应用一元一次方程追赶小明课件概论
合集下载
应用一元一次方程—追赶小明课件
准确地解决问题。
THANKS
然后,解这个一元一次方程,找到未知 数的值。
其次,根据问题描述,建立一元一次方 程。
最后,验证解的正确性,并解释结果。
鼓励学生在生活中多尝试用数学解决问题
01
数学并不是抽象的学科,而 是与我们的生活紧密相连的
。
02
鼓励学生多尝试用数学解决 实际问题,可以培养他们的 数学思维和解决问题的能力
。
03
在生活中遇到问题时,可以 尝试用数学模型进行描述和 解决,这样可以更加高效、
一元一次方程是数学中基础且重要的方程形式,它代表了一个未知数 与常数之间的线性关系。
一元一次方程的标准形式
一元一次方程的标准形式
ax + b = 0,其中a和b是常数,x是未知元一次方程具有特定的结构,其中未知数x的系数a不能为0,否则 不满足一元一次方程的定义。
解一元一次方程的方法
验证答案是否符合等量关系
将答案代入等量关系中,验证是否符合等量关系。
04
实际生活中一元一次方程 的应用
速度、时间、距离的关系
总结词
速度、时间、距离是实际生活中常见的量,它们之间存在密切的关系,可以通过一元一次方程来表示和解决。
详细描述
在速度、时间、距离的关系中,速度等于路程除以时间,或者路程等于速度乘以时间。通过设定未知数表示其中 一个量,可以建立一元一次方程来解决问题。例如,小明从家里骑自行车去学校,路程为10公里,速度为每小时 15公里,求需要的时间。
根据题目描述,建立等量关系,如“我走 的路程=小明走的路程+50”。
将等量关系中的未知数代入,列出方程, 如“60x=30x+50”。
解方程求出答案
对方程进行化简和求解,得到x 的值。
THANKS
然后,解这个一元一次方程,找到未知 数的值。
其次,根据问题描述,建立一元一次方 程。
最后,验证解的正确性,并解释结果。
鼓励学生在生活中多尝试用数学解决问题
01
数学并不是抽象的学科,而 是与我们的生活紧密相连的
。
02
鼓励学生多尝试用数学解决 实际问题,可以培养他们的 数学思维和解决问题的能力
。
03
在生活中遇到问题时,可以 尝试用数学模型进行描述和 解决,这样可以更加高效、
一元一次方程是数学中基础且重要的方程形式,它代表了一个未知数 与常数之间的线性关系。
一元一次方程的标准形式
一元一次方程的标准形式
ax + b = 0,其中a和b是常数,x是未知元一次方程具有特定的结构,其中未知数x的系数a不能为0,否则 不满足一元一次方程的定义。
解一元一次方程的方法
验证答案是否符合等量关系
将答案代入等量关系中,验证是否符合等量关系。
04
实际生活中一元一次方程 的应用
速度、时间、距离的关系
总结词
速度、时间、距离是实际生活中常见的量,它们之间存在密切的关系,可以通过一元一次方程来表示和解决。
详细描述
在速度、时间、距离的关系中,速度等于路程除以时间,或者路程等于速度乘以时间。通过设定未知数表示其中 一个量,可以建立一元一次方程来解决问题。例如,小明从家里骑自行车去学校,路程为10公里,速度为每小时 15公里,求需要的时间。
根据题目描述,建立等量关系,如“我走 的路程=小明走的路程+50”。
将等量关系中的未知数代入,列出方程, 如“60x=30x+50”。
解方程求出答案
对方程进行化简和求解,得到x 的值。
应用一元一次方程—追赶小明北师大版七年级数学上册PPT教学课件
当堂训练(15分钟)
1、甲、乙两站相距1200km,一列慢车从甲站出发,每小
时行80km,一列快车从乙站出发,每小时行120km。两车
同时出发,出发后( C7
C.5或7
D.6
2、两列火车迎头驶过,A列车车速为20m/s,B列车车速 为24m/s。若A列车全长180m,B列车长160m,则两车错车 时间为__8_5___s。
画出线 段图
找出等 量关系
列方程 并求解
回答
同向追及问题
同地不同时: 甲路程=乙路程 同时不同地: 甲路程+路程差=乙路程;
相向相遇问题 甲的路程+乙的路程=总路程
5.6 应用一元一次方程—追赶小明-北师大版 七年级 数学上 册课件
5.6 应用一元一次方程—追赶小明-北师大版 七年级 数学上 册课件
4、甲、乙两人环湖竞走,一周400米,乙的速度是 80米/分钟,甲的速度是乙的速度的 1 1 倍,且甲在乙前 100米。两人同时出发,多少分钟后,4两人第一次相遇?
