2020年高考数学全国2卷

合集下载

2020年高考全国2卷理科数学带答案解析

2020年高考全国2卷理科数学带答案解析

2020年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.12i 12i +=-A.43i 55-- B.43i 55-+ C.34i 55-- D.34i 55-+2.已知集合22{(,)|3,,A x y x y x y =+≤∈∈Z Z},则A 中元素的个数为A.9 B.8 C.5 D.43.函数2e e ()x xf x x --=的图象大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A.4B.3C.2D.05.双曲线22221(0,0)x y a b a b -=>>的离心率为3,则其渐近线方程为A.2y x =±B.3y x =±C.22y x =± D.32y x =± 6.在ABC △中,5cos 25C =,1BC =,5AC =,则AB =A.42 B.30 C.29 D.257.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入A.1i i =+B.2i i =+ C.3i i =+D.4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A.112 B.114 C.115 D.1189.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为A.15B.56 C.55D.2210.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A.π4 B.π2 C.3π4D.π11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++= A.50- B.0 C.2 D.5012.已知1F ,2F 是椭圆22221(0)x y C a b a b +=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为A.23 B.12 C.13D.14二、填空题:本题共4小题,每小题5分,共20分。

2020年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)

 2020年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)

2020年普通高等学校招生全国统一考试理科数学注意事项:1.答题前,考生务必将自己的姓名、考生号、座位号填写在答题卡上.本试卷满分150分.2.作答时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题目:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ð()A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}【答案】A 【解析】【分析】首先进行并集运算,然后计算补集即可.【详解】由题意可得: 1,0,1,2A B ,则 U 2,3A B ð.故选:A.【点睛】本题主要考查并集、补集的定义与应用,属于基础题.2.若α为第四象限角,则()A.cos2α>0 B.cos2α<0C.sin2α>0D.sin2α<0【答案】D 【解析】【分析】由题意结合二倍角公式确定所给的选项是否正确即可.【详解】当6时,cos 2cos 03,选项B 错误;当3时,2cos 2cos 03,选项A 错误;由 在第四象限可得:sin 0,cos 0 ,则sin 22sin cos 0 ,选项C 错误,选项D 正确;故选:D.【点睛】本题主要考查三角函数的符号,二倍角公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名【答案】B 【解析】【分析】算出第二天订单数,除以志愿者每天能完成的订单配货数即可.【详解】由题意,第二天新增订单数为50016001200900 ,故需要志愿者9001850名.故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块【答案】C 【解析】【分析】第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,设n S 为{}n a 的前n 项和,由题意可得322729n n n n S S S S ,解方程即可得到n ,进一步得到3n S .【详解】设第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,9(1)99n a n n ,设n S 为{}n a 的前n 项和,则第一层、第二层、第三层的块数分别为232,,n n n n n S S S S S ,因为下层比中层多729块,所以322729n n n n S S S S ,即3(927)2(918)2(918)(99)7292222n n n n n n n n 即29729n ,解得9n ,所以32727(9927)34022n S S .故选:C【点晴】本题主要考查等差数列前n 项和有关的计算问题,考查学生数学运算能力,是一道容易题.5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y 的距离为()A.55B.255C.355D.455【答案】B 【解析】【分析】由题意可知圆心在第一象限,设圆心的坐标为 ,,0a a a ,可得圆的半径为a ,写出圆的标准方程,利用点 2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y 的距离.【详解】由于圆上的点 2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必第一象限,设圆心的坐标为,a a ,则圆的半径为a ,圆的标准方程为 222x a y a a .由题意可得 22221a a a ,可得2650a a ,解得1a 或5a ,所以圆心的坐标为 1,1或 5,5,圆心到直线230x y 距离均为22555d;所以,圆心到直线230x y 的距离为255.故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.6.数列{}n a 中,12a ,m n m n a a a ,若155121022k k k a a a ,则k ()A.2B.3C.4D.5【答案】C 【解析】分析】取1m ,可得出数列 n a 是等比数列,求得数列 n a 的通项公式,利用等比数列求和公式可得出关于k 的等式,由k N 可求得k 的值.【详解】在等式m n m n a a a 中,令1m ,可得112n n n a a a a ,12n na a,所以,数列 n a 是以2为首项,以2为公比的等比数列,则1222n n n a ,1011011105101210122122212211212k k k k k k a a a a,1522k ,则15k ,解得4k .故选:C.【点睛】本题考查利用等比数列求和求参数的值,解答的关键就是求出数列的通项公式,考查计算能力,属于中等题.7.如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为()A.EB.FC.GD.H【答案】A 【解析】【分析】根据三视图,画出多面体立体图形,即可求得M 点在侧视图中对应的点.【详解】根据三视图,画出多面体立体图形,图中标出了根据三视图M 点所在位置,可知在侧视图中所对应的点为E 故选:A【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.8.设O 为坐标原点,直线x a 与双曲线2222:1(0,0)x y C a b a b的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为()A.4B.8C.16D.32【答案】B 【解析】【分析】因为2222:1(0,0)x y C a b a b ,可得双曲线的渐近线方程是b y x a,与直线x a 联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab 值,根据2222c a b ,结合均值不等式,即可求得答案.【详解】∵2222:1(0,0)x y C a b a b双曲线的渐近线方程是by x a∵直线x a 与双曲线2222:1(0,0)x y C a b a b的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限联立x ab y x a,解得x a y b故(,)D a b 联立x ab y x a,解得x a y b故(,)E a b ||2ED bODE 面积为:1282ODE S a b ab△∵双曲线2222:1(0,0)x y C a b a b其焦距为2222222168c a b ab 当且仅当22a b 取等号C 的焦距的最小值:8故选:B.【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.9.设函数()ln |21|ln |21|f x x x ,则f (x )()A.是偶函数,且在1(,)2 单调递增B.是奇函数,且在11(,)22单调递减C.是偶函数,且在1(,)2单调递增D.是奇函数,且在1(,)2单调递减【答案】D 【解析】【分析】根据奇偶性的定义可判断出 f x 为奇函数,排除AC ;当11,22x时,利用函数单调性的性质可判断出 f x 单调递增,排除B ;当1,2x时,利用复合函数单调性可判断出 f x 单调递减,从而得到结果.【详解】由 ln 21ln 21f x x x 得 f x 定义域为12x x,关于坐标原点对称,又 ln 12ln 21ln 21ln 21f x x x x x f x ,f x 为定义域上的奇函数,可排除AC ;当11,22x时, ln 21ln 12f x x x , ln 21y x Q 在11,22 上单调递增, ln 12y x 在11,22上单调递减,f x 在11,22上单调递增,排除B ;当1,2x时, 212ln 21ln 12ln ln 12121x f x x x x x,2121x∵在1,2上单调递减, ln f 在定义域内单调递增,根据复合函数单调性可知: f x 在1,2上单调递减,D 正确.故选:D.【点睛】本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据 f x 与 f x 的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.10.已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为()A.3B.32C.1D.32【答案】C【解析】【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离22d R r.【详解】设球O 的半径为R ,则2416R ,解得:2R .设ABC 外接圆半径为r ,边长为a ,ABC ∵ 是面积为934的等边三角形,21393224a ,解得:3a ,22229933434a r a ,球心O 到平面ABC 的距离22431d R r .故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.11.若2233x y x y ,则()A.ln(1)0y x B.ln(1)0y x C.ln ||0x y D.ln ||0x y 【答案】A 【解析】【分析】将不等式变为2323x x y y ,根据 23t tf t 的单调性知x y ,以此去判断各个选项中真数与1的大小关系,进而得到结果.【详解】由2233x y x y 得:2323x x y y ,令 23ttf t ,2x y ∵为R 上的增函数,3x y 为R 上的减函数, f t 为R 上的增函数,x y ,0y x Q ,11y x , ln 10y x ,则A 正确,B 错误;x y Q 与1的大小不确定,故CD 无法确定.故选:A.【点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到,x y 的大小关系,考查了转化与化归的数学思想.12.0-1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ,且存在正整数m ,使得(1,2,)i m i a a i 成立,则称其为0-1周期序列,并称满足(1,2,)i m i a a i 的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12n a a a ,11()(1,2,,1)mi i k i C k a a k m m 是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k 的序列是()A 11010 B.11011C.10001D.11001【答案】C 【解析】【详解】由i m i a a 知,序列i a 的周期为m ,由已知,5m ,511(),1,2,3,45i i k i C k a a k 对于选项A ,511223344556111111(1)()(10000)55555i i i C a a a a a a a a a a a a52132435465711112(2)()(01010)5555i i i C a a a a a a a a a a a a ,不满足;对于选项B ,51122334455611113(1)()(10011)5555i i i C a a a a a a a a a a a a ,不满足;对于选项D ,51122334455611112(1)()(10001)5555i i i C a a a a a a a a a a a a ,不满足;故选:C【点晴】本题考查数列的新定义问题,涉及到周期数列,考查学生对新定义的理解能力以及数学运算能力,是一道中档题.二、填空题目:本题共4小题,每小题5分,共20分.13.已知单位向量a ,b 的夹角为45°,ka –b 与a 垂直,则k =__________.【答案】22【解析】【分析】首先求得向量的数量积,然后结合向量垂直的充分必要条件即可求得实数k 的值.【详解】由题意可得:211cos 452a b ,由向量垂直的充分必要条件可得:0k a b a,即:2202k a a b k ,解得:22k .故答案为:22.【点睛】本题主要考查平面向量的数量积定义与运算法则,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.14.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.