离心泵叶轮水力设计讲解

合集下载

叶轮的水力设计

叶轮的水力设计

第三章 离心泵和混流泵叶轮的水力设计泵是一种应用广泛的通用机械,著名的数学家欧拉在一些假设条件下,推出了叶片泵的Euler 方程,该方程建立了泵的理论扬程与叶轮进出口运动速度间的定量关系。

近300年来,以致使叶片泵设计的理论基础。

所以,Euler 方程也被称为叶片泵的基本方程。

在叶片泵内流体在叶轮中的流动都是三维空间的流动,为了简化计算,早期的研究把流体在叶轮内的流动看作是流体微团沿着叶轮流道中心线的运动。

根据这一假设,建立了叶片泵一维流动理论,也称微元流束理论。

根据这一设计理论建立的设计方法称为一元设计方法。

后来人们在轴对称流动理论的基础上提出了叶片式机械的二元流动理论。

二元流动理论认为,叶轮内的流动是轴对称的,叶轮内的轴面速度沿过水断面是不均匀的,即轴面液流速为二元流动。

二元流动较一元更为科学,更接近真实的流动状况,但二元理论在实际上应用并不多,仅适合于高比速混流泵的设计。

第一节 泵的主要设计参数和结构方案的确定 一、设计参数和要求流量、扬程、转速(或由设计者确定)、装置汽蚀余量(或给出装置的使用条件)、效率(要求保证的效率)、介质的性质(温度、重度、含杂质情况、腐蚀性等)、对特性曲线的要求(平坦、陡降、是否允许有驼峰等)。

二、确定泵的总体结构形式和泵的进出口直径 1. 进口直径选取原则:经济流速;汽蚀要求。

泵的进口流速一般取3m/s 左右。

ss v Q4D π=2.泵出口直径s d D )7.0~1(D =三、泵转速的确定确定泵转速应考虑下面几个因素: (1)泵转速越高,泵的体积越小;(2)确定转速应考虑原动机的种类和传动装置;(3)提高转速受汽蚀条件的限制,从汽蚀比转数公式:4/3rNPSH Qn 62.5C =四、计算比转数n s ,确定水力方案4/3s H Qn 65.3n =在确定比转数时应考虑下列因素:(1) n s =120~210的区间,泵的效率最高,n s 〈60的效率显著下降; (2) 可以采用单吸或双吸的结构形式来改变比转数的大小; (3) 可以采用单级或多级的结构形式来改变比转数的大小; (4) 泵特性曲线的形状与比转数的大小有关。

课程设计指导书-离心泵叶轮水力设计

课程设计指导书-离心泵叶轮水力设计

1离心泵叶轮的水力设计叶轮是泵的核心部分,泵的性能、效率、抗汽蚀性能、特性曲线的形状均与叶轮的水力设计有重要关系。

因此,叶轮水力设计的质量决定着所设计出来的泵的质量。

整个设计的设计流程图如下图 1所示图1 设计流程图1泵主要设计参数和结构方案的确定本设计给定的设计参数为:流量Q=3363m h =0.09333m s ,扬程H=55m ,装置汽蚀余量 3.3a NPSH m =。

2确定泵的总体结构形式和泵进出口直径泵吸入口直径 泵的吸入口直径由合理的进口流速确定,而泵的入口流速一般为3m s 。

暂取2.7m s泵的吸入口直径按下式确定440.09332092.7 3.14s s QD mm υπ⨯===⨯取标准值210mm泵的排出口直径为0.8168t s D D mm == (因设计的泵扬程较低) t D —泵吸入口直径s D —泵排出口直径2将选定的标准值210t D mm =代入上式,得泵的进出口流速为2.69m s 。

3泵转速的确定考虑到泵的转速越高,泵的体积越小,重量越轻,理应选择较高的转速,但又因为转速和比转速有关,而比转速有和效率有关,综合考虑各方面因素,取n=2900 minr4汽蚀计算a 泵的安装高度a v g c a p ph h NPSH g gρρ=---=10.33-0.5-0.24-3.3=6.29m 常温清水vp gρ=0.24m b 泵的汽蚀余量r a NPSH NPSH k =-=3.3-0.5=2.8mc 泵的汽蚀比转速C ==345.6229002.8⨯=11505确定比转速s n 和泵的水力方案根据比转速公式s n =根据以往的运行经验,当s n 在120~210的区间时,泵的效率最高。

