现子代的平均高度又向中心回归大的意思,使得一段时间内人的身高相对稳定。

之后回归分析的思想渗透到了数理统计的其他分支中。

随着计算机的发展,各种统计软件包的出现,回归分析的应用就越来越广泛。

回归分析处理的是变量与变量间的关系。

有时,回归函数不是自变量的线性函数,但通过变换可以将之化为线性函数,从而利用一元线性回归对其进行分析,这样的问题是非线性回归问题。

下面的第一题:炼钢厂出钢水时用的钢包,在使用过程中由于钢水及炉渣对耐火材料的侵蚀,使其容积不断增大。

要找出钢包的容积用盛满钢水时的质量与相应的实验次数的定量关系表达式,就要用到一元非线性回归分析方法。

首先我们要对数据进行分析,描出数据的散点图,判断两个变量之间可能的函数关系,对题中的非线性函数,参数估计是最常用的“线性化方法”,即通过某种变换,将方程化为一元线性方程的形式,接着我们就要对得到的一些曲线回归方程进行选择,找出到底哪一个才是更好一点的。

此时我们通常可采用两个指标进行选择,第一个是决定系数,第二个是剩余标准差。

进而就得到了我们想要的定量关系表达式。

第二题:给出了某地区1971—2000年的人口数据,对该地区的人口变化进行曲线拟合。

也用到了一元非线性回归的方法。

首先我们也要对数据进行分析,描出数据的散点图,然后用MATLAB编程进行回归分析拟合计算输出利用Logistic模型拟合曲线。

关键词:参数估计,Logistic模型,MATLAB正文一、一元非线性回归分析的求解思路:•求解函数类型并检验。

•求解未知参数。

可化曲线回归为直线回归,用最小二乘法求解;可化曲线回归为多项式回归。

二、回归曲线函数类型的选取和检验1、直接判断法2、作图观察法,与典型曲线比较,确定其属于何种类型,然后检验。

3、直接检验法(适应于待求参数不多的情况)4、表差法(适应于多想式回归,含有常数项多于两个的情况)三、化曲线回归为直线回归问题用直线检验法或表差法检验的曲线回归方程都可以通过变量代换转化为直线回归方程,利用线性回归分析方法可求得相应的参数估计值。

matlab求解非线性方程组及极值

matlab求解非线性方程组及极值

matlab求解非线性方程组及极值默认分类2010-05-18 15:46:13 阅读1012 评论2 字号:大中小订阅一、概述:求函数零点和极值点:Matlab中三种表示函数的方法: 1. 定义一个m函数文件, 2.使用函数句柄; 3.定义inline函数, 其中第一个要掌握简单函数编写, 二, 三中掌握一个。

函数的'常规'使用有了函数了, 我们怎么用呢, 一种是直接利用函数来计算, 例如: sin(pi), 还有我们提到的mysqr(3)...另一种是函数画图, 例如Plottools中提到的ezplot, ezsurf... 但是这也太小儿科了, 有没有想过定义函数后, 利用它来: 求解零点(即解f(x)=0方程), 最优化(求最值/极值点), 求定积分, 常微分方程求解等. 当然这里由于篇幅有限(空间快满了)以及这个只是'基础教程'的缘故, 只提及一些皮毛知识, 掌握这些后, 如果需要你可以进一步学习.解f(x)=0已知函数求解函数值=0所表示的方程, Matlab中有两个函数可以做到, fzero和fsolve前者只能解一元方程, 后者可以解多元方程组, 不过基本使用形式上差不多:解=fzero(函数, 初值, options)解=fsolve(函数, 初值, options)关于解: fzero给出的是x单值的解, fsolve给出的是解x可能处于的区间, 当然, 这个区间很窄.关于'函数', 还记得前面提到的三种表示方法吧, 在这里都可以用, 记住就是: 如果直接使用函数名, 要用单引号将它括起来, 而函数句柄, inline函数可以直接使用.关于'初值': 电脑比较笨, 它寻找解的办法是尝试不同地x值, 摸索解在哪里, 所以我们一开始就要给它指明从哪里开始下手, 初值这里, 可以只给它一个值, 让它在这个值附近找解, 也可以给它一个区间(区间用[下限,上限]这种方式表示), 它会在这个区间内找解.fzero的一些局限, 如果你给定的初值是区间, 而恰好函数在区间端点处同号, fzero会出错, 而如果你只给一个初值, fezro又有可能'走错方向', 例如给初值2让它解mysqr这个函数方程就出错了, FT!寻找函数极值/最值Matlab中也有两个函数可以做到, 是: fminbnd: 寻找一元函数极小值; fminsearch: 寻找多元函数极小值(当然一元也行). 别问我怎么没有找极大值的Matlab函数, 你把原函数取负数, 寻找它的极小值不就行了. 相关语法:x=fminbnd(函数, 区间起始值, 区间终止值)x=fminsearch(函数, 自变量初值)相关说明: fminbnd中指定要查找极小值的自变量区间, 好像不指定也行, 不过那样的话, 如果函数有多个极小值就可能比较难以预料结果了.fminsearch中要给定一个初值, 这个初值可以是自变量向量(将自变量依次排在一起组成向量)的初值, 也可以是表示向量初值区间的一个矩阵.函数: 那三种形式都适用, 但是记住, 直接使用函数名称需要加单引号!cite from:/qq529312840/blog/item/3687e4c7e7e2d6d9d0006049.html二、实例+讲解(1)非线性方程数值求解:1 单变量非线性方程求解在MATLAB中提供了一个fzero函数,可以用来求单变量非线性方程的根。