【答案】36【解析】【分析】根据题意,采用捆绑法,先取2名同学看作一组,现在可看成是3组同学分配到3个小区,即可求得答案.【详解】∵4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学先取2名同学看作一组,选法有:246C 现在可看成是3组同学分配到3个小区,分法有:336A根据分步乘法原理,可得不同的安排方法6636 种故答案为:36.【点睛】本题主要考查了计数原理的实际应用,解题关键是掌握分步乘法原理和捆绑法的使用,考查了分析能力和计算能力,属于中档题.15.设复数1z ,2z 满足12||=||=2z z ,123i z z ,则12||z z =__________.【答案】23【解析】【分析】令12cos 2sin z i ,22cos 2sin z i ,根据复数的相等可求得1cos cos sin sin 2,代入复数模长的公式中即可得到结果.【详解】122z z ∵,可设12cos 2sin z i ,22cos 2sin z i , 122cos cos 2sin sin 3z z i i ,2cos cos 32sin sin 1,两式平方作和得: 422cos cos 2sin sin 4 ,化简得:1cos cos sin sin 2122cos cos 2sin sin z z i224cos cos 4sin sin 88cos cos sin sin 8423 故答案为:23.【点睛】本题考查复数模长的求解,涉及到复数相等的应用;关键是能够采用假设的方式,将问题转化为三角函数的运算问题.16.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l 平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ②12p p ③23p p ④34p p 【答案】①③④【解析】【分析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为 ;若3l 与1l 相交,则交点A 在平面 内,同理,3l 与2l 的交点B 也在平面 内,所以,AB ,即3l ,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m 平面 ,则m 垂直于平面 内所有直线,∵直线l 平面 , 直线m 直线l ,命题4p 为真命题.综上可知,14p p 为真命题,12p p 为假命题,23p p 为真命题,34p p 为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C.(1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23;(2)323 .【解析】【分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)利用余弦定理可得到 29AC AB AC AB ,利用基本不等式可求得AC AB 的最大值,进而得到结果.【详解】(1)由正弦定理可得:222BC AC AB AC AB ,2221cos 22AC AB BC A AC AB , 0,A ∵,23A .(2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB ,即 29AC AB AC AB .22AC AB AC AB∵(当且仅当AC AB 时取等号), 22223924AC AB AC AB AC AB AC AB AC AB ,解得:23AC AB (当且仅当AC AB 时取等号),ABC 周长323L AC AB BC ,ABC 周长的最大值为323 .【点睛】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i i x ,2011200i i y,2021)80i i x x (,2021)9000i i y y (,201))800i i i x y x y ((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =12211))))ni i i i i n n i i x y x x y y y x((((,2=1.414.【答案】(1)12000;(2)0.94;(3)详见解析【解析】【分析】(1)利用野生动物数量的估计值等于样区野生动物平均数乘以地块数,代入数据即可;(2)利用公式20120202211()()()()ii i i i i i x x y y r x x y y 计算即可;(3)各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样.【详解】(1)样区野生动物平均数为201111200602020i i y ,地块数为200,该地区这种野生动物的估计值为2006012000(2)样本(,)i i x y 的相关系数为20120202211()()800220.943809000()()i i i i i i i x x y y r x x y y (3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.【点晴】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能力,是一道容易题.19.已知椭圆C 1:22221x y a b(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)221:13627x y C ,22:12C y x .【解析】【分析】(1)求出AB 、CD ,利用43CD AB可得出关于a 、c 的齐次等式,可解得椭圆1C 的离心率的值;(2)由(1)可得出1C 的方程为2222143x y c c,联立曲线1C 与2C 的方程,求出点M 的坐标,利用抛物线的定义结合5MF 可求得c 的值,进而可得出1C 与2C 的标准方程.【详解】(1) ,0F c ∵,AB x 轴且与椭圆1C 相交于A 、B 两点,则直线AB 的方程为x c ,联立22222221x c x y a b a b c,解得2x c b y a ,则22b AB a,抛物线2C 的方程为24y cx ,联立24x c y cx,解得2x c y c ,4CD c ,43CD AB ∵,即2843b c a,223b ac ,即222320c ac a ,即22320e e ,01e Q ,解得12e ,因此,椭圆1C 的离心率为12;(2)由(1)知2a c ,3b c ,椭圆1C 的方程为2222143x y c c,联立222224143y cx x y c c,消去y 并整理得22316120x cx c ,解得23x c 或6x c (舍去),由抛物线的定义可得25533c MF c c ,解得3c .因此,曲线1C 的标准方程为2213627x y ,曲线2C 的标准方程为212y x .【点睛】本题考查椭圆离心率的求解,同时也考查了利用抛物线的定义求抛物线和椭圆的标准方程,考查计算能力,属于中等题.20.如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【答案】(1)证明见解析;(2)1010.【解析】【分析】(1)由,M N 分别为BC ,11B C 的中点,1//MN CC ,根据条件可得11//AA BB ,可证1MN AA //,要证平面11EB C F 平面1A AMN ,只需证明EF 平面1A AMN 即可;(2)连接NP ,先求证四边形ONPA 是平行四边形,根据几何关系求得EP ,在11B C 截取1B Q EP ,由(1)BC ⊥平面1A AMN ,可得QPN 为1B E 与平面1A AMN 所成角,即可求得答案.【详解】(1)∵,M N 分别为BC ,11B C 的中点,1//MN BB 又11//AA BB 1//MN AA 在ABC 中,M 为BC 中点,则BC AM又∵侧面11BB C C 为矩形,1BC BB 1//MN BB ∵MN BC由MN AM M ,,MN AM 平面1A AMNBC ⊥平面1A AMN又∵11//B C BC ,且11B C 平面ABC ,BC 平面ABC ,11//B C 平面ABC又∵11B C 平面11EB C F ,且平面11EB C F 平面ABC EF 11//B C EF//EF BC又BC ∵平面1A AMNEF 平面1A AMNEF ∵平面11EB C F平面11EB C F 平面1A AMN(2)连接NP∵//AO 平面11EB C F ,平面AONP 平面11EB C F NP //AO NP根据三棱柱上下底面平行,其面1A NMA 平面ABC AM ,面1A NMA 平面1111A B C A N //ON AP故:四边形ONPA 是平行四边形设ABC 边长是6m (0m )可得:ON AP ,6NP AO AB m∵O 为111A B C △的中心,且111A B C △边长为6m 16sin 6033ON m 故:3ON AP m∵//EF BC AP EP AM BM3333EP 解得:EP m在11B C 截取1B Q EP m ,故2QN m∵1B Q EP 且1//B Q EP四边形1B QPE 是平行四边形,1//B E PQ由(1)11B C 平面1A AMN故QPN 为1B E 与平面1A AMN 所成角在Rt QPN △,根据勾股定理可得: 222226210PQ QN PN m m m 210sin 10210QN m QPN PQ m 直线1B E 与平面1A AMN 所成角的正弦值:1010.【点睛】本题主要考查了证明线线平行和面面垂直,及其线面角,解题关键是掌握面面垂直转为求证线面垂直的证法和线面角的定义,考查了分析能力和空间想象能力,属于难题.21.已知函数f (x )=sin 2x sin2x .(1)讨论f (x )在区间(0,π)的单调性;(2)证明:33()8f x ;(3)设n ∈N *,证明:sin 2x sin 22x sin 24x …sin 22n x ≤34nn .【答案】(1)当0,3x时, '0,f x f x 单调递增,当2,33x 时, '0,f x f x 单调递减,当2,3x时, '0,f x f x 单调递增.(2)证明见解析;(3)证明见解析.【解析】【分析】(1)首先求得导函数的解析式,然后由导函数的零点确定其在各个区间上的符号,最后确定原函数的单调性即可;(2)首先确定函数的周期性,然后结合(1)中的结论确定函数在一个周期内的最大值和最小值即可证得题中的不等式;(3)对所给的不等式左侧进行恒等变形可得2222123sin sin sin 2sin 2sin 4sin 2sin 2sin 2n n n f x x x x x x x x x ,然后结合(2)的结论和三角函数的有界性进行放缩即可证得题中的不等式.【详解】(1)由函数的解析式可得: 32sin cos f x x x ,则: 224'23sin cos sin f x x x x2222sin 3cos sin x x x 222sin 4cos 1x x 22sin 2cos 12cos 1x x x ,'0f x 在 0,x 上的根为:122,33x x,当0,3x时, '0,f x f x 单调递增,当2,33x时, '0,f x f x 单调递减,当2,3x时, '0,f x f x 单调递增.(2)注意到 22sinsin 2sin sin 2f x x x x x f x ,故函数 f x 是周期为 的函数,结合(1)的结论,计算可得: 00f f ,233333228f ,2233333228f ,据此可得: max 338f x, min 338f x ,即 338f x .(3)结合(2)的结论有:2222sin sin 2sin 4sin 2n x x x x 233333sin sin 2sin 4sin 2n x x x x2222123sin sin sin 2sin 2sin 4sin 2sin 2sin 2n n n x x x x x x x x 232333333sin sin 2888n x x 23338n 34n .【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.(二)选考题:共10分.请考生在第22、23题中任选一题作答.并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程]22.已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y ,(θ为参数),C 2:1,1x t t y t t(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【答案】(1)1:4C x y ;222:4C x y ;(2)17cos 5.【解析】【分析】(1)分别消去参数 和t 即可得到所求普通方程;(2)两方程联立求得点P ,求得所求圆的直角坐标方程后,根据直角坐标与极坐标的互化即可得到所求极坐标方程.【详解】(1)由22cos sin 1 得1C 的普通方程为:4x y ;由11x t t y t t 得:2222221212x t t y t t,两式作差可得2C 的普通方程为:224x y .(2)由2244x y x y 得:5232x y ,即53,22P ;设所求圆圆心的直角坐标为 ,0a ,其中0a ,则22253022a a,解得:1710a , 所求圆的半径1710r , 所求圆的直角坐标方程为:22217171010x y ,即22175x y x , 所求圆的极坐标方程为17cos 5.【点睛】本题考查极坐标与参数方程的综合应用问题,涉及到参数方程化普通方程、直角坐标方程化极坐标方程等知识,属于常考题型.[选修4—5:不等式选讲]23.已知函数2()|21|f x x a x a .(1)当2a 时,求不等式()4f x 的解集;(2)若()4f x ,求a 的取值范围.【答案】(1)32x x或112x;(2) ,13, .【解析】【分析】(1)分别在3x 、34x 和4x 三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到 21f x a ,由此构造不等式求得结果.【详解】(1)当2a 时, 43f x x x .当3x 时, 43724f x x x x ,解得:32x ≤;当34x 时, 4314f x x x ,无解;当4x 时, 43274f x x x x ,解得:112x;综上所述: 4f x 的解集为32x x或112x .(2) 22222121211f x x a x a x ax a a a a (当且仅当221a x a 时取等号), 214a ,解得:1a 或3a ,a 的取值范围为 ,13, .【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型.祝福语祝你马到成功,万事顺意!。

2020年高考全国II卷文科数学试题(含解析)

2020年高考全国II卷文科数学试题(含解析)