依算得的s n =160,宜采用单级单吸的水力结构方案。

6估算泵的效率和功率查《泵的理论和设计》手册,根据经验公式得a 水力效率计算1h η=+10.0835lg + 取h η=0.87 b 容积效率323110.68v s n η-=+=23110.68160-+⨯=0.977 取v η=0.97c 圆盘损失效率 76110.07()100m s n η=-=76110.07160()100m η=-=0.88d 机械效率假定轴承填料损失约为2% ,则m η=0.88×0.98=0.86 f 总效率m v h ηηηη= =0.86×0.97×9.87=0.73 g 轴功率 1000rQH N η==9.8110000.09335510000.73⨯⨯⨯⨯=68.7KW h 计算配套功率'N =KN=1.2×68.7=82.5KW K 取1.27叶轮主要参数的选择和计算叶轮主要几何参数有叶轮进口直径0D 、叶片进口直径1D 、叶轮轮毂直径h d 、叶片进口角1β、叶轮出口直径2D 、叶轮出口宽度2b 、叶片出口角2β和叶片数Z 。

离心泵的水力设计讲解

离心泵的水力设计讲解

离心泵的水力设计离心泵叶轮设计步骤第一步:根据设计参数,计算比转速ns第二步:确定进出口直径第三步:汽蚀计算第四步:确定效率第五步:确定功率第六步:选择叶片数和进、出口安放角第七步:计算叶轮直径D2第八步:计算叶片出口宽度b2第九步:精算叶轮外径D2到满足要求第十步:绘制模具图离心泵设计参数作为一名设计人员,在设计一台泵之前,需要详细了解该泵的性能参数、使用场合、特殊要求等。

下表为本章中叶轮水力设计教程中使用的一组性能要求。

确定泵进出口直径右图为一台ISO单级单吸悬臂式离心泵的实物图和装配图。

对于新入门的学习者,请注意泵的进出口位置,很多人会混淆。

确定泵的进口直径泵吸入口的流速一般取为3m/s左右。

从制造方便考虑,大型泵的流速取大些,以减小泵的体积,提高过流能力。

而从提高泵的抗汽蚀性能考虑,应减小吸入流速;对于高汽蚀性能要求的泵,进口流速可以取到1.0-2.2m/s。

进口直径计算公式此处下标s表示的是suction(吸入)的意思本设计例题追求高效率,取Vs=2.2m/sDs=77,取整数80确定泵的出口直径对于低扬程泵,出口直径可取与吸入口径相同。

高扬程泵,为减小泵的体积和排出管直径,可小于吸入口径。

一般的计算公式为:D d=(0.7-1.0)D s此处下标d表示的是discharge(排出)的意思本设计例题中,取D d = 0.81D s = 65泵进口速度进出口直径都取了标准值,和都有所变化,需要重新计算。

Vs = 2.05 泵出口速度同理,计算出口速度= 3.10汽蚀计算泵转速的确定泵的转速越高,泵的体积越小,重量越清。

舰艇和军工装备用泵一般都为高速泵,其具有转速高、体积小的特点。

转速与比转速有关,比转速与效率有关,所以选取转速时需和比转速相结合。

转速增大、过流不见磨损快,易产生振动和噪声。

提高泵的转速受到汽蚀条件的限制。

从汽蚀比转数公式可知,转速n和汽蚀基本参数和C有确定的关系。

按汽蚀条件确定泵转速的方法,是选择C值,按给定的装置汽蚀余量或几何安装高度,计算汽蚀条件允许的转速,所采用的转速应小于汽蚀条件允许的转速。

离心混流泵水力设计

离心混流泵水力设计

离心混流泵水力设计离心/混流泵是水泵的常见形式,广泛应用于工业、农业等各个领域。

本文以一个离心式水泵为例,简要介绍相关过流部件的水力设计过程。

叶轮是泵的最核心过流部件,泵的流量、扬程、效率、抗汽蚀性能和特性曲线的形状与叶轮的水力设计密切相关,叶轮设计需要经过三方面的主要步骤。

主要参数和结构方案确定首先根据设计要求,如流量、扬程、转速、汽蚀余量等参数,对泵的主要参数和结构方案进行确定。

泵进口直径Ds指的是泵吸入法兰处管的直径。

泵出口直径Dd是泵排出法兰处管的内径。

按照经验公式进行计算。

其中,转速的确定需要考虑几个因素:转速越高,体积越小、重量越轻à高转速转速和比转速有关,比转速和效率有关à转速和比转速协同确定转速考虑原动机的类型和传动装置à同步转速3000、1500、1000、750、600、500(rpm),滑差转速提高,过流部件的磨损加块,机组的振动、噪声变大à转速有上限转速提高,更容易发生空化à转速有上限之后根据公式计算比转速:比转速应当兼顾一下几个因素:120~210之间效率高,小于60,效率显著下降单吸式、双吸式相互转换,调整ns特性曲线形状与ns大小有关多级泵的比转速按照单级叶轮计算至此,泵进出口直径、转速、比转速等参数就已经确定了。

