离心泵叶轮的设计

合集下载

基于CFD分析的双吸式离心泵叶轮优化设计的开题报告

基于CFD分析的双吸式离心泵叶轮优化设计的开题报告

基于CFD分析的双吸式离心泵叶轮优化设计的开题报告一、研究背景和意义离心泵是流体运输和输送的主要工具之一,在各个领域都得到了广泛应用。

其中,双吸式离心泵是一种非常重要的类型,通常应用于大型工业设备中,如水处理、电力、焦化等领域。

在实际应用中,离心泵的叶轮是起主要流体力学作用的部件,其设计的优化对于泵的性能和效率具有重要影响。

目前,离心泵的叶轮设计主要依靠经验和试验室实验,虽然已有较多的先进设计方法和技术,但叶轮设计仍然存在一定的不足,如流场效果的不理想、输送流量等方面的不足等问题,这需要更为精细的设计方法和技术逐渐逐渐优化和改进。

因此,本文将尝试基于CFD(计算流体力学)分析理论,对双吸式离心泵的叶轮进行优化设计,旨在提升泵的性能和效率。

二、研究内容和方法1.研究内容1)分析双吸式离心泵的结构和工作原理。

2)运用CFD理论研究叶轮的三维流场,确定叶轮的流场特性;3)建立叶轮模型,并结合MATLAB/ANSYS等软件对模型进行模拟计算,得出不同叶片倾角下的流体力学性能并分析;4)通过实验验证分析结果,并对实验数据和模拟结果进行比较。

2.研究方法1)文献阅读和综述分析;2)利用CFD软件对叶轮流场进行计算和分析;3)采用MATLAB和ANSYS有限元分析软件建立叶轮模型,并结合CFD 流场计算得到数值模拟结果;4)设计并实施实验验证,并通过数据分析验证数值模拟结果。

三、预期成果和意义预期成果:本文将利用CFD分析,通过长期反复的计算、分析以及实验验证,得出一套完整的双吸式离心泵叶轮优化设计方案,对于相关领域的离心泵设计和工程应用具有广泛实际的参考价值。

意义:通过对双吸式离心泵叶轮的优化设计,达到提高泵的效率、降低耗能的目的,不仅为工程实践提供了参考依据,同时也对未来离心泵的设计和优化研究提供了一定的参考意义。

叶轮的设计

叶轮的设计
) + 5 + 2 x l 9 】
取:
: 8 0( n l m)

2 . 叶 片 螺线 平 面 图
t 一一 背 叶 片 与 涡 室 间隙 取 t = 1 mm

根 据 上 述 叶 轮 叶 片 曲面 螺 线 计 算 结 果 ,绘 制 叶 片 螺 线 。在
圆周 上 取 1 6 个 轴 面 ,每 两 个 轴 面 夹 角 为2 2 . 5 。 ,当 Z = O 时, 空 螺 线 在 平 面 上投 影 , 如 图 所示 :
1 9 9 7 , 2 0 ( 5 ) : 6 -1 3
3 . 叶片 厚 度 计算 确 定 叶片 厚 度 时 ,应 注 意 到 铸 造 的 可能 性 ,对 铸 铁 叶 轮 , 叶 片 最 小 厚 度 为3—4 毫 米 ,本 次 设 计 的叶 轮 材 料 选 用MT 一 4 ,叶 … 馘 拙 :
【 1 】 丁成伟 . 离心 泵 与 轴 流 泵 . 北京: 机械 工 业 出版社, 1 9 8 1
1 4 3— 1 5 8
【 2 ] A . J . 斯捷潘诺夫. 离心 泵 和 轴 流 泵 . 北京: 机 械 工 业 出 版 社
19 80: 7 4—9 3
【 3 】 劳学苏, 何希杰. 螺旋 离心泵的原理 与设计方法. 水泵技术


5. 6 8 7 (mm )
S - - 6( I T l m)
4 . 背 叶 片 的设 计
图 卜 1叶 轮 轴 面 投 影 图
背 叶片 的主 要作 用 是 减 压 ,其 减 压 程 度 决 定 了背 叶片 的 几 何 参 数 。 背 叶 片 对 于 一 般 的 泵 而 言 ,还 有 另 一 个 作 用 , 就 是 能