2020年全国统一高考数学试卷(文科)(全国新课标II )一、选择题1.已知集合{||3,}A x x x Z =<∈,{||1,}B x x x Z =>∈,则A B ⋂= ( )A.∅B.{3,2,2,3}--C.{2,0,2}-D.{2,2}-【答案】D【解析】{|1||3,}{2,2}A B x x x Z ⋂=<<∈=-,故选D . 2.4(1)i -= ( )A.4-B.4C.4i -D.4i【答案】A【解析】42(1)(2)4i i -=-=-,故选A .3.如图,将钢琴上的12个键依次记为1212,,...,a a a ,设112i j k ≤<<≤.若3k j -=且4j i -=,则称,,i j k a a a 为原位大三和弦;若4k j -=且3j i -=,则称,,i j k a a a 为原位小三和弦,用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为 ( )A. 5B. 8C.10D. 15【答案】C【解析】原位大三和弦:1i =,5j =,8k =;2i =,6j =,9k =;3i =,7j =,10k =;4i =,8j =,11k =;5i =,9j =,12k =共5个;原位小三和弦:1i =,4j =,8k =;2i =,5j =,9k =;3i =,6j =,10k =;4i =,7j =,11k =;5i =,8j =,12k =共5个;总计10个.4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者 ( )A.10名B.18名C.24名D.32名【答案】B【解析】积压500份订单未配货,次日产生新订单超过1600份的概率为0.05,其中1200份不需要志愿者配货,志愿者只需负责400份配货,也就是需要志愿者配货的为900份,故需要18名志愿者.5.已知单位向量a ,b 的夹角为60︒,则在下列向量中, 与b 垂直的是 ( )A.2a b +B.2a b +C.2a b -D.2a b -【答案】D【解析】21(2)2211102a b b a b b -⋅=⋅-=⨯⨯⨯-=,故选D . 6.记n S 为等比数列{}n a 的前n 项和.若5312a a -=,6424a a -=,则nnS a = ( )A.21n- B.122n--C.122n -- D.121n--【答案】 B 【解析】设等比数列{}n a 的通项公式为11n n a a q -=,根据5312a a -=,6424a a -=.解得11a =,2q =,故12n n a -=,122112nn n S -==--,可得122n n n S a -=- ,故选B .7.执行右面的程序框图,若输入0k =,0a =,则输出的k 为 ( )A.2B.3C.4D.5【答案】C【解析】当0k =,0a =运行后:1a =,1k =,再次运行后: 3a =,2k =,再次运行后: 7a =,3k =,再次运行后:15a =,4k =,此时达到输出条件,所以输出4k =,故选C .8.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为 ( )A.5B.5C.5D.5【答案】B【解析】依题意,因为点(2,1)在直线230x y --=上,结合题意可设圆心坐标为(,)a a ,则222(2)(1)a a a -+-=,即2650a a -+=,所以1a =,或5a =,所以圆心坐标为(1,1)或(5,5),当圆心坐标为(1,1)时,其到直线230x y --==标为(5,5)时,其到直线230x y --==,综上,可知B 正确. 9.设O 为坐标原点,直线x a =与双曲线22221(0,0)x ya b a b-=>>的两边渐近线分别交于D ,E 两点.若ODE ∆的面积为8,则C 的焦距的最小值为( )A.4B.8C.16D.32【答案】B【解析】双曲线2222:1x y C a b -=(0,0)a b >>的两条渐近线分别为b y x a =±,则容易得到||2DE b =,则8ODE S ab ∆==,222216c a b ab =+≥=,当且仅当a b ==立,所以min 4c =,焦距min (2)8c =. 10.设函数331()f x x x=-,则()f x ( )A.是奇函数,且在(0,)+∞单调递增B.是奇函数,且在(0,)+∞单调递减C.是偶函数,且在(0,)+∞单调递增D.是偶函数,且在(0,)+∞单调递减【答案】A【解析】因为331()f x x x=-,所以()333311()()()0f x f x x x x x +-=-+--=-,所以函数()f x 是奇函数.又因为331()f x x x =-由函数31y x =(为(0,)+∞增函数)加上函数231y x =-(为(0,)+∞增函数)得到,所以函数331()f x x x =-为(0,)+∞增函数,故选A . 判断单调性时也可以这样处理:因为当(0,)x ∈+∞,243()30f x x x '=+>,所以()f x 在(0,)+∞上是单调递增的.11.已知ABC ∆的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为 ( )B.32C.1【答案】C【解析】2ABC S AB ∆==3AB =.设球O 的半径为R ,则2416R ππ=,解得2R =.设O 在ABC ∆内的射影为'O ,'O 是ABC ∆的重心,故2'3O A ==O 到平面ABC 的距离1h ==,故选C .12. 若2233x y x y ---<-,则( )A.ln(1)0y x -+>B.ln(1)0y x -+<C.ln ||0x y ->D.ln ||0x y -<【答案】A【解析】11223323232233xyxy x x y y x y x y -----<-⇒-<-⇒-<-.设1()23xx f x =-,已知()f x 是定义在R 上的增函数,故由112233xyx y -<-可得x y <,所以011y x y x ->⇒-+>,从而ln(1)0y x -+>,故选A .二、填空题 13.若2sin 3x =-,则cos2x = . 【答案】19【解析】22281cos 212sin 12()1399x x =-=--=-=. 14.记n S 为等差数列{}n a 的前n 项和,若12a =-,262a a +=,则10S =______. 【答案】25【解析】由262a a +=,可得1152a d a d +++=,因为12a =-,可求出1d =,由数列的前n 项和公式得1010(101)21012045252S ⨯-=-⨯+⨯=-+=. 15.若x ,y 满足约束条件1121x y x y x y +≥-⎧⎪-≥-⎨⎪-≤⎩,则2z x y =+的最大值是_______.【答案】8【解析】方法一:如图当2x =,3y =时,max 8z =.方法二:联立11x y x y +=-⎧⎨-=-⎩,得(1,0)-,联立121x y x y +=-⎧⎨-=⎩,得(0,1)-,联立121x y x y -=-⎧⎨-=⎩,得(2,3),代入验证可得当2x =,3y =时,max 8z =. 16.设有下列四个命题:1:p 两两相交且不过同一点的三条直线必在同一平面内.2:p 过空间中任意三点有且仅有一个平面. 3:p 若空间两条直线不相交,则这两条直线平行. 4:p 若直线l ⊂平面α,直线m ⊥平面α,则m l ⊥.则下列命题中所有真命题的序号是 . ①14p p ∧ ②21p p ∧ ③23p p ⌝∨ ④34p p ⌝∨⌝ 【答案】①③④【解析】对于1:p 可设1l 与2l 相交,所得平面为α.若3l 与1l 相交,则交点A 必在α内,同理,3l 与2l 交点B 也在α内,故AB 直线在α内,即3l 在α内,故1p 为真命题. 对于2:p 过空间中任意三点,若三点共线,可形成无数多平面,故2p 为假命题. 对于3:p 空间中两条直线的位置关系有相交、平行、异面,故3p 为假命题. 对于4:p 若m ⊥平面α,则m 垂直于平面α内的所有直线,故m l ⊥,故4p 为真命题.综上可知:14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题,故正确的有:①③④.三、解答题17.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=. (1)求A ;(2)3b c a -=,证明:ABC ∆是直角三角形. 【解析】(1)由25cos ()cos 24A A π++=可得:25sin cos 4A A +=,2214cos 4cos 10(2cos 1)0cos 2A A A A -+=⇒-=⇒=,∵(0,)A π∈,∴3A π=.(2)解法1:由b c -=可得)a b c =-,又2221cos 22b c a A bc +-==,即222b c a bc +-=,∴2223()b c b c bc +--=,(2)(2)0b c b c ⇒--=,∴2b c =或2c b=(舍),∴a =,即222a c b +=,故三角形为直角三角形.解法2:因为b c -=,由正弦定理得1sin sin 2B C A -==,由于A B C π++=,于是1sin()sin 32C C π+-=,又因为1sin()sin sin sin 32C C C C C π+-=+-1sin sin()23C C C π=-=-,又因为(,)333C πππ-∈-,于是36C ππ-=,6C π=,所以()2B AC ππ=-+=,故三角形为直角三角形.18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据,1,2(,...,0)2)(i i x y i =,其中i x 和i y 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160ii x==∑,2011200i i y ==∑,2021()80ii x x =-=∑,2021()9000i i y y =-=∑,201()()800i i i x x y y =--=∑,(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本,1,2(,...,0)2)(i i x y i =的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数:()()niix x y y r --=∑1.414≈【解析】(1) 由题意可知,1个样区这种野生动物数量的平均数12006020==,故这种野生动物数量的估计值6020012000=⨯=;(2)由参考公式得()()0.94niix x yy r --===≈∑;(3)由题意可知,各地块间植物覆盖面积差异很大,因此在调查时,先确定该地区各地块间植物覆盖面积大小并且由小到大排序,每十个分为一组,采用系统抽样的方法抽取20个地块作为样区进行样本统计.19.已知椭圆22122:1(0)x y C a b a b+=>>的右焦点F 与抛物线2C 的焦点重合,1C 的中心与2C 的顶点重合,过F 且与x 轴垂直的直线交1C 于A ,B 两点,交2C 于C 、D 两点,且4||||3CD AB =. (1)求1C 的离心率;(2)若1C 的四个顶点到2C 的准线距离之和为12,求1C 与2C 的标准方程.【解析】(1)由题意知:222242232b p a p c a b c ⎧=⋅⎪⎪⎪=⎨⎪=+⎪⎪⎩,∴ 24243b c a =⋅,∴ 2232()ac a c =-,即222320c ac a +-=,∴22320e e +-=,∴12e =或2e =-,∵01e <<,即1C 的离心率为12. (2)设1C 的四个顶点到2C 的准线距离为1d ,2d ,3d ,4d ,则:∵123422d a c d a c p d c p d c =-⎧⎪=+⎪⎪⎨==⎪⎪==⎪⎩,又∵ 123412d d d d +++=∴122a c a c c c pc -++++=⎧⎪⎨=⎪⎩ ∴6a c += ∵12c a = ∴26c c +=∴216a =,24c =,24p c == ∴212b =∴221:11612x y C +=,22:8C y x =.20.如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点,过11B C 和P 的平面交AB 于E ,交AC 于F (1)证明:1//AA MN ,且平面1A AMN ⊥平面11EB C F ;(2)设O 为111A B C ∆的中心,若6AO AB ==,//AO 平面11EB C F ,且3MPN π∠=,求四棱锥11B EB C F -的体积.【解析】(1)证明∵M ,N 分别为BC ,11B C 的中点,底面为正三角形,∴1B N BM =,四边形1BB NM 为矩形,∴1//BB MN ,而11//AA BB ,∴1//AA MN ,可得1,,,A A M N 共面,由四边形1BB NM 为矩形,得11MN B C ⊥,由11B N NC =,得111A N B C ⊥,又1MN A N N ⋂=,得11B C ⊥面1A AMN ,11B C ⊂面11EB C F ∴面1A AMN ⊥面11EB C F ;(2)因为//AO 平面11EB C F ,AO ⊂平面1A NMA ,平面1A NMA平面11EB C F NP =,所以//AO NP ,又因为//NO AP ,所以四边形AONP 为平行四边形,6AO NP ==,ON AP ==M 做MH 垂直于NP ,垂足为H ,因为平面11EB C F ⊥平面1A AMN ,平面11EB C F平面1A AMN NP =,MH ⊂平面1A AMN ,所以MH⊥平面11EB C F,由PM =,6AO =,MN =,得PM MNMH PN⋅==11111()242EB C FS B C EF NP =+⋅=,由//BC 平面11EB C F,所以11111113B EB F M EBC FB C C E F V V S MH --==⋅⋅= 21.已知函数()2ln 1f x x =+,(1)若()2f x x c ≤+,求c 的取值范围; (2)设0a >,讨论函数()()()f x f a g x x a-=-的单调性.【解析】(1)()2f x x c ≤+等价于2ln 21x x c -≤-,设()2ln 2h x x x =-,22(1)'()2x h x x x-=-=, 当01x <<时,()0h x '>,所以()h x 在(0,1)上递增, 当1x >时,()0h x '<,所以()h x 在(1,)+∞递减,故max ()(1)2h x h ==-,所以12c -≥-.即1c ≥-,所以c 的取值范围是[1,)-+∞; (2)2(ln ln )()(0,,0)x a g x x x a a x a-=>≠>-,所以2222()2ln 2ln 2ln 2ln 2'()()()a x a x a x a x x g x x a x a --+--++==--,令2()2ln 2ln 2(0)a w x x a x x =--++>,则22222()'()a a x w x x x x -=-=, 令'()0w x >得0x a <<,'()0w x <得x a >,所以()w x 在(0,)a 上单调递增,在(,)a +∞上单调递减,所以,()()0w x w a ≤=,即'()0g x <,所以,()g x 在(0,)a 和(,)a +∞上单调递减.四、选做题22.已知1C ,2C 的参数方程分别为2124cos :4sin x C y θθ⎧=⎨=⎩,(θ为参数),21:1x t t C y t t ⎧=+⎪⎪⎨⎪=-⎪⎩,(t 为参数)(1)将1C ,2C 的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设1C ,2C 的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【解析】(1)由题:1C 的普通方程为:40x y +-=,(0,0)x y ≥≥; 因为222222212:12x t t C y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,故2C 的普通方程为:224x y -=;联立1C ,2C ,22404x y x y +-=⎧⎨-=⎩解得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,所以点P 坐标为:53(,)22P ,设以设所求圆圆心为(,0)Q a ,半径为a ,故圆心(,0)Q a 到53(,)22P 的距离a =,得1710a =,所以圆Q 的圆心为17(,0)10Q ,半径为1710,圆Q 的直角坐标方程为:2221717()1010()x y -+=,即221705x y x +-=,所以所求圆的极坐标方程为:17cos 5ρθ=.23.已知函数2()|||21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.【解析】当2a =时,()|4||3|f x x x =-+-,即 ()27,31,3427,4x x f x x x x -+<⎧⎪=≤≤⎨⎪->⎩所以()4f x ≥的解集为32x ≤或112x ≥. (2)222()|||21||(21)||(1)|f x x a x a x a x a a =-+-+≥---+=-,又()4f x ≥,所以2|(1)|4a -≥,则3a ≥或1a ≤-.。