结构形式是单级/多级、单吸/双吸也已经确定了。

值得注意的是,各个参数之间具有一定的关联性,也会受到实际因素,如尺寸标准化、同步异步转速等的制约。

因此,主要参数和结构方案的确定过程有可能是一个反复尝试的过程。

最终确定后,可参照同类产品或经验公式近似估算效率、轴功率等参数,具体计算此处不再赘述。

叶轮主要尺寸初步计算叶轮的尺寸较多,按照位置,大致上可以分为进口尺寸和出口尺寸两类。

其中叶轮进口尺寸影响汽蚀性能;出口尺寸影响扬程、流量;进出口尺寸共同影响效率。

初始设计时,最小轴径(通常是联轴器处的轴径),按扭矩确定。

离心泵水力设计流程

离心泵水力设计流程

离心泵水力设计课程设计及指导书(一)离心泵水力设计任务书1 设计目的掌握离心式叶轮和进、出水室水力设计的基本原理和基本方法.加深对课堂知识的理解,培养学生进行产品设计、水泵改造及科学研究等方面的工作能力。

2 设计参数及有关资料(1)泵的设计参数:(可自选一组参数设计,也可参照给出的参数变更局部参数设计,每个人必须选择不同的参数进行设计)1. mh rpm n m H h m Q a 3.3,2900,60,/373=∆=== 2. mh rpm n m H h m Q a 44.5,1450,16,/903=∆===3. 900,1430,24,/663====C rpm n m H h mQ4. 900%,80,2900,48,/1453=====C rpm n m H h mQ η 5. m5,2970,5.18,/12====SZ H rpm n m H s l Q 泵的安装高度6. mh rpm n m H s l Q r 13.2,2870,10,/3.2=∆=== 7. mrpm n m H h m Q 6.2h ,1450,5.32,/170r 3=∆=== 8. %60,2h ,2900,20,/20r 3==∆===ηm rpm n m H h m Q(2)工作条件:抽送常温清水。

(3)配用动力:用电动机作为工作动力。

3 设计内容及要求(1)设计内容。

包括以下几个方面: l )、离心泵结构方案的确定。

2)、离心泵水力过流部件(进水室、叶轮、压水室)主要几何参数的选择和计算。

3)、叶轮轴面投影图的绘制。

4)、螺旋形压水室水力设计。

(2)要求。

包括以下几个方面:l )、用速度系数法和解析计算法进行离心泵水力设计。

2)、绘出压水室设计图。

3)、编写设计计算说明书。

4 设计成果要求(1)计算说明书应做到字迹工整、书面整洁、层次分明、文理通顺。

文中所引用的重要公式、论点及结论均应交待依据。

2叶轮的水力设计1

2叶轮的水力设计1

2叶轮的水力设计叶轮是泵的核心部分,泵的性能、效率、抗空蚀能力、特性曲线的形状,都与叶轮的水力设计有紧密的关系。

2.1泵的主要设计参数和结构方案的确定2.1.1 给定的数据和要求 (1)泵的型号:IS100—65—200(2)流量:Q=100 3/m h (3)效率:η=81.25%。

(4)扬程:H=50m(5)转速:n=2900r/min(6)必需空蚀余量(NPSH)r =3.28 m2.1.2确定泵的总体结构形式和泵的进出口直径首先大致选择泵的结构形式和原动机的类型,进而进行下面的计算,经比较分析后做最后的确定。

(1) 泵吸入口径泵的吸入口径由合理的进口流速确定。

泵吸入口的流速一般为3左右。

从制造方便考虑,大型泵的流速取大一些,以减少泵的体积,提高过流能力;而提高泵的抗空蚀性能,则应该减少泵的吸入口的流速。

s m /本设计吸入口径D =。

s (2) 泵排出口径对于低扬程泵,可取与吸入口径相同,高扬程泵,为减少泵的体积和排出口直径,可使排出口径小于吸入口径,一般取s d D D )7.0~1(=式中:——泵排出口直径;t D ——泵吸入口直径;s D =d D最终确定的泵的吸入口和排出口直径,应该符合标准直径。

2.1.3汽蚀验算4362.5rh Qn C ∆=可知,转速n、汽蚀基本参数r h ∆和C 这三个参数之间有确定的关系,如得不到满足,将产生汽蚀。

对于一定的C 值,假设提高转速,流量增加,则将增大,当该值大于所提供的装置汽蚀余量r h ∆a h ∆时,就会发生汽蚀。

按汽蚀条件来确定泵的转速的方法是:先选择C 值,按给定的装置汽蚀余量或几何安装高度,计算汽蚀条件下所允许的转速。

即a h ∆sz H QhC n r62.543∆〈式中:=— K(K—考虑汽蚀的安全余量)。

a h ∆r h ∆参考[9]查表3-1得C=980,所以:3344r h ∆===2.15m汽蚀允许转速:4433n ===min)/r 2903.3(经验算可知,转速n = 2900(r/min)小于汽蚀允许转速,符合要求。