离心泵毕业论文

离心泵毕业论文

离心泵毕业论文离心泵毕业论文离心泵是一种常见的工业设备,广泛应用于水处理、石油化工、电力等行业。

它以其高效、可靠的特点,成为工业生产中不可或缺的一部分。

本文将对离心泵的工作原理、设计要点以及应用领域进行探讨,旨在为读者提供关于离心泵的全面了解。

一、离心泵的工作原理离心泵是一种利用离心力将液体输送到高处的设备。

其工作原理可以简单地描述为:泵体内的叶轮通过电机的驱动旋转,液体在叶轮的离心力作用下被抛出,形成一定的压力,从而推动液体流动。

离心泵的工作过程可以分为吸入、压缩和排出三个阶段。

1. 吸入阶段:当泵体内部的叶轮旋转时,叶轮的叶片会在离心力的作用下形成一个低压区域。

此时,液体会通过吸入管道进入泵体,填满叶轮的叶片间隙。

2. 压缩阶段:当液体进入叶轮后,叶轮的旋转速度会使液体产生离心力。

离心力的作用下,液体被抛出叶轮,并沿着泵体的流道逐渐增加压力。

3. 排出阶段:当液体压力达到一定程度后,它会被排出泵体,通过出口管道输送到目标位置。

此时,液体的动能会转化为压力能,从而实现液体的输送。

二、离心泵的设计要点离心泵的设计要点包括叶轮设计、泵体结构、轴承选型等。

下面将分别对这些要点进行详细介绍。

1. 叶轮设计:叶轮是离心泵的核心部件,其设计直接影响着泵的性能。

叶轮的设计应考虑到流体的流动特性、工作条件以及泵的效率要求。

常见的叶轮类型有前后叶片式、开式和闭式叶轮等,设计时应根据具体情况选择合适的叶轮类型。

2. 泵体结构:泵体是离心泵的外壳,承载着叶轮和轴承等关键部件。

泵体的结构应具备良好的刚性和密封性,以保证泵的正常运行。

同时,泵体的内部流道设计也要考虑到流体的流动特性,以减小能量损失和阻力。

3. 轴承选型:离心泵的轴承起到支撑叶轮和传递转矩的作用。

轴承的选型应根据泵的工作条件和负载要求进行,以确保泵的稳定性和可靠性。

常见的轴承类型有滚动轴承和滑动轴承等,选型时应综合考虑摩擦损失、寿命和维护成本等因素。

三、离心泵的应用领域离心泵具有流量大、扬程高、效率高等优点,广泛应用于各个行业。

离心泵叶轮与蜗壳设计几何参数的优化研究

离心泵叶轮与蜗壳设计几何参数的优化研究

离心泵叶轮与蜗壳设计几何参数的优化研究离心泵是一种常用的流体机械设备,广泛应用于工业生产和民用领域。

其工作原理是通过离心力将液体推向出口,实现流体输送的目的。

离心泵的性能直接受到叶轮和蜗壳的设计参数的影响,因此对这些几何参数进行优化研究,可以改善离心泵的工作效率和节能性能。

叶轮是离心泵的核心部件,其结构形式多样,包括正向叶轮、背靠背叶轮和双吸入流通道叶轮等。

在进行叶轮设计时,需要考虑叶轮的轴长、轴功率、进口直径和出口直径等参数。

叶轮的直径越大,对应的扬程和流量也会增加,但是叶轮过大会导致泵的体积增大,造成不必要的浪费。

轴功率则与流量和工作压力有关,合理控制轴功率可以提高泵的工作效率。

另外,在叶轮的设计中,还需要考虑叶片的形状、数量和间隙等因素。

叶片的形状通常遵循空气动力学原理,采用弯曲或弯折形式,以减小流体在泵内的速度和压力变化,并提高泵的稳定性。

蜗壳是离心泵的另一个重要部件,其作用是引导进入泵的液体流向叶轮,并将离心泵的压力能转化为流体动能。

蜗壳的几何参数包括进口直径、出口直径、蜗舌角度和蜗舌长度等。

进口直径和出口直径是决定流量和扬程的关键参数,通常根据泵的设计工况和流体性质来确定。

蜗壳的设计还需要考虑蜗舌角度和蜗舌长度,这两个参数对泵的效率和稳定性影响较大。

蜗舌角度越小,流体在蜗壳内的速度变化越小,从而减小能量损失;而蜗舌长度越长,流体在蜗壳内的速度变化越平缓,减少压力波动和振动。

离心泵叶轮与蜗壳的几何参数优化研究的目标是找到一组最佳参数组合,使得离心泵在给定的工况下能够实现最大的效率和能量转换。

该研究可以通过理论计算、数值模拟和实验测试等方法进行。

对于叶轮的优化研究,可以通过设计不同形状和数量的叶片,采用数值模拟方法进行性能评估,并通过实际测试验证。

对于蜗壳的优化研究,可以通过调整进出口直径和蜗舌角度等参数,采用CFD模拟方法进行性能预测,并通过试验验证。

