初一数学 有理数的加减运算
初一上册数学有理数加减混合运算
初一上册数学有理数加减混合运算有理数加减运算是初一数学的一个重要知识点,也是我们学习数学的基础。
在本文档中,我将为大家介绍有理数加减的混合运算方法和注意事项。
一、有理数的加法运算方法有理数的加法是指两个有理数相加的操作。
具体步骤如下:1. 如果两个有理数的符号相同,将它们的绝对值相加,符号保持不变。
2. 如果两个有理数的符号不同,先计算它们的绝对值的差,将差的符号取绝对值较大的数的符号。
-3 + (-5) = -8 (符号相同,绝对值相加)-3 + 5 = 2 (绝对值相减)二、有理数的减法运算方法有理数的减法是指一个有理数减去另一个有理数的操作。
具体步骤如下:1. 减去一个有理数相当于加上它的相反数。
2. 将减法转化为加法运算,按照加法运算规则进行计算。
5 - 3 = 5 + (-3) = 2三、有理数的混合运算有理数的混合运算指在一个算式中同时有加法和减法的运算。
具体步骤如下:1. 先进行括号内的运算。
2. 从左到右按顺序进行加减运算。
2 +3 -4 + (-5) = 0四、注意事项在进行有理数加减混合运算时,我们需要注意以下几点:1. 注意符号的加减,符号相同加绝对值,符号不同减绝对值。
2. 混合运算中要注意加减法的优先级。
3. 注意括号的运算顺序,先括号内后括号外。
综上所述,有理数的加减混合运算是初一数学中的基础知识,掌握好加法和减法的运算方法,同时注意混合运算的顺序和符号规则,可以更好地解决数学问题。
希望本文档对初一上册数学有理数加减混合运算的学习有所帮助。
(文档结束)。
初一上册数学有理数的加减法
初一上册数学有理数的加减法在初一上册的数学学习中,有理数的加减法是非常重要的基础知识。
它不仅是后续数学学习的基石,也在日常生活中有着广泛的应用。
首先,咱们来聊聊什么是有理数。
有理数包括整数和分数,简单来说,就是能够写成两个整数之比的数。
比如,5 是整数,也是有理数;05 可以写成 1/2,所以 05 也是有理数。
有理数的加法法则有这么几条:1、同号两数相加,取相同的符号,并把绝对值相加。
比如说,+3 ++5 =+8,因为都是正数,符号相同,所以结果是正数,然后把绝对值 3 和 5 相加得到 8。
2、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
例如,-3 + 5 ,因为 5 的绝对值大于 3 的绝对值,所以结果是正数,然后用 5 的绝对值 5 减去 3 的绝对值 3 ,得到 2 。
3、互为相反数的两个数相加得 0 。
像-2 和 2 相加,结果就是 0 。
接下来看看有理数的加法运算步骤。
第一步,先确定符号,根据前面说的加法法则来判断结果是正还是负。
第二步,计算绝对值,该相加就相加,该相减就相减。
再说说有理数的减法。
减法法则其实可以转化为加法来理解,减去一个数,等于加上这个数的相反数。
比如说,5 3 可以看成 5 +(-3 )。
那有理数的加减法混合运算怎么办呢?一般来说,我们把减法统一成加法,然后按照加法的法则来计算。
为了更熟练地掌握有理数的加减法,咱们得多做练习。
比如这样一道题:计算-2 + 5 8 。
首先,把减法转化为加法,得到-2 + 5 +(-8 )。
然后先算加法,-2 + 5 = 3 ,接着 3 +(-8 ),因为 8 的绝对值大于 3 的绝对值,所以结果是负数,8 的绝对值 8 减去 3 的绝对值 3 ,得到-5 。
在实际生活中,有理数的加减法也很有用。
比如,你去买东西,商品价格是 15 元,你给了售货员 20 元,售货员需要找给你 20 15 = 5 元。
又比如,气温从早上的 5 摄氏度下降了 8 摄氏度,那么晚上的气温就是 5 +(-8 )=-3 摄氏度。
初一数学《有理数》04节:有理数的加减法知识点解读与提高
有理数的加减法(基础)要点一、有理数的加法1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.利用法则进行加法运算的步骤:(1)判断两个加数的符号是同号、异号,还是有一个加数为零,以此来选择用哪条法则.(2)确定和的符号(是“+”还是“-”).(3)求各加数的绝对值,并确定和的绝对值(加数的绝对值是相加还是相减).3.运算律:交换加数的位置时,不要忘记符号.要点二、有理数的减法1.定义:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,例如:(-5)+?=7,求?,减法是加法的逆运算.(1)任意两个数都可以进行减法运算.(2)几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值.2.法则:减去一个数,等于加这个数的相反数,即有:()a b a b -=+-.将减法转化为加法时,注意同时进行的两变,一变是减法变加法;二变是把减数变为它的相反数”.如:有理数加法运算律加法交换律文字语言两个数相加,交换加数的位置,和不变符号语言a+b=b+a 加法结合律文字语言三个数相加,先把前两个数相加,或者先把后两个数相加,和不变符号语言(a+b)+c=a+(b+c)1.掌握有理数加法的意义,法则及运算律,并会使用运算律简算;2.掌握有理数减法的法则和运算技巧,认识减法与加法的内在联系;3.熟练将加减混合运算统一成加法运算,理解运算符号和性质符号的意义,运用加法运算律合理简算,并会解决简单的实际问题.要点三、有理数加减混合运算将加减法统一成加法运算,适当应用加法运算律简化计算.类型一、有理数的加法运算.计算:(1)(+20)+(+12);(2)1223⎛⎫⎛⎫-+-⎪ ⎪⎝⎭⎝⎭;(3)(3)(+2)+(-11);(4)(-3.4)+(+4.3);(5)(-2.9)+(+2.9);(6)(6)(-5)+0.(1)(2)属于同一类型,用的是加法法则的第一条;(3)(4)属于同一类,用的是加法法则的第二条;(5)用的是第二条:互为相反数的两个数相加得0;(6)用的是法则的第三条.(1)(+20)+(+12)=+(20+12)=+32=32;(2)12121123236⎛⎫⎛⎫⎛⎫-+-=-+=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)(+2)+(-11)=-(11-2)=-9(4)(-3.4)+(+4.3)=+(4.3-3.4)=0.9(5)(-2.9)+(+2.9)=0;(6)(-5)+0=-5.【变式1】计算:113343⎛⎫⎛⎫-++⎪ ⎪⎝⎭⎝⎭【答案】111113333433412⎛⎫⎛⎫⎛⎫-++=+-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【变式2】计算:(1)(+10)+(-11);(2)⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭12-1+-23【答案】(1)(+10)+(-11)=﹣(11-10)=﹣1;(2)类型二、有理数的减法运算.计算:(1)(-32)-(+5);(2)(+2)-(-25).此题是有理数的减法运算,先按照减法法则将减法转化为加法,再按照有理数的加法进行计算.法一:绝对值不等的异号两数相加,是有理数加法的难点,在应用法则时,一定要先确定符号,再计算绝对值.⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1212341-1+-=-1+=-1+=-22323666法二:(1)原式=-32-5=-32+(-5)=-37;(2)原式=2+25=27【变式】若()﹣(﹣2)=3,则括号内的数是()A.﹣1B.1C.5D.﹣5B.根据题意得:3+(﹣2)=1,则1﹣(﹣2)=3.类型三、有理数的加减混合运算.计算:3.8+4﹣(+6)+(﹣8)根据有理数的加减混合运算的方法:有理数加减法统一成加法,求解即可解:原式=(3.8﹣6.8)+(4﹣8)=﹣3﹣4=﹣7,【变式】用简便方法计算:(1)(-2.4)+(-4.2)+(-3.8)+(+3.1)+(+0.8)+(-0.7)(2)2)324(83)65()851(43-++-+-+(1)原式=[(-3.8)+(-4.2)]+[(-2.4)+(-0.7)+(+3.1)]+(+0.8)=-8+0.8=-7.2(2)原式=(2-1-4)+(34-58-56+38-23)=-3+[68-58+38+(-56-46)]=-3-1=-4类型四、有理数的加减混合运算在实际中的应用.邮递员骑车从邮局出发,先向南骑行2km 到达A 村,继续向南骑行3km 到达B 村,然后向北骑行9km 到C 村,最后回到邮局.(1)以邮局为原点,以向北方向为正方向,用1cm 表示1km,画出数轴,并在该数轴上表示出A、B、C 三个村庄的位置;(2)C 村离A 村有多远?(3)邮递员一共骑了多少千米?(1)以邮局为原点,以向北方向为正方向用1cm算式中的“+”或“-”既可以看作运算符号按法则进行计算,也可以看作是性质符号按多重符号化简进行计算.本题考查了有理数的加减混合运算的知识,如果在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.表示1km,按此画出数轴即可;(2)可直接算出来,也可从数轴上找出这段距离;(3)邮递员一共骑了多少千米?即数轴上这些点的绝对值之和.解:(1)依题意得,数轴为:;(2)依题意得:C点与A 点的距离为:2+4=6(千米);(3)依题意得邮递员骑了:2+3+9+4=18(千米).【变式1】华英中学七年级(14)班的学生分成五组进行答题游戏,每组的基本分为100分,答对一题加50分,答错一题扣50分,游戏结束后各组的得分如下表:(1)第一名超过第二名多少分?(2)第一名超过第五名多少分?由表看出:第一名350分,第二名150分,第五名-400分.(1)350-150=200(分)(2)350-(-400)=350+400=750(分)答:第一名超过第二名200分;第一名超过第五名750分.【变式2】某产粮专业户出售粮食8袋,每袋重量(单位:千克)如下:197,202,197,203,200,196,201,198.计算出售的粮食总共多少千克?法一:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这8个数的差的累计是:(-3)+(+2)+(-3)+(+3)+0+(-4)+(+1)+(-2)=-6200×8+(-6)=1594(千克)答:出售的粮食共1594千克.法二:197+202+197+203+200+196+201+198=1594(千克)答:出售的粮食共1594千克.【巩固练习】一、选择题1.某市一天的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高()A.﹣10℃B.﹣6℃C.10℃D.6℃2.若等式0□1=﹣1成立,则□内的运算符号为()A.+B.﹣C.×D.÷3.两个有理数相加,和小于其中一个加数而大于另一个加数,需满足()A.两个数都是正数B.两个数都是C.一个是正数,另一个是负数D.至少有一个数是零4.下列说法中正确的是A.正数加负数,和为0B.两个正数相加和为正;两个负数相加和为负C.两个有理数相加,等于它们的绝对值相加D.两个数的和为负数,则这两个数一定是负数第1组第2组第3组第4组第5组100150350-400-100本题主要考查了学生有实际生活中对数轴的应用能力,只要掌握数轴的基本知识即可.5.下列说法正确的是()A.零减去一个数,仍得这个数B.负数减去负数,结果是负数C.正数减去负数,结果是正数D.被减数一定大于差6.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kg B.0.6kg C.0.5kg D.0.4kg7.-3+5的相反数是().A.2B.-2C.-8D.8二、填空题8.有理数,,a b c在数轴上对应点位置如图所示,用“>”或“<”(1)|a|______|b|;(2)a+b+c______0:(3)a-b+c______0;(4)a+c______b;(5)c-b______a.8.计算:|﹣2|+2=________.9.某月股票M开盘价20元,上午10点跌1.6元,下午收盘时又涨了0.4元,则股票这天的收盘价是_______.10.列出一个满足下列条件的算式:(1)所有的加数都是负数,和为-5,________;(2)一个加数是0,和是-5________;(3)至少有一个加数是正整数,和是-5,________.11.数学活动课上,王老师给同学们出了一道题:规定一种新运算“☆”对于任意两个有理数a和b,有a☆b=a-b+1,请你根据新运算,计算(2☆3)☆2的值是.12.计算(﹣3)+(﹣9)的结果为.三、解答题14.计算题(1)232(1)(1)(1.75)343-----+-(2)132.1253(5)(3.2)58-+---+(3)21772953323+---(4)231321234243--++-+(5)2312()()3255---+--+-15.已知:|a|=2,|b|=3,求a+b的值.16.某人用400元购买了8套儿童服装,准备以一定价格出售,如果以每套儿童服装55元的价格为标准,超出的记作正数,不足的记作负数,记录如下:+2,﹣3,+2,+1,﹣2,﹣1,0,﹣2.(单位:元)(1)当他卖完这八套儿童服装后是盈利还是亏损?(2)盈利(或亏损)了多少钱?【答案与解析】一、选择题1.【答案】C【解析】解:2﹣(﹣8)=2+8=10℃.故选C.2.【答案】B3.【答案】C【解析】举例验证.4.