离心泵叶轮的水力设计

离心泵叶轮的水力设计

泵与风机课程设计******单位:动力与机械学院学号:************指导老师:朱劲木副教授设计时间:两周目录一、课程设计简介二、叶轮水力设计内容和步骤1、泵主要参数和结构方案的确定1.1.泵的设计参数1.2.确定泵的进出口直径1.3.泵转数的确定1.4.计算比转数,确定泵的水力方案1.5.效率的估算1.6.确定泵轴的最小直径2、叶轮进口直径2.1.叶轮出口直径2.3.确定叶片厚度2.4.确定叶片包角2.5.计算和确定进出口安放角3、叶轮设计计算程序见表2-44、叶轮水力设计绘图4.1.绘制叶轮轴面流道投影图4.2.绘制轴面液流的流线4.3.确定叶片入口遍位置4.4.叶片绘型4.5.叶片绘型质量检查三、设计成果参考文献一、课程设计简介设计课题离心泵叶轮的水力设计设计目的掌握离心式叶轮水力设计的基本原理和基本方法,加深对课堂知识的理解,培养学生进行产品设计、水泵改造及科学研究等方面的工作能力。

工作条件抽送常温清水配用动力用电动机作为工作动力设计内容离心泵结构方案的确定;离心泵叶轮主要几何参数选择和计算;叶轮轴面投影图的绘制及叶片绘型。

设计要求用速度系数法和解析计算法进行离心叶轮水力设计;用保角变换绘制叶轮木模图;编写设计计算说明书。

使用工具AutoCAD2007版成果要求设计说明书应做到字迹工整、书面整洁、层次分明、文理通顺。

文中所引用的重要公式、论点及结论均应交待依据;设计说明书应包括计算、表格和插图(图表统一编号),配以目录和参考文献目录等内容,统一装订成册;设计图纸用ACAD绘制,图面布置要合理。

二、叶轮水力设计内容和步骤叶轮是泵的核心部分。

泵的流量、扬程、效率、抗汽蚀性能和特性曲线的形状等均与叶轮的水力设计有重要关系。

根据一元理论,设计过程可以分为两大部分:叶轮集合尺寸计算(表4)和叶片绘型。

1、泵主要参数和结构方案的确定1.1泵的设计参数流量Q=144m3/h ;扬程H=50m ;效率η=80%;汽蚀比转数c=10001.2确定泵进出口直径泵进口至直径也叫泵吸入口径,是指泵吸入法兰处管的内径。

离心泵水力设计

离心泵水力设计

离心泵水力设计课程设计及指导书(一)离心泵水力设计任务书1 设计目的掌握离心式叶轮和进、出水室水力设计的基本原理和基本方法.加深对课堂知识的理解,培养学生进行产品设计、水泵改造及科学研究等方面的工作能力。

2 设计参数及有关资料(1)泵的设计参数:(可自选一组参数设计,也可参照给出的参数变更局部参数设计,每个人必须选择不同的参数进行设计)1.m h rpm n m H h m Q a 3.3,2900,60,/373=∆=== 2.m h rpm n m H h m Q a 44.5,1450,16,/903=∆=== 3.900,1430,24,/663====C rpm n m H h m Q 4.900%,80,2900,48,/1453=====C rpm n m H h m Q η 5.m 5,2970,5.18,/12====SZ H rpm n m H s l Q 泵的安装高度 6.m h rpm n m H s l Q r 13.2,2870,10,/3.2=∆=== 7.m rpm n m H h m Q 6.2h ,1450,5.32,/170r 3=∆=== 8. %60,2h ,2900,20,/20r 3==∆===ηm rpm n m H h m Q(2)工作条件:抽送常温清水。

(3)配用动力:用电动机作为工作动力。

3 设计内容及要求(1)设计内容。

包括以下几个方面:l )、离心泵结构方案的确定。

2)、离心泵水力过流部件(进水室、叶轮、压水室)主要几何参数的选择和计算。

3)、叶轮轴面投影图的绘制。

4)、螺旋形压水室水力设计。

(2)要求。

包括以下几个方面:l )、用速度系数法和解析计算法进行离心泵水力设计。

2)、绘出压水室设计图。

3)、编写设计计算说明书。

4 设计成果要求(1)计算说明书应做到字迹工整、书面整洁、层次分明、文理通顺。

文中所引用的重要公式、论点及结论均应交待依据。

泵与风机课程设计-离心泵水力设计说明书

泵与风机课程设计-离心泵水力设计说明书

武汉大学动力与机械学院泵与风机课程设计离心泵水力设计说明书前言本次课程设计的内容是设计一台离心式泵。

泵是应用非常广泛的通用机械。

在当今世界机电产品中,泵的产量仅次于电机,据统计,泵的耗电量占到全国总发电量的21%,可见泵的应用非常广泛,在国民经济中占有十分重要的作用。

离心泵是一种用量最大的水泵。

在给水排水及农业工程,固体颗粒、液体输送工程,石油及化学工程,航空航天和航海工程,能源工程和车辆工程等国民经济各个部门都有广泛的应用。

本次课程设计时能源动力系统及自动化专业流体机械及工程方向的专业必修课程,是完成《泵与风机》课程理论教学以后所进行的重要实践教学环节,目的在于综合利用泵与风机的理论知识进行泵的设计实践,一方面以离心泵的设计过程为代表熟悉泵的设计方法为以后解决相关工程问题打下良好的基础,另一方面通过设计实践,使理论知识和生产实际知识紧密结合起来,从而使这些知识得到进一步的巩固、加深和扩展。