在离心泵叶轮与蜗壳设计几何参数的优化研究中,需要考虑的因素很多,如流体性质、工况参数、材料选择等,且不同泵的要求和工况也存在差异。

离心泵叶轮的流场分析

离心泵叶轮的流场分析

离心泵叶轮的流场分析离心泵是一种常见的流体机械设备,其工作原理是通过叶轮的旋转将液体吸入,并通过离心力将液体向外抛出,从而产生一定的压力。

而离心泵叶轮的设计和优化,对于泵的效率和性能有着至关重要的影响。

因此,对离心泵叶轮的流场进行分析是非常有必要的。

首先,我们来了解离心泵叶轮的结构。

离心泵的叶轮通常由多个叶片组成,这些叶片呈弯曲形状,周围环绕着一个叶轮壳体。

当泵的电机启动时,叶轮开始旋转,液体被吸入到泵的进口处,并经过叶轮的作用逐渐转化为高压液体,最终从泵的出口处排出。

因此,叶轮的结构和形状对流场的形成和流动有着重要的影响。

离心泵的叶轮应保持流动匹配性和叶片进出流的连续性。

为了保持流动匹配性,叶轮的出口直径应与进口直径相匹配,以确保液体在叶轮的转动中不会出现错位或堵塞现象。

同时,叶轮的叶片应呈弯曲形状,这样可以将液体顺利引导到叶轮的出口处,减小液体流动过程中的能量损失。

另一方面,离心泵叶轮的叶片形状也会对流场的形成和流动产生一定的影响。

一般而言,叶片上的曲率半径会影响叶片表面的涡度和涡强度。

较小的曲率半径能够产生更强的涡流,提高离心泵的抛离能力和输送能力;而较大的曲率半径则能减小水力不平衡,提高泵的稳定性和工作效率。

此外,在离心泵叶轮的流场分析中,还需要考虑到叶轮的旋转速度和叶片角度等因素。

叶轮的旋转速度直接影响着离心泵的出口压力和流量。

当叶轮的转速增加时,离心力也会增加,从而增加了液体的压力和流速。

同时,叶片角度可以调节液体在叶轮上的流动方向和速度,进而影响整个流场的形成和流动。

为了更好地进行离心泵叶轮的流场分析,研究者们通常采用数值模拟和实验测量两种方法。

数值模拟方法主要通过计算流体动力学(CFD)软件进行模拟计算,可以对叶轮的流动过程和特性进行全面、精确的分析。

而实验测量方法则是通过实际的泵和叶轮装置进行流体实验,通过测量数据来验证模拟结果的准确性。

总之,离心泵叶轮的流场分析是优化离心泵性能的重要环节。

离心泵叶轮轴面图的优化设计

离心泵叶轮轴面图的优化设计
图 1 过点 a 、点 b 直 线 F-L 的 -
后 盖板 型线 圆弧段日G的半 径 尺 的最小值 和最 ,
第3 2卷 第 3期
2 1 年 6月 01
化 工装 备技 术
5 3
离心泵 叶轮轴面 图的优化 设计
王敏 辉 余 猛 胡 家顺 李 翔
( 中船重 工集 团七一二研究所 ) ( 武汉工程大学机 电工程学 院)
摘 要 在 叶 轮 轴 面投 影 图绘 制 方 法 的基 础 上 ,用正 交设 计 方 法 完成 对 流道 型 线进 行 反 复 检 验一 整 、修 改 的优化 ,以取得 较 为理 想 的叶轮 轴 面投 影 图。 调
Wa gMih i n n u YuMe g n HuJah n L Xi g is u i a n
Ab t a t s r c :Th s a t l ic s e h t o f u i g r o o a d sg o c n u t i r ce d s u s s t e meh d o s o t g n l e i n t o d c mu t l n p ci n , i n h lpe is e t s i o
到 最好 ( )的试验 结果 。 优
0 引 言
当正交设 计 用于 优化 计算 时 ,以上 所说 的 “ 试 验 ”就 是访 问 目标 函数 的一次计 算 。也 即用 正 交设 计进 行 优化 计算 时 ,可用 较少 的访 问 目标 函数 的计
算 次数 得到 最优 解 。 用 正交设 计 方法 进行 优化计 算 可归 结 为如 下过
po ig to ,o c i e h t a i el i — ln rjcda ig ltn h dt ahe eo i lmpl r xa paepoet r n. t me vt pm ea l w