【答案】B【解析】举反例:如5+(-2)=+3≠0,故A 错;如:(-2)+(-3)≠|-2|+|-3|,故C错;如(+2)+(-8)=-6,故D错误.5.【答案】C【解析】举反例逐一排除.6.【答案】B【解析】因为最低重量为24.7kg,最大重量为25.3kg,故质量最多相差25.3-24.7=0.6kg.7.【答案】B二、填空题8.【答案】<,<,>,>,>【解析】由图可知:b a c>>,且0,0b a c<<>,再根据有理数的加法法则可得答案.9.【答案】4.10.【答案】18.8元【解析】跌1.6元记为-1.6元,涨0.4元记为+0.4元,故有收盘价为20+(-1.6)+0.4-18.8.11.【答案】(1)(-2)+(-3)=-5(2)(-5)+0=-5(3)2+(-7)=-5【解析】答案不唯一.12.【答案】-1【解析】(2☆3)☆2=(2☆3)-2+1=2-3+1-2+1=-113.【答案】-12.【解析】同号两数相加的法则是取相同的符号,并把绝对值相加.原式=﹣(3+9)=﹣12.三、解答题13.【解析】(1)原式22(1)(1.75 1.75)133=-++-+=;(2)原式131[3(3.2)][(5) 2.125]3584=+-++---=(3)原式217297719)533326=+---=-(4)原式223311()()12334422=-++-++-=-(5)原式23122312231283[()][()]32553255325530 =------=--------=----=-(6)原式=12342001200220032004-+-++-+-+15.【解析】由题意知:a=±2,b=±3,所以要分四种情况代入求值.∵|a|=2,∴a=±2,∵|b|=3,∴b=±3.当a=+2,b=+3时,a+b=(+2)+(+3)=+5;当a=+2,b=-3时,a+b=(+2)+(-3)=-1;当a=-2,b=+3时,a+b=(-2)+(+3)=+1;当a=-2,b=-3时,a+b=(-2)+(-3)=-5.16.【解析】解:根据题意得(1)2﹣3+2+1﹣2﹣1+0﹣2=﹣3,(12)(34)(20032004)110021002 =-++-+++-+=⨯=55×8+(﹣3)=437元,∵437>400,∴卖完后是盈利;(2)437﹣400=37元,故盈利37元.有理数的加减法(提高)要点一、有理数的加法1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.利用法则进行加法运算的步骤:(1)判断两个加数的符号是同号、异号,还是有一个加数为零,以此来选择用哪条法则.(2)确定和的符号(是“+”还是“-”).(3)求各加数的绝对值,并确定和的绝对值(加数的绝对值是相加还是相减).3.运算律:交换加数的位置时,不要忘记符号.要点二、有理数的减法1.定义:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,例如:(-5)+?=7,求?,减法是加法的逆运算.(1)任意两个数都可以进行减法运算.(2)几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值.2.法则:减去一个数,等于加这个数的相反数,即有:()a b a b -=+-.将减法转化为加法时,注意同时进行的两变,有理数加法运算律加法交换律文字语言两个数相加,交换加数的位置,和不变符号语言a+b=b+a加法结合律文字语言三个数相加,先把前两个数相加,或者先把后两个数相加,和不变符号语言(a+b)+c=a+(b+c)1.掌握有理数加法的意义,法则及运算律,并会使用运算律简算;2.掌握有理数减法的法则和运算技巧,认识减法与加法的内在联系,体会其中蕴含的转化的思想;3.熟练地将加减混合运算统一成加法运算,理解运算符号和性质符号的意义,运用加法运算律合理简算,并且会解决简单的实际问题.一变是减法变加法;二变是把减数变为它的相反数”.如:要点三、有理数加减混合运算将加减法统一成加法运算,适当应用加法运算律简化计算.类型一、有理数的加法运算.阅读下题的计算方法.计算.解:原式===0+(﹣)=﹣上面这种解题方法叫做拆项法,按此方法计算:.根据拆项法,可把整数结合在一起,分数结合在一起,再根据有理数的加法,可得答案.解:原式=[(﹣2011)+(﹣)]+[(﹣2010)+(﹣)]+[4022+]+[(﹣1)+(﹣)]=[(﹣2011)+(﹣2010)+4022+(﹣1)]+[(﹣)+(﹣)++(﹣)]=0+(﹣)=﹣.【变式1】计算:(1)-721+1061;(2)(-21)+(-7.3);(3)141+(-231);(4)751+(-3.8)+(-7.2)【答案】(1)原式=11112(107)(97)(1)262623+-=-+-=;(2)原式=(0.57.3)7.8-+=-;(3)(3)原式=111(21)13412--=-;(4)原式=7.27.2 3.80 3.8 3.8--=-=-【变式2】计算:11511236⎛⎫-++- ⎪⎝⎭1151151151111(11)1236236236⎡⎤⎛⎫⎛⎫⎛⎫-++-=--++-=-++-++-=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦【变式3】计算:11(6)(3.3)(3)(6)(0.3)(8)(6)(16)644⎛⎫⎛⎫++++-+++-+++++++-+-⎪ ⎪⎝⎭⎝⎭解法一:11(6)(3.3)(3)(6)(0.3)(8)(6)(16)644⎛⎫⎛⎫++++-+++-+++++++-+-⎪ ⎪⎝⎭⎝⎭11(6)(3)(0.3)(8)(6)(3.3)(6)(16)644⎡⎤⎡⎤⎛⎫⎛⎫=++++++++++++-+-+-+-⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦→同号的数一起先加(23.55)(31.55)8=++-=-.本题考查了有理数的加法,拆项法是解题关键.解法二:11(6)(3.3)(3)(6)(0.3)(8)(6)(16)644⎛⎫⎛⎫++++-+++-+++++++-+- ⎪ ⎪⎝⎭⎝⎭11(6)6[(3.3)(3)(0.3)][(6)(6)][(16)(8)]44⎡⎤⎛⎫⎛⎫=++++-+-+++++-+++-++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦→同分母,互为相反数的数,或几个数可以凑整的数分别结合相加000(8)8=+++-=-.类型二、有理数的减法运算.(1)2-(-3);(2)0-(-3.72)-(+2.72)-(-4);(3)41373⎛⎫+- ⎪⎝⎭.此题是有理数的减法运算,先按照减法法则将减法转化为加法,再按照有理数的加法进行计算.本题可直接利用有理数的减法法则进行计算.(1)2-(-3)=2+3=5(2)原式=0+3.72+(-2.72)+4=(0+4)+(3.72-2.72)=4+1=5(3)原式=411416(3)(3)2733721+-=--=-类型三、有理数的加减混合运算.计算:(1)-3.72-1.23+4.18-2.93-1.25+3.72;(2)11-12+13-15+16-18+17;(3)1113.76395684.7621362--+--+(4)51133.464 3.872 1.54 3.376344+---+++(5)1355354624618-++-;(6)132.2532 1.87584+-+(1)观察各个加数,可以发现-3.72与3.72互为相反数,把它们分为一组;4.18、-2.93与-1.25的和为0,把它们分为一组可使计算简便.解:-3.72-1.23+4.18-2.93-1.25+3.72=(-3.72+3.72)+(4.18-2.93-1.25)-1.23=0+0-1.23=-1.23(2)把正数和负数分别分为一组.解:11-12+13-15+16-18+17=(11+13+16+17)+(-12-15-18)=57+(-45)=12(3)仔细观察各个加数,可以发现两个小数的和是-1,两个整数的和是29,三个分数通分后也不难算.故把整数、分数、小数分别分为一组.解:1113.7639568 4.7621362--+--+111(3.76 4.76)(521)(3968)362=-+--++-+1(6)2922=-+-+=(4)3.46和1.54的和为整数,把它们分为一组;-3.87与3.37的和为-0.5,把它们分为一组;546与13-易于通分,把它们分为一组;124-与34同分母,把它们分为一组.算式中的“+”或“-”既可以看作运算符号按法则进行计算,也可以看作是性质符号按多重符号化简进行计算.解:51133.464 3.872 1.54 3.376344+---+++5113(3.46 1.54)(3.873.37)(4)(2)6344=++-++-+-+115(0.5)4(1) 4.537.522=+-++-=+=(5)先把整数分离后再分组.解:1355354624618-++-1355354624618=--++++--1355(3546)()24618=-++-+-++-1827301036-++-=+2936=注:带分数中的整数与分数分离时,如果这个数是负数,那么分离得到的整数与分数都是负数,例如113322-=--.(6)如果按小数、整数分组,效果似乎不是很好.可先将小数和分数统一后再考虑分组.解:132.2532 1.87584+-+(2.25 2.75)(3.125 1.875)=-++0.55 4.5=-+=【变式】5.6+[0.9+4.4﹣(﹣8.1)].解:原式=5.6+0.9+4.4+8.1=19.类型四、有理数的加减混合运算在实际中的应用.“九宫图”传说是远古时代洛河中的一个神龟背上的图案,故又称“龟背图”,中国古代数学史上经常研究这一神话.(1)现有1,2,3,4,5,6,7,8,9共九个数字,请将它们分别填入图1的九个方格中,使得第行的三个数、每列的三个数、斜对角的三个数之和都等于15;(2)通过研究问题(1),利用你发现的规律,将3,5,﹣7,1,7,﹣3,9,﹣5,﹣1这九个数字分别填入图2的九个方格中,使得横、竖、斜对角的所有三个数的和都相等.解:(1)15÷3=5,∴最中间的数是5,其它空格填写如图1;(2)如图2所示.计算多个有理数相加时,必须先审题,分析特点,寻找规律,然后再去计算.注意在交换加数的位置时,要连同符号一起交换.本题考查了有理数加法,熟知“九宫图”的填法是解题的关键.【变式】某产粮专业户出售粮食8袋,每袋重量(单位:千克)如下:197,202,197,203,200,196,201,198.计算出售的粮食总共多少千克?法一:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这8个数的差的累计是:(-3)+(+2)+(-3)+(+3)+0+(-4)+(+1)+(-2)=-6200×8+(-6)=1594(千克)答:出售的粮食共1594千克.法二:197+202+197+203+200+196+201+198=1594(千克)答:出售的粮食共1594千克.【巩固练习】一、选择题1.某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是()A﹣10℃B.10℃C.14℃D.﹣14℃2.比﹣1小2015的数是()A.﹣2014B.2016C.﹣2016D.20143.如果三个数的和为零,那么这三个数一定是().A.两个正数,一个负数B.两个负数,一个正数C.三个都是零D.其中两个数之和等于第三个数的相反数4.若0,0a b ><,a b <,则a 与b 的和是()A.B.C. D..5.下列判断正确的是()A.两数之差一定小于被减数.B.若两数的差为正数,则两数都为正数.C.零减去一个数仍得这个数.D.一个数减去一个负数,差一定大于被减数.6.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kg B.0.6kg C.0.5kg D.0.4kg 二、填空题7.有理数,,a b c 在数轴上对应点位置如图所示,用“>”或“<”填空:(1)|a |______|b |;(2)(2)a +b +c ______0:(3)a -b +c ______0;(4)a +c ______b ;(5)c -b ______a .8.小明存折中原有450元,取出260元,又存入150元,现在存折中还有______元.9.若a ,b 为整数,且|a-2|+|a -b|=1,则a+b=________.10.某地的冬天,半夜的温度是-5︒C,早晨的温度是-1︒C,中午的温度是4︒C.则(1)早晨的温度比半夜的温度高________度;(2)早晨的温度比中午的温度低________度.11.北京与纽约的时差为-13(负号表示同一时刻纽约时间比北京时间晚).如果现在是北京时间15:00,那么纽约时间是______________12.数学活动课上,王老师给同学们出了一道题:规定一种新运算“☆”对于任意两个有理数a和b,有a☆b=a-b+1,请你根据新运算,计算(2☆3)☆2的值是.三、解答题13.计算题(1)3401(1)(5)|4|77⎡⎤⎛⎫⎛⎫+-----+--+-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦;(2)2121 02133434⎛⎫⎛⎫⎛⎫-++---+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)44444 999999999999999 55555 ++++(4)1+(-2)+(-3)+4+5+(-6)+(-7)+8+…+97+(-98)+(-99)+100的值.