本设计主要进行的是离心泵的水力设计,包括泵的结构方案、叶轮主要参数的选择与计算、叶轮的水力设计绘图等。

提交的成果为设计说明书一份和离心泵水利设计图一张(包括轴面投影图、流线分点图、流道面积变化图、流面展开方格网、叶片厚度变化规律图和木模截线图),使用CAD绘制。

本设计说明书即为成果之一。

由于我们对所学知识的领悟不够,又缺乏经验,设计中难免会存在疏漏和欠缺之处,恳请老师批评指正。

目录前言一、课程设计的总体要求 (1)1.1设计课题 (1)1.2设计目的 (1)1.3设计内容 (1)1.4设计要求 (1)1.5成果要求 (1)二、泵主要设计参数和结构方案的确定 (1)2.1提供设计的数据和要求 (1)2.2确定泵的总体结构形式和泵进出口直径 (1)2.3泵转速的确定 (2)2.4计算比转速ns,确定泵的水利方案 (3)2.5估算泵的效率 (4)三、叶轮主要参数的选择和计算 (4)3.1轴径和轮毂直径的确定 (4)3.2叶轮进口直径D1的初定 (5)3.2.1计算叶轮进口当量直径 (5)3.2.2叶片入口边直径D1 (5)3.3叶轮出口直径D2的初步计算 (6)3.4叶轮出口宽度b2的计算和选择 (6)3.5叶片数Z (6)3.6叶轮外径D2的精确计算 (7)3.7叶片进口安放角的确定 (9)四、叶轮水力设计绘图 (10)4.1绘制叶轮轴面投影图 (10)4.1.1初绘叶轮轴面投影图 (10)4.1.2检查轴面流道过水断面变化情况 (11)4.2绘制轴面流线 (12)4.3在轴面投影图上对各条流线进行分点 (14)4.4作流线方格网,并在方格网上进行叶片绘型 (15)4.5片的轴面截线 (17)4.6叶片加厚 (18)4.7绘制叶片裁剪图 (19)4.8、叶轮叶片的水力性能校验 (21)总结与心得 (22)致谢 (22)参考书目: (22)附录 (23)叶轮设计计算程序 (23)一、课程设计的总体要求1.1设计课题离心泵叶轮的水力设计1.2设计目的通过课程设计,掌握离心式叶轮水力设计的基本原理和基本方法,加深对课堂知识的理解,培养学生进行产品设计、水泵改造及科学研究等方面的工作能力。

离心泵叶轮水力设计讲解ppt课件.ppt

离心泵叶轮水力设计讲解ppt课件.ppt

S
Su
sin
sin
1 ctg 2
sin 2 cos2 ctg 2 cos2 sin 2
1 ctg 2 (1 cos2 ) 1 ctg 2
sin 2
sin 2
Sm
S
cos
1 ctg 2 cos2 cos2
1 tg 2 ctg 2
Sr Sm sin 1 tg 2 ctg 2 sin
可根据汽蚀比转数选取
5.62n Q C
NPSH3r / 4
离心泵设计
离心泵设计
四、计算比转数ns,确定 水力方案
3.65n Q ns H3/4
离心泵设计
在确定比转数时应考虑下列因素 • ns=120~210的区间,泵的效率 最高,ns〈60的效率显著下降 • 可以采用单吸或双吸的结构形 式来改变比转数的大小
tg1'
v m1 u1 v u1
vu1由吸水室的结构确定。对直锥形吸水 室vu1=0;对螺旋形吸水室,可按经验 公式确定各流线的vu1值。
离心泵设计
K vur m3 Q2n
式中 m=0.055~0.08,ns小取小值。
叶片进口轴面速度
v m1
Q v F1k1
k1
1
ZSu D1
1
ZS1 D1sin 1
第三节 速度系数设计法
比转数相等的泵的速度系数是相等 的。不同的比转速就有不同的速度系数。 我们以现有性能比较好的产品为基础, 统计出离心泵的速度系数曲线,设计时 按nS选取速度系数,作为计算叶轮尺 寸的依据,这样的设计方法就叫做速度 系数设计法。
离心泵设计
叶轮主要几何参数有:
• 叶轮进口直径D0 • 叶片进口直径D1 • 叶轮轮毂直径dh • 叶片进口角β1

