《数值分析与算法》第一讲数值计算的背景与概况

合集下载

数值分析第一讲

数值分析第一讲
* er
例如,x = 10 ± 1, y = 1000 ± 5.
ε* x
|x|
= 10%,
ε* y
| y|
= 0.5%.
x = π = 3.1415926, 取三位 取五位
* x3 * x5
= 3.14,
* ε3
≤ 0.002,
* = 3.1416, ε 5 ≤ 0.000008.
定义2 定义2 若近似值x *的误差限是某一位数字的半个单位, 该位 到x *的第一位非零数字共有n位,就说x * 有n位有效数字. 即 x* = ±10 m × ( a1 + a2 × 10 1 + + an ×10 ( n 1) ) (2.1)
* εr
反之, x *的相对误差限为 若 至少具有n位有效数字.
=
1
2( a1 + 1)
× 10 ( n1),则x *
例3要使 20的相对误差限小于 0.1%,要取几位有效数字?
三、数值运算的误差估计
* * 四则运算,设x1 , x2为准确值, x1 , x2为近似值,则误差限:
* * * * ε ( x1 ± x2 ) = ε ( x1 ) + ε ( x2 ), * * * * * * ε ( x1 x2 ) ≈| x1 | ε ( x2 )+ | x2 | ε ( x1 ), * * * * | x1 | ε ( x2 ) + | x2 | ε ( x1 ) * * ε ( x1 / x2 ) ≈ . * 2 | x2 | 一元函数f ( x),x为准确值, x * 为近似值,由Taylor公式
二、误差、有效数字 误差、 定义1 绝对误差, 误差: 定义1 绝对误差,简称误差: 误差

数值分析第一讲

数值分析第一讲

实际上由于x*不知道,用上式无法确定εr ,常用x代x*作分 母,此时:
r

| x|
13
结束
2 量级,当 ε 较小时,可以忽略 可见此时产生的影响是 r r
不计,以后我们就用

|x|
表示相对误差限.
例 5 在刚才测量的例子中,若测得跑道长为 100±0.1m ,课桌长为120±1cm ,则 1 0.1 ( 2) (1) 0.83% r 0.1% r 120 100 显然后者比前者相对误差大. 1.2.3 有效数字 定义 1.3 如果近似值 x 的误差限 ε 是它某一数位的半个 单位,我们就说 x 准确到该位,从这一位起直到前面第一个 非零数字为止的所有数字称x的有效数字. 如: x=±0.a1a2an×10m ,其中 a1 , a2 , , an 是 0 ~ 9 之 中的整数,且a1≠0,如e=|x-x*|≤ε=0.5×10m-l,1≤ l≤n,则称 x有 l 位有效数字. 14 结束
可见此法收敛速度很快,只算三次得到8位精确数字. 迭代法应用时要考虑是否收敛、收敛条件及收敛速度等 问题,今后课程将进一步讨论. 9 结束
§1.2
1.2.1
差.
误 差
误差的来源
在运用数学方法解决实际问题的过程中,每一步都可能带来误
1 、模型误差 在建立数学模型时,往往要忽视很多次要因素,把 模型“简单化”,”理想化”,这时模型就与真实背景有了差距,即带 入了误差. 2、测量误差 数学模型中的已知参数,多数是通过测量得到.而测 量过程受工具、方法、观察者的主观因素、不可预料的随机干扰等影响 必然带入误差. 3、截断误差 数学模型常难于直接求解,往往要近似替代,简化为 易于求解的问题,这种简化带入误差称为方法误差或截断误差. 4、舍入误差 计算机只能处理有限数位的小数运算,初始参数或中 间结果都必须进行四舍五入运算,这必然产生舍入误差.

《数值分析》完整版讲义

《数值分析》完整版讲义

2.1.3 多项式插值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.4 基函数插值法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.1 为什么要插值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.2 什么是插值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.1.2 数值分析的研究内容 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.3 学习建议 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
i
· ii ·
目录
2.2 Lagrange 插值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.1 Lagrange 基函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.2 Lagrange 插值多项式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.3 插值余项 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.4 Lagrange 基函数性质 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

数值分析-第一章ppt课件

数值分析-第一章ppt课件

数及其图形作出判断. 整理版课件
6
由分部积分法可得:
Ine101xndex
n=1,2,4,6, 8,10,15
e 1 x n ex|1 0 e 1 0 1 nn 1 x ex dx
1 nn 1 I (n 1 ,2 , ).
如果取 I0 = 1–e–1 = 0.63212056 (八位有效数字).
x1,2b
b24ac 2a
直接进行计算则得: x1=109, x2=0. 其中的x2=0明பைடு நூலகம்失真, 这也是由于舍入误差造成的.
整理版课件
8
§1 误差的来源
实际 问题
建立数 学模型
确定计 算方法
编程 上机
由抽象简 化产生的 模型误差 及参数的 观测误差
由计算方 法本身产 生的截断 误差或称 方法误差
er(x* )e(x x* )x xx*
同样, 由于精确值 x 经常是未知的, 所以, 需要另
外的近似表达形式. 我们注意如下公式的推导,

|
e ( x*) x*
|
较小时,

e(x* )e(x* )e(x*x )* (x)
x x*
xx*
[x*[ee((xx**))2]x] *1[e(exx(**x*)]2)
整理版课件
18
乘法相关的误差公式: 设 f (x1, x2)= x1 x2 . e ( x 1 x 2 ) x 2 e ( x 1 ) x 1 e ( x 2 ) e r ( x 1 x 2 ) e r ( x 1 ) e r ( x 2 ) |e ( x 1 x 2 ) | |e ( x 1 ) | |e ( x 2 ) | |e r ( x 1 x 2 ) | |e r ( x 1 ) | |e r ( x 2 ) |