(5)11111 8244880120 ++++;(6)2312()() 3255 ---+--+-14.数轴上到原点的距离小于3的整数的个数为x,不大于3的正整数的个数为y,绝对值等于3的整数的个数为z,求:x+y+z的值.15.股民李星星在上周星期五以每股11.2元买了一批股票,下表为本周星期一到星期五该股票的涨跌情况求:(1)本周星期三收盘时,每股的钱数.(2)李星星本周内哪一天把股票抛出比较合算,为什么?【答案与解析】一、选择题1.【答案】B.2.【答案】C【解析】解:根据题意得:﹣1﹣2015=﹣2016,故选C.3.【答案】D【解析】若0a b c++=,则a b c+=-或b c a+=-或a c c+=-,所以D正确.4.【答案】D【解析】(a b+)的符号与绝对值较大的b一致为负的,并用较大的绝对值减去较小的绝对值,即有()b a--.5.【答案】D【解析】A错误,反例:2-(-3)=5,而5>2;B不对,反例:2-(-3)=5,而-3为负数;C错误,0-2=-2,0-(-2)=2,所以零减去一个数得这个数的相反数.6.【答案】B【解析】因为最低重量为24.7kg,最大重量为25.3kg,故质量最多相差25.3-24.7=0.6kg.星期一二三四五每股涨跌/元+0.4+0.45﹣0.2+0.25﹣0.4二、填空题7.【答案】<,<,>,>,>【解析】由图可知:b a c >>,且0,0b a c <<>,再根据有理数的加法法则可得答案.8.【答案】340【解析】450﹣260+150=290+150=340(元).9.【答案】2,6,3或5【解析】当|a-2|=1,|a -b|=0时,得:a+b=6或2;当|a-2|=0,|a -b|=1时,得:a+b=3或5;10.【答案】(1)4(2)5【解析】(1)-1-(-5)=4(2)-1-(+4)=-511.【答案】2:00【解析】15:00+(-13)=2:00.12.【答案】-1【解析】(2☆3)☆2=(2☆3)-2+1=2-3+1-2+1=-1三、解答题13.【解析】(1)原式341[15]45(5)1077=--+-++=--=(2)原式212102133434⎛⎫⎛⎫⎛⎫=-+++++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭21212133434=-++-2211213213183344⎛⎫⎛⎫=-++-=-+=- ⎪ ⎪⎝⎭⎝⎭(3)原式=1111101001000100005555⎡⎤⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+-++-++-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦⎣⎦11000005⎡⎤⎛⎫++- ⎪⎢⎥⎝⎭⎣⎦11111(10100100010000100000)55555⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++++-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111110(1)111109=+-=.(4)1+(-2)+(-3)+4+5+(-6)+(-7)+8+…+97+(-98)+(-99)+100=[1+(-2)+(-3)+4]+[5+(-6)+(-7)+8]+…+[97+(-98)+(-99)+100]=0+0++…+0=0.(5)111111111182448801202446688101012++++=++++⨯⨯⨯⨯⨯111111*********()()22446688101012221224=-+-+-+-+-=-=(6)原式23122312231283[()][()]32553255325530=------=--------=----=-14.【解析】解:根据数轴,到原点的距离小于3的整数为0,±1,±2,即x=5,不大于3的正整数为1,2,3,即y=3,绝对值等于3的整数为3,﹣3,即z=2,所以x+y+z=10.15.【解析】解:(1)根据题意得:11.2+0.4+0.45+(﹣0.2)=11.85(元),则本周星期三收盘时,该只股票每股为11.85元;(2)根据题意得:11.2+0.4+0.45+(﹣0.2)+0.25=12.1(元),则本周该只股票最高价12.1元出现在周四,李星星本周四把股票抛出比较好.。
数学初一有理数的加减混合运算题
数学初一有理数的加减混合运算题
(原创版)
目录
一、有理数的加减混合运算概念
二、有理数的加减混合运算实例
三、有理数的加减混合运算技巧和方法
四、有理数的加减混合运算注意事项
正文
一、有理数的加减混合运算概念
有理数的加减混合运算,是指在同一道题中,既有加法运算,又有减法运算,而且涉及到的数可能是整数、分数或者小数。
这种运算在学习中比较常见,也是初中数学中的基础知识。
二、有理数的加减混合运算实例
下面我们来看一些有理数的加减混合运算实例,以便更好地理解这种运算。
例 1:计算以下式子:3/2 + 5/3 - 2/3 + 1/2 - 1/4。
解:首先将所有分数转化为相同的分母,得到:(9+10-4+6-3)/12 = 18/12 = 3/2。
例 2:计算以下式子:4 - 2/3 + 1/2 - 1/4 + 3/5。
解:首先将所有分数转化为相同的分母,得到:4 - 10/15 + 15/30 + 6/20 + 27/30 = 120/30 - 20/30 + 15/30 + 9/30 + 27/30 = 181/30。
三、有理数的加减混合运算技巧和方法
1.先将所有分数转化为相同的分母,再进行加减运算。
2.可以通过通分、化简等方式简化计算过程。
3.注意运算顺序,遵循先乘除后加减的原则。
四、有理数的加减混合运算注意事项
1.运算过程中要注意符号,避免出现错误。
2.在计算过程中,可以适当使用括号来明确运算顺序。
3.对于复杂的运算,可以先简化式子,再进行计算。
初一数学有理数的四则运算规则
初一数学有理数的四则运算规则有理数是数学中的一类数,包括整数、分数和小数,并且可以表示为有理数的除以非零的有理数,简言之,有理数是可以表达成两个整数比的数。
在初一数学学习中,有理数的四则运算是一个基础知识点,它包含了加法、减法、乘法和除法四种运算,掌握了这些运算规则,可以帮助我们更好地理解和解决有理数的计算问题。
下面将详细介绍有理数的四则运算规则。
一、有理数的加法1. 同号数相加:当两个有理数的符号相同,将它们的绝对值相加,符号保持不变。
例如,(-2) + (-3) = -5。
2. 异号数相加:当两个有理数的符号不同,将它们的绝对值相减,结果的符号和绝对值较大的数的符号相同。
例如,(+5) + (-3) = 2。
二、有理数的减法有理数的减法可以转化为加法运算,即将减法问题转化为加法问题。
例如,a - b = a + (-b)。
根据加法规则,可以进行相应的计算。
三、有理数的乘法1. 同号数相乘:当两个有理数的符号相同时,将它们的绝对值相乘,结果的符号为正。
例如,(+2) × (+3) = 6。
2. 异号数相乘:当两个有理数的符号不同时,将它们的绝对值相乘,结果的符号为负。
例如,(-2) × (+3) = -6。
四、有理数的除法有理数的除法可以转化为乘法运算,即将除法问题转化为乘法问题。
例如,a ÷ b = a × (1/b)。
根据乘法规则,可以进行相应的计算。
需要注意的是,在有理数的除法中,除数不能为0,因为任何数除以0都没有意义。
综上所述,初一数学学习中有理数的四则运算规则包括加法、减法、乘法和除法。
掌握了这些运算规则,能够帮助我们处理有理数的计算问题,进一步提高数学运算的准确性和效率。
在实际应用中,还需要结合具体问题来运用四则运算规则,灵活解决数学问题。
初一数学有理数的四则运算
初一数学有理数的四则运算有理数是指可以用分数的形式表示出来的数,包括正整数、负整数、0和分数。
在初一数学中,学生首次接触到有理数的概念和四则运算。
有理数的四则运算包括加法、减法、乘法和除法。
本文将为大家介绍有关初一数学中有理数的四则运算的相关知识。
一、加法和减法有理数的加法可分为相同符号的加法和不同符号的加法。
相同符号的两个有理数相加,只需将它们的绝对值相加,并保持符号不变。
例如,5+3=8,-6+(-2)=-8。
不同符号的两个有理数相加,需要进行减法运算。
将绝对值较大的数减去绝对值较小的数,并取绝对值较大的数的符号作为结果的符号。
例如,6+(-3)=3,-4+5=1。
有理数的减法可以转化为加法来进行计算。
例如,7-3可以转化为7+(-3),然后按照加法的规则进行计算。
同样地,减法的规则也适用于不同符号的有理数。
例如,-4-(-2)可以转化为-4+2,然后进行加法运算。
二、乘法和除法有理数的乘法可根据符号的不同分为三种情况。
1. 两个正数相乘,结果仍为正数。
例如,2乘以3等于6。
2. 两个负数相乘,结果也为正数。
例如,-2乘以-3等于6。
3. 一个正数和一个负数相乘,结果为负数。
例如,2乘以-3等于-6。
有理数的除法也可根据符号的不同分为三种情况。
1. 正数除以正数,结果仍为正数。
例如,6除以2等于3。
2. 负数除以负数,结果也为正数。
例如,-6除以-2等于3。
3. 正数除以负数或负数除以正数,结果为负数。
例如,6除以-2等于-3。
需要注意的是,除数不能为0。
任何数除以0都是没有意义的。
三、运算顺序在有理数的四则运算中,我们需要遵循一定的运算顺序。
根据数学的运算律,我们先进行括号内的运算,然后进行乘法和除法运算,最后进行加法和减法运算。
例如,计算5+2×3,我们先进行乘法运算,得出的结果再与5相加。
即5+2×3=5+6=11。
同样地,计算(3+4)×2-5,首先进行括号内的运算得到7×2-5,然后依次进行乘法、减法运算,得到14-5=9。
七年级数学上学期期中考点专题03有理数的加减法含解析新人教版
专题03 有理数的加减法重点突破知识点一 有理数的加法(基础)有理数的加法法则:(先确定符号,再算绝对值) 1.同号两数相加,取相同的符号,并把绝对值相加;2.异号两数相加,绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;3.互为相反数的两个数相加得0;(如果两个数的和为0,那么这两个数互为相反数)4.一个数同0相加,仍得这个数。
有理数的加法运算律:1.两个数相加,交换加数的位置,和不变。
即a b b a +=+;2.三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
即()()a b c a b c ++=++。
知识点二 有理数的减法(基础) 有理数的减法法则:减去一个数等于加上这个数的相反数。
即()a b a b -=+-。
【注意减法运算2个要素发生变化】:减号变成加号;减数变成它的相反数。
有理数减法步骤: 1.将减号变为加号。
2.将减数变为它的相反数。
3.按照加法法则进行计算。
考查题型考查题型一 有理数加法运算典例1.(2018·广东初一期中)计算-(-1)+|-1|,其结果为( ) A .-2 B .2 C .0 D .-1【答案】B 【解析】试题提示:由题可得:原式=1+1=2,故选B.a b的值()变式1-1.(2019·呼伦贝尔市期末)有理数a、b在数轴上的位置如图所示,则A.大于0B.小于0C.小于a D.大于b【答案】A【提示】先根据数轴的特点判断出a,b的符号,再根据其与原点的距离判断出其绝对值的大小,然后根据有理数的加法法则得出结果.【详解】根据a,b两点在数轴上的位置可知,a<0,b>0,且|b|>|a|,所以a+b>0.故选A.【名师点拨】此题考查数轴,绝对值,有理数的加法法则.解题关键在于用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.变式1-2.(2019·庆阳市期中)若a=2,|b|=5,则a+b=( )A.-3 B.7 C.-7 D.-3或7【答案】D【提示】根据|b|=5,求出b=±5,再把a与b的值代入进行计算,即可得出答案.【详解】∵|b|=5,∴b=±5,∴a+b=2+5=7或a+b=2-5=-3;故选D.【名师点拨】此题考查了有理数的加法运算和绝对值的意义,解题的关键是根据绝对值的意义求出b的值.变式1-3.(2019·扬州市期中)若|m|=3,|n|=5,且m-n>0,则m+n的值是()A.-2 B.-8或8 C.-8或-2 D.8或-2【答案】C【详解】∵|m|=3,|n|=5,∴m=±3,n=±5,∵m-n>0,∴m=±3,n=-5,∴m+n=±3-5,∴m+n=-2或m+n=-8.故选C .变式1-4.(2018·上饶市期末)若m 是有理数,则m m +的值是( ) A .正数 B .负数C .0或正数D .0或负数【答案】C【提示】根据:如果m>0,则|m|=m; 如果m<0,则|m|=-m; 如果m=0,则|m|=0.【详解】如果m 是正数,则m m +是正数;如果m 是负数,则m m +是0;如果m 是0,则m m +是0. 故选C【名师点拨】本题考核知识点:有理数的绝对值.解题关键点:理解绝对值的意义. 考查题型二 有理数加法中的符号问题典例2.(2018·重庆市期末)将 6-(+3)+(-2) 改写成省略括号的和的形式是( ) A .6-3-2 B .-6-3-2C .6-3+2D .6+3-2【答案】A【提示】先把加减法统一成加法,再省略括号和加号.【详解】将6﹣(+3)+(﹣2)改写成省略括号的和的形式为6﹣3﹣2. 故选A .