matlab求解非线性方程组

matlab求解非线性方程组

非线性方程组求解1.mulStablePoint用不动点迭代法求非线性方程组的一个根function [r,n]=mulStablePoint(F,x0,eps)%非线性方程组:f%初始解:a%解的精度:eps%求得的一组解:r%迭代步数:nif nargin==2eps=1.0e-6;endx0 = transpose(x0);n=1;tol=1;while tol>epsr= subs(F,findsym(F),x0); %迭代公式tol=norm(r-x0); %注意矩阵的误差求法,norm为矩阵的欧几里德范数n=n+1;x0=r;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endend2.mulNewton用牛顿法法求非线性方程组的一个根function [r,n]=mulNewton(F,x0,eps)if nargin==2eps=1.0e-4;endx0 = transpose(x0);Fx = subs(F,findsym(F),x0);var = findsym(F);dF = Jacobian(F,var);dFx = subs(dF,findsym(dF),x0);r=x0-inv(dFx)*Fx;n=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);dFx = subs(dF,findsym(dF),x0);r=x0-inv(dFx)*Fx; %核心迭代公式tol=norm(r-x0);n=n+1;if(n>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend3.mulDiscNewton用离散牛顿法法求非线性方程组的一个根function [r,m]=mulDiscNewton(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=transpose(x0)-inv(J)*fx;m=1;tol=1;while tol>epsxs=r;fx = subs(F,findsym(F),xs);J = zeros(n,n);for i=1:nx1 = xs;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=xs-inv(J)*fx; %核心迭代公式tol=norm(r-xs);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;4.mulMix用牛顿-雅可比迭代法求非线性方程组的一个根function [r,m]=mulMix(F,x0,h,l,eps)if nargin==4eps=1.0e-4;endn = length(x0);J = zeros(n,n);Fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));C =D - J;inD = inv(D);H = inD*C;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = Hm*inD*Fx;r = transpose(x0)-dr; m=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));C =D - J;inD = inv(D);H = inD*C;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = Hm*inD*Fx;r = x0-dr; %核心迭代公式tol=norm(r-x0);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend5.mulNewtonSOR用牛顿-SOR迭代法求非线性方程组的一个根function [r,m]=mulNewtonSOR(F,x0,w,h,l,eps)if nargin==5eps=1.0e-4;endn = length(x0);J = zeros(n,n);Fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));L = -tril(J-D);U = -triu(J-D);inD = inv(D-w*L);H = inD*(D - w*D+w*L);;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = w*Hm*inD*Fx;r = transpose(x0)-dr;m=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));L = -tril(J-D);U = -triu(J-D);inD = inv(D-w*L);H = inD*(D - w*D+w*L);;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = w*Hm*inD*Fx;r = x0-dr; %核心迭代公式tol=norm(r-x0);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend6.mulDNewton用牛顿下山法求非线性方程组的一个根function [r,m]=mulDNewton(F,x0,eps)%非线性方程组:F%初始解:x0%解的精度:eps%求得的一组解:r%迭代步数:nif nargin==2eps=1.0e-4;endx0 = transpose(x0);dF = Jacobian(F);m=1;tol=1;while tol>epsttol=1;w=1;Fx = subs(F,findsym(F),x0);dFx = subs(dF,findsym(dF),x0);F1=norm(Fx);while ttol>=0 %下面的循环是选取下山因子w的过程r=x0-w*inv(dFx)*Fx; %核心的迭代公式Fr = subs(F,findsym(F),r);ttol=norm(Fr)-F1;w=w/2;endtol=norm(r-x0);m=m+1;x0=r;if(m>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endend7.mulGXF1用两点割线法的第一种形式求非线性方程组的一个根function [r,m]=mulGXF1(F,x0,x1,eps)format long;if nargin==3eps=1.0e-4;endx0 = transpose(x0);x1 = transpose(x1);n = length(x0);fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);for i=1:nxt = x1;xt(i) = x0(i);J(:,i) = (subs(F,findsym(F),xt)-fx1)/h(i);endr=x1-inv(J)*fx1;m=1;tol=1;while tol>epsx0 = x1;x1 = r;fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);for i=1:nxt = x1;xt(i) = x0(i);J(:,i) = (subs(F,findsym(F),xt)-fx1)/h(i);endr=x1-inv(J)*fx1;tol=norm(r-x1);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;8.mulGXF2用两点割线法的第二种形式求非线性方程组的一个根function [r,m]=mulGXF2(F,x0,x1,eps)format long;if nargin==3eps=1.0e-4;endx0 = transpose(x0);x1 = transpose(x1);n = length(x0);fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);xt = x1;xt(1) = x0(1);J(:,1) = (subs(F,findsym(F),xt)-subs(F,findsym(F),x1))/h(1);for i=2:nxt = x1;xt(1:i) = x0(1:i);xt_m = x1;xt_m(1:i-1) = x0(1:i-1);J(:,i) = (subs(F,findsym(F),xt)-subs(F,findsym(F),xt_m))/h(i);endr=x1-inv(J)*fx1;m=1;tol=1;while tol>epsx0 = x1;x1 = r;fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);xt = x1;xt(1) = x0(1);J(:,1) = (subs(F,findsym(F),xt)-subs(F,findsym(F),x1))/h(1);for i=2:nxt = x1;xt(1:i) = x0(1:i);xt_m = x1;xt_m(1:i-1) = x0(1:i-1);J(:,i) = (subs(F,findsym(F),xt)-subs(F,findsym(F),xt_m))/h(i);endr=x1-inv(J)*fx1;tol=norm(r-x1);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;9.mulVNewton用拟牛顿法求非线性方程组的一组解function [r,m]=mulVNewton(F,x0,A,eps)%方程组:F%方程组的初始解:x0% 初始A矩阵:A%解的精度:eps%求得的一组解:r%迭代步数:mif nargin==2A=eye(length(x0)); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendx0 = transpose(x0);Fx = subs(F, findsym(F),x0);r=x0-A\Fx;m=1;tol=1;while tol>epsx0=r;Fx = subs(F, findsym(F),x0);r=x0-A\Fx;y=r-x0;Fr = subs(F, findsym(F),r);z= Fr-Fx;A1=A+(z-A*y)*transpose(y)/norm(y); %调整A A=A1;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end10.mulRank1用对称秩1算法求非线性方程组的一个根function [r,n]=mulRank1(F,x0,A,eps)if nargin==2l = length(x0);A=eye(l); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-inv(A)*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-inv(A)*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;A1=A+ fr *transpose(fr)/(transpose(fr)*y); %调整A A=A1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end11.mulDFP用D-F-P算法求非线性方程组的一组解function [r,n]=mulDFP(F,x0,A,eps)if nargin==2l = length(x0);B=eye(l); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-B*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-B*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;B1=B+ y*y'/(y'*z)-B*z*z'*B/(z'*B*z); %调整AB=B1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end12.mulBFS用B-F-S算法求非线性方程组的一个根function [r,n]=mulBFS(F,x0,B,eps)if nargin==2l = length(x0);B=eye(l); %B取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-B*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-B*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;u = 1 + z'*B*z/(y'*z);B1= B+ (u*y*y'-B*z*y'-y*z'*B)/(y'*z); %调整B B=B1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end13.mulNumYT用数值延拓法求非线性方程组的一组解function [r,m]=mulNumYT(F,x0,h,N,eps)format long;if nargin==4eps=1.0e-8;endn = length(x0);fx0 = subs(F,findsym(F),x0);x0 = transpose(x0);J = zeros(n,n);for k=0:N-1fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endinJ = inv(J);r=x0-inJ*(fx-(1-k/N)*fx0);x0 = r;endm=1;tol=1;while tol>epsxs=r;fx = subs(F,findsym(F),xs);J = zeros(n,n);for i=1:nx1 = xs;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=xs-inv(J)*fx; %核心迭代公式tol=norm(r-xs);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;14.DiffParam1用参数微分法中的欧拉法求非线性方程组的一组解function r=DiffParam1(F,x0,h,N)%非线性方程组:f%初始解:x0%数值微分增量步大小:h%雅可比迭代参量:l%解的精度:eps%求得的一组解:r%迭代步数:nx0 = transpose(x0);n = length(x0);ht = 1/N;Fx0 = subs(F,findsym(F),x0);for k=1:NFx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endinJ = inv(J);r = x0 - ht*inJ*Fx0;x0 = r;end15.DiffParam2用参数微分法中的中点积分法求非线性方程组的一组解function r=DiffParam2(F,x0,h,N)%非线性方程组:f%初始解:x0%数值微分增量步大小:h%雅可比迭代参量:l%解的精度:eps%求得的一组解:r%迭代步数:nx0 = transpose(x0);n = length(x0);ht = 1/N;Fx0 = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nxt = x0;xt(i) = xt(i)+h(i);J(:,i) = (subs(F,findsym(F),xt)-Fx0)/h(i);endinJ = inv(J);x1 = x0 - ht*inJ*Fx0;for k=1:Nx2 = x1 + (x1-x0)/2;Fx2 = subs(F,findsym(F),x2);J = zeros(n,n);for i=1:nxt = x2;xt(i) = xt(i)+h(i);J(:,i) = (subs(F,findsym(F),xt)-Fx2)/h(i);endinJ = inv(J);r = x1 - ht*inJ*Fx0;x0 = x1;x1 = r;end16.mulFastDown用最速下降法求非线性方程组的一组解function [r,m]=mulFastDown(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endlamda = fx/sum(diag(transpose(J)*J));r=x0-J*lamda; %核心迭代公式fr = subs(F,findsym(F),r);tol=dot(fr,fr);x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;17.mulGSND用高斯牛顿法求非线性方程组的一组解function [r,m]=mulGSND(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endDF = inv(transpose(J)*J)*transpose(J);r=x0-DF*fx; %核心迭代公式tol=norm(r-x0);x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;18.mulConj用共轭梯度法求非线性方程组的一组解function [r,m]=mulConj(F,x0,h,eps)format long;if nargin==3eps=1.0e-6;endn = length(x0);x0 = transpose(x0);fx0 = subs(F,findsym(F),x0);p0 = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)*(1+h);p0(:,i) = -(subs(F,findsym(F),x1)-fx0)/h;endm=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endlamda = fx/sum(diag(transpose(J)*J));r=x0+p0*lamda; %核心迭代公式fr = subs(F,findsym(F),r);Jnext = zeros(n,n);for i=1:nx1 = r;x1(i) = x1(i)+h;Jnext(:,i) = (subs(F,findsym(F),x1)-fr)/h;endabs1 = transpose(Jnext)*Jnext;abs2 = transpose(J)*J;v = abs1/abs2;if (abs(det(v)) < 1)p1 = -Jnext+p0*v;elsep1 = -Jnext;endtol=norm(r-x0);p0 = p1;x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;19.mulDamp用阻尼最小二乘法求非线性方程组的一组解function [r,m]=mulDamp(F,x0,h,u,v,eps)format long;if nargin==5eps=1.0e-6;endFI = transpose(F)*F/2;n = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsj = 0;fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;afx = subs(F,findsym(F),x1);J(:,i) = (afx-fx)/h;endFIx = subs(FI,findsym(FI),x0);for i=1:nx2 = x0;x2(i) = x2(i)+h;gradFI(i,1) = (subs(FI,findsym(FI),x2)-FIx)/h;ends=0;while s==0A = transpose(J)*J+u*eye(n,n);p = -A\gradFI;r = x0 + p;FIr = subs(FI,findsym(FI),r);if FIr<FIxif j == 0u = u/v;j = 1;elses=1;endelseu = u*v;j = 1;if norm(r-x0)<epss=1;endendendx0 = r;tol = norm(p);m=m+1;if(m>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endendformat short;。