15分钟
5、一客轮航行于甲、乙两港,由甲港到乙港逆水而行需 12h到达,由乙港到甲港顺水而行需10.5h。如果水流速
度是1km/h ,求甲、乙两港间的距离。 168km
11 3、甲、乙两人从A地向B地行进,乙提前出发,当乙离 开200m时,甲开始出发。甲的速度为6m/s,乙的速度
为2m/s。当甲出发15s时,两人相距_1_4_0___m。
5.6 应用一元一次方程—追赶小明-北师大版 七年级 数学上 册课件
5.6 应用一元一次方程—追赶小明-北师大版 七年级 数学上 册课件
解:设通讯员用 x h 可以追上学生队伍,
由题意可列方程:14x=5×1680+5x,解得 x=16,
5.6 应用一元一次方程—追赶小明(课件)七年级数学上册课件(北师大版)
第五章 一元一次方程
第6节 应用一元一次方程 —追赶小明
导入新课
讲授新课
课堂小结
随堂训练
学习目标
1.学会利用线段图分析行程问题,寻找等量关系,建立数学模型. (难点) 2.能利用行程中的速度、路程、时间之间的关系列方程解应用题. (重点)
情境引入
新课讲解
合作探究
知识点1 一元一次方程的应用
小明每天早上要在7:50之前赶到距家1000m的学校上学。一 天,小明以80m/min的速度出发,5min后, 小明的爸爸发现他忘了带语文书。于是, 爸爸立即以180m/min的速度去追小明,并 且在途中追上了他。 (1)爸爸追上小明用了多长时间?
பைடு நூலகம்
课堂小结
行程问题中的基本等量关系为: 路程=速度×时间,
一般可从下面两个方面寻找追及问题中的等量关系: (1)从时间考虑:
速度慢的用时-速度快的用时=多用的时间
(2)从路程考虑: 速度快的行程-速度慢的行程=两者的距离
(18 -2) ×7.5=120 答:甲、乙两地距离为120千米.
新课讲解
典例分析
解:设甲、乙两地的距离为x 千米,
等量关系:逆水所用时间-顺水所用时间=1.5 依题意,得 x x 1.5 18 2 18 2 解方程,得 x =120
答:甲乙两地之间的距离为120千米.
新课讲解
育红学校七年级学生步行到郊外旅行.七(1)班的学生组成前队, 步行速度为4 km/h,七(2)班的学生组成后队,速度为6 km/h,前 队出发1 h后,后队才出发,同时后队派一名联络员骑自行车在两 队之间不间断地来回进行联络,他骑车的速度为12 km/h.
新课讲解
小明 分析: 家
第6节 应用一元一次方程 —追赶小明
导入新课
讲授新课
课堂小结
随堂训练
学习目标
1.学会利用线段图分析行程问题,寻找等量关系,建立数学模型. (难点) 2.能利用行程中的速度、路程、时间之间的关系列方程解应用题. (重点)
情境引入
新课讲解
合作探究
知识点1 一元一次方程的应用
小明每天早上要在7:50之前赶到距家1000m的学校上学。一 天,小明以80m/min的速度出发,5min后, 小明的爸爸发现他忘了带语文书。于是, 爸爸立即以180m/min的速度去追小明,并 且在途中追上了他。 (1)爸爸追上小明用了多长时间?