【名师点拨】本题考查了有理数的加减混合运算,将算式写成省略括号的形式必须统一成加法后,才能省略括号和加号.变式2-1.(2020·银川市期中)把(+3)﹣(+5)﹣(﹣1)+(﹣7)写成省略括号的和的形式是( ). A .﹣3﹣5+1﹣7 B .3﹣5﹣1﹣7 C .3﹣5+1﹣7 D .3+5+1﹣7 【答案】C【解析】(+3)﹣(+5)﹣(﹣1)+(﹣7)=(+3)+(-5)+(+1)+(﹣7)=3﹣5+1﹣7, 故选:C.变式2-2.(2020·邯郸市期末)若两个非零的有理数a,b 满足:|a|=-a,|b|=b,a +b <0,则在数轴上表示数a,b 的点正确的是( ) A .B .C .D .【答案】D【提示】根据|a|=-a 得出a 是负数,根据|b|=b 得出b 是正数,根据a+b <0得出a 的绝对值比b 大,在数轴上表示出来即可.【详解】解:∵a 、b 是两个非零的有理数满足:|a|=-a,|b|=b,a+b <0, ∴a <0,b >0, ∵a+b <0, ∴|a|>|b|, ∴在数轴上表示为:故选D.【名师点拨】本题考查数轴,绝对值,有理数的加法法则等知识点,解题关键是确定出a <0,b >0,|a|>|b|. 变式2-3.(2019·深圳市期中)如果a <0,b >0,a +b <0 ,那么下列关系式中正确的是( ) A .a b b a ->>-> B .a a b b >->>- C .a b b a >>->- D .b a b a >>->-【答案】A【提示】由于a <0,b >0,a+b <0,则|a|>b,于是有-a>b,-b>a,易得a,b,-a,-b 的大小关系. 【详解】∵a <0,b >0,a+b <0, ∴|a|>b, ∴-a>b,-b>a,∴a,b,-a,-b 的大小关系为:-a>b>-b>a, 故选A .【名师点拨】本题考查了有理数的加法法则,有理数的大小比较,异号两数的加法法则确定出|a|>b 是解题的关键. 考查题型三 有理数加法在实际生活中的应用典例3(2018·厦门市期末)下列温度是由-3℃上升5℃的是( ) A .2℃ B .-2℃ C .8℃ D .-8℃【答案】A【提示】物体温度升高时,用初始温度加上上升的温度就是上升之后的温度,即是所求 【详解】(-3℃)+5℃= 2℃ 故本题答案应为:A【名师点拨】此题考查了温度的有关计算,是一道基础题.熟练掌握其基础知识是解题的关键变式3-1.(2019·石家庄市期中)在学习“有理数的加法与减法运算”时,我们做过如下观察:“小亮操控遥控车模沿东西方向做定向行驶练习,规定初始位置为0,向东行驶为正,向西行驶为负.先向西行驶3m,在向东行驶lm,这时车模的位置表示什么数?”用算式表示以上过程和结果的是( ) A .(﹣3)﹣(+1)=﹣4 B .(﹣3)+(+1)=﹣2C.(+3)+(﹣1)=+2 D.(+3)+(+1)=+4【答案】B【详解】由题意可得:(﹣3)+(+1)=﹣2.故选B.变式3-2.(2019·石家庄市期中)一家快餐店一周中每天的盈亏情况如下(盈利为正):37元,-26元,-15元,27元,-7元,128元,98元,这家快餐店总的盈亏情况是()A.盈利了290元B.亏损了48元C.盈利了242元D.盈利了-242元【答案】C【提示】利用有理数的加法求出已知各数的和即可求出一周总的盈亏情况.【详解】∵37+(−26)+(−15)+27+(−7)+128+98=242(元),∴一周总的盈亏情况是盈利242元.故选择C.【名师点拨】本题考查正数和负数、有理数的加法,解题的关键是掌握正数和负数、有理数的加法.±kg,现随机选取10袋面粉进行质量变式3-3.(2020·沈阳市期末)面粉厂规定某种面粉每袋的标准质量为500.2检测,结果如下表所示:则不符合要求的有()A.1袋B.2袋C.3袋D.4袋【答案】A【提示】提示表格数据,找到符合标准的质量区间即可解题.±kg,即质量在49.8kg——50.2kg之间的都符合要求,【详解】解:∵每袋的标准质量为500.2根据统计表可知第5袋49.7kg不符合要求,故选A.【名师点拨】本题考查了有理数的实际应用,属于简单题,熟悉概念是解题关键.考查题型四有理数加法运算律典例4.(2019·忠县期中)计算1﹣3+5﹣7+9=(1+5+9)+(﹣3﹣7)是应用了()A.加法交换律 B.加法结合律C.分配律 D.加法交换律与结合律【答案】D【提示】根据加法交换律与结合律即可求解.【详解】计算1-3+5-7+9=(1+5+9)+(-3-7)是应用了加法交换律与结合律.故选:D.【名师点拨】考查了有理数的加减混合运算,方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.变式4-1.(2018·新蔡县期中)计算()+()+()+()等于()A.-1 B.1 C.0 D. 4【答案】A【提示】有理数的加减运算,适当运用加法交换律.【详解】解:故选:A.【名师点拨】本题考查有理数的加减运算,熟记有理数的加减运算法则,同时能够题目数字特点进行灵活计算.变式4-2.(2019淮南市期中)-1+2-3+4-5+6+…-2017+2018的值为( )A.1 B.-1 C.2018 D.1009【答案】D【提示】从左边开始,相邻的两项分成一组,组共分成1009组,每组的和是1,据此即可求解.【详解】原式=(−1+2)+(−3+4)+(−5+6)+…(−2015+2016)+(−2017+2018),=1+1+1+…+1=1×1009,=1009.故选D.【名师点拨】属于规律型:数字的变化类,考查有理数的加减混合运算,掌握运算法则是解题的关键.变式4-3.(2019·南阳市期中)下列交换加数的位置的变形中,正确的是A.1-4+5-4=1-4+4-5 B.13111311 34644436 -+--=+--C.1-2+3-4=2-1+4-3 D.4.5-1.7-2.5+1.8=4.5-2.5+1.8-1.7 【答案】D【详解】A. 1−4+5−4=1−4−4+5,故错误;B.13111311=-34644436-+--+--,故错误;C. 1-2+3-4=-2+1-4+3,故错误;D. 4.5−1.7−2.5+1.8=4.5−2.5+1.8−1.7,故正确. 故选D.考查题型五 有理数减法运算典例5.(2020·济南市期末)﹣3﹣(﹣2)的值是( ) A .﹣1 B .1 C .5 D .﹣5【答案】A【提示】利用有理数的减法的运算法则进行计算即可得出答案. 【详解】﹣3﹣(﹣2)=﹣3+2=﹣1,故选A .【名师点拨】本题主要考查了有理数的减法运算,正确掌握运算法则是解题关键. 变式5-1.(2019·郯城县期末)比﹣1小2的数是( ) A .3 B .1 C .﹣2 D .﹣3【答案】D【提示】根据题意可得算式,再计算即可. 【详解】-1-2=-3, 故选D .【名师点拨】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数. 变式5-2.(2019·重庆市期末)若 |a |= 3, |b | =1 ,且 a > b ,那么 a -b 的值是( ) A .4 B .2 C .-4 D .4或2【答案】D根据绝对值的性质可得a =±3,b =±1,再根据a >b ,可得①a =3,b =1②a =3,b =﹣1,然后计算出a -b 即可. 【详解】∵|a |=3,|b |=1,∴a =±3,b =±1. ∵a >b ,∴有两种情况: ①a =3,b =1,则:a -b =2; ②a =3,b =﹣1,则a -b =4. 故选D .【名师点拨】本题考查了绝对值的性质,以及有理数的减法,关键是掌握绝对值的性质,绝对值等于一个正数的数有两个.变式5-3.(2018·自贡市期中)若x <0,则()x x --等于( ) A .-x B .0 C .2x D .-2x【答案】D【提示】根据有理数的加法法则和绝对值的代数意义进行提示解答即可.【详解】()2x x x x x --=+=, ∵0x <, ∴20x <,∴原式=22x x =-. 故选D.【名师点拨】“由已知条件0x <得到20x <,进而根据绝对值的代数意义得到:22x x =-”是解答本题的关键. 考查题型六 有理数减法在实际生活中的应用典例6.(2019临河区期末)某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高( ) A .10℃ B .6℃ C .﹣6℃ D .﹣10℃ 【答案】A【解析】提示:用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解. 详解:2-(-8) =2+8 =10(℃). 故选:A .名师点拨:本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键. 变式6-1.(2019·长兴县月考)某地一周前四天每天的最高气温与最低气温如右表,则这四天中温差最大的是( )A .星期一B .星期二C .星期三D .星期四【答案】C【提示】利用每天的最高温度减去最低温度求得每一天的温差,比较即可解答. 【详解】星期一温差:10﹣3=7℃; 星期二温差:12﹣0=12℃; 星期三温差:11﹣(﹣2)=13℃; 星期四温差:9﹣(﹣3)=12℃; 综上,周三的温差最大. 故选C .【名师点拨】本题考查了有理数的减法的应用,根据题意正确列出算式,准确计算有理数减法是解题的关键. 变式6-2.(2018·吕梁市期末)我市冬季里某一天的最低气温是-10℃,最高气温是5℃,这一天的温差为 A .-5℃ B .5℃C .10℃D .15℃【答案】D【详解】解:5−(−10) =5+10=15℃. 故选D.变式6-3.(2020·寿阳县期末)甲、乙、丙三地海拔分别为20m ,15m -,10m -,那么最高的地方比最低的地方高( ) A .10m B .25mC .35mD .5m【答案】C【提示】根据正数与负数在实际生活中的应用、有理数的减法即可得.【详解】由正数与负数的意义得:最高的地方的海拔为20m ,最低的地方的海拔为15m - 则最高的地方比最低的地方高20(15)201535()m --=+= 故选:C .【名师点拨】本题考查了正数与负数在实际生活中的应用、有理数的减法,理解负数的意义是解题关键. 考查题型七 有理数加减混合运算典例7(2018·南阳市期中)计算:①﹣13+(﹣20)﹣(﹣33);②(+12)﹣(﹣13)+(﹣14)﹣(+16) 【答案】①0;②512. 【解析】①﹣13+(﹣20)﹣(﹣33) =﹣33+33 =0;②(+12)﹣(﹣13)+(﹣14)﹣(+16) =12+13﹣14﹣16 =643212121212+-- =512. 变式7-1.(2019·河池市期中)计算:(1) 6789-+- (2) 2(5)(8)5---+-- 【答案】(1)-2;(2)-10-+-【详解】解:(1)6789-+-=189-=79=-2---+--(2)2(5)(8)5=-+--2585=--385=--55=-10【名师点拨】此题考查的是有理数的加减法混合运算,掌握有理数的加、减法法则是解决此题的关键.变式7-2.(2019·枣庄市期中)请根据如图所示的对话解答下列问题.求:(1)a,b,c的值;(2)8-a+b-c的值.【答案】(1)a=-3,b=±7,c=-1或-15; (2)33或5.【详解】解:(1)∵a的相反数是3,b的绝对值是7,∴a=-3,b=±7;∵a=-3,b=±7,c和b的和是-8,∴当b=7时,c= -15,当b= -7时,c= -1,(2)当a=-3,b=7,c=-15时,8-a+b-c=8-(-3)+7-(-15)=33;当a=-3,b=-7,c=-1时,8-a+b-c=8-(-3)+(-7)-(-1)=5.故答案为(1)a=-3,b=±7;c=-1或-15;(2)33或5.【名师点拨】本题考查有理数的加减混合运算,掌握相反数和绝对值的概念是解题关键.。
有理数的加减混合运算_七年级数学教案
有理数的加减混合运算_七年级数学教案篇一:七年级数学上册有理数加减混合运算一、教学目的1、掌握有理数混合运算的法那么,并能纯熟的按有理数运算顺序进展有理数加、减、乘、除、乘方、的混合运算。
2、在运算过程中合理的使用简化运算,培养良好的运算才能。
3、通过玩“24点”游戏开拓思维,更好掌握有理数的混合运算。
二、重点、难点1、重点:纯熟进展有理数的混合运算。
2、难点:在运算中灵敏使用运算律同时能准确掌握符号征询题。
三、教学过程1、(幂),a是底数,n是指数,??叫做幂,他表示n个a相乘。
在前面几节课我们一共学习了5种运算,分别是那些运算呢?(学生答复:加法、减法、乘法、除法、乘方),留意乘方也是一种运算,我们学习了这五种运算所总结归纳出的法那么再有理数的范围内都是适用的。
下面我们来检测一下大家,本人在练习23+ 我们一起检验一下本人做的对不对。
首先看第一题:这一题是那种运算(学生答:加法)。
那么前面我们学习的有理数加法的法那么是?学生答:同号两数相加,取一样的符号,并把绝对值相加:异号两数相加,绝对值相等时和为0,绝对值不等时取绝对值较大的数的符号,并用较大的绝对值减去较2、讲授新知通过练习我们复习了前面学过的有理数的加法、减法、乘法、除法、乘方这五种运323那么,明白了如何分别进展这些法那么的运用,今天我们就来学习有理数的混合运算。
大家来看一下这个算式:考虑该如何处理这个征询题,3+2??×(-??)=?提示:在学习了乘方之后,我们说乘方是更高一级的运算在有乘方的算式中先算乘我们一起来处理这个征询题:首先我们先来推断一下这个式子包含了哪几种运算?(加法、乘方、乘法),??=4 那么这个式子我们可以把它变成。
3+4×(-??)=?如此的话同学们是不是就见过了呢?接下来应该算乘法最后再算加法。