离心泵叶轮的参数化设计

离心泵叶轮的参数化设计

Pa a e rc d sg f c n r f g lp m p i p l r r m t i e i n o e t iu a u m e l s e
Z a g Re h i h n i h n n u ,Z e g Ka , 几 u h ,L n n gJ n u i Re n a
r n ile u to sme h d wa s d t o to he g o t h p fc n rf g li e lr a a ti al e t q ai n t o su e o c n r lt e mer s a e o e tiu a mp l sp r merc ly, a y e
在 离心 泵 的传 统 设 计 方 法 中 , 计 人 员 的 经 验 设
对 泵产 品 的设计 质量 有 很 大 的影 响 , 优 秀 的水 力 且 模 型需 要较 长 的设 计 周 期 , 化 设 计 难 以进 行 . 优 这 是 由于泵 的水 力性 能 与其 复 杂 的 内流 道 形 状 之 间 复 杂 的隐式关 系所 致 , 问题 在 形状 优 化 领 域 被称 该 为 具有 流动 约束 的功 能 曲面 的形 状 优 化 问题 , 是 也
aecnt t n erso s sr c e oooy ( S )w sa pi pi z ed s no e . r o s n dt ep ne u aem t d l a a h f h g RM a p l dt ot et ei f n e o mi h g c
p mp i elr u mp le s,s c st u h a he NURBS s ra e meho u c t d,fe —u a e d f r to t o n a t ld f f r e s r c eo main meh d a d p ri i- f a

离心泵——叶轮设计说明书

离心泵——叶轮设计说明书

主要设计参数本设计给定的设计参数为: 流量Q=33500.01389mmhs=,扬程H=32m ,功率P=15Kw ,转速1450minrn =。

确定比转速s n根据比转速公式343.65145046.3632s n ⨯=== 叶轮主要几何参数的计算和确定1. 轴径与轮毂直径的初步计算1.1. 泵轴传递的扭矩3159.5510955098.81450t P M N m n =⨯=⨯=⋅其中P ——电机功率。

1.2泵的最小轴径对于35号调质钢,取[]5235010Nm τ=⨯,则最小轴径0.02424d m mm ==== 根据结构及工艺要求,初步确定叶轮安装处的轴径为40B d mm =,而轮毂直径为(1.2~1.4)h B d d =,取51h d mm = 2. 叶轮进口直径jD 的初步计算取叶轮进口断面当量直径系数0 4.5K =,则0 4.50.09696D K m mm ====对于开式单级泵,096j D D mm == 3. 叶片进口直径1D 的初步计算由于泵的比转速为46.36,比较小,故1k 应取较大值。

不妨取10.85k =,则110.859682j D k D mm ==⨯=4. 叶片出口直径2D 的初步计算220.50.5246.369.359.3513.7310010013.730.292292s D D n K D K m mm --⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭====5. 叶片进口宽度1b 的初步计算()002221114/4//v vm j j hvQ Q V V D D d Q b DV ηηππηπ===-=所以 220111144j j v V D D b V D K D ==其中,10v V K V =,不妨取0.8v K =,则22118535.42440.863.75jv D b mm K D ===⨯⨯6. 叶片出口宽度2b 的初步计算225/65/6246.360.640.640.33731001000.33730.00727.2s b b n K b K m mm ⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭====7. 叶片出口角2β的确定取2β=15°8. 叶片数Z 的计算与选择取叶片数Z=8,叶片进口角0155.8β=。

叶轮设计结构

叶轮设计结构

叶轮设计结构叶轮是泵的核心部件,其设计结构对泵的性能和效率有着重要影响。

根据不同的分类方式,叶轮的设计结构也有所不同。

按照流道形式,叶轮可以分为闭式、半开式和开式三种类型。

1. 闭式叶轮:由叶片与前、后盖板组成。

闭式叶轮的效率较高,制造难度较大,在离心泵中应用最多。

2. 半开式叶轮:一般有两种结构,其一为前半开式,由后盖板与叶片组成,此结构叶轮效率较低,为提高效率需配用可调间隙的密封环;另一种为后半开式,由前盖板与叶片组成,由于可应用与闭式叶轮相同的密封环,效率与闭式叶轮基本相同,且叶片除输送液体外,还具有(背叶片或副叶轮的)密封作用。