matlab解非线性方程

matlab解非线性方程

matlab解非线性方程MATLAB求解非线性方程一、Matlab求解非线性方程的原理1. 非线性方程是指当函数中的变量出现不同的次方数时,得出的方程就是非线性的。

求解非线性方程的准确性决定于得出的解集是否丰富,以及解的精度是否符合要求。

2. Matlab是一款多功能的软件,可以快速求解工程中的数学方程和模型,包括一元非线性方程。

Matlab 具有非线性解析计算能力,可以极大地提高求解效率。

二、Matlab求解非线性方程的方法1. 使用数值解法求解:包括牛顿法、割线法、共轭梯度法、梯度下降法等,可以采用Matlab编写程序,来计算满足一元非线性方程的解。

2. 使用符号解法求解:在Matlab中,可以直接使用solve函数来解决一元非线性方程。

3. Matlab求解非线性方程的技巧:1)定义区间:对非线性方程给出一个精确定义的区间,matlab会将该区间分成若干区间,在这些区间内搜索解;2)多给出初始值:可以给出若干个初始值,令matlab均匀搜索多个解;3)改变算法:可以更改matlab中不同的求解算法;4)换元法:可以通过改变不同的元变量,将非线性方程变成多个简单的线性方程,然后利用matlab求解。

三、Matlab求解非线性方程的特点1. 高效:Matlab求解的方式高效有效,性能优异,可以节省大量的求解时间。

2. 准确:Matlab采用符号解法时,解的准确度精度更高,可以满足大部分要求。

3. 节省资源:Matlab求解非线性方程节省计算机资源,可以很好地利用资源,提高工作效率。

四、 Matlab求解非线性方程的步骤1. 对结构表达式编写程序;2. 设定相应的条件;3. 优化程序;4. 运行程序;5. 分析结果;6. 测试代码;7. 验证学习结果。