例1、3+2×(?) 215解:原式=3+4×(?)=3+(?=154)511 5现在我们本人总结一下有理数加减混合运算的顺序:先算乘方,再算乘除,最后算加减,假设有括号先算括号的话,先算括里面的。
人教版 七年级(上)数学 第一章 有理数 有理数的加减 (含解析)
第 2 讲有理数的加减知识定位讲解用时:3分钟A、适用范围:人教版初一,基础一般;B、知识点概述:本讲义主要用于人教版初一新课,本节课我们要学习有理数的加法,有理数的减法;核心部分是有理数加减法的混合运算。
知识梳理讲解用时:20分钟有理数的加法1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.3.运算律:有理数加法运算律加法交换律文字语言两个数相加,交换加数的位置,和不变符号语言a+b=b+a加法结合律文字语言三个数相加,先把前两个数相加,或者先把后两个数相加,和不变符号语言(a+b)+c=a+(b+c)要点诠释:交换加数的位置时,不要忘记符号.课堂精讲精练【例题1】我国是最早认识负数,并进行相关运算的国家.在古代数学名著《九章算术》里,就记载了利用算筹实施“正负术”的方法,图1表示的是计算3+(﹣4)的过程.按照这种方法,图2表示的过程应是在计算()A.(﹣5)+(﹣2)B.(﹣5)+2 C.5+(﹣2)D.5+2【答案】C【解析】解:由图1知:白色表示正数,黑色表示负数,所以图2表示的过程应是在计算5+(﹣2),故选:C.讲解用时:3分钟解题思路:由图1可以看出白色表示正数,黑色表示负数,观察图2即可列式.教学建议:引导学生读懂题目信息是解题的关键.1.定义:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,减法是加法的逆运算.要点诠释:(1)任意两个数都可以进行减法运算.(2)几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值.2.法则:减去一个数,等于加这个数的相反数,即有:.要点诠释:将减法转化为加法时,注意同时进行的两变,一变是减法变加法;二变是把减数变为它的相反数”.()a b a b-=+-有理数的减法难度: 3 适应场景:当堂练习例题来源:无【练习1.1】在下列执行异号两数相加的步骤中,错误的是()①求两个有理数的绝对值;②比较两个有理数绝对值的大小;③将绝对值较大数的符号作为结果的符号;④将两个有理数绝对值的和作为结果的绝对值A.①B.②C.③D.④【答案】D【解析】解:执行异号两数相加的步骤:①求两个有理数的绝对值,正确;②比较两个有理数绝对值的大小,正确;③将绝对值较大数的符号作为结果的符号,正确;④将两个有理数绝对值的和作为结果的绝对值,错误.故选:D.讲解用时:2分钟解题思路:根据有理数加法法则:①同号相加,取相同符号,并把绝对值相加.②绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,进而判断即可.教学建议:强调有理数加减法的运算法则难度: 3 适应场景:当堂例题例题来源:无【例题2】如图,乐乐将﹣3,﹣2,﹣1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a、b、c分别标上其中的一个数,则a﹣b+c的值为()A.﹣1B.0C.1D.3【答案】C【解析】解:∵5+1﹣3=3,每行、每列、每条对角线上的三个数之和相等,∴a+5+0=33+1+b=3c﹣3+4=3,∴a=﹣2,b=﹣1,c=2,∴a﹣b+c=﹣2+1+2=1,故选:C.讲解用时:3分钟解题思路:根据三个数的和为依次列式计算即可求解.教学建议:根据表格,先求出三个数的和是解题的关键.难度: 3 适应场景:当堂例题例题来源:无【练习2.1】下列说法:①所有有理数都能用数轴上的点表示;②符号不同的两个数互为相反数;③有理数包括整数和分数;④两数相加,和一定大于任意一个加数.()A.3个B.2个C.1个D.0个【答案】B【解析】解:①所有有理数都能用数轴上的点表示,正确;②符号不同的两个数互为相反数,相加为零此时互为相反数,故此选项错误;③有理数包括整数和分数,正确;④两数相加,和一定大于任意一个加数,两负数相加则不同,故此选项错误,故选:B.讲解用时:2分钟解题思路:直接利用互为相反数以及有理数的定义和有理数加减运算法则分别判断得出答案.教学建议:此题主要考查了有理数的加法运算以及相反数的定义等知识,正确掌握运算法则是解题关键.难度: 3 适应场景:当堂练习例题来源:无【例题3】计算:(﹣3)+(+15.5)+(﹣6)+(﹣5)【答案】0【解析】解:原式=(﹣3﹣6)+(15.5﹣5)=﹣10+10=0.讲解用时:3分钟解题思路:原式结合后,相加即可求出值.教学建议:此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.难度: 3 适应场景:当堂练习例题来源:无【练习3.1】已知a为正数,b为负数,且|a|=4,|b|=6,求a+b的值.【答案】﹣2【解析】解:因为a为正数,|a|=4,所以a=4,因为b为负数,|b|=6,所以b=﹣6,所以a+b=4+(﹣6)=﹣2.讲解用时:3分钟解题思路:先依据绝对值的性质求得a、b的值,最后依据加法法则进行计算即可.教学建议:巩固有理数的加法、绝对值的性质,熟练掌握相关法则是解题的关键.难度: 3 适应场景:当堂例题例题来源:无【例题4】下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京的时间早的时数).现在的北京时间是上午8:00.(1)求现在纽约时间是多少?(2)斌斌现在想给远在巴黎的姑妈打电话,你认为合适吗?时差/时纽约﹣13巴黎﹣7东京+1芝加哥﹣14【答案】(1)现在纽约时间是晚上7点;(2)不合适.【解析】解:(1)现在纽约时间是晚上7点;(2)现在巴黎时间是凌晨1点,不合适.讲解用时:3分钟解题思路:(1)根据时差求出纽约时间即可;(2)计算出巴黎的时间,即可做出判断.教学建议:熟练掌握运算法则是解本题的关键.难度: 3 适应场景:当堂例题例题来源:无【练习4.1】在一个3×3的方格中填写了9个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.(1)在图1中空格处填上合适的数字,使它构成一个三阶幻方;(2)如图2的方格中填写了一些数和字母,当x+y的值为多少时,它能构成一个三阶幻方.【答案】(1)(2)x+y=13【解析】解:(1)2+3+4=9,9﹣6﹣4=﹣1,9﹣6﹣2=1,9﹣2﹣7=0,9﹣4﹣0=5,如图所示:(2)﹣3+1﹣4=﹣6,﹣6+1﹣(﹣3)=﹣2,﹣2+1+4=3,如图所示:x=3﹣4﹣(﹣6)=5,y=3﹣1﹣(﹣6)=8,x+y=5+8=13.讲解用时:4分钟解题思路:(1)根据三个数的和为2+3+4=9,依次列式计算即可求解;(2)先求出下面中间的数,进一步得到右上面的数,从而得到x、y的值,相加可求x+y的值.教学建议:根据表格,先求出三个数的和是解题的关键,也是本题的突破口.难度: 3 适应场景:当堂练习例题来源:无【例题5】列式计算:(1)已知甲、乙两数之和为﹣2020,其中甲数是﹣7,求乙数;(2)已知x是5的相反数,y比x小﹣7,求x与﹣y的差.【答案】(1)﹣2013;(2)﹣3【解析】解:(1)根据题意知乙数为﹣2020﹣(﹣7)=﹣2020+7=﹣2013;(2)根据题意知x=﹣5,y=x﹣(﹣7)=﹣5+7=2,则x﹣(﹣y)=﹣5﹣(﹣2)=﹣3.讲解用时:3分钟解题思路:(1)根据题意知乙数为﹣2020﹣(﹣7),计算可得;(2)由题意得x=﹣5,y=x﹣(﹣7)=﹣5+7=2,再代入x﹣(﹣y)计算可得.教学建议:本题主要考查有理数的加法,解题的关键是根据题意列出算式并熟练掌握有理数的加减运算法则.难度: 3 适应场景:当堂例题例题来源:无【练习5.1】已知有理数a,b,c在数轴上的位置如图所示,且|a|=1,|b|=2,|c|=4.求3b+2a ﹣c的值.【答案】8.【解析】解:∵a、c在原点的左侧,b在原点的右侧,∴b>0,c<0,a<0,∵|a|=1,|b|=2,|c|=4,∴a=﹣1,b=2,c=﹣4,∴3b+2a﹣c=6﹣2+4=8.讲解用时:3分钟解题思路:根据a 、b 、c 在数轴上的位置可知b >0,c <0,a <0,再根据|a|=1,|b|=2,|c|=4可求出a 、b 、c 的值,代入3b+2a ﹣c 进行计算即可. 教学建议:这题考查的是数轴的特点及绝对值的性质,属较简单题目. 难度: 3 适应场景:当堂练习 例题来源:无【例题6】某单位一周中收支情况如下:524.5+元,274.3-元,490+元,100-元,29.7+元,123.6-元,232.1-元.问该单位这一周,总共收入多少元?总共支出多少元?收支相抵后,余额是多少元?【答案】共收入1044.2元,共支出730元,收支相抵后,余额为314.2元.【解析】()524.5++()490+()+29.7=1044.2+解:共收入为:元,()274.3+-()100-()+123.6-()+232.1730-=- 共支出为:元()2.3147302.1044=-+ 收支相抵为:元.讲解用时:3分钟解题思路:利用收入与支出的概念和有理数的混合运算即可解决教学建议:引导学生理解有理数的加法的实际应用.难度: 3 适应场景:当堂例题 例题来源:无【练习6.1】(1)()()()()()1789614------+--;(2)21513263⎛⎫⎛⎫⎛⎫⎛⎫--+---- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; (3)()()1112 6.5 6.3625⎛⎫⎡⎤---+--- ⎪⎢⎥⎝⎭⎣⎦. 【答案】(1)8;(2)0;(3) 6.1-.【解析】()()()()()178961417896148------+--=-++-+=(1);215121151155503263332632666⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--+----=-+-+=--+=-+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2); ()111112 6.5 6.3612 6.412 6.4 6.12522⎛⎫⎡⎤⎛⎫⎛⎫=---+-=---=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭⎝⎭原式(3).讲解用时:4分钟 解题思路:利用有理数减法的运算法则即可解决,括号前面是负号时,去括号要注意变号.教学建议:注意跟学生强调变号问题难度: 3 适应场景:当堂练习 例题来源:无【例题7】 如果2113x ⎛⎫+-= ⎪⎝⎭,那么x 等于______. 【答案】322=x 或223x =-. 【解析】2113x ⎛⎫+-= ⎪⎝⎭解:因为,2211233x ⎛⎫=--= ⎪⎝⎭所以, 322=x 223x =-所以或.讲解用时:3分钟解题思路:利用绝对值的代数意义和有理数的加减法运算法则即可求出结果 教学建议:熟练掌握绝对值的代数意义是解本题的关键.难度: 3 适应场景:当堂例题 例题来源:无【练习7.1】若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2.(1)直接写出a+b ,cd ,m 的值;(2)求m+cd+的值.【答案】(1)a+b=0,cd=1,m=±2.(2)3或﹣1.【解析】解:(1)∵a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2, ∴a+b=0,cd=1,m=±2.(2)当m=2时,m+cd+=2+1+0=3; 当m=﹣2时,m+cd+=﹣2+1+0=﹣1. 讲解用时:4分钟解题思路:(1)根据互为相反数的和为0,互为倒数的积为1,绝对值的意义,即可解答;(2)分两种情况讨论,即可解答.教学建议:解决本题的关键是熟记倒数、相反数、绝对值的意义.难度: 3 适应场景:当堂练习 例题来源:无课后作业【作业1】如果规定运算()()23a b a b ⊗=---,求73124⎛⎫⊗- ⎪⎝⎭的值. 【答案】1253- 【解析】7373795=2331241246412⎡⎤⎛⎫⎛⎫⎛⎫⊗--⨯--⨯-=--=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 讲解用时:4分钟难度: 2 适应场景:练习题 例题来源:无【作业2】计算:123456789101112201720182019+--++--++--+++-.【答案】0.【解析】123456789101112201720182019+--++--++--+++-()()()()504123456789101112201720182019=+--++--++--+++-对括号 45042016=-⨯+20162016=-+0=.讲解用时:4分钟难度: 4 适应场景:练习题 例题来源:无【作业3】 计算:21150543236-+---. 【答案】31. 【解析】211521154543236322=-+--=-+--原式2111543223=-+-= 讲解用时:5分钟难度: 3 适应场景:练习题 例题来源:无。
专题1.5 有理数加减混合运算解题技巧和方法(知识梳理与考点分类讲解)-2024-2025学年七年级