离心泵的水力设计和数值模拟讲解

离心泵的水力设计和数值模拟讲解

离心泵的水力设计和数值模拟讲解离心泵是一种常见的水力机械设备,广泛应用于工业和民用领域。

它的水力设计和数值模拟是对离心泵性能进行优化和改进的重要手段。

下面将从离心泵的水力设计和数值模拟两个方面进行详细讲解。

一、离心泵的水力设计1.流量设计:离心泵的流量设计是以工程要求的流量为基础,通过水力模型试验或数值模拟等方法确定。

流量是衡量离心泵工作效果的重要指标,也是确定泵的尺寸和形式的基础。

2.扬程设计:扬程是指离心泵能够将液体抬升的高度。

在水力设计中,扬程是根据所需扬程和流量来确定的。

扬程的大小取决于泵的尺寸、转速、叶轮形状等因素。

3.效率设计:离心泵的效率是指泵所传递的水功率与泵所消耗的机械功率的比值。

效率的高低直接影响到泵的能耗和使用成本。

在水力设计中,需要根据工程要求和经济性考虑,确定合适的效率。

4.功率设计:离心泵的功率设计是指根据所需流量、扬程和效率来确定泵的功率。

功率是决定泵的动力系统和选型的重要参数,需要根据泵的工作条件和性能曲线来确定。

二、离心泵的数值模拟离心泵的数值模拟是利用计算机技术对泵的内部流动进行仿真模拟,以获得流场信息、压力分布和效率等参数。

数值模拟可以帮助优化和改善泵的性能、减少试验成本和时间。

1.建立几何模型:离心泵的数值模拟首先需要建立一个几何模型。

几何模型包括泵的内外部结构、叶轮的形状和尺寸等。

通过CAD软件等工具进行建模,得到几何模型的三维模型。

2.网格划分:在几何模型的基础上,需要对计算域进行网格划分。

网格划分是将计算域划分成小区域,以便对流动进行离散化计算。

合理的网格划分能够保证计算结果的准确性和稳定性。

3.数值计算:数值计算是指通过数值方法对流体的动力学方程进行求解,得到流场信息和参数分布。

常用的数值求解方法包括有限体积法、有限元法和离散元法等。

通过将流场方程离散化为代数方程组,使用求解器进行求解,得到结果。

4.结果分析与优化:得到数值模拟结果后,可以对流场、压力分布、速度分布等进行分析和评价。

简述离心泵叶轮水力设计时,速度系数法和模型相似换算法的区别_概述说明

简述离心泵叶轮水力设计时,速度系数法和模型相似换算法的区别_概述说明

简述离心泵叶轮水力设计时,速度系数法和模型相似换算法的区别概述说明1. 引言1.1 概述离心泵是一种常用的液体输送设备,其工作原理是通过叶轮的旋转产生离心力,将液体从低压区域转移到高压区域。

在离心泵的设计过程中,叶轮的水力设计是非常重要的一部分。

而叶轮水力设计方法中,速度系数法和模型相似换算法是两种常用的计算方法。

1.2 文章结构本文将分为以下几个部分来详细介绍离心泵叶轮水力设计时的速度系数法和模型相似换算法及其区别。

首先会对速度系数法进行简要介绍,包括其原理和计算方法。

然后会对模型相似换算法进行类似的介绍。

之后会比较这两种方法存在的区别,包括相似性原理差异、计算方法差异以及适用性分析。

最后会通过工程实际应用案例对比分析来加深对这两种方法区别的理解。

1.3 目的本文旨在全面了解并比较离心泵叶轮水力设计时的速度系数法和模型相似换算法,并明确它们之间存在的差异。

通过对比分析,可以更好地选择合适的方法用于离心泵叶轮水力设计,在实际工程应用中提高设计的效果和质量。

同时,本文还希望能够为相关领域的研究者和从业人员提供有价值的参考和指导。

2. 离心泵叶轮水力设计时的速度系数法:2.1 简介:离心泵是一种常见的水力机械设备,在许多工程领域中被广泛应用。

离心泵的性能参数主要包括流量、扬程和效率等。

其中,叶轮是离心泵中最关键的部件之一,其水力设计对于泵的性能至关重要。

2.2 原理及计算方法:速度系数法是一种常用于离心泵叶轮水力设计的方法。

该方法基于流体动量守恒原理,通过选择适当的叶轮出口径向速度分布来满足设计要求。

主要包括以下步骤:1. 设定目标流量和扬程。

2. 根据所选定的叶轮进口径向速度分布形式和角动量平衡原理,确定出口径向速度。

3. 通过展开叶片并考虑角速度差等因素,得到切线方向上瞬时相对流速。

4. 根据相对流速与切线方向的夹角以及转子出口直径确定绝对流速。

5. 根据绝对流速的大小确定叶片出口角度,并进行修正以满足稳态工况要求。

离心泵叶轮课程设计

离心泵叶轮课程设计

离心泵叶轮的水力计算第一章 离心泵叶轮的水力计算1.1设计离心泵性能参数及要求1.2 叶轮设计水力计算1.2.1 泵的进口直径进口直径由泵吸入口流速确定,泵吸入口流速一般为3m/s 左右。