半开式叶轮适于输送含有固体颗粒、纤维等悬浮物的液体。

半开式叶轮制造难度较小,成本较低,且适应性强,在炼油化工用离心泵中应用逐渐增多,并用于输送清水和近似清水的液体。

3. 开式叶轮:只有叶片及叶片加强筋,无前后盖板的叶轮(开式叶轮叶片数较少2-5 片)。

叶轮效率低,应用较少,主要用于输送黏度较高的液体,以及浆状液体。

按照叶片的形状,叶轮可以分为单曲率叶片和双曲率叶片两种类型。

1. 单曲率叶片:也称圆柱叶片,这种叶片的表面是单向弯曲的,因圆柱表面是单向弯曲的面,所以称为圆柱叶片。

2. 双曲率叶片:叶片表面是双向弯曲的面,即空间曲面,又称扭曲叶片。

为了完整而清楚地表示叶轮的几何形状,现引入两个辅助面:平面和轴面。

平面是垂直抽线的平面,轴面是过轴心线的平面,轴面和平面都可以作任意多个。

水力机械的过流部分采用相应的平面和轴面投影来表示。

平面投影和一般机械制图的侧视图相同,在平面投影图上,反映径向和圆周方位的形状。

叶轮的平面投影可以从叶轮前面或后面(包括去掉相应的盖板)去投视。

至于叶片的弯曲情况,要借助平面投影看出。

此外,在叶轮的设计过程中,还需要考虑叶轮的直径、转速、叶片数、包角等参数。

这些参数的选择和优化对于叶轮的性能和效率也有着至关重要的影响。

总的来说,叶轮设计结构是一个复杂的过程,需要综合考虑多种因素。

离心泵叶轮设计范文

离心泵叶轮设计范文

离心泵叶轮设计范文离心泵是一种常见的流体机械设备,广泛应用于工农业生产、城市供水和排水等领域。

其工作原理是利用叶轮受离心力作用,将流体加速并转化为压力能,从而实现输送的目的。

离心泵的叶轮是其核心部件,直接关系到泵的性能和效率。

叶轮的设计需要考虑多个因素,包括流体的流动特性、流量需求、扬程要求、泵的转速、叶轮材料等。

在离心泵叶轮的设计过程中,首先需要确定泵的工况参数,包括流量Q、扬程H、泵的转速N等。

这些参数可以通过工程实际需要来确定,也可以根据已有的类似泵的性能曲线来选择。

接下来,需要确定叶轮的进出口直径D1和D2,以及出口角β2、进口直径D1一般根据泵的流量来确定,而出口直径D2则常常使用等速线绘制法来确定。

该法通过绘制流速三角形和散失系数曲线来确定出口直径,从而使得出口速度恒定。

然后,需要根据进口和出口直径来确定叶轮的元素形状。

叶轮通常采用流线型的设计,使得流体能够顺利进入和流出。

叶轮的元素形状可以使用叶片角、曲率半径和叶片厚度等参数来描述。

在确定叶轮的元素形状后,还需要进行叶轮的流场分析。

这可以通过CFD仿真等方法来实现,以验证叶轮是否满足设计要求,以及是否能够提供理想的流体流动状态。

另外,还需要进行叶轮的强度和动力分析。

叶轮的强度分析主要包括静力学和动力学两个方面,以确保叶轮在工作过程中能够承受流体的压力和惯性力。

动力分析则主要是考虑叶轮的转动惯量和动力平衡等问题。

最后,在叶轮设计完成后,需要进行叶轮的制造和装配。

制造时需要考虑叶轮的材料选择和加工工艺,保证叶轮的质量和精度。

装配时需要注意叶轮与轴的连接方式,以及叶轮与泵壳等配合关系。

总之,离心泵叶轮的设计是一项综合性的工程,需要综合考虑多个因素,从而得到理想的叶轮形状和性能。

随着计算机技术的发展,仿真分析在叶轮设计中的应用越来越广泛,可以提高设计效率和精度。

在实际应用中,还需要根据具体情况进行不断的优化和改进,以满足不同领域和需求的泵的要求。

离心泵设计需要的知识点

离心泵设计需要的知识点

离心泵设计需要的知识点离心泵是一种常见的流体机械设备,广泛应用于工农业生产和城市供水系统中。

为了确保离心泵的性能和效率,设计者需要掌握一些关键的知识点。

本文将介绍离心泵设计所需的知识点,包括工作原理、选型参数、设计要点等。

一、离心泵的工作原理离心泵利用离心力将液体从低压区域输送到高压区域。

其工作原理可以分为以下几个步骤:1. 吸入过程:当泵轴以一定的速度旋转时,叶轮中心会形成负压区域。

此时,液体会通过进水口进入叶轮,并随后被叶轮推向叶片外缘。

2. 加速过程:液体在叶轮中被加速,离心力作用下,液体的速度增加,同时压力减小。

3. 引导过程:叶片的形状和角度设计得当,能够引导流体从进口到出口,减小流体的阻力和涡流损失。