数值分析讲义

数值分析讲义

由于除数很小,将导致商很大,有可能出现“溢出”现 象另外. ,设x* ,y* 的近似值分别为x,y,则z=x÷y是z*=x*÷y*
的近似值.此时,z的绝对误差满足估计式
e(z) z* z (x* x) y x( y y* ) y e(x) x e( y)
yy*
y2
可见,若除数太小,则可能导致商的绝对误差很大。
n k, k 1,...2,1
类似地可得
Ik
I
* k
(1) nk
k!( n!
I
n
I
* n
)
,
k n, n 1,...,1,0
可见,近似误差Ik-I*k是可控制的,算法是数值稳定的。
例如,由于
e 1 10
01 x9e1dx
I9
01 x9dx
1 10
取近似值 I9
1 (e1 1 ) 0.0684 2 10 10
§3 绝对误差、相对误差和有效数字
设x是精确值x*的一个近似值,记 e=x*-x
称e为近似值x的绝对误差,简称误差。如果满足 |e|≤
则称为近似值x的绝对误差限,简称误差限。 精确值x* 、近似值x和误差限之间满足: x-≤x*≤x+
通常记为 x*=x±
绝对误差有时并不能很好地反映近似程度的好坏,如
随着计算机的飞速发展,数值分析方法已深入到计算 物理、计算力学、计算化学、计算生物学、计算经济学等 各个领域。本课仅限介绍最常用的数学模型的最基本的数 值分析方法。
§2 误差的来源和分类
误 1.差模是型描误述差数值数计学算模之型中通近常似是值由的实精际确问程题度抽,象在得数到值的, 计一般算带中有十误分差重,要这,种误误差差按称来为源模可型分误为差模。型误差、观测误差、 截断误2.差观和测舍误入差误差数四学种模。型中包含的一些物理参数通常是 通过观测和实验得到的,难免带有误差,这种误差称为观 测误差。

第一章 数值分析(计算方法)课程介绍

第一章 数值分析(计算方法)课程介绍
则有方程 设人龟起初相距 S ,两者的速度分别为 V 和 v ,
Vt vt S
易得人追上龟所花的时间是
(1)
S t* V v
School of Math. & Phys.
16
North China Elec. P.U.
Numerical Analysis
2014-4-11
J. G. Liu
Numerical Analysis
2014-4-11
J. G. Liu



刘敬刚

主讲:
School of Math. & Phys.
1
North China Elec. P.U.
Numerical Analysis
2014-4-11
J. G. Liu
引例 考虑如下线性方程组 a11 x1 a1n xn b1 a x a x b nn n n n1 1 或者: Ax b
J. G. Liu
参考书目:
1 谷根代等,数值分析与应用,科学出版社,2011 2 钟尔杰.数值分析.高等教育出版社,2004. 3 颜庆津.数值分析.修订版.北京航空航天大学出版 社,2000.
4 李庆扬. 数值分析.清华大学出版社,2001.
5 白峰杉.数值计算引论.高等教育出版社,2004.
6 王能超.计算方法.北京: 高等教育出版社, 2005.
(若是更高阶的
方程组呢?)
若行列式用按行(列)展开的方法计算 , 用克莱姆法则求解(1)需做乘除法的次数: (n 1)(n 1)n! 当方程组阶数较高时,计算量很大,因此克莱姆法则通常仅有 理论上的价值,计算线性方程组的解还要考虑:

数值分析与算法

数值分析与算法

数值分析与算法数值分析与算法是数学领域中的一个重要分支,它涉及到计算机科学、物理学、化学、统计学、工程学等多个学科。

其基本概念是利用离散化的方法将连续的问题处理为离散的问题,然后运用有效的算法对其进行求解。

数值分析包括数值逼近、数值微积分、数值代数等多个方面,它们都在不同的领域中有广泛的应用。

其中,数值逼近是将连续函数的近似值计算为有限数值的方法,多项式逼近是其中的一种常用方法。

数值微积分则利用数值方法来解决各种微积分问题,包括函数积分、微分方程方程求解等。

而数值代数则涉及到线性方程组的数值解法,矩阵求逆等问题。

算法是数值分析的重要组成部分,它们是用来解决各种数值问题的计算流程。

常见的算法包括二分法、拉格朗日插值、高斯-塞德尔迭代等。

二分法主要用于数值函数求根问题,拉格朗日插值则是将一系列数据点拟合为多项式函数的方法,高斯-塞德尔迭代则是求解线性方程组中最广泛的迭代算法之一。

数值分析和算法都是计算科学中的核心课程,其在实际世界中有广泛的应用。

例如,物理学家借助微积分、数值逼近和计算机模拟,在研究自然现象时可以获得更准确的结果。

在工程学中,基于数值分析与算法,可以优化设计流程,减少试验成本和时间。

在密文学习和人工智能等领域,也需要借助它们快速处理海量数据和进行模型训练和测试。

在数值分析和算法中,最为重要的是正确性和效率。

正确性是指算法的计算结果和实际值越接近越好,而效率是指算法所需的时间和空间资源越少越好。

在实际使用时,需要根据具体问题选择合适的算法,平衡正确性和效率的要求。

总之,数值分析和算法在科学计算、工业设计、数据分析等许多领域中都发挥着重要的作用。

掌握数值分析与算法的基本理论和技巧对于从事相关领域的研究和工作非常重要,也可以帮助我们更好地理解现实世界中的各种问题,并找到更有效的解决方法。

除了上述提到的数值逼近、数值微积分、数值代数等基本概念和算法,数值分析和算法还有许多其他的分支和应用。

这里将介绍一些比较热门的话题。

绪 论(1)

绪 论(1)

第一章 绪 论§1.数值分析与算法一、 什么是数值分析数值分析是计算数学的一个主要部分。

它不仅要研究各种数学问题数值解法,同时也要分析所用的数值解法在理论上的合理性,如解法所产生的误差能否满足精度要求;解法是否稳定、是否收敛及收敛的速度等。

例如为了计算∑=+991k )1k (k 1,可以用直接累加的解法,也可以对其分析后,采用∑=+991k )1k (k 1=1-1001=0.99。

尽管直接累加在理论上是可行的,但费时且有误差,后一解法既快又准确。

在实际工程中的数学问题比上面提到的数学问题要复杂得多,往往要借助于计算机这一工具进行运算。

由于计算机实质上只会做加减乘除等基本运算,研究怎样通过计算机所能执行的基本运算,求得数学问题的有效数值解是数值分析的最终任务;而数学问题的数值解的得到,必须有严格的数学理论作基础。

本课程将介绍一些常用的算法及算法所涉及的数学理论。

所谓算法是指:由基本运算及运算顺序的规定所构成的完整的解题步骤。

二.算法中应注意的问题求解一个问题的算法可以有多种,一个好的算法应该注意的是(1)方法的收敛性。

即由算法所求值从理论上讲应该是可无限地接近准确值,或者说误差可以无限接近0。

所谓误差是指准确值x 与近似值*x 的差,即*e =x -*x 例:计算sinx 在x=7π的值,由于sinx=x -++-+++1n 2n3x )!1n 2(1)1(!3x故设计算法如下:⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫⎝⎛π+-+=π=+-1n 2n1n n 07)!1n 2()1(S S 7S 由高等数学知识知:如用Sn 近似7sin π,其误差∣Sn-7sin π∣=07)!3n 2(17)!3n 2(13n 23n 2→⎪⎭⎫⎝⎛π+<-⎪⎭⎫⎝⎛π+++ 。