2020年高考试题——数学(理)(全国卷II)

2020年高考试题——数学(理)(全国卷II)

2020年普通高等学校招生全国统一考试(全国卷Ⅱ)数学试卷(理科)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(A∪B)=1.已知集合U={-2,-1,0,1,2,3},A={-1,0,1},B={1,2},则UA.{-2,3}B.{-2,2,3}C.{-2,-1,0,3}D.{-2,-10,2,3}2.若α为第四象限角,则A.cos2α>0B.cos2α<0C.sin2α>0D.sin2α<03.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作。

已知该超市某日积压500份订单未配货,预计第二天新订单是1600份的概率为0.05。

志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单配货的概率不小于0.95,则至少需要志愿者A.10名B.18名C.24名D.32名4.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,己知每层环数相同,且下层比中层多729块,则三层共有扇形面形石板(不含天心石)A.3699块B.3474块C.3402块D.3339块5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x-y-3=0的距离为52535456.数列{a n}中,a1=2,a m+n=a m a n,若a k+1+a k+2+…+a k+10=215-25,则k=A.2B.3C.4D.57.右图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为A.EB.FC.GD.H8.设O为坐标原点,直线x=a与双曲线C:22221(0,0)x ya ba b-=>>的两条渐近线分别交于D,E两点。

2020年全国新高考II卷数学试题真题及答案(完整版)

2020年全国新高考II卷数学试题真题及答案(完整版)

在① ac 3 ,② c sin A 3 ,③ c 3b 这三个条件中任选一个,补充在下面问题中,若问题中 三角
形存在,求 c 值;若问题中 三角形不存在,说明理由.
问题:是否存在 △ABC ,它 内角 A, B,C
对边分别为 a,b, c ,且 sin A
3
sin
B

C
6
,________?
( 2)若 f( x)≥1,求 a 取值范围.
6 6
加油!你一定行!
真题在手 何必模拟
认真刷题 必过 加油
全卷完
1.考试顺利祝福语经典句子
1、相信自己吧!坚持就是胜利!祝考试顺利,榜上有名! 2、愿全国所有的考生都能以平常的心态参加考试,发挥自己的水平,考上理 想的学校。我真心地祝福你们。 3、试纸浸墨香,金笔下千言。思虑心平定,谨慎落笔闲。且喜平常度,切忌 神慌乱。畅游题海后,金榜题君名。考试在即,祝你成功。 4、亲爱的同学,期末考试来了,愿你们考出好成绩,考到自己理想的成绩。 5、努力吧!不管结果怎样,经历过,总会有结果的!期中考试的朋友们,为 你们祝福,也为自己祈祷!愿梦开始的地方,也是梦想实现的地方!嗯嗯,加油, 嗯,加油! 6、相信你们一定会有很多想说却未言的话,总之走过了,哭过了,笑过了, 就不会有遗憾!带上我们的祝福去打造另外一片属于自己的天空吧! 7、祝愿天下所有考生开心度过期中考试。祝福你们旗开得胜,取得美好佳 绩。平心对待,你们是最棒的!仁慈的上帝会祝福你们的,相信自己,一定能行! 8、眼看考试就要来了,向前看,相信自己,我会在远方为你送去最真挚的祝 福,付出就会有收获的! 9、又是一年年终了,期末考试转眼到。寒窗苦读为前途,望子成龙父母情。 我发短信传祝福:放下包袱开动脑筋,勤于思考好好复习,祝你取得好成绩! 10、信心来自于实力,实力来自于勤奋。我看到了你的努力,相信你一定能在 考试中取得好成绩!

2020年全国II卷理科数学高考试卷(含答案)

2020年全国II卷理科数学高考试卷(含答案)

下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块。

下一层的第一环比上一层的最后一环多9块,向外每环依次增加9块。

已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)A .3699块B .3474块C .3402块D .3339块5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为 A. 5 B. 255C. 355D.456.数列()n a 中,12a =,m n m n a a a +=,若1551210...22k k k a a a ++++++=-,则k =A. 2B. 3C. 4D. 57.右图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为A .EB .FC .GD .H8.设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点。

若△ODE 的面积为8,则C 的焦距的最小值为A .4B .8C .16D .329.设函数()ln |21|ln |21|f x x x =+--,则()f xA.是偶函数,且在1(,)2+∞单调递增B.是奇函数,且在11(,)22-单调递减C.是偶函数,且在1(,)2-∞-单调递增 D.是奇函数,且在1(,)2-∞-单调递减10. 已知△ABC 是面积为93的等边三角形,且其顶点都在球O 的球面上。

若球O 的表面积为16π,则O 到平面ABC 的距离为A .3B .32C. 1D.11. 若2233,x y x y ---<-则A. 1(1)0n y x -+>B. 1(1)0n y x -+<C. ln 0x y ->D. 10n x y -<12. 01-周期序列在通信技术中有着重要应用,若序列12...n a a a 满足 {}10,1(1,2,...)a i ∈=,且存在正整数m ,使得i i (1,2,...)m a a i +==成立,则称其为01-周期序列,并满足i i (1,2,...)m a a i +==的最小正整数m 为这个序列的周期,对于周期为m 的0-1序列12,,...n a a a , 11()(1,2,...1)m i i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的0-1的序列中,满足1()(1,2,3,4)5C k k ≤=的序列是A. 11010...B. 11011...C. 10001...D. 11001...二、填空题:本题共4小题,每小题5分,共20分。

2020年全国高考理科数学2卷12题

2020年全国高考理科数学2卷12题

2020年全国高考理科数学2卷12题一、选择题(每题3分,共30分)函数y = x^2 - 2x + 3 在区间[-1, 2] 上的最小值为( )A. 2B. 3C. 4D. 5已知直线l1: 2x - y + 1 = 0 和直线l2: x + ay + 2 = 0 垂直,则 a 的值为( )A. 2B. -2C. 1/2D. -1/2若x, y ∈ℝ,且x + y = 1,则2^x + 2^y 的最小值为( )A. 2B. 4C. √2D.2√2下列命题中,真命题是( )A. 若a > b,则a^2 > b^2B. 若a > b,c > d,则ac > bdC. 若a > b,c > d,则a + c > b + dD. 若a > b > 0,c > d > 0,则a^c > b^d若随机变量ξ 服从正态分布N(2, σ^2),且P(ξ < 4) = 0.9,则P(0 < ξ < 2) = ( )A. 0.4B. 0.3C. 0.2D. 0.16-10题(略)二、填空题(每题4分,共16分)已知等差数列{an} 的前n 项和为Sn,且S5 = 25,a3 = 5,则an = _______。