专题1.5 有理数加减混合运算解题技巧和方法(知识梳理与考点分类讲解)纵观整个初中阶段,学生在重视数学思维的时候,对计算能力的培养往往不够,到了初三及中考时,往往在计算上正确率不高,或计算效率不高,这往往就是基础计算没有打牢,尤其是计算的方法和技巧不够,初一上学期,有多章计算题,对于很多在小学阶段计算薄弱的同学要特别注意,本篇主要介绍有理数加减混合运算中常见的技巧和方法,在计算过程中可以试着使用,会将一些稍复杂的计算简单化。
常见的有理数加减混合运算技巧与方法:【技巧1】相反数结合法互为相反数的两个数和为0,我们在计算时,可以将互为相反数的两个数先结合进行计算。
【技巧2】同号结合法在有理数的加减混合运算中,比小学多引入了负数的加减运算,有些同学在计算时会将减号与负号混淆,不知道如何计算,因此我们在计算时可以将同号相结合,最后再按照有理数的加减法则进行计算。
【技巧3】同分母结合法在计算时,我们可以将同分母的先进行计算,异分母需要通分,有时计算上会比较繁琐。
【技巧4】凑整法在进行计算时,我们经常会遇到小数、分数、百分数等相加减,我们除了要熟练掌握三者之间的关系外,在计算时,也可以利用凑整法将题目简便化。
【技巧5】拆分法有时遇到带分数时,我们可以将之拆分成整数与真分数的和进行计算,有些计算中也可以将某个数拆分成两个数之和(差)或乘积。
具体解题过程的的解题方法与技巧往往不是单一的方法与技巧,而是综合灵活运用方法与技巧进行解题,学生应当适当多练习巩固。
【技巧1】相反数结合法【例1】:计算:11 0.53 2.75542⎛⎫⎛⎫---+-+⎪ ⎪⎝⎭⎝⎭【答案】0【分析】先将带分数化为小数,然后去掉括号,利用加法结合律和交换律进行计算即可求出答案.解:原式0.5 3.25 2.75 5.5=-++-()()0.5 5.5 3.25 2.75=--++ 66=-+0=【点拨】本题考查有理数的加减运算,解题的关键是熟练运用有理数的加减运算法则,本题属于基础题型.【举一反三】【变式1】计算: ()31282869+-++;【分析】把互为相反数的两数相加;解:()31282869+-++, ()31282869=⎡⎤⎣-⎦+++,31069=++,100=;【点拨】本题考查了有理数的加减混合运算的简便运算,合理地运用有理数的加法运算律使计算简化是解题的关键.【变式2】计算:1241123523⎛⎫⎛⎫⎛⎫+---+-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【答案】15-【分析】利用有理数加法的交换律和结合律计算,即可求解. 解:1241123523⎛⎫⎛⎫⎛⎫+---+-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1121422335⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+-+---- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦()4015=+-+15=-.【点拨】本题主要考查了有理数简便算法,熟练掌握有理数加法的交换律和结合律是解题的关键.【技巧2】同号结合法【例2】用简便方法运算(1)1.4+(-0.2)+0.6+(-1.8); (2)(1)()21112 2.75524⎛⎫----+-+ ⎪⎝⎭【分析】(1)利用加法的运算律解通过同号结合得到互为相反数解答即可;(2)先化简绝对值、将分数化成小数,再利用有理数的加减运算法则和运算律利用同号结合法进行计算即可得;解:(1)1.4+(-0.2)+0.6+(-1.8) (2) ()21112 2.75524⎛⎫----+-+ ⎪⎝⎭=(1.4+0.6)+(-0.2-1.8) 0.4 1.5 2.25 2.75=---- =2+(-2) ()()0.4 1.5 2.25 2.75=-+-+ =0; 1.95=--【点拨】本题考查了化简绝对值、有理数的加减混合运算,熟练掌握有理数的加减运算法则和运算律并通过同号结合和相反数和为0是解题关键.【举一反三】【变式1】用简便方法运算.(1)()()()()0.5 3.2 2.8 6.5---++-+; (2) 13211()()()25323-++-++-.【答案】(1)1-; (2)25-【分析】按照有理数的加减法运算法则和运算律进行计算.解:(1)原式0.5 3.2 2.8 6.5=-++- (2)11213()()22335=-+-++()()0.5 6.5 3.2 2.8=--++ 3015=-+()76=-+ 25=-1=-.【点拨】本题考查了有理数的加减混合运算,解题的关键是掌握有理数的加减法运算法则和运算律.【技巧3】同分母结合法【例3】计算:15533.2542244⎡⎤⎛⎫⎛⎫----+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.【答案】 2.25-【分析】先算括号里,再算括号外,转化为同分母相加减即可解答.解:15533.2542244⎡⎤⎛⎫⎛⎫----+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦15533.2542244⎡⎤⎛⎫=--++-+ ⎪⎢⎥⎝⎭⎣⎦15533.2542244⎡⎤⎛⎫⎛⎫=--++-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦155193.252244⎡⎤⎛⎫⎛⎫=--++-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦73.2522⎛⎫=-+ ⎪⎝⎭3.25 5.5=- 2.25=-.【点拨】本题考查有理数加减混合运算.解题的关键是熟记有理数加减法则,混合运算顺序,运算定律,准确熟练地进行计算.【举一反三】【变式1】计算127533648787⎛⎫⎛⎫+-++- ⎪ ⎪⎝⎭⎝⎭时运算律用得最合理的是( ) A .127533648787⎡⎤⎡⎤⎛⎫⎛⎫+-++- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦B .271536347887⎡⎤⎡⎤⎛⎫⎛⎫-+++- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦C .271536347887⎡⎤⎡⎤⎛⎫⎛⎫-+++- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦D .172536348877⎡⎤⎡⎤⎛⎫⎛⎫++-+- ⎪ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦【答案】D【分析】根据运算律在简便运算中运用方法,先计算同分母分数,再算加法即可得出结论. 解:计算127533648787⎛⎫⎛⎫+-++- ⎪ ⎪⎝⎭⎝⎭时运算律用得最合理的是172536348877⎡⎤⎡⎤⎛⎫⎛⎫++-+- ⎪ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦;故选:D .【点拨】此题考查了有理数的加法的简便运算,掌握有理数简便运算中运算律的运用方法是解题的关键.【变式2】嘉琪同学在计算21114233223-++时,运算过程正确且比较简便的是( )A .2111(43)(2)3322+-+B .2111(42)(3)3223-++C .2111(43)(2)3322+--D .2111(43)(2)3322---【答案】C【分析】原式利用加法交换律和结合律将分母相同的结合即可.解:嘉琪同学在计算21114233223-++时,运算过程正确且比较简便的是2111(43)(2)3322+--.故选:C .【点拨】此题考查了有理数的加减混合运算,熟练掌握加法交换律与加法结合律是解本题的关键.【技巧4】凑整法【例4】用简便方法运算:3222654115353⎛⎫⎛⎫⎛⎫⎛⎫++-+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.【答案】8解析:可把相加得到整数的数相加. 解:3222654115353⎛⎫⎛⎫⎛⎫⎛⎫++-+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,3222645115533⎛⎫⎛⎫=++-++ ⎪ ⎪⎝⎭⎝⎭,()113=+-,8=.【点拨】本题考查了有理数的加减混合运算的简便运算,合理地运用有理数的加法运算律使计算简化是解题的关键.【举一反三】【变式1】()()()2.48 4.337.52 4.33-++-+-=______.【答案】-10【分析】用加法交换律和加法结合律进行计算即可. 解:原式=()()()[ 2.487.52][4.33 4.33]-+-++-=10-. 故答案为:10-.【点拨】本题主要考查了有理数的混合运算,熟练掌握有理数的运算顺序和运算法则,以及加法交换律和结合律在有理数范围同样适用是解题的关键.【变式2】计算:31120.2572 1.5 2.75424⎛⎫⎛⎫-++-+-++ ⎪ ⎪⎝⎭⎝⎭. 【答案】8-【分析】可利用加法交换律和结合律以及分数与小数的互化进行有理数的加减运算即可求解.解:原式 2.750.257.5 2.25 1.5 2.75=-+--++()()()2.75 2.750.25 2.257.5 1.5=-++-+-+026=--8=-.【点拨】本题考查有理数的加减混合运算,解答的关键是熟练掌握运算法则和运算顺序,会利用加法运算律进行简便运算.【技巧5】拆分法【例5】阅读:对于5231591736342⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,可以按如下方法计算:原式()()()5231591736342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦()()()5231591736342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++-⎡⎤ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦1101144⎛⎫=+-=- ⎪⎝⎭.上面这种方法叫拆项法.仿照上面的方法,请你计算:75120222021140442486⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【答案】1312-【分析】利用拆项法计算即可.解:75120222021140442486⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()75120222021140442486⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-+-+-+-+-+ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦()()()75120222021140442486⎡⎤⎛⎫⎛⎫⎛⎫=-+-+-++-+-+-⎡⎤ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦261302412⎛⎫=+-=- ⎪⎝⎭.【点拨】本题主要考查有理数加减法的计算,熟练掌握有理数加减法的运算法则是解题的关键.【举一反三】【变式1】.计算:5212018201740351632⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】3-【分析】先将带分数拆分成两项,再利用有理数的加减运算法则和运算律进行计算即可得.解:原式5212018201740351632⎛⎫⎛⎫⎛⎫=--+--++-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭5212018201740351632=----+--()5214035201820171632⎛⎫=----++ ⎪⎝⎭5431666⎛⎫=--++ ⎪⎝⎭12=--3=-.【点拨】本题考查了化简绝对值、有理数的加减混合运算,熟练掌握有理数的加减运算法则和运算律是解题关键.【变式2】计算:522120082009401816332⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】113-【分析】先分组,将222009401833⎛⎫-+ ⎪⎝⎭放在一起计算得到整数,再将结果相加即可;解:522120082009401816332⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭225120094018200813362⎛⎫⎛⎫⎛⎫=-++-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭5120092008162⎛⎫⎛⎫=+-+- ⎪ ⎪⎝⎭⎝⎭11162=- 131=-;【点拨】此题考查有理数的加减混合运算,掌握正确的计算顺序是解题的关键.。
数学初一有理数的加减混合运算题
数学初一有理数的加减混合运算题
初一数学中有理数的加减混合运算题是基础题型,对于学生来说掌握好这一部分知识至关重要。
有理数的加减混合运算指的是对两个或多个有理数进行加法和减法运算的组合。
以下将介绍解题步骤和方法,以及典型例题解析。
一、解题步骤和方法
1.确定运算顺序:按照先乘除后加减的顺序进行运算。
2.符号规则:同号相加,异号相减。
3.结合律和交换律:加法满足结合律和交换律,减法满足交换律。
二、典型例题解析
1.例题1:3 + 2 × 4 - 1 = ?