4. 推出过程:当液体达到叶片外缘时,离心力将其推向出口,同时压力增加。

二、离心泵的选型参数离心泵的选型参数包括流量、扬程、效率和轴功率等。

1. 流量:流量是指单位时间内通过泵的液体体积。

根据工艺需求和供液条件,确定所需的流量大小。

2. 扬程:扬程是指液体从进口到出口时所需克服的高度差和压力损失。

根据输送距离和高度差确定所需的扬程。

3. 效率:泵的效率是指输出功率与输入功率之间的比值,即泵的输出能量和输入能量之间的转换效率。

高效率的泵可以提供更大的流量和更高的扬程。

4. 轴功率:轴功率是指泵轴的输出功率,用于计算泵的能耗。

根据所需的流量、扬程和效率,确定泵的轴功率。

三、离心泵的设计要点离心泵的设计需要考虑以下几个要点:1. 泵的类型选择:根据工艺要求和使用环境,选择适合的泵型。

目前常见的离心泵包括单级、多级、离心隔膜泵等。

2. 叶轮与叶片设计:叶轮是离心泵的关键部件之一,其叶片的形状和角度决定了泵的性能。

合理设计叶轮和叶片,能够提高泵的效率和稳定性。

3. 泵壳和吸入管道设计:泵壳和吸入管道的设计直接影响泵的吸入性能和阻力损失。

合理设计泵壳和吸入管道的形状和尺寸,优化流体的流动路径。

4. 密封系统设计:离心泵的密封系统用于防止液体泄漏。

离心泵叶轮水力设计

离心泵叶轮水力设计

离心泵叶轮水力设计离心泵叶轮的流道形状是其水力设计的一个重要方面。

流道形状的优化可以降低水流速度的变化,减小能量损失,提高泵的效率。

一般来说,对于离心泵叶轮的水力设计来说,流道形状应该尽量保持平滑,避免出现过于复杂的几何结构,以减小流阻和涡流损失。

叶片角度也是离心泵叶轮水力设计的重要因素之一、叶片角度的选择直接影响着叶轮的流道流速和角动量的大小。

一般来说,在离心泵叶轮的水力设计中,叶片角度应该根据流体性质和工作条件的不同而有所调整。

例如,对于高粘度液体的泵来说,叶片角度一般选择较小,以减小流体的阻力和摩擦损失。

除了流道形状和叶片角度外,离心泵叶轮的几何参数也是水力设计的重要考虑因素。

例如,叶轮的进口直径、出口直径、叶片数等。

这些参数的选择应该根据需要泵送流量和扬程的不同进行调整。

一般来说,随着泵送流量的增大,叶轮的进口直径和出口直径也应该相应增大,以保持叶轮的稳定运行和高效性能。

在离心泵叶轮的水力设计中,还需要考虑到流动的非定常性以及液体的旋转运动对叶轮的影响。

非定常流动包括流场的非均匀性和流体的非线性特性。

为了减小非定常性的影响,可以通过减小流道的长度和宽度来降低流动的不均匀性。

而液体的旋转运动主要是由于叶轮的旋转导致的,对于这种情况,可以通过增大出口直径和叶片角度来减小涡流的损失。

总之,离心泵叶轮的水力设计是离心泵性能优化的关键步骤之一、在水力设计过程中,需要综合考虑流道形状、叶片角度和叶轮几何参数等方面的因素,以提高离心泵的效率和性能。

此外,还需要考虑流动的非定常性和液体的旋转运动对叶轮的影响,以减小能量损失和涡流损失,提高泵的工作效率。

只有在水力设计的合理指导下,离心泵才能够实现更高的效率和更好的性能。

清水离心泵再制造叶轮优化设计方法研究

清水离心泵再制造叶轮优化设计方法研究

清水离心泵再制造叶轮优化设计方法研究作者:张宇淞钱进邓传记王康杨柳来源:《贵州大学学报(自然科学版)》2024年第03期摘要:针对广泛存在的数量众多、效率低下、结构陈旧、面临淘汰的离心水泵,探寻其叶轮再制造优化设计有效途径。

基于ANSYS workbench联合CFturbo,提出一种叶轮参数化仿真建模和叶轮优化设计的方法,借助ANSYS workbench响应面优化模块,以扬程不小于原始泵为约束条件,效率为目标函数,采用拉丁超立方抽样方法设计41组实验,建立响应面代理模型,并采用MOGA算法对低比转速离心泵进行寻优。

研究结果表明,该方法应用于某一低比转速离心式水泵,在其扬程不变的条件下,效率提高了2.11%,对清水离心泵叶轮再制造优化设计、提高离心泵运行效率有一定的参考价值。

关键词:离心泵;叶轮;再制造;参数化仿真;优化设计中图分类号:TH311文献标志码:A离心泵作为通用的流体机械设备之一,被广泛应用于石油化工、灌溉、火电厂等各种领域。