已知函数f(x) = 2sin(2x + φ) (0 < φ < π) 的图象关于直线x = π/6 对称,则φ =_______。

已知椭圆C: x^2/a^2 + y^2/b^2 = 1 (a > b > 0) 的离心率为√2/2,且过点(√2, 1),则椭圆C 的方程为_______。

设随机变量ξ 服从二项分布ξ ~ B(6, 1/2),则E(ξ) = _______。

三、解答题(共54分)(10分)已知函数f(x) = ln(x + 1) - x^2。

(1)求函数f(x) 的单调区间;(2)若对任意x ∈ [0, +∞),恒有f(x) ≤ kx 成立,求实数k 的取值范围。

2020年高考全国二卷文科数学试卷

2020年高考全国二卷文科数学试卷

2020年高考全国二卷文科数学试卷(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2020年普通高等学校招生全国统一考试(II 卷)文科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符 合题目要求的。

1. 已知集合},3||{Z ∈<=x x x A ,},1||{Z ∈>=x x x B ,则=B AA. ∅B. }3,2,2,3{--C. }2,0,2{-D. }2,2{-2. =-4)i 1( A. -4B. 4C. -4iD. 4i3. 如图,将钢琴上的12个键依次记为1221,,,a a a ,设121≤<<≤k j i ,若3=-j k 且4=-i j ,则称k j i a a a ,,为原位大三和弦;若4=-j k 且3=-i j ,则称k j i a a a ,,为原位小三和弦。

用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为 A. 5 B. 8 C. 10 D. 154. 在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订 单量大幅增加,导致订单积压。

为解决困难,许多志愿者踊跃报名参加配货工作。

已知该超市某 日积压500份订单未配货,预计第二天的新订单超过1600份的概率为。

志愿者每人每天能 完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于,则至少 需要志愿者A. 10名B. 18名C. 24名D. 32名5. 已知单位向量a 、b 的夹角为︒60,则在下列向量中,与b 垂直的是A. a + 2bB. 2a + bC. a - 2bD. 2a - b 6. 记n S 为等比数列}{n a 的前n 项和。

若1235=-a a ,2446=-a a ,则=nna S A. 12-nB. n --122C. 122--nD. 121--n7. 执行右面的程序框图,若输入的k = 0,a = 0,则输出的k 为A. 2B. 3C. 4D. 58. 若过点)1,2(的圆与两坐标轴都相切,则圆心到直线032=--y x 的距离为A.55B.552 C.553 D.5549. 设O 为坐标原点,直线a x =与双曲线)0,0(1:2222>>=-b a by a x C 的两条渐近线分别交于D 、E 两点。

2020年新课标2卷数学

2020年新课标2卷数学

高考数学试卷一、单选题 1.已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线3y x =上,则sin 4πα⎛⎫+= ⎪⎝⎭( ) A.255± B.255 C.55 D.55±2.已知函数2()24,()2x x f x e x g x x e -=+-=-,若12()()0f x g x +=,则12x x +=( )A.4B.3C.2D.13.已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线3y x =上,则sin 4πα⎛⎫+= ⎪⎝⎭( ) A.255± B.255 C.55 D.55± 4.下列函数中,既是偶函数又在区间(0),-∞上单调递增的是( )A .2(1)f x x =B .()21f x x =+C .()2f x x =D .()2x f x -= 5.设32x y +=,则函数327x y z =+的最小值是( )A.12B.6C.27D.306.已知函数2()2sin cos 33(0)f x x x x ωωωω=+>的最小正周期为π. (1)求函数()f x 的单调递增区间;(2)将函数()f x 的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值。

7.tan 3π=( )C .18.2020年,一场突如其来的“肺炎”使得全国学生无法在春季正常开学,不得不在家“停课不停学”.为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取n 个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如下图所示),已知学习时长在[9,11)的学生人数为25,则n 的值为( )A .40B .50C .80D .100 9.定义区间[]()1212,x x x x <的长度为21x x -,已知函数||2x y =的定义域为[,]a b ,值域为[1,2],则区间[,]a b 的长度的最大值与最小值的差为( )10.在三棱锥B ACD -中,若AB AC AD BC BD CD =====,则异面直线AB 与CD 所成角为( )A .30°B .60°C .90°D .120°11.某学校党支部评选了5份优秀学习报告心得体会(其中教师2份,学生3份),现从中随机抽选2份参展,则参展的优秀学习报告心得体会中,学生、教师各一份的概率是( ) A .120 B .35 C .310 D .910二、填空题12.定义在(1,1)-上的函数()f x 满足()()()1f x g x g x =--+,对任意的1212,(1,1),x x x x ∈-≠,恒有()()()12120f x f x x x -->⎡⎤⎣⎦,则关于x 的不等式(21)()2f x f x ++>的解集为13.已知函数25(0),()8(0).x x f x x x ⎧+≤⎪=⎨+>⎪⎩则[(2)]f f -的值是 . 14.已知球的体积为36π,则该球大圆的面积等于______.三、解答题15.已知函数2()2sin cos 23sin 3(0)f x x x x ωωωω=+->的最小正周期为π.(1)求函数()f x 的单调递增区间;(2)将函数()f x 的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值.16.已知α、β是方程24420x mx m -++=的两个实根,设()22f m a β=+(1)求函数()f m 的解析式;(2)当m 为何值时,()f m 取得最小值?17.已知函数()()21log 01+=>-ax f x a x 是奇函数 (1)求a 的值与函数()f x 的定义域;(1)用定义证明函数()f x 在(0,1]上是减函数,在[1,)+∞上是增函数;(2)当函数()lg y f x k =-有两个大于0的零点时,求实数k 的取值范围。

2020年高考全国II卷理科数学试题(含解析)

2020年高考全国II卷理科数学试题(含解析)

2020年全国统一高考数学试卷(理科)(全国新课标Ⅱ)一、选择题1.已知集合{2,1,0,1,2,3}U =--,{1,0,1}A =-,{1,2}B =,则()U C A B ⋃=( ) A.{2,3}- B.{2,2,3}-C.{2,1,0,3}--D.{2,1,0,2,3}--【答案】A 【解析】∵{1,0,1,2}AB =-,∴ (){2,3}UC A B ⋃=-.2.若α为第四象限角,则( ) A.cos20α> B.cos20α<C.sin 20α>D.sin 20α<【答案】D 【解析】∵22()2k k k Z ππαπ-+<<∈,∴424()k k k Z ππαπ-+<<∈,∴2α是第三象限角或第四象限角,∴sin 20α<.3.在新冠肺炎疫情期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作。

已知该超市某日积压500份订单未配货,预计第二天新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A.10名 B.18名 C.24名 D.32名 【答案】B【解析】因为公司可以完成配货1200份订单,则至少需要志愿者为160050012001850+-=名.4.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,己知每层环数相同,且下层比中层多729块,则三层共有扇形面形石板(不含天心石)( ) A.3699块B.3474块C.3402块D.3339块【答案】C【解析】设每一层有n 环,由题可知从内到外每环之间构成等差数列,公差9d =,19a =,由等差数列性质知n S ,2n n S S -,32n n S S -成等差数列,且2322()()n n n n S S S S n d ---=,则29729n =,得9n =,则三层共有扇形面石板为3271272627934022n S S a ⨯==+⨯=块. 5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A.【答案】B【解析】设圆心为(,)a a ,则半径为a ,圆过点(2,1),则222(2)(1)a a a -+-=,解得1a =或5a =,所以圆心坐标为(1,1)或(5,5),圆心到直线的距离都是5d =. 6.数列{}n a 中,12a =,m n m n a a a +=,若155121022k k k a a a ++++++=-,则k =( )A.2B.3C.4D.5【答案】C【解析】取1m =,则11n n a a a +=,又12a =,所以12n na a +=,所以{}n a 是首项为2,公比为2的等比数列,则2nn a =,所以11011115512102(12)222212k k k k k k a a a ++++++-+++==-=--,得4k =.7.右图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A.EB.FC.GD.H【答案】A【解析】该几何体是两个长方体拼接而成,如图所示,显然选A.8.设O 为坐标原点,直线x a =与双曲线2222:1x yC a b-=(0,0)a b >>的两条渐近线分别交于D ,E 两点,若ODE ∆的面积为8,则C 的焦距的最小值为( ) A.4 B.8 C.16 D.32 【答案】B【解析】双曲线2222:1x y C a b -=(0,0)a b >>的两条渐近线分别为b y x a =±,则容易得到||2DE b =,则8ODE S ab ∆==,222216c a b ab =+≥=,当且仅当a b ==号成立,所以min 4c =,焦距min (2)8c =.9.设函数()ln |21|ln |21|f x x x =+--,则()f x ( )A. 是偶函数,且在1(,)2+∞单调递增B.是奇函数,且在11(,)22-单调递减C. 是偶函数,且在1(,)2-∞-单调递增D.是奇函数,且在1(,)2-∞-单调递减【答案】D【解析】函数()ln |21|ln |21|ln |21|ln |21|()f x x x x x f x -=-+---=--+=-,则()f x 为奇函数,故排除A 、C ;当11(,)22x ∈-时,()ln(21)ln(12)f x x x =+--,根据函数单调性的性质可判断()f x 在11(,)22-上单调递增,故排除B ;当1(,)2x ∈-∞-时,212()ln(21)ln(12)lnln(1)2121x f x x x x x +=----==+--,根据复合函数单调性可判断()f x 在1(,)2-∞-上单调递减,故D 正确.10.已知ABC ∆的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为( )B.32C.1【答案】C【解析】设ABC ∆的外接圆圆心为1O ,记1OO d =,圆1O 的半径为r ,球O 半径为R ,等边三角形ABC ∆的边长为a ,则2ABC S ∆==,可得3a =,于是r ==,由题知球O 的表面积为16π,则2R =,由222R r d =+易得1d =,即O 到平面ABC 的距离为1.11.若2233x y x y ---<-,则( ) A.ln(1)0y x -+> B.ln(1)0y x -+< C.ln ||0x y -> D.ln ||0x y -<【答案】A【解析】2323x x y y---<-,设()23x x f x -=-,则()2ln 23ln30x xf x -'=+>,所以函数()f x 在R 上单调递增,因为()()f x f y <,所以x y <,则11y x -+>,ln(1)0y x -+>,选A.12.01-周期序列在通信技术中有着重要应用,若序列12......n a a a 满足{}10,1(1,2,...)a i ∈=,且存在正整数m ,使得(1,2,...)i m i a a i +==成立,则称其为01-周期序列,并称满足(1,2,...)i m i a a i +== 的最小正整数m 为这个序列的周期,对于周期为m的01-序列12......n a a a ,11()(1,2,...,1)mi i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的01-序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A. 11010... B.11011... C. 10001... D.11001... 【答案】C【解析】对于A 选项:511111(1)(10000)555i i i C a a +===++++=∑,5211121(2)(01010)5555i i i C a a +===++++=>∑,不满足,排除;对于B 选项,5111131(1)(10011)5555i i i C a a +===++++=>∑,不满足,排除;对于C 选项,511111(1)(00001)555i i i C a a +===++++=∑,52111(2)(00000)055i i i C a a +===++++=∑,53111(3)(00000)055i i i C a a +===++++=∑,541111(4)(10000)555i i i C a a +===++++=∑,满足;对于D 选项,5111121(1)(10001)5555i i i C a a +===++++=>∑,不满足,排除;故选C 。