从而这是一个收敛的算法(2)方法的稳定性。

算法收敛是重要的,但理论上收敛的算法不一定在实际计算中得到理想的计算结果,这是因为在计算过程中不可避免地有舍入误差。

数值分析原理课件第一章

数值分析原理课件第一章

第一章 绪 论本章以误差为主线,介绍了计算方法课程的特点,并概略描述了与算法相关的基本概念,如收敛性、稳定性,其次给出了误差的度量方法以及误差的传播规律,最后,结合数值实验指出了算法设计时应注意的问题.§1.1 引 言计算方法以科学与工程等领域所建立的数学模型为求解对象,目的是在有限的时间段内利用有限的计算工具计算出模型的有效解答。

由于科学与工程问题的多样性和复杂性,所建立的数学模型也是各种各样的、复杂的. 复杂性表现在如下几个方面:求解系统的规模很大,多种因素之间的非线性耦合,海量的数据处理等等,这样就使得在其它课程中学到的分析求解方法因计算量庞大而不能得到计算结果,且更多的复杂数学模型没有分析求解方法. 这门课程则是针对从各种各样的数学模型中抽象出或转化出的典型问题,介绍有效的串行求解算法,它们包括(1)非线性方程的近似求解方法;(2)线性代数方程组的求解方法;(3)函数的插值近似和数据的拟合近似;(4)积分和微分的近似计算方法;(5)常微分方程初值问题的数值解法;(6)优化问题的近似解法;等等从如上内容可以看出,计算方法的显著特点之一是“近似”. 之所以要进行近似计算,这与我们使用的工具、追求的目标、以及参与计算的数据来源等因素有关.计算机只能处理有限数据,只能区分、存储有限信息,而实数包含有无穷多个数据,这样,当把原始数据、中间数据、以及最终计算结果用机器数表示时就不可避免的引入了误差,称之为舍入误差.我们需要在有限的时间段内得到运算结果,就需要将无穷的计算过程截断,从而产生截断误差. 如的计算是无穷过程,当用作为的 +++=!21!111e !1!21!111n e n ++++= e 近似时,则需要进行有限过程的计算,但产生了截断误差.e e n - 当用计算机计算时,因为舍入误差的存在,我们也只能得到的近似值,也就是n e n e *e 说最终用近似,该近似值既包含有舍入误差,也包含有截断误差.*e e 当参与计算的原始数据是从仪器中观测得来时,也不可避免得有观测误差.由于这些误差的大量存在,我们得到的只能是近似结果,进而对这些结果的“可靠性”进行分析就是必须的,它成为计算方法的第二个显著特点. 可靠性分析包括原问题的适定性和算法的收敛性、稳定性.所谓适定性问题是指解存在、惟一,且解对原始数据具有连续依赖性的问题. 对于非适定问题的求解,通常需要作特殊的预处理,然后才能做数值计算. 在这里,如无特殊说明,都是对适定的问题进行求解.对于给定的算法,若有限步内得不到精确解,则需研究其收敛性. 收敛性是研究当允许计算时间越来越长时,是否能够得到越来越可靠的结果,也就是研究截断误差是否能够趋于零.对于给定的算法,稳定性分析是指随着计算过程的逐步向前推进,研究观测误差、舍入对于同一类模型问题的求解算法可能不止一种,常希望从中选出高效可靠的求解算法. 如我国南宋时期著名的数学家秦九韶就提出求n 次多项式值0111a x a x a x a n n nn ++++-- 的如下快速算法;n a s =; k n a t -=t sx s +=),,2,1(n k =它通过n 次乘法和n 次加法就计算出了任意n 次多项式的值. 再如幂函数可以通过如下64x 快速算法计算出其值;x s =;循环6次s s s ⋅=如上算法仅用了6次乘法运算,就得到运算结果.算法最终需要在计算机上运行相应程序,才能得到结果,这样就要关注算法的时间复杂度(计算机运行程序所需时间的度量)、空间复杂度(程序、数据对存储空间需求的度量)和逻辑复杂度(关联程序的开发周期、可维护性以及可扩展性). 事实上,每一种算法都有自己的局限性和优点,仅仅理论分析是很不够的,大量的实际计算也非常重要,结合理论分析以及相当的数值算例结果才有可能选择出适合自己关心问题的有效求解算法. 也正因如此,只有理论分析结合实际计算才能真正把握准算法.§1.2 误差的度量与传播一、误差的度量误差的度量方式有绝对误差、相对误差和有效数字.定义1.1 用作为量的近似,则称为近似值的绝对误差.*x x )(:**x e x x =-*x 由于量x 的真值通常未知,所以绝对误差不能依据定义求得,但根据测量工具或计算情况,可以估计出绝对误差绝对值的一个较小上界,即有ε (1.1)ε≤-=x x x e **)(称正数为近似值的绝对误差限,简称误差. 这样得到不等式ε*x εε+≤≤-**x x x 工程中常用ε±=*x x 表示近似值的精度或真值x 所在的范围.*x 误差是有量纲的,所以仅误差数值的大小不足以刻划近似的准确程度. 如量 (1.2)m m cm s μ50001230000005.023.15.0123±=±=±=为此,我们需要引入相对误差定义1.2 用作为量的近似,称为近似值的相对误差. 当0*≠x x )(:**x e xxx r =-*x 是x 的较好近似时,也可以用如下公式计算相对误差*x (1.3)***)(xx x x e r -= 显然,相对误差是一个无量纲量,它不随使用单位变化. 如式(1.2)中的量s 的近似,无论使用何种单位,它的相对误差都是同一个值.同样地,因为量x 的真值未知,我们需要引入近似值的相对误差限,它是相*x )(*x r ε对误差绝对值的较小上界. 结合式(1.1)和(1.3),相对误差限可通过绝对误差限除以近似*x 值的绝对值得到,即(1.4)***)()(xx x r εε=为给出近似数的一种表示法,使之既能表示其大小,又能体现其精确程度,需引入有效数字以及有效数的概念.定义1.3 设量的近似值有如下标准形式x *x p n ma a a a x 21*.010⨯±= (1.5)()pm p n m n m m a a a a ----⨯++⨯++⨯+⨯±101010102211 =其中且,m 为近似值的量级. 如果使不等式}9,,1,0{}{1 ⊂=pi i a 01≠a (1.6)n m x x -⨯≤-1021*成立的最大整数为n ,则称近似值具有n 位有效数字,它们分别是、、… 和 . *x 1a 2a n a 特别地,如果有,即最后一位数字也是有效数字,则称是有效数.p n =*x 从定义可以看出,近似数是有效数的充分必要条件是末位数字所在位置的单位一半是绝对误差限. 利用该定义也可以证明,对真值进行“四舍五入”得到的是有效数. 对于有效数,有效数字的位数等于从第一位非零数字开始算起,该近似数具有的位数. 注意,不能给有效数的末位之后随意添加零,否则就改变了它的精度.例1.1 设量,其近似值,,. 试回答这三个近π=x 141.3*1=x 142.3*2=x 722*3=x 似值分别有几位有效数字,它们是有效数吗?解 这三个近似值的量级,因为有1=m 312*110211021005.000059.0--⨯=⨯=≤=- x x 413*2102110210005.00004.0--⨯=⨯=≤=- x x571428571428.3*3=x 312*310211021005.0001.0--⨯=⨯=≤=- x x 所以和都有3位有效数字,但不是有效数. 