五、Matlab求解非线性方程的事例例1:已知一元非线性方程f ( x ) = x^3 - 4x - 9 = 0,求精度范围在[-5,5]之间的实根解法:使用Matlab符号解法求解solX = solve('x^3-4*x-9 = 0','x');输出结果为:solX =3-31运行程序,即可得到由-5到5的实根。

用Matlab求解非线性方程组

用Matlab求解非线性方程组
创新教育
用 Matlab 求解非线性方程组
任中贵 1 焦艳会 2 张宏蕃 3
( 1、哈尔滨理工大学 应用科学学院, 黑龙江 哈尔滨 150080 2、哈尔滨商业大学, 黑龙江 哈尔滨 150000 3、黑龙江工程学院, 黑龙江 哈尔滨 150000)
摘 要: 讨论了利用 Madab 符号对象求解非线性方程组, 进行函数绘图, 粗略确定解的存在区间, 再利用 Madab 功 能 函 数 求 解 数 值 解 的 方 法. 并且编写了 Broyden 法的迭代方法程序求解非线性方程组。
docinchoosebestliteraturebestliterature119用matlab求解非线性方程组1哈尔滨理工大学应用科学学院黑龙江哈尔滨1500802哈尔滨商业大学黑龙江哈尔滨1500003黑龙江工程学院黑龙江哈尔滨1500001引言非线性方程组解的几何意义与线性方程组类似方程组中每个方程定义了一个曲超平面非线性方程组的解为所有超平面的交点但是这些曲面可能相交也可能不相交情况比平面复杂
存在区间, 再使用工具箱函数求解方程组的数
然 后 对 求 解 起 点 作 一 个 猜 想 , 如 x0=[0; 1]
值解的方法, 过程简单, 结果精度高, 而且由于 (这一步需要利用函数绘图功能或其他数 学 方
Matlab 自带的工具箱函数功能强大, 极大地减 法来确定)。再调用 指 令[x, fval]=fsolve(' myfun' ,
关键词: 符号对象; 迭代方法; Broyden 法; 非线性方程组
1 引言
[x, fval, exitflag, output]=fsolve(…)返 回 一 个 包 含
非 线 性 方 程 组 解 的 几 何 意 义 与 线 性 方 程 最优化信息的输出结构 output。

非线性方程组求解及matlab实现讲解

非线性方程组求解及matlab实现讲解

牛顿迭代法收敛速度快,但它要求计算函数导数的值
弦截法


牛顿迭代法收敛速度快,但它要求计算函数导数的值。 在科学与工程计算中,常会碰到函数导数不易计算或 者算式复杂而不便计算的情况 弦截法的基本思想与牛顿法相似,即将非线性函数线 性化后求解。两者的差别在于弦截法实现函数线性化 的手段采用的是两点间的弦线(用差商代替导数), 而不是某点的切线
f xk xk 1 xk xk xk 1 f xk f xk 1
弦截法示意图
弦截法注意事项


与牛顿法只需给出一个初值不同,弦截法需要给出两 个迭代初值。如果与逐步扫描法结合起来,则最后搜 索的区间的两个端点值常可作为初值 弦截法虽比牛顿法收敛速度稍慢,但在每次迭代中只 需计算一次函数值,又不必求函数的导数,且对初值 要求不甚苛刻,是工程计算中常用的有效计算方法之 一



不动点迭代 牛顿法 弦截法 抛物线法 威格斯坦法(Wegstein)
不动点迭代法
我们可以通过多种方法将方程式
f x 0
例如方程
转化为
x g x
c0
x c 0,
2
可以转化为以下不同形式
2 x x xc (1)
(2)
x
x2 c 1 c x (3) x x 2x 2 x
松弛迭代法

有些非线性方程用前面的不动点迭代法求解时, 迭代过程是发散的。这时可以引入松弛因子, 利用松弛迭代法。通过选择合适的松弛因子, 就可以使迭代过程收敛
xn1 xn xn xn
迭代法是计算数学的一种重要方法,用途很广,求解 线性方程组和矩阵特征值时也要用到这种方法

用matlab求解非线性方程组的几种方法之程序.

用matlab求解非线性方程组的几种方法之程序.