2020年高考试题——数学(文)(全国卷II)

2020年高考试题——数学(文)(全国卷II)

2020年普通高等学校招生全国统一考试(全国卷Ⅱ)数学试卷(文科)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={x|x|<3,x∈Z},B={x||x|>1,x∈Z},则A∩B=A.∅B.{-3,-2,2,3}C.{-2,0,2}D.{-2,2}2.(1-i)4=A.-4B.4C.-4iD.4i3.如图,将钢琴上的12个键依次记为a1,a2,…a12,设1≤i≤j≤k≤12。

若k-j=3且j-i=4,则称a i,a j,a k为原位大三和弦;若k-j=4且j-i=3,则称a i,a j,a k为原位小三和弦。

用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为A.5B.8C.10D.154.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作。

已知该超市某日积压500份订单未配货,预计第二天新订单是1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单配货的概率不小于0.95,则至少需要志愿者A.10名B.18名C.24名D.32名5.已知单位向量a,b的夹角为60°,则下列向量中,与b垂直的是A.a+2bB.2a+bC.a-2bD.2a-b6.记S n为等比数列{a n}的前n项和,若a5-a3=12,a6-a4=24,则nnSa=A.2n-1B.2-21-nC.2-2n-1D.21-n-17.执行右面的程序框图,若输入k=0,a=0,则输出的k为A.2B.3C.4D.58.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为 525 35 459.设O 为坐标原点,直线x =a 与双曲线C :22221(0,0)x y a b a b-=>>的两条渐近线分别交于D ,E 两点。

2020全国2卷高考数学试题(试卷版+解析版)

2020全国2卷高考数学试题(试卷版+解析版)

2020全国2卷高考数学试题(试卷版+解析版)1.已知集合 $A=\{-1.1\}$,$B=\{1.2\}$,$C=\{-2.-1.1.2.3\}$,则 $(A\cup B)\cup C$ 等于哪个集合。

A。

$\{-2.3\}$B。

$\{-2.2.3\}$C。

$\{-2.-1.3\}$D。

$\{-2.-1.1.2.3\}$2.若 $\alpha$ 为第四象限角,则 $\cos2\alpha$ 的大小关系是。

A。

$\cos2\alpha>0$B。

$\cos2\alpha<0$C。

$\sin2\alpha>0$D。

$\sin2\alpha<0$3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成 1200 份订单的配货。

由于订单量大幅增加,导致订单积压。

为解决困难,许多志愿者踊跃报名参加配货工作。

已知该超市某日积压 500 份订单未配货,预计第二天的新订单超过 1600 份的概率为 0.05.志愿者每人每天能完成 50 份订单的配货。

为使第二天完成积压订单及当日订单的配货的概率不小于 0.95,则至少需要多少名志愿者。

A。

10 名B。

18 名C。

24 名D。

32 名4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层。

上层中心有一块圆形石板(称为天心石),环绕天心石砌9 块扇面形石板构成第一环,向外每环依次增加 9 块。

下一层的第一环比上一层的最后一环多 9 块,向外每环依次也增加 9 块。

已知每层环数相同,且下层比中层多 729 块,则三层共有扇面形石板(不含天心石)多少块。

A。

3699 块B。

3474 块C。

3402 块D。

3339 块5.若过点 $(2,1)$ 的圆与两坐标轴都相切,则圆心到直线$2x-y-3=0$ 的距离为多少。

A。

$\frac{5}{\sqrt{5}}$B。

$\frac{25}{\sqrt{5}}$C。

$\frac{35}{\sqrt{5}}$D。

2020年高考数学卷(全国卷2)答案

2020年高考数学卷(全国卷2)答案

发,想象出直观图,再验证其他视图是否正确;(2)视图中标注
的长度在直观图中代表什么,要分辨清楚;(3)视图之间的数
量关系:正俯长对正,正侧高平齐,侧俯宽相等 .
8.B 【解题思路】本题考查双曲线的几何性质、基本不等式 .由
题意知双曲线 C的渐近线方程为 y=± abx.将 x=a代入渐
近线方程可得 D,E的坐标,不妨设点 D(a,b),E(a,-b),所
( ) 2x在 R上为增函数,y=
1 3

在 R上为减函数,则 y=
( ) -
1 3

在 R上为增函数,所以函数 f(x)在 R上为 增函
数,所以 y>x,所以 y-x+1>1,所以 ln(y-x+1)>ln1=
0,故选 A.
【关键点拨】解答本题需抓住的关键点:(1)不等式中含有相
同结构的代数式,通常考虑构造一个函数;(2)利用指数函数
15.2槡3 【解题思路】本题考查复数的模的运算 .因为 z1+z2=
槡3+i,设复数 z1=a+bi(a,b∈R),则 z2=(槡3-a)+(1-
{ { |z1|2=a2+b2=4,
a2+b2=4,
b)i,则

|z2|2=(槡3-a)2+(1-b)2=4, 槡3a+b=2,
所以 |z1-z2|2=(2a-槡3)2+(2b-1)2=4(a2+b2)-4(槡3a+
点 D,E的坐标,确定出 |DE|关于 a,b的关系;(2)利用基本
不等式求双曲线的焦距 2c的最小值 .
9.D 【解题思路】本 题 考 查 函 数 的 奇 偶 性 与 单 调 性 .由
{ ( ) 2x+1≠0, 得 函 数 f(x)的 定 义 域 为 2x-1≠0,

2020全国2卷高考文科数学试题(试卷版+解析版)

2020全国2卷高考文科数学试题(试卷版+解析版)

2020全国2卷高考文科数学试题(试卷版+解析版)
1.已知集合{|||3A x x =<,}x Z ∈,{|||1B x x =>,}x Z ∈,则(A B ⋂= )
A .∅
B .{3-,2-,2,3}
C .{2-,0,2}
D .{2-,2}
2.4
(1)(i -= ) A .4- B .4 C .4i - D .4i
3.如图,将钢琴上的12个键依次记为1a ,2a ,⋯,12a .设112i j k <<.若3k j -=且4j i -=,则i a ,j a ,k a 为原位大三和弦;若4k j -=且3j i -=,则称i a ,j a ,k a 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为( )
A .5
B .8
C .10
D .15
4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过。

2020年高考数学全国卷2-文科(附详解)

2020年高考数学全国卷2-文科(附详解)

+
设 讨论函数 的单调性 &#' +.&#
?&"'(-&""'))+-&+'
$
&二'选考题"共"&分#请考生在##!#*题中任选一题作答#多答 按所答第一题评分$
##$)选修+/+"坐标系与参数方程*&"&分'
已知曲线 的参数方程分别为 '"#'#
为 *"(+789###
'"")
&#
+)(+915##
!"#$%&'()*
+,-./01+,24*
!文 科 数 学
一!选择题"本题共"#小题#每小题$分#共%&分$在每小题给
出的四个选项中#只有一项是符合题目要求的$
已知集合 则 "$
!($"""""#*#"1%##($"""""."#"1%#
!$#(&!!'$
,'2
-'$)*#)####*%
" 年普通高等学校招生全国统一考试全国卷
文科数学
%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%
选择题答案速查
题号 ! " # $ % & ' ( ) !* !! !"

高考文科数学(2卷):答案详细解析(最新)

高考文科数学(2卷):答案详细解析(最新)

2020年普通高等学校招生全国统一考试文科数学(II 卷)答案详解一、选择题1.(集合)已知集合A ={}3,x x x Z <∈,B ={}1,x x x Z >∈,则A B =A.∅B.{}3,2,2,3-- C.{}2,0,2- D.{}2,2-【解析】∵{}2,1,0,1,2A x =--,∴{2,2}A B =- .【答案】D2.(复数)41i -=()A.-4 B.4C.-4iD.4i【解析】[]224221(1)244i i i i ⎡⎤=-=-=-⎣⎦-=().【答案】A3.(概率统计)如图,将钢琴上的12个键依次记为1a ,2a ,…,12a .设112i j k ≤<<≤.若3k j -=且4j i -=,则称i a ,j a ,k a 为原位大三和弦;若4k j -=且3j i -=,则称i a ,j a ,k a 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为A.5B.8C.10D.15【解析】原位大三和弦:1,5,8i j k ===;2,6,9i j k ===;3,7,10i j k ===;4,8,11i j k ===;5,9,12i j k ===;共5个.原位小三和弦:1,4,8i j k ===;2,5,9i j k ===;3,6,10i j k ===;4,7,11i j k ===;5,8,12i j k ===;共5个.总计10个.【答案】C4.(概率统计)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作,已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05。