具有4位有效数字,是有效数.*1x *3x *2x 二、误差的传播这里仅介绍初值误差传播,即假设自变量带有误差,函数值的计算不引入新的误差. 对于函数有近似值,利用在点处),,,(21n x x x f y =),,,(**2*1*n x x x f y =),,,(**2*1n x x x 的泰勒公式(Taylor Formula),可以得到 )(),,,()(*1**2*1**i i ni n i x x x x xf y y y e -≈-=∑=(1.7))(),,,(*1**2*1i ni n i x e x x xf ∑== 其中,是的近似值,是的绝对误差. 式(1.7)表明函ii x f f ∂∂=:*i x i x )(*i x e *i x ),,2,1(n i =数值的绝对误差近似等于自变量绝对误差的线性组合,组合系数为相应的偏导数值. 从式(1.7)也可以推得如下函数值的相对误差传播近似计算公式 (1.8))(),,,()(***1**2*1*i r i ni ni r x e yx x x x f y e ∑=≈对于一元函数,从式(1.7)和(1.8)可得到如下初值误差传播近似计算公式)(x f y = (1.9))()()(***x e x f y e '≈ (1.10))()()(*****x e yx x f y e r r '≈式(1.9)表明,当导数值的绝对值很大时,即使自变量的绝对误差比较小,函数值的绝对误差也可能很大.例1.2 试建立函数的绝对误差(限)、相对误差n n x x x x x x f y +++== 2121),,,(的近似传播公式,以及时的相对误差限传播公式.{}ni i x 1*0=> 解 由公式(1.7)和(1.8)可分别推得和的绝对误差、相对误差传播公式如下(1.11)∑∑==≈ni i ini nix e x e x x xf y e 1**1**2*1*)()(),,,()(= (1.12)∑∑==≈ni i r i i r i ni ni r x e yx x e y x x x x f y e 1******1**2*1*)()(),,,()(= 进而有∑∑∑===≤≤≈ni i n i ini ix x e xe y e 1*1*1**)()()()(ε于是有和的绝对误差限近似传播公式 ∑=≈ni ixy 1**)()(εε当时,由式(1.3)推得相对误差限的近似传播公式{}ni i x 1*=>)(max )(max )(max )()()(*11***11***11****1**i r ni ni i ir n i ni i i r n i ni i r i ni ir x yx x yx x x y x yxy εεεεεε≤≤=≤≤=≤≤====≤=≈∑∑∑∑ 例1.3使用足够长且最小刻度为1mm 的尺子,量得某桌面长的近似值3.1304*=a mm ,宽的近似值mm (数据的最后一位均为估计值). 试求桌子面积近似值的绝8.704*=b 对误差限和相对误差限.解 长和宽的近似值的最后一位都是估计位,尺子的最小刻度是毫米,故有误差限 mm ,mm 5.0)(*=a ε5.0)(*=b ε面积,由式(1.7)得到近似值的绝对误差近似为ab S =***b a S = )()()(*****b e a a e b S e +≈进而有绝对误差限 mm 255.10045.03.13045.08.704)()()(*****=⨯+⨯=+≈b a a b S εεε相对误差限 %11.00011.08.7043.130455.1004)()(***=≈⨯=≈S S S r εε§1.3 数值实验与算法性能比较本节通过几个简单算例说明解决同一个问题可以有不同的算法,但算法的性能并不完全相同,他们各自有自己的适用范围,并进而指出算法设计时应该注意的事项. 算例1.1 表达式,在计算过程中保留7位有效数字,研究对不同)1(1111+=+-x x x x 的x ,两种计算公式的计算精度的差异.说明1:Matlab 软件采用IEEE 规定的双精度浮点系统,即64位浮点系统,其中尾数占52位,阶码占10位,尾数以及阶码的符号各占1位. 机器数的相对误差限(机器精度)eps=2-52≈2.220446×10-16,能够表示的数的绝对值在区间(2.2250739×10-308,1.797693×10308)内,该区间内的数能够近似表达,但有舍入误差,能够保留至少15位有效数字. 其原理可参阅参考文献[2, 4].分析算法1: 和算法2: 的误差时,精确解用双精111)(1+-=x x x y )1(1)(2+=x x x y 度的计算结果代替. 我们选取点集中的点作为x ,比较两种方法误差的差异.301}{=i i π 从图1.1可以看出,当x 不是很大时,两种算法的精度相当,但当x 很大时算法2的精度明显高于算法1. 这是因为,当x 很大时,和是相近数,用算法1进行计算时出x 111+x 现相近数相减,相同的有效数字相减后变成零,于是有效数字位数急剧减少,自然相对误差增大. 这一事实也可以从误差传播公式(1.12)分析出. 鉴于此,算法设计时,应该避免相近数相减.在图1.2中我们给出了当x 接近时,两种算法的精度比较,其中变量x 依次取为1-. 从图中可以看出两种方法的相对误差基本上都为,因而二者的精度相当.{}3011=--i iπ710-图1.1 算例1.1中两种算法的相对误差图()+∞→x图1.2 算例1.1中两种算法的精度比较)1(-→x 算例1.2 试用不同位数的浮点数系统求解如下线性方程组⎩⎨⎧=+=+2321200001.02121x x x x 说明2:浮点数系统中的加减法在运算时,首先按较大的阶对齐,其次对尾数实施相应的加减法运算,最后规范化存入计算机.算法1 首先用第一个方程乘以适当的系数加至第二个方程,使得第二个方程的的系1x 数为零,这时可解出;其次将带入第一个方程,进而求得(在第三章中称该方法为高2x 2x 1x 斯消元法). 当用4位和7位尾数的浮点运算实现该算法,分别记之为算法1a 和算法1b . 算法 2 首先交换两个方程的位置,其次按算法1计算未知数 (第三章中称其为选主元的高斯消元法). 当用4位和7位尾数的浮点运算实现该算法,分别记之为算法2a 和算法2b .方程组的精确解为, ,用不同的算法计算出的...25000187.01=x ...49999874.02=x 结果见表1.1.表1.1 对算例1.2用不同算法的计算结果比较算例1.2*1x )(*1x r ε*2x )(*2x r ε算法1a 0.00000.10×1010.50000.25×10-7算法2a 0.25000.75×10-70.50000.25×10-7算法1b 0.26000000.40×10-10.49999870.10×10-6算法2b0.25000200.50×10-80.50000000.25×10-7对于算例1.2,表中的数据表明,当用4位尾数计算时,算法1给出错误的结果,算法2则给出解很好的近似. 这是因为在实现算法1时,需要给第一个方程乘以加00001.0/2-至第二个方程,从而削去第二个方程中的系数,但在计算的系数时需做如下运算1x 2x(1.13)661610000003.0104.0103.0104.03200001.02⨯⨯⨯⨯=+⨯+=-+--对上式用4位尾数进行计算,其结果为. 