பைடு நூலகம்
课堂小结
行程问题中的基本等量关系为: 路程=速度×时间,
一般可从下面两个方面寻找追及问题中的等量关系: (1)从时间考虑:
速度慢的用时-速度快的用时=多用的时间
(2)从路程考虑: 速度快的行程-速度慢的行程=两者的距离
(18 -2) ×7.5=120 答:甲、乙两地距离为120千米.
新课讲解
典例分析
解:设甲、乙两地的距离为x 千米,
等量关系:逆水所用时间-顺水所用时间=1.5 依题意,得 x x 1.5 18 2 18 2 解方程,得 x =120
答:甲乙两地之间的距离为120千米.
新课讲解
育红学校七年级学生步行到郊外旅行.七(1)班的学生组成前队, 步行速度为4 km/h,七(2)班的学生组成后队,速度为6 km/h,前 队出发1 h后,后队才出发,同时后队派一名联络员骑自行车在两 队之间不间断地来回进行联络,他骑车的速度为12 km/h.
新课讲解
小明 分析: 家
初中数学北师大版七年级上册应用一元一次方程——追赶小明课件
第五章 一元一次方程
6 应用一元一次方程——追赶小明
感悟新知
知识点 1 行程问题
• 1. 行程问题中的基本关系式 •路程= 速度× 时间, •时间= 路程÷ 速度, •速度= 路程÷ 时间.
知1-讲
感悟新知
知1-讲
2. 行程问题中的相等关系 (1)相遇问题中的相等关系:
①若甲、乙相向而行,甲走的路程+ 乙走的路程= 甲、 乙出发点之间的路程; ②若甲、乙同时出发,甲用的时间= 乙用的时间.
根据题意,得 65z+85(0.5+z)=450. 解得 z=16603. 因此,慢车行驶16603 h 两车相遇.
感悟新知
知1-练
例2 李成在王亮的前方10 米处,若李成每秒跑7 米,王亮 每秒跑7.5 米,两人同时起跑,问:王亮跑多少米可 以追上李成?
解题秘方:此题是追及问题,属于“同时不同地”的 类型,可根据“王亮跑的路程- 李成跑的路程=10 米” 列方程求解.
1. 在行程问题的三个量(路程、速度、时间)中,一个
量已知,另一个量设元,则第三个量用来列方程.
2. 在相遇和追及问题中,若两者同时出发,则时间
相等,利用两者路程之间的关系列方程.
3. 航行问题中涉及顺和逆的问题,只要路线相同,
则路程不变.
感悟新知
知1-练
例 1 A,B 两地相距280 m,甲、乙两人同时相向而行, 甲从A 地每秒跑8 m,乙从B 地每秒跑6m,那么几秒 后甲、乙两人相遇?
感悟新知
知1-练
(1)两车同时开出, 相向而行, 那么两车行驶多少小时相遇? 解:设两车行驶x h相遇. 根据题意,得65x+85x=450,解得x=3. 因此,两车行驶3 h相遇.
感悟新知
6 应用一元一次方程——追赶小明
感悟新知
知识点 1 行程问题
• 1. 行程问题中的基本关系式 •路程= 速度× 时间, •时间= 路程÷ 速度, •速度= 路程÷ 时间.
知1-讲
感悟新知
知1-讲
2. 行程问题中的相等关系 (1)相遇问题中的相等关系:
①若甲、乙相向而行,甲走的路程+ 乙走的路程= 甲、 乙出发点之间的路程; ②若甲、乙同时出发,甲用的时间= 乙用的时间.
根据题意,得 65z+85(0.5+z)=450. 解得 z=16603. 因此,慢车行驶16603 h 两车相遇.
感悟新知
知1-练
例2 李成在王亮的前方10 米处,若李成每秒跑7 米,王亮 每秒跑7.5 米,两人同时起跑,问:王亮跑多少米可 以追上李成?
解题秘方:此题是追及问题,属于“同时不同地”的 类型,可根据“王亮跑的路程- 李成跑的路程=10 米” 列方程求解.
1. 在行程问题的三个量(路程、速度、时间)中,一个
量已知,另一个量设元,则第三个量用来列方程.
2. 在相遇和追及问题中,若两者同时出发,则时间
相等,利用两者路程之间的关系列方程.