解答:根据运算顺序,先进行乘法运算,2 × 4 = 8,然后加法运算,3 + 8 = 11,最后减法运算,11 - 1 = 10。
答案为10。
2.例题2:5 - 3 + 2 × 2 = ?
解答:根据运算顺序,先进行乘法运算,2 × 2 = 4,然后加法运算,5 - 3 = 2,最后加法运算,2 + 4 = 6。
答案为6。
三、练习和建议
1.熟练掌握有理数的加减混合运算规则。
2.多做练习题,提高运算速度和准确性。
3.遇到难题时,要学会分析题目,逐步解决。
总之,初一数学有理数的加减混合运算题是基础题型,掌握好这一部分知识对于学生日后的学习有很大的帮助。
有理数的加减混合运算课件PPT
2.6 有理数的加减混合运算
2.6 有理数的加减混合运算
(第2课时)
导入新知
2.6 有理数的加减混合运算
某校举办秋季运动会,初一(一)班和初一(二)班进
行拔河比赛,比赛规定标志物红绸向某班方向移动2 m或2 m
以上,该班就获胜.红绸先向二班移动0.2 m,后又向一班移动
3
7
5
(2)(- 12)- - +(- 8)- .
10
6
探究新知
2.6 有理数的加减混合运算
1
2
(1)解法1: − -15+ −
3
3
= −
1
2
+(-15)+ −
3
3
(统一为加法)
= −
1
2
+ − +(-15)
3
3
(加法交换律)
=(-1)+(-15)
=-16.
(加法结合律)
6 3 32
4
=1+(- )
3
1
=- .
3
课堂小结
算有
中理
的数
简加
便减
运混
算合
运
2.6 有理数的加减混合运算
运用加法法则、加法交换律、加法结合律进行简便运算
运算的步骤
在有理数的加减混合运算中通常将
和为0的两个数、分母相同的两个
数,和为整数的两个数运用加法交
换律、加法结合律进行组合,简便
运算.
课后作业
0.5 m,相持几秒后,红绸向二班移动0.8 m,随后又向一班移动
1.4 m,在一片欢呼声中,红绸再向一班移动1.3 m,裁判员一声
初一数学有理数公式大全
初一数学有理数公式大全1.有理数的定义:有理数是可以用两个整数的比来表示的数,包括整数和分数,用Q表示。
2.有理数四则运算:(1)加法:a + b = c(2)减法:a - b = c(3)乘法:a × b = c(4)除法:a ÷ b = c (b ≠ 0)3.有理数绝对值:对于一个有理数a,它的绝对值为|a|,如果a≥0,则|a|=a;如果a<0,则|a|=-a。
4.有理数相反数:对于一个有理数a,它的相反数为-a,即-a使得a + (-a) = 0。
5.有理数的乘方:对于有理数a,a的n次方记为aⁿ,其中n为正整数。
(1)a⁰ = 1 (当a≠0时)(2)a¹ = a(3)aⁿ⁺ᵐ= aⁿ × aᵐ(4)(aⁿ)ᵐ= aⁿᵐ6.有理数的倒数:对于一个非零的有理数a,它的倒数记作1/a或a⁻¹,满足a × (1/a) = 1。
7.有理数乘法的交换律和结合律:(1)交换律:a × b = b × a(2)结合律:(a × b) × c = a × (b × c)8.有理数加法和乘法的分配律:(1)加法的分配律:a × (b + c) = a × b + a × c(2)减法的分配律:a × (b - c) = a × b - a × c9.有理数的乘方性质:(1)任何非零有理数的零次方都等于1:a⁰ = 1 (a≠0)(2)非零有理数取负次方的倒数等于该数的正次方:(a⁻ⁿ) = 1/(aⁿ)(a≠0)(3)任何有理数的一次方等于其本身:a¹ = a(4)任何非零有理数的n次方都等于该非零有理数连乘n次:aⁿ =a × a × a ×…× a (连乘n次)10.有理数的比较:(1)若a>b,则a-b>0(2)若a<b,则a-b<0(3)若a=b,则a-b=011.有理数的约分:对一个分数a/b,如果a和b有公因数,则可以约去公因数,保留最简形式。
初一数学有理数加减混合运算讲解
初一数学有理数加减混合运算讲解初一数学中,有理数加减混合运算是一个非常基础且重要的概念。
本文将从基础概念、加法运算、减法运算、混合运算四个方面进行讲解。
一、基础概念有理数是指可以表示为两个整数的比值的数,包括正有理数、负有理数和零。
在数轴上,正有理数位于原点的右侧,负有理数位于原点的左侧,零位于原点上。
二、加法运算有理数的加法运算可以分为同号相加和异号相加两种情况。
1. 同号相加:同号相加时,只需将两个数的绝对值相加,然后保留原来的符号即可。
例如,2+3=5,-4+(-2)=-6。
2. 异号相加:异号相加时,先计算绝对值相减后的结果的绝对值,然后再根据两个数中绝对值较大的数的符号来确定结果的符号。
例如,3+(-5)=-2,-4+2=-2。
三、减法运算有理数的减法运算可以转化为加法运算。
即,a-b=a+(-b)。
四、混合运算混合运算是指加法和减法同时进行的运算。
在混合运算中,根据运算次序,先进行括号内的运算,再进行括号外的运算。
例如,计算表达式:3+2-(-4)-5+1。
由于有括号,先计算括号内的运算:-(-4)=4。
然后,按照从左到右的顺序,计算没有括号的加法和减法运算:3+2+4-5+1=5。
总结:有理数的加减混合运算要注意以下几点:1. 同号相加时,直接相加并保留符号;2. 异号相加时,先计算绝对值相减,再根据绝对值较大的数的符号确定结果的符号;3. 减法运算可以转化为加法运算;4. 在混合运算中,根据运算次序,先进行括号内的运算,再进行括号外的运算。
通过以上的讲解,相信大家对初一数学中的有理数加减混合运算有了更加清晰的理解。
希望大家能够熟练掌握这一基础概念,并能够灵活运用于实际问题中。
加油!。
初一数学有理数之加法减法
1、两个有理数相加有以下几种情况:①两个正数相加;②两个负数相加;③异号两数相加;④正数或负数或零与零相加。
2、有理数的加法法则(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数。
3、有理数加法的运算律(1)加法交换律:a+b=b+a;(2)加法结合律:(a+b)+c=a+(b+c)。
4、有理数减法的意义有理数的减法的意义与小学学过的减法的意义相同。
已知两个加数的和与其中一个加数,求另一个加数的运算,叫做减法。
减法是加法的逆运算。
5、有理数的减法法则有理数的减法法则:减去一个数等于加上这个数的相反数.例1、计算(1);(2);(3);(4).[分析]根据有理数的加法法则,先定符号,再算绝对值.解:(1)原式=;(2)原式;(3)原式;(4)原式.例2、计算:(1);(2);(3).[分析]适当运用运算律.解:(1)原式(2)原式(3)原式(1); (2); (3).[分析]把减法转化为加法.解:(1)原式;(2)原式;(3)原式.例4、计算:;解:原式例1、例1 计算:(1)(-2)+3+1+(-3)+2+(-4) (2)16+(-25)+24+(-35) (3))()(528435532413-++-+ (4)(-7)+6+(-3)+10+(-6)【变式练习】1、用适当的方法计算:(1)23+(-17)+6+(-22) (2))()(6131211-++-+(3)1.125+)()()(6.081523-+-+- (4)(-2.48)+(+4.33)+(-7.52)+(-4.33)例2、计算:(-20)+(+3)-(-5)-(+7)【变式练习】 1、计算:(1)1-4+3-0.5 (2)-2.4+3.5-4.6+3.5(3)(-7)-(+5)+(-4)-(-10) (4)43-27+(-61)-(-32)-1●思维误区一:运算中忘记确定符号.例1、计算 )21()31(-++错解:616263)63()62()21()31(=-=-++=-++. 剖析:解题时,只注意到异号两数相加,绝对值的算法,而忽略了符号的确定. 正解:61)6263()63()62()21()31(-=--=-++=-++.●思维误区二:混淆两种加法法则.例2、计算 (+0.12)+(-0.21) 错解:(+0.12)+(-0.21)= -(0.12+0.21)= -0.33.剖析:解题时,将“同号两数相加法则”与“异号两数相加法则” 相混淆,异号两数相加时,绝对值应相减,而不应相加.正解:(+0.12)+(-0.21)= -(0.21-0.12)= -0.09. ●思维误区三:分不清运算符号和性质符号.例3、计算31)121()61(--++ 错解:原式125)124()121()124()121()122()31()121()61(=+++=++-++=++-++= 剖析:解题时,在把已知算式中的减法变成加法时,误认为原来是减去31-等于加上31+.事实上,原来减去的就是31+,只不过省略了“+”号而已,搞不清两种符号的区别,导致计算出错. 正解:31)121()61(--++)124()121()122()31()121()61(-+-++=-+-++=41123)121124()124()121(-=-=--=-++=例4、把)874()813()215()414(-++----写成省略加号和的形式,并计算出结果. 错解:)874()813()215()414(-++----43178439874813215414-=--=----= 剖析:上述解题错误原因是随意省略运算符号,事实上,只有当把所有加减法统一成加法后,加法中“+”号才可以省略.正解:)874()813()215()414(-++----)874()813()215()414(-+-+++-=4364118)414215()874813(874813215414-=+-=-+--=--+-=1、有理数的加法法则(1)同号两数相加,取相同的符号,并把绝对值相加; (2)绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数。
初一数学运算有理数加减法
初一数学运算有理数加减法在初一数学的学习中,有理数的加减法是非常重要的基础知识。
它不仅是后续数学学习的基石,也在我们的日常生活中有着广泛的应用。
首先,我们来了解一下什么是有理数。
有理数包括整数和分数,整数可以看作是分母为 1 的分数。
例如,5 可以写成 5/1。
而分数则是由分子和分母组成,比如 3/4 。
有理数还可以分为正有理数、负有理数和零。
有理数的加减法,其实就是在数的直线上进行移动。
正数在数轴的右边,负数在数轴的左边,而零就在数轴的中间。
加法运算规则有以下几种情况:当两个有理数都是正数时,例如 3 + 5 ,它们的和一定是正数,结果就是 8 。
这就好比你在数轴上从 3 这个点向右移动 5 个单位,最终到达 8 这个点。
当两个有理数都是负数时,比如-3 +(-5) ,它们的和一定是负数,结果是-8 。
可以想象成从-3 这个点向左再移动 5 个单位,就到了-8 这个点。
当一个有理数是正数,一个是负数时,就要看它们的绝对值大小。
如果正数的绝对值大于负数的绝对值,例如 5 +(-3) ,那就用正数的绝对值减去负数的绝对值,结果是 2 。
就好像从 5 这个点向左移动 3 个单位,到达 2 这个点。
如果负数的绝对值大于正数的绝对值,比如 3 +(-5) ,则用负数的绝对值减去正数的绝对值,结果是-2 。
这就像是从 3 这个点向左移动 5 个单位,到达-2 这个点。
还有一种特殊情况,当一个有理数加上0 时,结果还是这个有理数。
比如 7 + 0 = 7 。
接下来,我们看看减法运算。