因为舍入误差,给相对较大的数加以6104.0⨯-相对较小的数时,出现大数“吃掉”小数的现象. 计算右端项时,需做如下运算(1.14)661610000002.0102.0102.0102.02100001.02⨯⨯⨯⨯=+⨯+=-+--同样出现了大数吃小数现象,其结果为. 这样,得到的变形方程组6102.0⨯-⎩⎨⎧⨯-=⨯-⨯=⨯+⨯62612114102.0104.0101.0102.0101.0x x x 中没有原方程组中第二个方程的信息,因而其解远偏离于原方程组的解. 该算法中之所以出现较大数的原因是因为运算,因而算法设计中尽可能避免用绝对值较大的数00001.0/2-除以绝对值较小的数. 其实当分子的量级远远大于分母的量级时,除法运算还会导致溢出,计算机终止运行.虽从单纯的一步计算来看,大数吃掉小数,只是精度有所损失,但多次的大数吃小数,累计起来可能带来巨大的误差,甚至导致错误. 例如在算法1a 中出现了两次大数吃小数现象,带来严重的后果. 因而尽可能避免大数吃小数的出现在算法设计中也是非常必要的. 当用较多的尾数位数进行计算,舍入误差减小,算法1和2的结果都有所改善,算法1的改进幅度更大些.算例1.3 计算积分有递推公式,已知⎰+=1055dx x x I n ),2,1(511 =-=-n I nI n n . 采用IEEE 双精度浮点数,分别用如下两种算法计算的近似值.56ln 0=I 30I算法1 取的近似值为,按递推公式计算0I 6793950.18232155*0=I *1*51--=n n I nI *30I 算法2 因为,取的近似值为)139(5156)139(611039103939+⨯=<<=+⨯⎰⎰dx x I dx x 39I ,按递推公式计算3333330.004583332001240121*39≈⎪⎭⎫ ⎝⎛+=I ⎪⎭⎫ ⎝⎛-=-**1151n n I n I *30I 算法1和算法2 的计算结果见表1.2. 误差绝对值的对数图见图1.3.表1.2 算例1.3的计算结果算法1算法2n *nI n n I I -*n *nI nn I I -*18.8392e-002 1.9429e-01639 4.5833e-0033.9959e-0042 5.8039e-0029.8532e-016384.2115e-0037.9919e-0053 4.3139e-002 4.9197e-01537 4.4209e-003 1.5984e-0054 3.4306e-002 2.4605e-01436 4.5212e-003 3.1967e-0065 2.8468e-002 1.2304e-01335 4.6513e-003 6.3935e-0076 2.4325e-002 6.1520e-01334 4.7840e-003 1.2787e-007………33 4.9255e-003 2.5574e-00825 1.1740e+001 1.1734e+00132 5.0755e-003 5.1148e-00926-5.8664e+001 5.8670e+00131 5.2349e-003 1.0230e-00927 2.9336e+002 2.9335e+002 305.4046e-003 2.0459e-01028-1.4667e+003 1.4668e+003 297.3338e+0037.3338e+003 30-3.6669e+004 3.6669e+004图1.3 算例1.3用不同算法计算结果的误差绝对值的对数图从表1.2中的计算结果可以看出,算法1随着计算过程的推进,绝对误差几乎不断地以5的倍数增长,即有0*02*221*1*555I I I I I I I I n n n n n n n -≈≈-≈-≈----- 成立. 对于逐步向前推进的算法,若随着过程的进行,相对误差在不断增长,导致产生不可靠的结果,这种算法称之为数值不稳定的算法. 对于算法1绝对误差按5的幂次增长,但真值的绝对值却在不断变小且小于1,相对误差增长的速度快于5的幂次,导致产生错误的结果,因而算法1数值不稳定,不能使用. 而算法2随着计算过程的推进,绝对误差几乎不断地缩小为上一步的1/5,即有m m n m n n n n n n n I I I I I I I I 5/5/5/*22*21*1*++++++-≈≈-≈-≈- 成立. 绝对误差不断变小,真值的绝对值随着过程向前推进却在变大,这样相对误差也越来越小,这样的方法称之为数值稳定的算法. 算法1和算法2的误差对数示意图见图1.3. 这个算例告诉我们应该选用数值稳定的算法.知识结构图⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧算法设计要点数值方法的稳定性数值方法的收敛性算法多元函数一元函数传播有效数字相对误差(限)绝对误差(限)度量截断误差舍入误差误差的产生误差误差与算法习题一1 已知有效数,,. 试给出各个近似值的绝对误105.3*1-=x 4*210125.0⨯=x 010.0*3=x 差限和相对误差限,并指出它们各有几位有效数字.2 证明当近似值是x 的较好近似时,计算相对误差的计算公式和相差一个*x x x x -***xxx -和同阶的无穷小量.2*⎪⎪⎭⎫⎝⎛-x x x 3 设x 的近似值具有如式(1.5)的表示形式,试证明*x 1)若具有n 位有效数字,则相对误差;*x n r a x e -⨯≤11*1021)(2)若相对误差,则至少具有n 位有效数字.n r a x e -⨯+≤11*10)1(21)(*x 4 试建立二元算术运算的绝对误差限传播近似计算公式.5 试建立如下表达式的相对误差限近似传播公式,并针对第1题中数据,求下列各近似值的相对误差限.1) ; 2) ; 3) *3*2*1*1x x x y +=3*2*2x y =*3*2*3/x x y =6若例题1.3中使用的尺子长度是80mm ,最小刻度为1mm ,量得某桌面长的近似值mm ,宽的近似值mm . 试估计桌子长度、宽度的绝对误差限,并3.1304*=a 8.704*=b 求用该近似数据计算出的桌子面积的绝对误差限和相对误差限.7 改变如下计算公式,使其计算结果更为精确.1) 且0,cos 1≠-x xx1<<x 2)1,1ln )1ln()1(ln 1>>--++=⎰+N N N N N xdx N N3) 1,133>>-+x x x 8 (数值试验)试通过分析和数值试验两种手段,比较如下三种计算近似值算法的可靠性.1-e 算法1 ;∑=--≈mn nn e 01!)1( 算法2 ;101!1-=-⎪⎭⎫ ⎝⎛≈∑m n n e算法3 ;101)!(1-=-⎪⎪⎭⎫ ⎝⎛-≈∑m n n m e9 (数值试验)设某应用问题归结为如下递推计算公式 ,,72.280=y 251-=-n n y y,2,1=n 在计算时取为具有5位有效数字的有效数. 试分析近似计算公式的2*c **1*5c y y n n -=-绝对误差传播以及相对误差传播情况,并通过数值实验验证 (准确值可以用IEEE 双精度浮点运算结果代替),该算法可靠可用吗?。