常用的泵吸入口径、流量和流速关系见《泵的理论与设计》表8-1:由流量选择泵的吸入口流速2V =2.1 m/s ;故泵的进口直径:D s =, 取65 mm 。

1.2.2 泵出口直径对于低扬程泵,排出口径可与吸入口径相同;对于高扬程泵,为减小泵的体积和排出管路直径,可取排出口径小于吸入口径,一般取d D (1~0.7)s D =。

故泵出口直径:s D 7.0D d ==0.7*65=45.5mm ,取 50 mm 。

1.2.3 泵进、出口速度由于进口直径都取了标准值,所以s V 、V d 都有变化,需要重新计算。

进口速度:2s 4V s D Q π==24*0.007*0.065π=2.109 m/s , 取2.1 m/s 。

出口速度: 2d 4V d D Q π==24*0.007*0.05π=3.565 m/s , 取3.5 m/s 。

1.2.4 比转数的计算4/365.3n HQ n s ==3/452=91.47 1.2.5 结构型式的选择由于计算所得的s n 在30—280之间,且泵的使用条件为高转速,小流量,小体积,因此选择所设计的泵为卧式单级单吸式离心泵。

1.2.6 效率计算(1)水力效率:h 110.835η=+=+= (2)容积效率: 2/32/3110.9710.6810.68*(91.47)v s n η--===++取平衡盘泄露量与理论流量之比为0.03,故v η= 0.97-0.03=0.94。

(3)机械效率:m 7/6110.07(/100)s n η≈-7/6110.07(91.47/100)=-=0.922(4) 泵的总效率:0.8350.940.9220.724h v m ηηηη=⋅⋅=⨯⨯=1.2.7确定轴功率(1)轴功率:ηρ10281.9g N ⨯=QH 10*1200*0.007*529.81102*0.724=⨯=5.82 kw 。

(优选)离心泵叶轮水力设计

(优选)离心泵叶轮水力设计
Nc 1.2N
离心泵设计
七.轴径和轮毂直径的确定
泵轴直径的确定应按强度、刚度和临界 转速等情况确定。由于扭矩是泵主要的 载荷,开始设计时首先按扭矩来确定泵 轴的最小直径,最小直径一般位于联轴 节处。
d 3 Mn 0.2[]
Mn
9.55 103
Nc n
N构工艺要求,确定 叶轮处的轴径dB和轮毂直径dh。 一般
Q n
离心泵设计
容积效率
v
1
1
0.68
n
2 s
/
3
离心泵设计
该容积效率为只考虑叶轮前密封环 的泄漏,对于有平衡孔、级间泄漏 和平衡盘泄漏的情况,容积效率还 要相应降低
机械效率
m
1 0.07 (
1 ns )7/6
100
泵的总效率
hvm
离心泵设计
离心泵设计
六、轴功率和原动机功率
N gQH 102
式中
D2
KD2 3
Q n
K D2
9.35( n s )1/ 2 100
离心泵设计
三、叶轮出口宽度b2的计算 和选择
式中
b2
Kb2 3
Q n
K b2
0.64( n s )5 / 6 100
离心泵设计
四、叶片数的计算和选择
叶片数对泵的扬程、效率、汽蚀 性能都有一定的影响。选择叶片数, 一方面考虑尽量减小叶片的排挤和表 面的摩擦,另一方面又使叶道有足够 的长度,以保证液流的稳定性和叶片 对液体的充分作用。
离心泵设计
三、相似设计法应注意的问题
• 关于性能和效率问题 • 关于结构形式的影响 • 关于修改模型问题 • 汽蚀相似问题
离心泵设计
第三节 速度系数设计法