志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A.10名B.18名C.24名D.32名【解析】该超市某日积压500份订单未配货,次日新订单不超过1600份的概率为0.95,共2100份,其中1200份不需要志愿者,志愿者只需负责900份,故需要900÷50=18名志愿者.【答案】B5.(平面向量)已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是A.2a b+ B.2a b+ C.2a b- D.2a b -【解析】解法一(待定系数法):设()ma nb b +⊥,则有21()02ma nb b ma b nb m n +⋅=⋅+=+=,即2m n =-,故选D.解法二:2o(2)2211cos6010a b b a b b -⋅=⋅-=⨯⨯⨯-= ,故选D.特殊法:如图A5所示,画单位圆,作出四个选项的向量,只有2a b -与b 垂直.图A5【答案】D6.(数列)记n S 为等比数列{n a }的前n 项和.若5a -3a =12,6a -4a =24,则nnS a =A .21n -B .122n-- C.122n --D .121n --【解析】设{}n a 的公比为q ,∵6453()1224a a a a q q -=-==,∴2q =,∵22253311(1)(1)1212a a a q a q q a -=-=-==,∴11a =,∴111111(1)2111=22222n n n n n n n n a q S q a a q -------==-=-.【答案】B7.(算法框图)执行右面的程序框图,若输入的k =0,a =0,则输出的k 为A.2B.3C.4D.5【解析】①输入00k a ==,,得211a a =+=,11k k =+=,10a >否,继续;②输入11k a ==,,得213a a =+=,12k k =+=,10a >否,继续;③输入23k a ==,,得217a a =+=,13k k =+=,10a >否,继续;④输入37k a ==,,得2115a a =+=,14k k =+=,10a >是,程序退出循环,此时4k =.【答案】C8.(解析几何)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为A.5B.5C.5D.5【解析】如图A8所示,设圆的方程为222()()x a y b r -+-=,∵圆过点(2,1)且与两坐标轴都相切,∴222(2)(1)a b r a b r ==⎧⎨-+-=⎩,解得1a b r ===或5a b r ===,即圆心坐标为(1,1)或(5,5),圆心到直线230x y --=5或=5.图A8【答案】B9.(解析几何)设O 为坐标原点,直线x a =与双曲线C :22221x y a b-=(a >0,b >0)的两条渐近线分别交于D ,E 两点,若ODE ∆的面积为8,则C 的焦距的最小值为A .4B .8C .16D .32【解析】如图A9所示,双曲线C :22221x y a b-=(a >0,b >0)的渐近线为b y x a =±,由题意可知,(,)D a b ,(,)E a b -,∴1282ODE S a b ab ∆=⋅==,∴焦距2248c ==≥⨯=,当且仅当a =等号成立.故C 的焦距的最小值为8.图A9【答案】B10.(函数)设函数331()f x x x =-,则()f x A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减【解析】∵333311()()()()f x x x f x x x-=--=-+=--,∴()f x 是奇函数,243()3f x x x'=+,当x >0,()0f x '>,∴()f x 在(0,+∞)单调递减.【答案】A11.(立体几何)已知△ABC 是面积为4的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为A B .32C .1D .32【解析】由题意可知244ABC S AB ∆==,∴3AB =,如图A11所示,设球O 的半径为R ,则24π16πR =,∴2R =,设O 在△ABC 上的射影为O 1,则O 1是△ABC 的外接圆的圆心,故1232O A =⨯=,∴O 到平面ABC 的距离11OO ==.图A11【答案】C12.(函数)若2233x y x y ---<-,则A.ln(1)0y x -+> B.ln(1)0y x -+<C.ln ||0x y -> D.ln ||0x y -<【解析】2233xyxy---<-可化为2323xxyy---<-,设1()2323xxxxf x -⎛⎫=-=- ⎪⎝⎭,由指数函数的性质易知()f x 在R 上单调递增,∵2323x x y y ---<-,∴x y <,∴0y x ->,∴11y x -+>,∴In(1)0y x -+>.【答案】A二、填空题:本题共4小题,每小题5分,共20分。

2020年全国统一高考数学试卷2(新课标Ⅲ)(解析版) (1)

2020年全国统一高考数学试卷2(新课标Ⅲ)(解析版) (1)