表 2-1 求解多项式方程(组)的 roots 命令
求方程f(x)=q(x)的根可以用MATLAB命令: >> x=solve('方程f(x)=q(x)',’待求符号变量x’) 求方程组fi(x1,…,xn)=qi(x1,…,xn) (i=1,2,…,n)的根可以用MATLAB命令: >>E1=sym('方程f1(x1,…,xn)=q1(x1,…,xn)'); ……………………………………………………. En=sym('方程fn(x1,…,xn)=qn(x1,…,xn)'); [x1,x2,…,xn]=solve(E1,E2,…,En, x1,…,xn)
2.1 方程( 方程(组)的根及其 MATLAB 命令
出 dfa 为多项式 f ( x ) 的导数 f ( x) 的系数.
教育电子音像出版社 作者:任玉杰 第二章 非线性方程(组)的数值解法的 MATLAB 程序
非线性方程( 非线性方程(组)的数值解法
列) ,运行后输出 dfx 为多项式 f ( x ) 的导数 f ( x) .
认卿贬萝侗懒焚拆柴铱缅开隆邦披匣握淹夫诛锁蛹乾佛含翰宾麦聪海溯闯井勤巫蚀裕芍雪牧携魄腾柜锄踞萨钉砚允抛赤娄弧忽雹昨敢斥描凿念羹屈屹铜阀隙初州级遣月蹄誊汁腐蓬哺绿戮颠饿仰待帘宛拎道责惑苟哨眨披额老丁厨剥烹擎逢柯恬啼桔敦馋罢组警汹胃耸浅鉴枷谎彬钢监核秒甲毡酝般朗宰碍撕恍榔监颊爷角拟用贷摘钠火在仇翘雪樱黎暴幂荒艰蒂稿普娄缸误冈免人制挤耐画迹录鞋秤叹缆护瓣泳阂畔入鳖丽刘冲寥股泅无相驯桓而恳境搁琼类骸滩稠膏泽现伏期婉噬秒饰镊鹏倪讶镑淑召牵舟交殿侥哨板洱吠降税豪豆泵乒柬十很皿履踞前乎瑟氦筒厘陨污搂归酣差镇掠媒胞隐谦掣腮用matlab求解非线性方程组的几种方法之程序囱漠砾癸玉琅底佬瓷珠慑攀肥银臆诺陆疏砌馈绍瘦盂鸦千稗火荒支蛀辰址疾诊暂詹苞耽蝉耪戎诫婶在凹衔账粤嗜笺塔绝搭闪袒姬徘拘植热嚎雄姨拐标巨秋亿盖遂鹤渝揍钟慈客絮撩锋侈签践赞免沛加撵夺俩森免纶眶燕啃撂舰拱蝴欣购奥瘩帧顽诈殆扼赦疲许唬拣肝啤捞唤远霜囊诊州屏九伊耪离那贮焙赏龄酵须兵酚福除肄蔓妙啥民参舷轰捕铀慷缉胖进二灸擞啪抹项训雇揽坝侍命递擒矫瘤免参冕戏柱更力缺纂舜旗衡呐攻嘱之审疆剁咒盆清貉农鼻尚硕距撩转络护爪秸烫狈饮穗敢窿噎霸核氯胚剃悟洪迷统伏恐科射耪瞒政箍玩我泅饱胃隆琐歼隙畜问扼戌欲鸽验腮辨隙然绽协哲败闺点访平契甜用matlab求解非线性方程组的几种方法之程序抱邀库胯幼釉纫杖趣詹透倘十歉垮遏蔫贵民投构芜迂尺廉艘昭搓角几串慨馈彬沪澡间滞氓魔谗蟹曹铡释农盼穿于辊频磕各苟栖患痈凡疆酬玻胳棚割邱求雄酿攀艾楞立贩方圾捂奶岩白涯糖摄逼霉土审贷棵浅燃肾胚绸纠旋邀擒俐蹭株网弃霍日程枕终挽欲刹悲络泥晃颇惑革配阶砍轨沽并挨淤椽酬拓马邻乾颁鼎乾埃录巧址袁宋矢曲撼仙雏阂甸谦幸贰吏斌碉倪研肆代樟纽曼话饱矽俄佯聊这碴镐腥双蓉祸啦迅歧泊谈隐床蒜妖步咳盈淀工话剖务披渍横兼猪斩熔妄慧凝宁坚寸模哉巳狗输谈棠综哩个岗唤御蚤皆式卵坊星葱琢郑唬原醉诺麓捧挖淑锰荧睬尾枫绚咒燥珊瘪标舷兹押只拼兔坝埋烛哄栈靶

使用Matlab进行非线性优化问题求解的技巧

使用Matlab进行非线性优化问题求解的技巧

使用Matlab进行非线性优化问题求解的技巧介绍:非线性优化在工程、金融、科学等领域广泛应用,它涉及到求解一个目标函数的最小值或最大值,并且满足一系列约束条件。

Matlab是一个功能强大的数值计算软件,提供了许多用于求解非线性优化问题的工具和函数。

本文将介绍一些使用Matlab进行非线性优化问题求解的技巧,帮助读者更有效地应用这些工具。

一、定义目标函数和约束条件在使用Matlab求解非线性优化问题之前,首先要明确问题的数学模型。

假设我们要最小化一个目标函数F(x),并且存在一系列约束条件g(x) <= 0和h(x) = 0。

在Matlab中,可以使用函数形式或者符号形式来定义目标函数和约束条件。

例如,使用函数形式可以这样定义目标函数和约束条件:```matlabfunction f = objective(x)f = x(1)^2 + x(2)^2;endfunction [c, ceq] = constraints(x)c = [x(1) + x(2) - 1; x(1)^2 + x(2)^2 - 2];ceq = [];end```其中,objective函数定义了目标函数,constraints函数定义了约束条件。

在constraints函数中,c表示不等式约束条件g(x) <= 0,ceq表示等式约束条件h(x) = 0。

二、使用fmincon函数求解非线性优化问题Matlab提供了fmincon函数来求解非线性优化问题。

该函数的基本语法如下:```matlab[x, fval] = fmincon(fun, x0, A, b, Aeq, beq, lb, ub, nonlcon, options)```其中,fun表示目标函数,x0表示初始解,A表示不等式约束条件的线性部分,b表示不等式约束条件的右侧常数,Aeq表示等式约束条件的线性部分,beq表示等式约束条件的右侧常数,lb表示变量的下界,ub表示变量的上界,nonlcon表示非线性约束条件,options表示优化选项。

matlab-遗传算法工具箱函数及实例讲解

matlab-遗传算法工具箱函数及实例讲解

matlab-遗传算法工具箱函数及实例讲解最近研究了一下遗传算法,因为要用遗传算法来求解多元非线性模型。

还好用遗传算法的工具箱予以实现了,期间也遇到了许多问题。

首先,我们要熟悉遗传算法的基本原理与运算流程。

基本原理:遗传算法是一种典型的启发式算法,属于非数值算法范畴。

它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。

它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。

遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。

从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。

如此模仿生命的进化进行不断演化,直到满足期望的终止条件。

运算流程:Step1:对遗传算法的运行参数进行赋值。

参数包括种群规模、变量个数、交叉概率、变异概率以及遗传运算的终止进化代数。

Step2:建立区域描述器。

根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。

Step3:在Step2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。

Step4:执行比例选择算子进行选择操作。

Step5:按交叉概率对交叉算子执行交叉操作。

Step6:按变异概率执行离散变异操作。

Step7:计算Step6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。

Step8:判断是否满足遗传运算的终止进化代数,不满足则返回Step4,满足则输出运算结果。

其次,运用遗传算法工具箱。

运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATB某、GAOT以及MathWork公司推出的GADS。

实际上,GADS就是大家所看到的Matlab中自带的工具箱。

使用MATLAB遗传算法工具实例(详细)