数值分析

数值分析

二 数值分析(一) 数值分析的背景随着计算机技术的发展和科学技术的进步, 计算数学的理论与基本方法已影响到许多学科, 并在生产、管理以及科学研究中得到了广泛应用。

数值分析作为计算数学的主要部分, 它是研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现, 是一门与计算机使用密切结合的实用性和实践性很强的数学课程, 是应用数学专业、信息与计算科学专业及很多理工科专业的核心课程。

数值分析除了具备数学高度抽象性与严密科学性的特点外, 有其自身的特点, 其理论体系构建、算法设计等的思维方式具有鲜明特征, 与其它数学课程相比, 更加注重方法和解决实际问题的工程思想, 特别注意在方法的精确性和有效性之间平衡。

[11] (二)误差来源利用数值方法求解得到的数值解是解析解的近似结果,因而误差是不可避免的。

误差的来源是多方面的,产生误差的原因主要有以下几个方面:1.模型误差:数学模型——对实际问题的仅是刻画:基于对实际问题近似描述的数学模型进行数值计算,例如利用函数的n 阶Taylor 展式()()()()()()()()()()2000000002!!n nnf x fx f x f x f x x x x x x x x x n ο'''=+-+-++-+-计算函数值;2.观测误差:数学模型或计算公式中通常包含若干参数,这些参数往往是通过观测或实验得到的,这样得到的参数与其真值之间有一定的差异即所谓的观测误差,例如描述弹簧受迫振动的二阶线性常系数微分方程()22d x dx mkx f t dtdtω++=中的质量m 、阻尼系数ω和弹性系数k 等。

更一般地:对物体的长宽高、电压、温度、速度的量测等。

3.截断误差:许多数学运算是通过极限过程定义的,如微分、积分以及无穷级数求和等,由于计算机只能完成有限的算术预算和逻辑运算,所以在利用计算机进行计算是需要把无限的计算过程用有限的计算过程代替,由此产生的误差成为截断误差;4.舍入误差:实际计算时只能按有限位进行,特别是里用计算机计算,由于计算机的有限位的限制,对参与运算的数据以及运算结果往往要进行舍入,例如利用公式2A R π=计算圆的面积时,π需用有限的小数代替,由此产生的误差成为舍入误差。

数值分析全套课件

数值分析全套课件

Ln n si n

ˆ L2n (4L2n Ln ) / 3
n L error 192 3.1414524 1.4e-004 384 3.1415576 3.5e-005 3.1415926 4.6e-010
3/16
通信卫星覆盖地球面积
将地球考虑成一 个球体, 设R为地 球半径,h为卫星 高度,D为覆盖面 在切痕平面上的 投影(积分区域)
( x1 x2 ) | x1 | ( x2 ) | x2 | ( x1 )
15/16
例3.二次方程 x2 – 16 x + 1 = 0, 取
求 x1 8 63 使具有4位有效数
63 7.937
解:直接计算 x1≈8 – 7.937 = 0.063
( x1 ) (8) (7.937) 0.0005
5/16
误差的有关概念
假设某一数据的准确值为 x*,其近似值 为 x,则称
e(x)= x - x*
为 x 的绝对误差 而称
e( x) x x er ( x ) , x x
*
( x 0)

为 x 的相对误差
6/16
如果存在一个适当小的正数ε

,使得
e( x) x x
计算出的x1 具有两位有效数
1 0.062747 修改算法 x1 8 63 15.937 4位有效数 (15.937) 0.0005 ( x1 ) 0.000005 2 2 (15.937) (15.937)
16/16
1
参考文献
[1]李庆扬 关治 白峰杉, 数值计算原理(清华) [2]蔡大用 白峰杉, 现代科学计算 [3]蔡大用, 数值分析与实验学习指导 [4]孙志忠,计算方法典型例题分析 [5]车刚明等, 数值分析典型题解析(西北工大) [6]David Kincaid,数值分析(第三版) [7] John H. Mathews,数值方法(MATLAB版)