2020年全国统一考试数学一、选择题:(本题共10小题,每小题6分,共60分)1.已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A. 2 B. 3 C. 4 D. 5【答案】B 【解析】 【分析】采用列举法列举出AB 中元素的即可.【详解】由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题. 2.若()11+=-z i i ,则z =( ) A. 1–i B. 1+iC. –iD. i【答案】D 【解析】 【分析】先利用除法运算求得z ,再利用共轭复数的概念得到z 即可.【详解】因为21(1)21(1)(1)2i i iz i i i i ---====-++-,所以z i . 故选:D【点晴】本题主要考查复数的除法运算,涉及到共轭复数的概念,是一道基础题.3.设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为( ) A. 0.01 B. 0.1C. 1D. 10【答案】C 【解析】 【分析】根据新数据与原数据关系确定方差关系,即得结果.【详解】因为数据(1,2,,)i ax b i n +=,的方差是数据(1,2,,)i x i n =,的方差的2a 倍,所以所求数据方差为2100.01=1⨯ 故选:C【点睛】本题考查方差,考查基本分析求解能力,属基础题.4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为( )(ln19≈3) A. 60 B. 63C. 66D. 69【答案】C 【解析】 【分析】将t t *=代入函数()()0.23531t KI t e--=+结合()0.95I t K *=求得t*即可得解.【详解】()()0.23531t K I t e--=+,所以()()0.23530.951t K I t K e**--==+,则()0.235319t e*-=,所以,()0.2353ln193t *-=≈,解得353660.23t *≈+≈. 故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题. 5.已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭( )A.12B.C.23D.【答案】B 【解析】 【分析】将所给的三角函数式展开变形,然后再逆用两角和的正弦公式即可求得三角函数式的值.详解】由题意可得:1sin sin cos 122θθθ++=,则:3sin 12θθ+=1cos 2θθ+=从而有:3sin coscos sin663ππθθ+=, 即3sin 63πθ⎛⎫+= ⎪⎝⎭. 故选:B.【点睛】本题主要考查两角和与差的正余弦公式及其应用,属于中等题.6.在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为( ) A. 圆 B. 椭圆C. 抛物线D. 直线【答案】A 【解析】 【分析】首先建立平面直角坐标系,然后结合数量积的定义求解其轨迹方程即可.【详解】设()20AB a a =>,以AB 中点为坐标原点建立如图所示的平面直角坐标系,则:()(),0,,0A a B a -,设(),C x y ,可得:()(),,,AC x a y BC x a y →→=+=-,从而:()()2AC BC x a x a y →→⋅=+-+,结合题意可得:()()21x a x a y +-+=, 整理可得:2221x y a +=+,即点C 的轨迹是以AB 21a +为半径的圆. 故选:A.【点睛】本题主要考查平面向量及其数量积的坐标运算,轨迹方程的求解等知识,意在考查学生的转化能力和计算求解能力.7.设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( ) A. 1,04⎛⎫⎪⎝⎭B. 1,02⎛⎫ ⎪⎝⎭C. (1,0)D. (2,0)【答案】B 【解析】 【分析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4DOx EOx π∠=∠=,从而可以确定出点D的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目. 8.点(0,﹣1)到直线()1y k x =+距离的最大值为( )A. 1B.C.D. 2【答案】B 【解析】 【分析】首先根据直线方程判断出直线过定点(1,0)P -,设(0,1)A -,当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即可求得结果.【详解】由(1)y k x =+可知直线过定点(1,0)P -,设(0,1)A -, 当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即为||AP =故选:B.【点睛】该题考查的是有关解析几何初步的问题,涉及到的知识点有直线过定点问题,利用几何性质是解题的关键,属于基础题.9.下图为某几何体的三视图,则该几何体的表面积是( )A. 6+42B. 4+42C. 6+23D. 4+23【答案】C 【解析】 【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积. 【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△ 根据勾股定理可得:22AB AD DB ===∴ADB △是边长为22根据三角形面积公式可得:2113sin 60(22)23222ADB S AB AD =⋅⋅︒=⋅=△∴该几何体的表面积是:2362332=⨯++故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.10.设3log 2a =,5log 3b =,23c =,则( ) A. a c b << B. a b c <<C. b c a <<D. c a b <<【答案】A 【解析】 【分析】分别将a ,b 改写为331log 23a =,351log 33b =,再利用单调性比较即可. 【详解】因为333112log 2log 9333a c =<==,355112log 3log 25333b c =>==,所以a c b <<. 故选:A .【点晴】本题考查对数式大小的比较,考查学生转化与化归的思想,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分.11.若x ,y 满足约束条件0,201,x y x y x +≥⎧⎪-≥⎨⎪≤⎩, ,则z =3x +2y 的最大值为_________.【答案】7 【解析】 【分析】作出可行域,利用截距的几何意义解决. 【详解】不等式组所表示的可行域如图 因为32z x y =+,所以322x zy =-+,易知截距2z 越大,则z 越大, 平移直线32x y =-,当322x zy =-+经过A 点时截距最大,此时z 最大, 由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,(1,2)A , 所以max 31227z =⨯+⨯=. 故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.12.设双曲线C :22221x y a b-= (a >0,b >0)的一条渐近线为y 2x ,则C 的离心率为_________.3 【解析】 【分析】 根据已知可得2ba=,,a b c 的关系,即可求解. 【详解】由双曲线方程22221x y a b-=可得其焦点在x 轴上,因为其一条渐近线为2y x =,所以2b a =2213c b e a a==+=3【点睛】本题考查的是有关双曲线性质,利用渐近线方程与离心率关系是解题的关键,要注意判断焦点所在位置,属于基础题.13.设函数e ()xf x x a =+.若(1)4e f '=,则a =_________.【答案】1 【解析】 【分析】由题意首先求得导函数的解析式,然后得到关于实数a 的方程,解方程即可确定实数a 的值【详解】由函数的解析式可得:()()()()()221x xx e x a e e x a f x x a x a +-+-'==++,则:()()()()12211111e a aef a a ⨯+-'==++,据此可得:()241aee a =+, 整理可得:2210a a -+=,解得:1a =. 故答案为:1.【点睛】本题主要考查导数的运算法则,导数的计算,方程的数学思想等知识,属于中等题. 14.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________. 【答案】2π 【解析】 【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值. 【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示, 其中2,3BC AB AC ===,且点M 为BC 边上的中点, 设内切圆的圆心为O ,由于223122AM =-=1222222S =⨯⨯=△ABC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()1332222r =⨯++⨯= 解得:22r,其体积:34233V r π==.. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第15~19题为必考题,每个试题考生都必须作答.第20、21题为选考题,考生根据要求作答. (一)必考题:共60分.15.设等比数列{a n }满足124a a +=,318a a -=. (1)求{a n }的通项公式;(2)记n S 为数列{log 3a n }的前n 项和.若13m m m S S S +++=,求m . 【答案】(1)13-=n n a ;(2)6m =. 【解析】 【分析】(1)设等比数列{}n a 的公比为q ,根据题意,列出方程组,求得首项和公比,进而求得通项公式; (2)由(1)求出3{log }n a 的通项公式,利用等差数列求和公式求得n S ,根据已知列出关于m 的等量关系式,求得结果.【详解】(1)设等比数列{}n a 的公比为q , 根据题意,有1121148a a q a q a +=⎧⎨-=⎩,解得113a q =⎧⎨=⎩, 所以13-=n n a ;(2)令313log log 31n n n b a n -===-,所以(01)(1)22n n n n n S +--==,根据13m m m S S S +++=,可得(1)(1)(2)(3)222m m m m m m -++++=, 整理得2560m m --=,因为0m >,所以6m =,【点睛】本题考查等比数列通项公式基本量的计算,以及等差数列求和公式的应用,考查计算求解能力,属于基础题目.16.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bcKa b c d a c b d-=++++,.【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析. 【解析】【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率; (2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22⨯列联表,计算出2K 的观测值,再结合临界值表可得结论. 【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:人次400≤人次400>空气质量不好 33 37空气质量好 228()221003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.17.如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥;(2)点1C 在平面AEF 内.【答案】(1)证明见解析;(2)证明见解析. 【解析】 【分析】(1)根据正方形性质得AC BD ⊥,根据长方体性质得1AC BB ⊥,进而可证AC ⊥平面11BB D D ,即得结果; (2)只需证明1//EC AF 即可,在1CC 上取点M 使得12CM MC =,再通过平行四边形性质进行证明即可.【详解】(1)因为长方体1111ABCD A B C D -,所以1BB ⊥平面ABCD ∴1AC BB ⊥,因为长方体1111,ABCD A B C D AB BC -=,所以四边形ABCD 为正方形AC BD ∴⊥ 因为11,BB BD B BB BD =⊂、平面11BB D D ,因此AC ⊥平面11BB D D ,因为EF ⊂平面11BB D D ,所以AC EF ⊥;(2)在1CC 上取点M 使得12CM MC =,连,DM MF ,因为111112,//,=D E ED DD CC DD CC =,所以11,//,ED MC ED MC = 所以四边形1DMC E 为平行四边形,1//DM EC ∴因为//,=,MF DA MF DA 所以M F A D 、、、四点共面,所以四边形MFAD 为平行四边形,1//,//DM AF EC AF ∴∴,所以1E C A F 、、、四点共面,因此1C 在平面AEF 内【点睛】本题考查线面垂直判定定理、线线平行判定,考查基本分析论证能力,属中档题. 18.已知函数32()f x x kx k =-+.(1)讨论()f x 的单调性;(2)若()f x 有三个零点,求k 的取值范围. 【答案】(1)详见解析;(2)4(0,)27. 【解析】 【分析】(1)'2()3f x x k =-,对k 分0k ≤和0k >两种情况讨论即可;(2)()f x 有三个零点,由(1)知0k >,且(00f f ⎧>⎪⎪⎨⎪<⎪⎩,解不等式组得到k 的范围,再利用零点存在性定理加以说明即可.【详解】(1)由题,'2()3f x x k =-,当0k ≤时,'()0f x ≥恒成立,所以()f x 在(,)-∞+∞上单调递增;当0k >时,令'()0f x =,得x ='()0f x <,得x << 令'()0f x >,得x <x >()f x在(上单调递减,在(,-∞,)+∞上单调递增. (2)由(1)知,()f x 有三个零点,则0k >,且(00f f ⎧>⎪⎪⎨⎪<⎪⎩即22203203k k ⎧+>⎪⎪⎨⎪-<⎪⎩,解得4027k <<, 当4027k <<>20f k =>, 所以()f x在上有唯一一个零点,同理1k --<32(1)(1)0f k k k --=--+<,所以()f x 在(1,k --上有唯一一个零点,又()f x 在(上有唯一一个零点,所以()f x 有三个零点, 综上可知k 的取值范围为4(0,)27. 【点晴】本题主要考查利用导数研究函数的单调性以及已知零点个数求参数的范围问题,考查学生逻辑推理能力、数学运算能力,是一道中档题.19.已知椭圆222:1(05)25x y C m m +=<<,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.【答案】(1)221612525x y +=;(2)52. 【解析】 【分析】(1)因为222:1(05)25x y C m m +=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案; (2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积. 【详解】(1)222:1(05)25x y C m m +=<< ∴5a =,b m =,根据离心率4c e a ====, 解得54m =或54m =-(舍),∴C的方程为:22214255x y⎛⎫⎪⎝⎭+=,即221612525xy+=;(2)不妨设P,Q在x轴上方点P在C上,点Q在直线6x=上,且||||BP BQ=,BP BQ⊥,过点P作x轴垂线,交点为M,设6x=与x轴交点为N根据题意画出图形,如图||||BP BQ=,BP BQ⊥,90PMB QNB∠=∠=︒,又90PBM QBN∠+∠=︒,90BQN QBN∠+∠=︒,∴PBM BQN∠=∠,根据三角形全等条件“AAS”,可得:PMB BNQ≅△△,221612525x y+=,∴(5,0)B,∴651PM BN==-=,设P点为(,)P Px y,可得P点纵坐标为1Py=,将其代入221612525x y+=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时, 故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2), 画出图象,如图(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:22231111055125211d ⨯-⨯+===+, 根据两点间距离公式可得:()()22652055AQ =++-=,∴APQ 面积为:1555252⨯=;②当P 点为(3,1)-时, 故5+38MB ==,PMB BNQ ≅△△,∴||||8MB NQ ==,可得:Q 点为(6,8), 画出图象,如图(5,0)A -,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:()2283111405185185811d ⨯--⨯+===+, 根据两点间距离公式可得:()()226580185AQ =++-=∴APQ 面积为:1518522185=, 综上所述,APQ 面积为:52. 【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.(二)选考题:共10分.请考生在第20、21题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]20.在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t⎧=--⎨=-+⎩,(t 为参数且t ≠1),C 与坐标轴交于A ,B 两点. (1)求|AB |:(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程. 【答案】(1)4102)3cos sin 120ρθρθ-+= 【解析】【分析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值; (2)由,A B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.【详解】(1)令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即(0,12)A . 令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -.AB ∴==(2)由(1)可知12030(4)AB k -==--,则直线AB 的方程为3(4)y x =+,即3120x y -+=.由cos ,sin x y ρθρθ==可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.[选修4-5:不等式选讲]21.设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c . 【答案】(1)证明见解析(2)证明见解析. 【解析】 【分析】(1)由2222()2220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明;(2)不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a a a bcbc+++=⋅==,结合基本不等式,即可得出证明. 【详解】(1)2222()2220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. 1,,,abc a b c =∴均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<;(2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--=,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=.当且仅当b c =时,取等号,a ∴≥,即3max{,,}4a b c .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前
2020年普通高等学校招生全国统一考试
理科数学
注意事项:
1. 答卷前,考生务必将自己的姓名、考生号、座位号填写在答题卡上,本试卷满分150分。

2. 作答时,将答案写在答题卡上,写在本试卷上无效。

3. 考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项使符合题目要求的。

1. 已知集合,,,则()
A. B. C. D.
2. 若为第四象限角,则()
A. B. C. D.
3. 在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大
幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作. 已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05. 志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()
A.10名
B.18名
C.24名
D.32名
4. 北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层. 上层中心有一块圆
形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环
依次增加9块. 下一层的第一环第一环比上一层的最后一环多9块,向外每
环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共
有扇面形石板(不含天心石)()
A. 3 699块
B. 3 474块
C. 3 402块
D. 3 339块
5. 过点的圆与两坐标轴都相切,则圆心到直线的距离为()
A. B. C. D.
6. 数列中,,. 若,则()
A. 2
B. 3
C. 4
D. 5
7. 有图是一个多面体的三视图,这个多面体某条棱的一个端点在在正视图中对应的点为,在俯视图中对
应的点为,则该端点在侧视图中对应的点为( )
A. B. C.
D.
8. 设为坐标原点,直线的两
条渐近线分别交于两点,8,则的焦距的最小
值为( )
A. 4
B. 8
C. 16
D. 32
9. ,则
( )
A. B.
C.
D.
10. 的等边三角形,且其顶点都在球的球面上. 若球的表面积为,则
到平面的距离为( )
C.
11. 若 )
12. . 若序列且存在
正整数,. 周期序列.
的最小正整数为这个序列的周期. 对于周期为
序列

)是描述其性质的重要指标. 下列周期为的
序列中,满足
的序列是( )
A. 11010
B. 11011
C. 10001
D. 11001
二、填空题:本题共4小题,每小题5分,共20分。

13. 已知单位向量的夹角为,与
14. 4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.
15. 设复数
___________.
16. 设有下列四个命题:
两两相交且不过同一点的三条直线必在同一平面内. 过空间中任意三点有且仅有一个平面.
若空间两条直线不相交,则这两条直线平行.
则下述命题中所有真命题的序号是___________.
②③④
三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

17. (12分)
.
(1)求;
(2.
18. (12分)
某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加. 为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调
分别表示第个样区的植物覆盖面积(单位:公顷)
和这种野生动物的数量. ,
.
(1)求该地区这种野生动物数量的估计值(这种野生动物的估计值等于样区这种野生动物数量的平均数乘以第块数);
(2)求样本的相关系数(精确到);
(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.
19. (12分)
的右焦点与抛物线的焦点重合. 的中心与的顶点重合.
过且与轴垂直的直线交于两点,交于.
(1)求的离心率;
(2)设是与,求与的标准方程.
20. (12分)
是矩形,分别为的中点,为上一点,过和的平面交于,交于.
(1

(2)设
若平面,
且,求
直线与平面所成角的正弦值.
21. (12分)
已知函数.
(1)讨论在区间的单调性;
(2
)证明:;
(3)设
,证明:
(二)选考题:共10分。

请考生在第22、23题中任选一题作答,并用2B铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做第一题计分。

22. [选修4-4:坐标系与参数方程](10分)
已知曲线的参数方程分别为
(为参数)
,(为参数),
(1)将的参数方程化为普通方程;
(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系. 设的交点为,求圆心在极轴上,且经过极点和的圆的极坐标方程.
23. [选秀4-5:不等式选讲](10分)
已知函数
(1)当
时,求不等式的解集;
(2
)若的取值范围.
1
A C。

相关文档
最新文档