使用MATLAB遗传算法工具实例(详细)
133
遗传算法工具函数可以通过命令行和图形用户界面来使用遗传算法。直接搜索工具函数 也可以通过命令行和图形用户界面来进行访问。图形用户界面可用来快速地定义问题、设置 算法选项、对优化问题进行详细定义。 遗传算法与直接搜索工具箱还同时提供了用于优化管理、性能监控及终止准则定义的工 具,同时还提供大量标准算法选项。 在优化运行的过程中,可以通过修改选项来细化最优解,更新性能结果。用户也可以提 供自己的算法选项来定制工具箱。 8.1.1.3 使用其他函数和求解器 遗传算法与直接搜索工具箱与 MATLAB 及优化工具箱是紧密结合在一起的。用户可以用 遗传算法或直接搜索算法来寻找最佳起始点,然后利用优化工具箱或用 MATLAB 程序来进一 步寻找最优解。通过结合不同的算法,可以充分地发挥 MATLAB 和工具箱的功能以提高求 解的质量。对于某些特定问题,使用这种方法还可以得到全局(最优)解。 8.1.1.4 显示、监控和输出结果 遗传算法与直接搜索工具箱还包括一系列绘图函数用来可视化优化结果。这些可视化功 能直观地显示了优化的过程,并且允许在执行过程中进行修改。 工具箱还包括一系列绘图函数用来可视化优化结果。这些可视化功能直观地显示了优化 的过程,并且允许在执行过程中进行修改。该工具箱还提供了一些特殊绘图函数,它们不仅 适用于遗传算法,还适用于直接搜索算法。适用于遗传算法的函数包括函数值、适应度值和 函数估计。适用于直接搜索算法的函数包括函数值、分值直方图、系谱、适应度值、网格尺 寸和函数估计。这些函数可以将多个绘图一并显示,可直观方便地选取最优曲线。另外,用 户也可以添加自己的绘图函数。 使用输出函数可以将结果写入文件,产生用户自己的终止准则,也可以写入用户自己的 图形界面来运行工具箱求解器。除此之外,还可以将问题的算法选项导出,以便日后再将它 们导入到图形界面中去。 8.1.1.5 所需的产品支持 遗传算法与直接搜索工具箱作为其他优化方法的补充,可以用来寻找最佳起始点,然后 可以再通过使用传统的优化技术来进一步寻找最优解。 工具箱需要如下产品支持:(1) MATLAB。(2) 优化工具箱。 8.1.1.6 相关产品 与遗传算法与直接搜索工具箱相关的产品有: 统计工具箱——应用统计算法和概率模式。 神经网络工具箱——设计和仿真神经网络。 模糊逻辑工具箱——设计和仿真基于模糊逻辑的系统。 金融工具箱——分析金融数据和开发金融算法。 8.1.1.7 所需的系统及平台 遗传算法和直接搜索工具箱对于对于运行环境、支持平台和系统的需求,可随时通过访 问网站 /products/gads 了解最新发布的信息。 这里介绍的 MATLAB 7.0 Release 14 所需的最低配置是:Windows 系列操作系统,Pentium III 500 CPU、64MB RAM,空闲硬盘空间 600MB 以上。

MATLAB智能算法30个案例分析

MATLAB智能算法30个案例分析

MATLAB 智能算法30个案例分析第1 章1、案例背景遗传算法(Genetic Algorithm,GA)是一种进化算法,其基本原理是仿效生物界中的“物竞天择、适者生存”的演化法则。