有理数的减法可以转化为加法来进行计算,这是因为减去一个数等于加上这个数的相反数。
例如,8 5 可以转化为 8 +(-5) ,结果是 3 。
再比如 3 (-2) ,就等于 3 + 2 ,结果是 5 。
为了更好地掌握有理数的加减法,我们需要多做一些练习。
比如:计算-7 + 4 ,因为负数的绝对值 7 大于正数的绝对值 4 ,所以结果是-3 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数有理数的加法法则学习目标:1、探索有理数加法法则,理解有理数的加法法则;2、能运用有理数加法法则,正确进行有理数加法运算;3、经历探索有理数加法法则的过程,体验数学来源于实践并为实践服务的思想,同时培养学生探究性学习的能力.学习难点:师生共同合作探索有理数加法法则的过程及和的符号的确定.课堂活动:一、有理数加法的探索1.汽车在公路上行驶,规定向东为正,向西为负,据下列情况,分别列算式,并回答:汽车两次运动后方向怎样?离出发点多远?(1)向东行驶5千米后,又向东行驶2千米,(2)向西行驶5千米后,又向西行驶2千米,(3)向东行驶5千米后,又向西行驶2千米,(4)向西行驶5千米后,又向东行驶2千米,(5)向东行驶5千米后,又向西行驶5千米,(6)向西行驶5千米后,静止不动,2. 足球队甲、乙两队比赛,主场甲队4:1胜乙队,赢了3球,客场甲队1:3负乙队,输了2球,甲队两场比赛累计净胜球1个,你能把这个结果用算式表示出来吗?议一议:比赛中胜负难料,两场比赛的结果还可能哪些情况呢?动动手填表:你还能举出一些应用有理数加法的实际例子吗?请同学们积极思考.二、有理数加法的归纳探索:两个有理数相加,和的符号及绝对值怎样确定?你能找到有理数相加的一般方法吗?说一说:两个有理数相加有多少种不同的情形?议一议:在各种情形下,如何进行有理数的加法运算?归纳:有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数与0相加,仍得这个数.三、实践应用问题1.计算(1)(+8)+(+5) (2)(-8)+(-5) (3)(+8)+(-5)(4)(-8)+(+5) (5)(-8)+(+8) (6)(+8)+0;问题2.某公司三年的盈利情况如下表所示,规定盈利为“+”(单位:万元)(1) 该公司前两年盈利了多少万元?(2)该公司三年共盈利多少万元? 问题3.判断(1)两个有理数相加,和一定比加数大. ( )(2)绝对值相等的两个数的和为0.( )(3)若两个有理数的和为负数,则这两个数中至少有一个是负数.( ) 四、课堂反馈:1.一个正数与一个负数的和是( )A 、正数B 、负数C 、零D 、以上三种情况都有可能2.两个有理数的和( ) A 、一定大于其中的一个加数 B 、一定小于其中的一个加数 C 、大小由两个加数符号决定 D 、大小由两个加数的符号及绝对值而决定3.计算 (1)(+10)+(-4) (2)(-15)+(-32) (3)(-9)+ 0 (4)43+(-34) (5)(-10.5)+(+1.3) (6)(-21)+31知识巩固一、选择题1.若两数的和为负数,则这两个数一定( )A .两数同负B .两数一正一负C .两数中一个为0D .以上情况都有可能2.两个有理数相加,若它们的和小于每一个加数,则这两个数( ) A.都是正数 B.都是负数 C.互为相反数 D.符号不同3.如果两个有理数的和是正数,那么这两个数( )A.都是正数B.都是负数C.都是非负数D.至少有一个正数 4.使等式x x +=+66成立的有理数x 是 ( )A.任意一个整数B.任意一个非负数C.任意一个非正数D.任意一个有理数5.对于任意的两个有理数,下列结论中成立的是 ( )A.若,0=+b a 则b a -=B.若,0>+b a 则0,0>>b aC.若,0<+b a 则0<<b aD.若,0<+b a 则0<a6.下列说法正确的是 ( )A.两数之和大于每一个加数B.两数之和一定大于两数绝对值的和C.两数之和一定小于两数绝对值的和D.两数之和一定不大于两数绝对值的和 二、判断1.若某数比-5大3,则这个数的绝对值为3.( )2.若a>0,b<0,则a+b>0.( )3.若a+b<0,则a ,b 两数可能有一个正数.( )4.若x+y=0,则︱x ︱=︱y ︱.( )5.有理数中所有的奇数之和大于0.( )三、填空 1.(+5)+(+7)=_______; (-3)+(-8)=________; (+3)+(-8)=________; (-3)+(-15)=________; 0+(-5)=________; (-7)+(+7)=________.2.一个数为-5,另一个数比它的相反数大4,这两数的和为________. 3.(-5)+______=-8; ______+(+4)=-9. _______+(+2)=+11; ______+(+2)=-11; 5. 如果,5,2-=-=b a 则=+b a ,=+b a 四、计算(1)(+21)+(-31) (2)(-3.125)+(+318) (3)(-13)+(+12) (4)(-313)+0.3 (5)(-22 914)+0 (6)│-7│+│-9715│五、土星表面夜间的平均气温为-150℃,白天的平均气温比夜间高27℃,那么白天的平均气温是多少?六、一位同学在一条由东向西的跑道上,先向东走了20米,又向西走了30米,能否确定他现在位于原来的哪个方向,与原来位置相距多少米?七、潜水员原来在水下15米处,后来上浮了8米,又下潜了20米,这时他在什么位置?要求用加法解答。
八、 已知.5,2==b a(1)求b a + (2)若又有b a >,求b a +.有理数加法的运算律及运用学习目标:1.进一步掌握有理数加法运算法则,理解加法运算律在有理数范围内推广的合理性;2.能运用加法运算律简化加法运算;3.经历有理数加法运算律的探索,体会观察、实践、归纳等活动在数学中的作用. 学习难点:运用有理数加法法则简化运算. 课堂活动一、有理数加法运算律的探索 1.试一试:(1)任意选择两个有理数(至少有一个是负数),分别填入下列□和○内,并比较两个运算的结果:□+○ 和 ○+□(2)任意选择三个有理数(至少有一个是负数),分别填入下列□、○和◇内,并比较两个运算的结果:(□+○)+◇ 和 □+(○+◇) 2.你能发现什么?请说说自己的猜想.3.概括:通过实例说明加法的交换律和结合律对于有理数同样适用.加法的交换律:文字概括: 字母表示 加法的结合律:文字概括: 字母表示 二、有理数加法运算律的应用 问题1.计算(1) (-23)+(+58)+(-17) (2)(-2.8)+(-3.6)+(-1.5)+3.6(3))75()65()72(61++-+-+ (4)(+4.56)+(-3.45)+(+4.44)+(+2.45)问题2:计算 (1) (-11)+8+(-14) (2)32)41()32()43(+-+-+-(3) 0.35+(-0.6)+0.25+(-5.4) (4))61(31)21()2(-++-+-三、拓展延伸问题3.10筐苹果,以每筐30千克为准,超过的千克数记作正数,不足的千克数记作负数,记录如下:2,-4,2.5,3,-0.5,1.5,3,-1,0,-2.5. 问(1)10筐苹果共超过(不足)多少千克? (2)10筐苹果共重多少千克?课堂反馈:1.从某点O 出发,在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬过的各段路程依次为(单位:厘米):+5, -3,+10, -8, -6, +12, -10. 试问:小虫最后能否回到出发点O?2.10名学生的某一次数学考试成绩如下(单位:分)87,91,94,88,93,91,89,87,92,86,你能迅速算出总成绩之和吗?知识巩固 一、填空1. 存折中有存款240元,取出125元,又存入100元,存折中还有 元.2.绝对值小于5的所有负整数的和为3.已知a 是最小的正整数,b 是a 的相反数,c 的绝对值为3,则a +b +c =4.某天股票A 的开盘价是18元,上午11:30跌1.5元,下午收盘时又涨0.3元,则股票A 这天的收盘价是 元.5.如果a<0,则︱a ︱+a= 二、计算(1) )4(1)3()1(3-++-+-+ (2)(-9)+4+(-5)+8;(3)(-36.35)+(-7.25)+26.35+(+714) (4))2(9465195-+++(5))127(25)125()23(-++-+- (6)(-13)+(+25)+(+35)+(-123)三、解答题1. 一天早晨的气温是-7ºC,中午上升了11ºC,半夜又降了9ºC,则半夜的气温是多少?2.仓库内原存某种原料4500千克,一周内存入和领出情况如下(存入为正,单位:千克): 1500,-300,-670,400,-1700,-200,-250.问:第7天末仓库内还存有这种原料多少千克?3. 某种袋装奶粉标明净含量为400g ,检查其中8袋,记录如下表:请问这8袋被检奶粉的总净含量是多少?4.一只电子跳骚从数轴上的原点出发,第一次向右跳1个单位,第二次向左跳2个单位,第三次向右跳3个单位,第四次向左跳4个单位,…,按这样的规律跳100次,跳骚到原点的距离是多少?5. 某出租车沿公路左右行驶,向左为正,向右为负,某天从A 地出发后到收工回家所走的路线如下:(单位:千米)8,9,4,7,2,10,18,3,7,5+-++--+-++ ⑴ 问收工时离出发点A 多少千米?⑵ 若该出租车每千米耗油0.3升,问从A 地出发到收工共耗油多少升?6.已知c b a ,7,2-==的相反数为-5,试求a +)(b -+(-c )7.计算:|1-12|+|12-13|+|13-14|+…+|19-110|课后反思:学习小结:课后作业:有理数的减法法则学习目标:1.理解有理数减法法则, 能熟练进行减法运算.2.会将减法转化为加法,进行加减混合运算,体会化归思想. 学习难点有理数的减法法则的理解,将有理数减法运算转化为加法运算. 自主学习: 一、情境引入:1.昨天,国际频道的天气预报报道,南半球某一城市的最高气温是5℃,最低气温是-3℃,你能求出这天的日温差吗?(所谓日温差就是这一天的最高气温与最低气温的差)2.珠穆朗玛峰和吐鲁番盆地的海拔高度分别是8848米和-155米,问珠穆朗玛峰比吐鲁番盆地高多少? 探索新知:(一) 有理数的减法法则的探索1.我们不妨看一个简单的问题: (-8)-(-3)=? 也就是求一个数“?”,使 (?)+(-3)=-8 根据有理数加法运算,有 (-5)+(-3)= -8所以 (-8)-(-3)= -5 ①2.这样做减法太繁了,让我们再想一想有其他方法吗? 试一试做一个填空:(-8)+( )= -5容易得到 (-8)+(+3 )= -5 ② 思考: 比较 ①、②两式,我们有什么发现吗? 3.验证:(1)如果某天A 地气温是3℃,B 地气温是-5℃,A 地比B 地气温高多少?3-(-5)=3+ ;(2)如果某天A 地气温是-3℃,B 地气温是-5℃,A 地比B 地气温高多少?(-3)-(-5)=(-3)+ ;(2)如果某天A 地气温是-3℃,B 地气温是5℃,A 地比B 地气温高多少?(-3)-5=(-3)+ ;(二)有理数的减法法则归纳1.说一说:两个有理数减法有多少种不同的情形?2.议一议:在各种情形下,如何进行有理数的减法计算? 3.试一试:你能归纳出有理数的减法法则吗? 由此可推出如下有理数减法法则:减去一个数,等于加上这个数的相反数。