3. 航行问题中涉及顺和逆的问题,只要路线相同,
则路程不变.
感悟新知
知1-练
例 1 A,B 两地相距280 m,甲、乙两人同时相向而行, 甲从A 地每秒跑8 m,乙从B 地每秒跑6m,那么几秒 后甲、乙两人相遇?
感悟新知
知1-练
(1)两车同时开出, 相向而行, 那么两车行驶多少小时相遇? 解:设两车行驶x h相遇. 根据题意,得65x+85x=450,解得x=3. 因此,两车行驶3 h相遇.
感悟新知
北师大版数学七年级上册5.6应用一元一次方程——追赶小明 课件(共32张PPT)
问题2:后队追上前队时联络员行了多少路程? 【分析】相等关系:联络员行的时间=后队行的时间.
解:由问题1得后队追上前队用了2小时, 因此联络员共进行了:
12×2=24(km). 所以,后队追上前队时联络员行了24千米.
知识回顾 典例探究 方法归纳 巩固练习 课堂小结 布置作业
议一议
育红学校七年级学生步行到郊外旅行:七(1)班的学生组成前队,步 行速度为4 km/h,七(2)班的学生组成后队,速度为6 km/h.前队出发1 h后, 后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回 进行联络,他骑车的速度为12 km/h.
驶55 km,慢车行驶1小时后,另有一列快车从B站开往A站,每小时
行驶85 km.设快车行驶了x小时后与慢车相遇,则可列方程为( D )
A.55x+85x=335
B.55( x-1 )+85x=335
C.55x+85( x-1 )=335
D.55( x+1 )+85x=335
慢车
快车
55×1
55x
85x
情况一
A
9x
5
80
6x B
【分析】等量关系: 甲ห้องสมุดไป่ตู้程+乙路程+5=80.
解:设经过x小时后两人相距5千米.
依题意,得 15x-5x=400,
解得
x=40.
所以,经过40秒两人第一次相遇.
知识回顾 典例探究 方法归纳 巩固练习 课堂小结 布置作业
典型例题
例4 操场一周是400米,小明每秒跑5米,小华骑自行车每秒行 驶15米,两人绕跑道同时同地相背而行,则两个人何时相遇?
小华
小明
解:由问题1得后队追上前队用了2小时, 因此联络员共进行了:
12×2=24(km). 所以,后队追上前队时联络员行了24千米.
知识回顾 典例探究 方法归纳 巩固练习 课堂小结 布置作业
议一议
育红学校七年级学生步行到郊外旅行:七(1)班的学生组成前队,步 行速度为4 km/h,七(2)班的学生组成后队,速度为6 km/h.前队出发1 h后, 后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回 进行联络,他骑车的速度为12 km/h.
驶55 km,慢车行驶1小时后,另有一列快车从B站开往A站,每小时
行驶85 km.设快车行驶了x小时后与慢车相遇,则可列方程为( D )
A.55x+85x=335
B.55( x-1 )+85x=335
C.55x+85( x-1 )=335
D.55( x+1 )+85x=335
慢车
快车
55×1
55x
85x
情况一
A
9x
5
80
6x B
【分析】等量关系: 甲ห้องสมุดไป่ตู้程+乙路程+5=80.
解:设经过x小时后两人相距5千米.
依题意,得 15x-5x=400,
解得
x=40.
所以,经过40秒两人第一次相遇.
知识回顾 典例探究 方法归纳 巩固练习 课堂小结 布置作业
典型例题
例4 操场一周是400米,小明每秒跑5米,小华骑自行车每秒行 驶15米,两人绕跑道同时同地相背而行,则两个人何时相遇?
小华
小明
北师大版数学七年级上册.应用一元一次方程——追赶小明课件
根据题意得4(4n﹣n)=120,
解得n=10,
所以4n=4×10=40,
答:甲的行驶速度是10公里/小时,乙的行驶速度是40公里/小时.
两人的路程和=两人之间的距离
叁
当堂训练
当堂训练
1.甲、乙两人在400m跑道上练中长跑,甲每分钟跑300m,乙每分
钟跑260m,两人同地、同时同向起跑,xmin后第一次相遇,x等于
(2)2×16÷4=8(h).