但是,面对出台的越来越严格的能效指标,如《中国节能技术政策大纲》明确指出发展高效率的泵,所以大量效率低下,结构陈旧的设备被淘汰,从而造成了严重的资源浪费。

再制造是以先进技术和产业化生产为手段,修复和改造废旧机电设备,使之恢复性能甚至获取新的性能,延长设备使用寿命。

再制造在节能、节材、降耗、减少污染和提高经济效益方面作用巨大。

对企业既能将能效低下、结构陈旧的离心式水泵进行再制造,还能提高离心泵的运行效率,同时能减少资源浪费,降低企业换泵成本。

符合国家绿色可持续发展的相关政策。

对离心式水泵的再制造是解决资源浪费的途径之一,而这一过程中,优化设计是再制造的基础,寻找离心泵的最佳效率和最优水力结构,延长离心泵的运行寿命是其关键。

传统的优化设计方法依靠大量的试验数据和设计者的优化经验,设计者通过改变单一几何参数等措施来提高离心泵的效率,万伦等[1]研究不同叶轮出口宽度对离心泵性能的影响,研究结果表明,适当增大叶轮出口宽度能提高离心泵的性能。

离心泵叶轮水力设计

离心泵叶轮水力设计

设计题目:离心泵叶轮水力设计设计参数:流量0.1m3/s,扬程71.5m,转速1450rpm比转速:68.07目录一、已知设计参数二、速度系数法1.计算泵的比转速2.计算泵的进出口直径4. 计算叶轮进口直径D j5. 确定叶轮进口流速4. 确定叶轮叶片数z和叶片包角5. 确定叶轮叶片的出口安放角6. 确定叶轮外径D2及叶片厚度7. 确定叶轮出口轴面流速8. 确定叶轮出口宽度b29. 绘制叶轮的轴面投影图,检查过流面积变化10. 做叶片进口边11. 绘制轴面液流的流线(分流线) 三、 叶轮叶片的绘型1. 掌握方格网绘型的过程2. 掌握叶片木模图绘制过程3. 绘制木模图一、已知设计参数流量:Q=0.1m ³/s 扬程:H=71.5m 转速:n=1450rpm二、速度系数法1. 计算泵的比转速根据比转速公式s n ==435.711.0145065.3⨯⨯=68.07 故泵的水力方案为:单级单吸式离心泵。

2确定泵的总体结构形式进出口直径泵吸入口直径 泵的吸入口直径由合理的进口流速确定,而泵的入口流速一般为3m s 。

暂取2.7m s 泵的吸入口直径按下式确定S D =πs 4υQ =π⨯⨯7.21.04= 217mm取标准值220mm泵的排出口直径为D d = 0.8D s =220mm (因设计的泵扬程较低) t D —泵吸入口直径s D —泵排出口直径将选定的标准值代入上式,得泵的进出口流速为2.63m s 。

5确定比转速s n 和泵的水力方案根据比转速公式s n ==435.711.0145065.3⨯⨯=68.07 根据以往的运行经验。

依算得的s n =68.07,宜采用单级单吸的水力结构方案。

6估算泵的效率和功率查《泵的理论和设计》手册,根据经验公式得a 水力效率计算10.0835lg h η=+314501.0lg 0835.01+=0.884 取h η=0.88 b 容积效率23110.68v s n η-=+=3207.6868.011-⨯+=0.961取v η=0.96c 圆盘损失效率 76110.07()100m s n η=-=8710007.68107.01)(-=0.89 d 机械效率假定轴承填料损失约为2% ,则m η=0.89×0.98=0.87 f 总效率m v h ηηηη= =0.87×0.96×0.88=0.73 g 轴功率1000rQH N η==73.010005.711.0100081.9⨯⨯⨯⨯=96.08KW h 计算配套功率'N =KN=1.2×68.7=115.3KW K 取1.27叶轮主要参数的选择和计算叶轮主要几何参数有叶轮进口直径0D 、叶片进口直径1D 、叶轮轮毂直径h d 、叶片进口角1β、叶轮出口直径2D 、叶轮出口宽度2b 、叶片出口角2β和叶片数Z 。

离心泵叶轮水力设计

离心泵叶轮水力设计

离心泵叶轮水力设计0.98根据上述三种效率计算得到总效率为:hvm0.880.960.890.98=0.73根据公式,计算泵的功率:P=QH/=10000.171.5/0.73=.86W≈10.4kW因此,选用11kW的电机作为泵的动力源。

三、叶轮叶片的绘型1.掌握方格网绘型的过程方格网绘图法是一种快速、简便的绘图方法,适用于各种形状的叶轮叶片的绘制。

具体步骤如下:1)在方格纸上按比例放大叶片木模图;2)将叶片木模图的每一个关键点的坐标标在方格纸上;3)用直尺将每个关键点连接起来,形成叶片的外形;4)用曲线连接相邻的直线段,形成光滑的曲线。