离心泵叶轮水力设计

离心泵叶轮水力设计

离心泵叶轮水力设计离心泵叶轮的流道形状是其水力设计的一个重要方面。

流道形状的优化可以降低水流速度的变化,减小能量损失,提高泵的效率。

一般来说,对于离心泵叶轮的水力设计来说,流道形状应该尽量保持平滑,避免出现过于复杂的几何结构,以减小流阻和涡流损失。

叶片角度也是离心泵叶轮水力设计的重要因素之一、叶片角度的选择直接影响着叶轮的流道流速和角动量的大小。

一般来说,在离心泵叶轮的水力设计中,叶片角度应该根据流体性质和工作条件的不同而有所调整。

例如,对于高粘度液体的泵来说,叶片角度一般选择较小,以减小流体的阻力和摩擦损失。

除了流道形状和叶片角度外,离心泵叶轮的几何参数也是水力设计的重要考虑因素。

例如,叶轮的进口直径、出口直径、叶片数等。

这些参数的选择应该根据需要泵送流量和扬程的不同进行调整。

一般来说,随着泵送流量的增大,叶轮的进口直径和出口直径也应该相应增大,以保持叶轮的稳定运行和高效性能。

在离心泵叶轮的水力设计中,还需要考虑到流动的非定常性以及液体的旋转运动对叶轮的影响。

非定常流动包括流场的非均匀性和流体的非线性特性。

为了减小非定常性的影响,可以通过减小流道的长度和宽度来降低流动的不均匀性。

而液体的旋转运动主要是由于叶轮的旋转导致的,对于这种情况,可以通过增大出口直径和叶片角度来减小涡流的损失。

总之,离心泵叶轮的水力设计是离心泵性能优化的关键步骤之一、在水力设计过程中,需要综合考虑流道形状、叶片角度和叶轮几何参数等方面的因素,以提高离心泵的效率和性能。

此外,还需要考虑流动的非定常性和液体的旋转运动对叶轮的影响,以减小能量损失和涡流损失,提高泵的工作效率。

只有在水力设计的合理指导下,离心泵才能够实现更高的效率和更好的性能。

《水泵水力设计》PPT课件

《水泵水力设计》PPT课件
由上式可推出 D0 ,D2 ,b2
为何有 vK 2gH,原因如下:
H const D2n2
DKHK ' 2gH
n
n
nD K' 2gH v~nD
vK 2gH
可粗略地用速度系数法校核泵的设计,或估算或的性能
2-3 相似换算法水力设计
速度系数法优点:可进行创新性设计 缺点:设计质量没有把握
相似换算法优点:设计结果可靠 缺点:没有创新
1、初定总体结构型式 依据设计要求初步选择,结合计算,然后校核
2、确定泵吸入口直径(泵进口直径, 进口法兰处直径) 过程:根据流速初定,然后按标准直径系列进行调整
4Q
Ds Vs
一般可选Vs=3(m/s) 原则:
1) 大泵,Vs↑,降低制造成本 2) 汽蚀要求高,Vs↓,1.0~2.0m/s
标准直径:10,15,20,25,40, 50,65,80,100,125,150,200
HD Dmnnm
H Hm
一般取二者之大值,或取平均。
四、计算设计泵尺寸
线性尺寸均乘以系数λ,角度不变,适当调整厚度、间隙等
D D m , m
五、换算性能曲线
从模型泵性能曲线上取6~10个点,按下式换算成设计泵相应的参 数,即可绘制设计泵的性能曲线。
Q3
n nm
Qm
H2nnm2Hm
P5nnm3Pm
4、n=f(原动机)
异步电机极对数 2 4 6 8 10 12
同步转速 5、n=f(NPSHr)
3000 1500 1000 750 600 500
5.62n Q
C N
P
Sr3H/ 4
(对于给定C值,n↑,NPSHr↑)

离心泵水力设计

离心泵水力设计

离心泵水力设计离心泵是一种常用的水力机械设备,广泛应用于各个行业中的液体输送、供水和循环系统中。

离心泵的水力设计是确保其正常运行和高效工作的关键。

在进行离心泵水力设计时,需要考虑多个因素,如流量、扬程、效率和液体特性等。

流量是离心泵设计的关键参数之一。

它指的是单位时间内通过离心泵的液体体积。

流量的大小取决于实际使用需求和输送管道的尺寸。

在进行离心泵水力设计时,需要根据实际情况确定所需的流量,并据此选择合适的离心泵型号和相应的工作点。

扬程是离心泵水力设计中的另一个重要参数。

它表示液体从离心泵进口到出口所需克服的压力差。

扬程的大小直接影响到离心泵的选型和工作效果。

在进行离心泵水力设计时,需要准确计算出所需的扬程,并选择与之匹配的离心泵。

除了流量和扬程,效率也是离心泵水力设计中需要考虑的重要因素之一。

离心泵的效率是指输送液体的功率与输入功率之比,一般以百分比表示。

高效率的离心泵能够大幅降低能源消耗并提高工作效率。

在进行离心泵水力设计时,需要选择效率较高的离心泵,并根据实际需求进行相应的调整和优化。

液体特性也是离心泵水力设计中需要考虑的一个重要因素。

不同液体具有不同的物理和化学特性,如密度、黏度和温度等。

在进行离心泵水力设计时,需要了解液体的具体特性,并根据其特性确定合适的离心泵和配套设备。

例如,若输送的是高黏度液体,可能需要选择低转速大功率的离心泵。

为了提高离心泵水力设计的准确性和可靠性,需要进行充分的工程计算和实验研究。

借助计算机辅助设计软件和模拟仿真技术,可以对离心泵进行数字化设计和优化。

此外,利用实验台和测试设备,可以对离心泵进行物理实验和性能测试,从而进一步验证和改进水力设计。

总之,离心泵水力设计是确保离心泵正常运行和高效工作的重要环节。

在进行离心泵水力设计时,需要考虑流量、扬程、效率和液体特性等多个因素,并进行工程计算和实验研究。

通过科学合理的设计,可以提高离心泵的工作效率和能源利用率,满足不同行业和领域的需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档