答:相遇后经过8h小强到达A地.
当堂训练
4.小明骑自行车的速度是15千米/小时,一天,小明从家出发骑自
行车去学校,恰好准时到达,如果他全程乘坐速度为40千米/小时
的公共汽车,则会提前15分钟到达学校.
(1)小明家离学校有多少千米;
(2)小明乘坐公共汽车上学需要多长时间?
(1)两人的行进速度分别是多少?
(2)相遇后经过多少时间小强到达A地?
解:(1)设小刚的速度为xkm/h,
则相遇时小刚走了2xkm,小强走了(2x−24)km,
由题意得,2x−24=0.5x,
解得:x=16,
则小强的速度为:(2×16−24)÷2=4(km/h),
答:两人的行进速度分别是16km/h,4km/h;
故小轿车出发 小时、 小时、 小时与货车相距50km.
两人的路程差=两人之间的距离
讲授新知
知识点二:相遇问题
甲、乙两人相距 280,相向而行,甲从 A 地每秒走8米,
乙从 B 地每秒走 6 米,那 么甲出发几秒与乙相遇?
解:设甲出发后x秒与乙相遇,画图如下:
甲走的路程+乙走的路程=两人的距离
解得:_____________
解得n=10,
所以4n=4×10=40,
答:甲的行驶速度是10公里/小时,乙的行驶速度是40公里/小时.
两人的路程和=两人之间的距离
叁
当堂训练
当堂训练
1.甲、乙两人在400m跑道上练中长跑,甲每分钟跑300m,乙每分
钟跑260m,两人同地、同时同向起跑,xmin后第一次相遇,x等于
(2)2×16÷4=8(h).
答:相遇后经过8h小强到达A地.
当堂训练
4.小明骑自行车的速度是15千米/小时,一天,小明从家出发骑自
行车去学校,恰好准时到达,如果他全程乘坐速度为40千米/小时
的公共汽车,则会提前15分钟到达学校.
(1)小明家离学校有多少千米;
(2)小明乘坐公共汽车上学需要多长时间?
(1)两人的行进速度分别是多少?
(2)相遇后经过多少时间小强到达A地?
解:(1)设小刚的速度为xkm/h,
则相遇时小刚走了2xkm,小强走了(2x−24)km,
由题意得,2x−24=0.5x,
解得:x=16,
则小强的速度为:(2×16−24)÷2=4(km/h),
答:两人的行进速度分别是16km/h,4km/h;
故小轿车出发 小时、 小时、 小时与货车相距50km.
两人的路程差=两人之间的距离
讲授新知
知识点二:相遇问题
甲、乙两人相距 280,相向而行,甲从 A 地每秒走8米,
乙从 B 地每秒走 6 米,那 么甲出发几秒与乙相遇?
解:设甲出发后x秒与乙相遇,画图如下:
甲走的路程+乙走的路程=两人的距离
解得:_____________
北师大版七年级上册一元一次方程的应用之追赶小明课件
[解析] 本题等量关系:小明所走路程+爸爸所走路程=全路程,但要注意小明比爸 爸多走了5分钟,所以小明所走的时间为(x+5)分钟,另外也要注意本题单位的统一, 2.9公里=2900米.
解:设小明爸爸出发x分钟后接到小明,如图所示.
由题意,得200x+60(x+5)=2900, 解得 x=10. 答:小明爸爸从家出发10分钟后接到小明.
5 m,设 x s 后,甲可以追上乙,则下列四个方程不正确的是( )
A.7x=6.5x+5
B.7x-5=6.5
C.(7-6.5)x=5
D.6.5x=7x-5
当堂测评
2.A,B 两站相距 284 km,甲车从 A 站以 48 km/h 的速度开往 B 站.过 1 h 后,乙车从 B 站以 70 km/h 的速度开往 A 站.设乙车开出 x h 后两车相遇,则可 列方程为( )
3 2x-1200.这个方程表示的意义是( )
A.顺风与逆风时,风速不变 B.顺风与逆风时,飞机自身的航速不变 C.顺风和逆风时,所飞的航线长不变 D.飞行往返一次的总时间不变
归类探究
4.A,B两地相距60千米,甲、乙两人分别从A,B两地出发相向而行,甲的速度 是8千米/时,乙的速度是6千米/时.经过多长时间两人相距4千米?