2.掌握叶片木模图绘制过程叶片木模图是叶片外形的模型图,是绘制方格网图的基础。

其绘制过程如下:1)确定叶片的进口和出口圆直径;2)确定叶片的最大厚度和最大弦长;3)在方格纸上按比例画出进口和出口圆的圆弧;4)在进口圆弧上划分出若干等分点,根据叶片的包角和进口流角确定各等分点的位置;5)根据叶片的最大厚度和最大弦长,在进口圆弧上确定叶片的最大厚度点和最大弦长点;6)连接最大厚度点和最大弦长点,形成叶片的中心线;7)在最大厚度点和最大弦长点上分别确定叶片的前缘和后缘线;8)根据叶片的包角和出口流角,在出口圆弧上确定各等分点的位置;9)用曲线连接相邻的等分点和前后缘线,形成叶片的外形。

3.绘制木模图根据已知的设计参数和叶轮的水力方案,确定叶轮的进口和出口直径,最大厚度和最大弦长。

然后,按照叶片木模图的绘制过程,在方格纸上绘制出叶片的中心线、前后缘线和外形曲线。

最后,检查叶片的包角、出口流角和叶片的流线等重要参数是否符合设计要求。

叶片外径D2和叶片出口角β2等出口几何参数是影响泵扬程的最重要因素。

另外影响泵扬程的有限叶片数的修正系数也与D2和β2及叶片等参数有关。

可见,D2的精确与否,间接影响着泵的性能。

根据经验公式D2=K3Q1,取K=11.333,Q1=168.07,可得D2=465 mm(初步计算值)。

多级离心泵叶轮顺序

多级离心泵叶轮顺序

多级离心泵叶轮顺序
多级离心泵通常由多个叶轮( 又称为级)组成,每个叶轮都有自己的吸入口和压出口。

这些叶轮按照一定的顺序排列,形成多级泵。

多级泵的设计旨在通过多级压缩来增加泵的扬程,从而适应更高的抽水高度或压力要求。

通常,多级离心泵的叶轮排列可以分为两种基本方式:
1.串联排列 In-series(arrangement):(在串联排列中,每个叶轮的出口都直接与下一个叶轮的入口相连,形成一个串联的结构。

这种排列方式可以增加总扬程,但相应地也增加了泵的总长度。

这在需要高扬程的情况下比较常见。

2.并联排列 In-parallel(arrangement):(在并联排列中,每个叶轮的出口都与其他叶轮的出口相连,形成一个并联的结构。

这种排列方式通常用于需要更大的流量而不是很高扬程的情况。

多级泵的设计通常根据具体的工程要求和流体力学原理进行优化。

在实际应用中,不同厂家可能采用不同的设计和排列方式,以满足特定的性能和运行需求。

因此,在选择多级离心泵时,需要仔细考虑所需的扬程和流量,以确保选用的泵能够满足工程要求。

1/ 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离心泵叶轮的设计
离心泵的水力设计主要是设计叶轮和泵壳,下面我们了解下其中的叶轮。

离心泵产生的理论压头计算:
离心泵常被认为是一种动能机器。

叶轮的旋转使叶轮中的流体高速旋转,从而将能量传递给液体,这个概念可以用数学等式表示出来:
H i=u2x c u2/g
式中H i——离心泵产生的理论压头,ft;
u2——叶轮外直径处的旋转速度,ft/s;
c u2——液体离开叶轮的旋转速度,ft/s;
g——重力加速度,ft/s2。

下面是3种基本的叶轮设计:
1)封闭式叶轮,在叶轮的前后面都有封闭罩(旋转壳体);
2)半开放式叶轮,只在一边有封闭护罩,并且紧密地和另外一边静止壳体相连;
3)开放式叶轮,只在一边有或者没有封闭罩(如图)。

离心泵中液体的转速:
流体进入离心泵吸入管时没有旋转速度,当流体进入叶轮的旋转管路中时,它开始以叶轮的旋转速度旋转。

液体被挤出叶轮中心,并且它的旋转速度与叶轮直径成比例。

可以用下面方式算出任何直径的液体叶轮转速:
u=D X N/229
式中u——液体旋转速度,ft/s;
D——速度计算点的直径,in;
N——叶轮旋转速度,r/min;
1/229——单位换算系数。

叶轮里压头损失通常包括摩擦损失、涡流损失、流体再循环损失、入口耗损和出口损失。

在壳体会发生附加损失。

应当注意的是,离心泵产生的压头取决于流体速度而不是被泵吸入的流体。

相关文档
最新文档