遗传算法的做法是把问题参数编码为染色体,再利用迭代的方式进行选择、交叉以及变异等运算来交换种群中染色体的信息,最终生成符合优化目标的染色体。

在遗传算法中,染色体对应的是数据或数组,通常是由一维的串结构数据来表示,串上各个位置对应基因的取值。

基因组成的串就是染色体,或者叫基因型个体( Individuals) 。

一定数量的个体组成了群体(Population)。

群体中个体的数目称为群体大小(Population Size),也叫群体规模。

而各个个体对环境的适应程度叫做适应度( Fitness) 。

2、案例目录:1.1 理论基础1.1.1 遗传算法概述1. 编码2. 初始群体的生成3. 适应度评估4. 选择5. 交叉6. 变异1.1.2 设菲尔德遗传算法工具箱1. 工具箱简介2. 工具箱添加1.2 案例背景1.2.1 问题描述1. 简单一元函数优化2. 多元函数优化1.2.2 解决思路及步骤1.3 MATLAB程序实现1.3.1 工具箱结构1.3.2 遗传算法中常用函数1. 创建种群函数—crtbp2. 适应度计算函数—ranking3. 选择函数—select4. 交叉算子函数—recombin5. 变异算子函数—mut6. 选择函数—reins7. 实用函数—bs2rv8. 实用函数—rep1.3.3 遗传算法工具箱应用举例1. 简单一元函数优化2. 多元函数优化1.4 延伸阅读1.5 参考文献3、主程序:1. 简单一元函数优化:clcclear allclose all%% 画出函数图figure(1);hold on;lb=1;ub=2; %函数自变量范围【1,2】ezplot('sin(10*pi*X)/X',[lb,ub]); %画出函数曲线xlabel('自变量/X')ylabel('函数值/Y')%% 定义遗传算法参数NIND=40; %个体数目MAXGEN=20; %最大遗传代数PRECI=20; %变量的二进制位数GGAP=0.95; %代沟px=0.7; %交叉概率pm=0.01; %变异概率trace=zeros(2,MAXGEN); %寻优结果的初始值FieldD=[PRECI;lb;ub;1;0;1;1]; %区域描述器Chrom=crtbp(NIND,PRECI); %初始种群%% 优化gen=0; %代计数器X=bs2rv(Chrom,FieldD); %计算初始种群的十进制转换ObjV=sin(10*pi*X)./X; %计算目标函数值while gen<MAXGENFitnV=ranking(ObjV); %分配适应度值SelCh=select('sus',Chrom,FitnV,GGAP); %选择SelCh=recombin('xovsp',SelCh,px); %重组SelCh=mut(SelCh,pm); %变异X=bs2rv(SelCh,FieldD); %子代个体的十进制转换ObjVSel=sin(10*pi*X)./X; %计算子代的目标函数值[Chrom,ObjV]=reins(Chrom,SelCh,1,1,ObjV,ObjVSel); %重插入子代到父代,得到新种群X=bs2rv(Chrom,FieldD);gen=gen+1; %代计数器增加%获取每代的最优解及其序号,Y为最优解,I为个体的序号[Y,I]=min(ObjV);trace(1,gen)=X(I); %记下每代的最优值trace(2,gen)=Y; %记下每代的最优值endplot(trace(1,:),trace(2,:),'bo'); %画出每代的最优点grid on;plot(X,ObjV,'b*'); %画出最后一代的种群hold off%% 画进化图figure(2);plot(1:MAXGEN,trace(2,:));grid onxlabel('遗传代数')ylabel('解的变化')title('进化过程')bestY=trace(2,end);bestX=trace(1,end);fprintf(['最优解:\nX=',num2str(bestX),'\nY=',num2str(bestY),'\n'])2. 多元函数优化clcclear allclose all%% 画出函数图figure(1);lbx=-2;ubx=2; %函数自变量x范围【-2,2】lby=-2;uby=2; %函数自变量y范围【-2,2】ezmesh('y*sin(2*pi*x)+x*cos(2*pi*y)',[lbx,ubx,lby,uby],50); %画出函数曲线hold on;%% 定义遗传算法参数NIND=40; %个体数目MAXGEN=50; %最大遗传代数PRECI=20; %变量的二进制位数GGAP=0.95; %代沟px=0.7; %交叉概率pm=0.01; %变异概率trace=zeros(3,MAXGEN); %寻优结果的初始值FieldD=[PRECI PRECI;lbx lby;ubx uby;1 1;0 0;1 1;1 1]; %区域描述器Chrom=crtbp(NIND,PRECI*2); %初始种群%% 优化gen=0; %代计数器XY=bs2rv(Chrom,FieldD); %计算初始种群的十进制转换X=XY(:,1);Y=XY(:,2);ObjV=Y.*sin(2*pi*X)+X.*cos(2*pi*Y); %计算目标函数值while gen<MAXGENFitnV=ranking(-ObjV); %分配适应度值SelCh=select('sus',Chrom,FitnV,GGAP); %选择SelCh=recombin('xovsp',SelCh,px); %重组SelCh=mut(SelCh,pm); %变异XY=bs2rv(SelCh,FieldD); %子代个体的十进制转换X=XY(:,1);Y=XY(:,2);ObjVSel=Y.*sin(2*pi*X)+X.*cos(2*pi*Y); %计算子代的目标函数值[Chrom,ObjV]=reins(Chrom,SelCh,1,1,ObjV,ObjVSel); %重插入子代到父代,得到新种群XY=bs2rv(Chrom,FieldD);gen=gen+1; %代计数器增加%获取每代的最优解及其序号,Y为最优解,I为个体的序号[Y,I]=max(ObjV);trace(1:2,gen)=XY(I,:); %记下每代的最优值trace(3,gen)=Y; %记下每代的最优值endplot3(trace(1,:),trace(2,:),trace(3,:),'bo'); %画出每代的最优点grid on;plot3(XY(:,1),XY(:,2),ObjV,'bo'); %画出最后一代的种群hold off%% 画进化图figure(2);plot(1:MAXGEN,trace(3,:));grid onxlabel('遗传代数')ylabel('解的变化')title('进化过程')bestZ=trace(3,end);bestX=trace(1,end);bestY=trace(2,end);fprintf(['最优解:\nX=',num2str(bestX),'\nY=',num2str(bestY),'\nZ=',num2str(bestZ), '\n']) 第2 章基于遗传算法和非线性规划的函数寻优算法1.1案例背景1.1.1 非线性规划方法非线性规划是20世纪50年代才开始形成的一门新兴学科。

MATLAB求解非线性方程

MATLAB求解非线性方程
第一步:定义变量syms x y z ...;
第二步:求解[x,y,z,...]=solve('eqn1','eqn2',...,'eqnN','var1','var2',...'varN');
第三步:求出n位有效数字的数值解x=vpa(x,n);y=vpa(y,n);z=vpa(z,n);...。
If FUN is parameterized, you can use anonymous functions to capture the
problem-dependent parameters. Suppose you want to solve the system of
nonlinear equations given in the function myfun, which is parameterized
具体例子如下:
x^2 + x*y + y = 3
x^2 - 4*x + 3 = 0
解法:
>> [x,y] = solve('x^2 + x*y + y = 3','x^2 - 4*x + 3 = 0')
运行结果为
x =
1 3
y =
1 -3/2
即x等于1和3;y等于1和-1.5

>>[x,y] = solve('x^2 + x*y + y = 3','x^2 - 4*x + 3= 0','x','y')
2、变参数非线性方程组的求解

非线性整数规划的遗传算法matlab程序

非线性整数规划的遗传算法matlab程序

非线性整数规划的遗传算法Matlab程序(附图)通常,非线性整数规划是一个具有指数复杂度的NP问题,如果约束较为复杂,Matlab优化工具箱和一些优化软件比如lingo等,常常无法应用,即使能应用也不能给出一个较为令人满意的解。

这时就需要针对问题设计专门的优化算法。

下面举一个遗传算法应用于非线性整数规划的编程实例,供大家参考!模型的形式和适应度函数定义如下:这是一个具有200个01决策变量的多目标非线性整数规划,编写优化的目标函数如下,其中将多目标转化为单目标采用简单的加权处理。

function Fitness=FITNESS(x,FARM,e,q,w)%% 适应度函数% 输入参数列表% x 决策变量构成的4×50的0-1矩阵% FARM 细胞结构存储的当前种群,它包含了个体x% e 4×50的系数矩阵% q 4×50的系数矩阵% w 1×50的系数矩阵%%gamma=0.98;N=length(FARM);%种群规模F1=zeros(1,N);F2=zeros(1,N);for i=1:Nxx=FARM{i};ppp=(1-xx)+(1-q).*xx;F1(i)=sum(w.*prod(ppp));F2(i)=sum(sum(e.*xx));endppp=(1-x)+(1-q).*x;f1=sum(w.*prod(ppp));f2=sum(sum(e.*x));Fitness=gamma*sum(min([sign(f1-F1);zeros(1,N)]))+(1-gamma)*sum(min([sign(f2-F2);zeros(1,N)]));针对问题设计的遗传算法如下,其中对模型约束的处理是重点考虑的地方function [Xp,LC1,LC2,LC3,LC4]=MYGA(M,N,Pm)%% 求解01整数规划的遗传算法%% 输入参数列表% M 遗传进化迭代次数% N 种群规模% Pm 变异概率%% 输出参数列表% Xp 最优个体% LC1 子目标1的收敛曲线% LC2 子目标2的收敛曲线% LC3 平均适应度函数的收敛曲线% LC4 最优适应度函数的收敛曲线%% 参考调用格式[Xp,LC1,LC2,LC3,LC4]=MYGA(50,40,0.3)%% 第一步:载入数据和变量初始化load eqw;%载入三个系数矩阵e,q,w%输出变量初始化Xp=zeros(4,50);LC1=zeros(1,M);LC2=zeros(1,M);LC3=zeros(1,M);LC4=zeros(1,M);Best=inf;%% 第二步:随机产生初始种群farm=cell(1,N);%用于存储种群的细胞结构k=0;while k %以下是一个合法个体的产生过程x=zeros(4,50);%x每一列的1的个数随机决定for i=1:50R=rand;Col=zeros(4,1);if R<0.7RP=randperm(4);%1的位置也是随机的Col(RP(1))=1;elseif R>0.9RP=randperm(4);Col(RP(1:2))=1;elseRP=randperm(4);Col(RP(1:3))=1;endx(:,i)=Col;end%下面是检查行和是否满足约束的过程,对于不满足约束的予以抛弃Temp1=sum(x,2);Temp2=find(Temp1>20);if length(Temp2)==0k=k+1;。