数值分析第一章PPT课件

数值分析第一章PPT课件

= f ’( )(x* x)
x* 与 x 非常接近时,可认为 f ’( ) f ’(x*) ,则有:
|e*(y)| | f ’(x*)|·|e*(x)|
即:x*产生的误差经过 f 作用后被放大/缩小了| f ’(x*)| 倍。故称| f ’(x*)|为放大因子 /* amplification factor */ 或 绝对条件数 /* absolute condition number */.
r* (x ) ln x * r* (y )
11 0n1lnx*0.1% 2a1
n4
.
10
1.3 避免误差危害的若干原则
算法的数值稳定性
用一个算法进行计算,如果初始数据误差在计算中 传播使计算结果的误差增长很快,这个算法就是数值不 稳定的.
.
11
1.3 避免误差危害的若干原则
病态问题与条件数
Cp
x f (x) f (x)
x nxn1 xn
n,
它表示相对误差可能放大 n倍.
如 n10,有 f(1 ) 1 ,f(1 .0)2 1 .2,4 若取 x 1, x*1.02, 自变量相对误差为 2% ,函数值相对误差为 24%, 这时问题可以认为是病态的.
一般情况下,条件数
Cp
10就认为是病态,
εr*21 a11 0n10.0 0% 1
已知 a1 = 3,则从以上不等式可解得 n > 6 log6,即
n 6,应取 * = 3.14159。
.
8
1.2 数值计算的误差
问题:对于y = f (x),若用x* 取代x,将对y 产生什么影响?
分析:e*(y) = f (x*) f (x)
e*(x) = x* x

《数值分析》ppt课件

《数值分析》ppt课件

7.
er

a b


er
(a)

er
(b)
30
例4
ε(p)
设有三个近似数
p ≈ 6.6332
≈0.02585
a=2.31,b=1.93,c=2.24
它们都有三位有效数字,试计算p=a+bc,e ( p)和e r ( p) 并问:p的计算结果能有几位有效数字?
2位
例5
设f (x, y) cos y , x 1.30 0.005, y 0.871 0.0005. x
er

e x

x x x
.
由于精确值 x 未知, 实际上总把
e x
作为x*的
相对误差,并且仍记为er , 即
er

e x
.
❖定义 近似值 x* 的相对误差上限(界) (relative accuracy)
εr

|
ε x
|.
注:相对误差一般用百分比表示.
17
例1 用最小刻度为毫米的卡尺测量直杆甲和直杆
注:理论上讲,e 是唯一确定的, 可能取正, 也可能取负.
e > 0 不唯一,当然 e 越小越具有参考价值。
15
提问:绝对误差限的大小能否完全地 表示近似值的好坏? 例如:有两个量
x 10 1 , y 1000 5
思考
问:谁的近似程度要好一些?
16
❖定义 近似值 x* 的相对误差 (relative error)
a 2.18
e r(b) e (b) 0.00005 0.0024%
b 2.1200
19
➢有效数字 ( significant digits)

数值分析--第1章绪论

数值分析--第1章绪论

第一章绪论上世纪中叶诞生的计算机给科学、工程技术和人类的社会生活带来一场新的革命。

它使科学计算平行于理论分析和实验研究,成为人类探索未知科学领域和进行大型工程设计的第三种方法和手段。

在独创性工作的先行性研究中,科学计算更有突出的作用。

在今天,熟练地运用电子计算机进行科学计算,已成为科学工作者的一项基本技能。

然而,科学计算并不是计算机本身的自然产物,而是数学与计算机结合的结果,它的核心内容是以现代化的计算机及数学软件为工具,以数学模型为基础进行模拟研究。

近年来,它同时也成为数学科学本身发展的源泉和途径之一。

1 数值分析的研究对象与特点数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现。

一般地说,用计算机解决科学计算问题,首先需要针对实际问题提炼出相应的数学模型,然后为解决数学模型设计出数值计算方法,经过程序设计之后上机计算,求出数值结果,再由实验来检验。

概括为由实际问题的提出到上机求得问题的解答的整个过程都可看作是应用数学的任务。

如果细分的话,由实际问题应用有关科学知识和数学理论建立数学模型这一过程,通常作为应用数学的任务,而根据数学模型提出求解的数值计算方法直到编出程序上机计算出结果,这一过程则是计算数学的任务,即数值分析研究的对象。

因此,数值分析是寻求数学问题近似解的方法、过程及其理论的一个数学分支。

它以纯数学作为基础,但却不完全像纯数学那样只研究数学本身的理论,而是着重研究数学问题求解的数值方法及与此有关的理论,包括方法的收敛性,稳定性及误差分析;还要根据计算机的特点研究计算时间最省(或计算费用最省)的计算方法。

有的方法在理论上虽然还不够完善与严密,但通过对比分析,实际计算和实践检验等手段,被证明是行之有效的方法也可采用。

因此数值分析既有纯数学高度抽象性与严密科学性的特点,又有应用的广泛性与实际试验的高度技术性的特点,是一门与使用计算机密切结合的实用性很强的数学课程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解决具体问题的能力 借助教学演示网站、Matlab软件, 提升学习兴趣!
Wenjian Yu 7
数值计算的背景与概况
Wenjian Yu
8
数值分析、科学计算、数值计算
数值计算,也称为科学计算,已成为当今科学研究的三种 基本手段之一。它是计算数学、计算机科学和其他工程学 科相结合的产物,并随着计算机的普及和各门类科学技术 的迅速发展日益受到人们的重视。

是数学规划/最优化算法的基础,部分内容也是大 数据分析、机器学习中一些复杂算法的基础
Wenjian Yu 18
误差分析基础
Wenjian Yu
19
误差分析基础
§1.2.1误差的来源 §1.2.2误差及其分类

误差与有效数字 数据传递误差与计算误差 截断误差与舍入误差
§1.2.3问题的敏感性与数据传递误差 §1.2.4算法的稳定性
• 设计数值方法(算法)的关键:将问题简化(估计带来的 误差),然后求解简化后的问题
Wenjian Yu 14
数值软件/程序包

数值计算的软件与程序包
解决常见问题,促进各个科学和工程领域的科研 了解基本原理,学习算法设计和实现技巧
成为聪明的软件/程序包使用者

存在形式和资源
商业软件/免费软件,互联网上共享的程序包 Fortran,
数 值 分 析 (1)
Numerical Analysis
课程简介
计算方法 数值分析与算法 科学计算导论(scientific computing) 数值计算基础(numerical computing) 课程目标