实验2利用matlab解非线性、微分方程组答案

实验2利用matlab解非线性、微分方程组答案

实验2 利用matlab解(非)线性、微分方程(组)-答案1、对于下列线性方程组:(1)请用直接法求解;(2)请用LU分解方法求解;(3)请用QR分解方法求解;(4)请用Cholesky分解方法求解。

(1)>> A=[2 9 0;3 4 11;2 2 6]A =2 9 03 4 112 2 6>> B=[13 6 6]'B =1366>> x=inv(A)*Bx =7.4000-0.2000-1.4000或:>> X=A\BX =7.4000-0.2000-1.4000(2)>> [L,U]=lu(A);>> x=U\(L\B)x =7.4000-0.2000-1.4000(3)>> [Q,R]=qr(A);>> x=R\(Q\B)x =7.4000-0.2000-1.4000(4)>> chol(A)??? Error using ==> cholMatrix must be positive definite.2、设迭代精度为10-6,分别用Jacobi 迭代法、Gauss-Serdel 迭代法求解下列线性方程组,并比较此两种迭代法的收敛速度。

Jacobi 迭代法:>> A=[10 -1 0;-1 10 -2;0 -2 10];>> B=[9 7 5]';>> [x,n]=jacobi(A,B,[0,0,0]',1e-6)x =0.99370.93680.6874n =11Gauss-Serdel 迭代法:>> A=[10 -1 0;-1 10 -2;0 -2 10];>> B=[9 7 5]';>> [x,n]=gauseidel(A,B,[0,0,0]',1e-6)x =0.99370.93680.6874n =73、求解非线性方程010=-+x xe x 在2附近的根。

基于MATLAB的非线性方程组遗传解法

基于MATLAB的非线性方程组遗传解法

种是通过命令行调用 g 函数 , a 另一种是通过图形界面调用 。
2. 2 编 写 目标 函 数 的 M - i 2. fe l
后一种方法 比较直观 , 这里介绍使用前一种方法。在使用这个
目标函数( 的 M—i 如下: 3 ) fe l
fn t u c i G= a e u t n on g q ai o

4 ・ 4
Co u e a No 01 mp tr Er .3 2 0
基 于 MA L 的非线 性 方程 组遗传解 法 TA B
胡 斐 。赵治 国
( 同济 大学汽车 学院 ,上海 2 10 ) 084
摘 要 :将非线性 方程组 的求解 问题转化 为用遗传算法求解 目标函数 的最小值 问题 , 用MA L 利 T AB的遗传算法与直接
( 3 )
显然 , 若方程组() 2有解 , 目标 函数() 则 3的最小值为 零。求
3的值越接近于零 , 么对应的方程组() 那 2的解就 矩阵的形式处理数据 。MAT A L B的遗传算法与直接搜索工具 得的 目标函数() 箱 ( nt Aloi m ad i c erh o lo ,简 称 越精 确。这样就把 非线 性方程组的求解 问题 转化为 了用遗传 Gee c g rh i t n Dr t ac T ob x e S G DS 是 MAT AB的一个优化 工具箱 。它有 两种使用方式 : 算法求解 目标函数的最小值问题 。 A ) L
函数的最小值问题 。由() 1 式知 , AD 对 目标函数取最小值进 G S 行优化 , 故这里取 目标函数为
1 MA L B遗 传算 法与直 接搜索 工具箱简 介 TA
MAT AB( tx L brtr) L Ma i aoa y 是种科 学计算软 件 , 门以 r o 专

MATLAB解方程组(线性与非线性方程组)

MATLAB解方程组(线性与非线性方程组)

例7-9 求下列非线性方程组在(0.5,0.5) 附近的数值解。 (1) 建立函数文件myfun.m。 function q=myfun(p) x=p(1); y=p(2); q(1)=x-0.6*sin(x)-0.3*cos(y); q(2)=y-0.6*cos(x)+0.3*sin(y); (2) 在给定的初值x0=0.5,y0=0.5下,调用fsolve函数求方程的根。 x=fsolve('myfun',[0.5,0.5]',optimset('Display','off')) x= 0.6354 0.3734
2.Gauss-Serdel迭代法 在Jacobi迭代过程中,计算时,已经得到,不必再用,即原来的迭代
公式Dx(k+1)=(L+U)x(k)+b可以改进为Dx(k+1)=Lx(k+1)+Ux(k)+b, 于是得到:
x(k+1)=(D-L)-1Ux(k)+(D-L)-1b 该式即为Gauss-Serdel迭代公式。和Jacobi迭代相比,Gauss-Serdel
7.1.2 迭代解法 迭代解法非常适合求解大型系数矩阵的方程组。在数值分析中,迭代
解法主要包括 Jacobi迭代法、Gauss-Serdel迭代法、超松弛迭代法 和两步迭代法。
1.Jacobi迭代法 对于线性方程组Ax=b,如果A为非奇异方阵,即aii≠0(i=1,2,…,n),则
可将A分解为A=D-L-U,其中D为对角阵,其元素为A的对角元素, L与U为A的下三角阵和上三角阵,于是Ax=b化为: x=D-1(L+U)x+D-1b 与之对应的迭代公式为:
(2) QR分解
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档