介绍广泛应用于科学与工程领域的各种数值计
算方法 巩固连续数学基础知识、增强实际应用能力
建立数学模型(需要相关学科背景) 研究数值求解方程的算法 通过计算机软件实现算法
本课程学习重点
在计算机上运行软件进行数值模拟 将计算结果用较直观的方式输出,如图形可视化方法 解释和验证计算结果,如果需要重复上面的某些步骤
上述各步骤相互间紧密地关联,影响着最终的计算结果 和效率(问题的实际背景和要求也左右着方法的选择)
26
误差及其分类

Wenjian Yu
27
误差及其分类

f(x)=sinx, x=1
Wenjian Yu
28
问题的敏感性 (数据传递误差)

范数
(近似公式)
Wenjian Yu 29
问题的敏感性 (数据传递误差)

Wenjian Yu
30
算法的稳定性






与问题的敏感性相对应的一个概念;也叫数值稳定性 1结果对计算过程中的扰动不敏感的算法是稳定的算法 例1.7 对长度100的数组求和, 每个数只有2位数字精度 算法1: 按存储顺序对这100个数直接累加 sum=1.0 若实际数据为1.0, 0.01, …, 0.01 (99个), 则结果? 算法2: 先按元素绝对值递增的顺序排序, 再依次求和 对上述数据取值, sum=0.99+1.0= 2.0, 更准确! 算法2比算法1更稳定! 2对包含一系列计算的过程, 若计算中的小扰动不放大 或放大不严重, 则该过程对应的算法是稳定的算法
主要教学内容
六-1.函数逼近与线性最小二乘 六-2.函数插值 七.数值积分与微分 八.常微分方程初值问题 附加.Matlab数值计算与应用


补充内容、非考试要求 穿插在各章内容中
类似数学基础课:公式多、推导多、还有理论证明 注重实际应用:要上机编程、实验,有时还需要点经验
Wenjian Yu 6

无解析解: 有解析解,但需无限步计算:sin(x) 更多的实际应用问题通过数值模拟来解决
目标:寻找迅速完成的(迭代)算法,评估结果的准确度

好数值算法的特点
计算效率高、计算复杂度低 可靠性好:在考虑实际计算的各种误差情况下,结果尽
可能地准确
Wenjian Yu
13
数值计算的步骤
Wenjian Yu 21
误差及其分类

便于绝对误差限相对误差限
Wenjian Yu 22
误差及其分类

Wenjian Yu
23
误差及其分类

以上是根据正确的有效数字位数判断相对误差限 反过来呢?
Wenjian Yu 24
误差及其分类

Wenjian Yu
25
误差及其分类

Wenjian Yu



1.1946 美国Los Alamos国家实验室的J. von Neumann, S. Ulam和N. Metropolis提出的Metropolis算法(Monte Carlo方法最成功、最有影响的一个) 2.1947 美国兰德(RAND)公司的G. Dantzig提出的解线性 规划的单纯形算法(simplex method) 3.1950 美国UCLA大学与美国国家标准局数值分析所的M. Hestenes, E. Stiefel和C. Lanczos开创的Krylov子空间迭 代法(Lanczos过程、CG算法) 4.1950’s 美国橡树岭(Oak Ridge)国家实验室的A. Householder形式化的矩阵分解方法(表示为矩阵分解)
“We tried to assemble the 10 algorithms with the greatest influence on the development and practice of science and engineering in the 20th century”
Editors of IEEE Computational Science and Engineering, Jan. 2000 (后被SIAM转载)
集成环境:交互式计算系统,高级编程语言
数值计算、矩阵计算功能强(包含很多先进算法),方便
的计算可视化功能 大量专题工具箱(Toolbox),为专业应用提供便利 建议大家学习、使用Matlab
Wenjian Yu 17

数值计算知识应用广泛 (以计算机相关方向为例)
人工智能、机器人控制:矩阵特征值、奇异值分解、常
C, C++, Matlab 源代码使用,或API调用 交互式集成环境的软件

Wenjian Yu
15
[3]
[4]

[5]
Internet网络资源越来越 丰富,使用越来越方便!
Wenjian Yu
16

广泛应用的数值计算软件:Matlab
11
除了No. 5, 7, 9外,都属于或涉及数值计算的范畴!
Wenjian Yu
数值算法与非数值算法
The art of computer programming系列 …… We might call the subject of these books “nonnumerical analysis.” Computers have traditionally been associated with the solution of numerical problems such as …… Numerical computer programming is an extremely interesting and rapidly expanding field, and many books have been written about it. From D. E. Knuth, The art of computer programming, Vol. 1 (《计算机程序设计艺术》)
微分方程数值解、最小二乘拟合 计算机图形学CAD:函数插值、逼近、微分方程数值解 集成电路CAD(EDA):大规模线性方程组求解、常 微分方程、偏微分方程 系统软件、编译、网络等方向:线性方程组求解、非线 性方程组求解 高性能计算:用数值算法来评测机器性能 电力系统仿真、大气仿真,。。。。。。
学习本课程的建议

往届学生的主要问题
到了大三、大四,已不适应本课程考试形式 思想上不重视、投入精力不够

措施和建议
教师要改进教学,调整考核机制
多人不及格, 甚至影响毕业
学生要严格要求自己,把握听课、作业、实验环节
重点理解问题背景、算法思路和具体步骤(会算) 适当进行公式推导、算法复杂度分析与比较,提高

Wenjian Yu
20
误差的来源
计算前


计算中


模型误差 数据误差 的结果 截断误差 舍入误差
2
(忽略摩擦、空气阻力) 常数或测量值、前一步计算 方法误差 例: sin(x)= „ 计算时表示数的位数有限
需“四舍五入”
A 4 r
例1.1 用球表面积公式计算地球表面积
模型误差 数据误差 数据误差 舍入误差
李庆扬
授课方式与考核
Βιβλιοθήκη 授课方式 以讲授为主,辅以作业、上机实验
考评方法
作业、上机实验:35% 期末闭卷考试:65%
东主楼机房检查,提交报告 具体要求第5周布置
附加分:1~2% (实验加分、师生互动)

作业提交纸版
课代表收齐、或自行上交, 批改后作业也在课上取
Wenjian Yu 4



算法分为“数值算法”和“非数值算法” 数值算法用途非常广泛,发展迅速,具有跨学科的特 点 “非数值算法”的研究则通常归于“计算机科学”
Wenjian Yu 12
数值计算与数值算法
相关文档
最新文档