A
8x
4
60
6x B
A
8x
4 6x
60
B
当堂测评
5.[202X春·越秀区期末]我国古代数学著作《九章算术》中有这样一道题,原文是: “今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几 何步及之?”意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步(两 人的步长相同).走路慢的人先走100步,走路快的人要走多少步才能追上走路慢的人?( 两人走的路线相同)试求解这个问题.
5.6 应用一元一次方程-追赶小明 课件(共29张PPT)-七年级数学上册同步精品课堂(北师大版)
10m
4x
6x
等量关系:小彬跑的路程+10m=小强跑的路程. 解:设经过 x 秒后小强追上小彬。 4x+10 = 6x 解得:x = 5. 答:经过5秒后小强追上小彬.
例:若小明到校后发现忘带语文书,打电话通知爸爸来.爸 爸立即以180米/分的速度从家里出发,同时小明以120米/分 的速度从学校返回,两人几分钟相遇?
则x+1=6.5. 答:甲、乙两人的速度分别为6.5千米/时、5.5千米/时.
学习目标
1.能借助“线段图“分析复杂问题中的数量关系,从而列出方 程,解决问题,熟悉行程问题中路程、速度、时间之间的关 系,从而实现从文字语言到符号语言的转换. 2.经历画“线段图”找等量关系,列出方程解决问题的过程, 进一步体验画“线段图"也是解决实际问题的有效途径.
新课引入
1.若杰瑞的速度是2米/秒,则它5秒跑了___1_0____米. 路程=速度×时间
解:设甲经过x秒追上乙.由题意, 得8x-5x=20+10. 解这个方程,得x=10.
答:甲经过10乙两人分别从A,B两地同时出 发,相向而行.已知甲比乙每小时多走1千米,经过2.5小时两人 相遇,求甲、乙两人的速度.
解:设乙的速度为x千米/时,则甲的速度为(x+1)千米/时. 根据题意,得2.5x+2.5(x+1)=30. 解这个方程,得x=5.5.
答:小明走的路程和小明爸爸走的路程相同
你能通过一定的示意图把整个过程表示出来吗?
(1)爸爸追上小明用了多长时间? (2)追上小明时,距离学校还有多远?
80×5
80x 180x
等量关系:爸爸走的路程=小明走的路程.
解: 设爸爸追上小明用了x分钟 180x=80x+5×80. 解得:x=4. 答:所以爸爸经过了4分钟追上了小明.
5.6应用一元一次方程——追赶小明教学课件(共27张ppt)
第五章 一元一次方程
6.应用一元一次方程 ——追赶小明
情境引入
你知道它蕴含的是我们数学中的什么问题吗?
讲授新课
一 速度、路程、时间之间的关系
做一做
1.若杰瑞的速度是6米/秒,则它5秒跑了___3_0____米. 2.若汤姆的速度是7米/秒,要抓到14米远处正在吃食物而 毫无防备的杰瑞需要____2____秒. 3.若杰瑞想在4秒钟内抢在汤姆前面吃到放在30米处的奶 酪,则它至少每秒钟要跑____7_.2_5__米.
(1)爸爸追上小明用了多长时间? (2)追上小明时,距离学校还有多远?
分析:等量关系:小明所用时间=5+爸爸所用时间; 小明走过的路程=爸爸走过的路程.
线段图:
解:(1)设爸爸追上小明用了x分钟, 据题意得 80×5+80x=180x. 解,得 x=4. 答:爸爸追上小明用了4分钟. (2)180×4=720(米),1000-720=280(米).
6米,甲先跑10秒,乙开始跑,设乙x秒后追上甲, 依题意列方程得( B )
A. 6x =4x
B. 6x=4x+40
C. 6x= 4x-40
D. 4x+10=6x
2.甲车在乙车前500千米,同时出发,速度分别为每 小时40千米和每小时60千米,多少小时后,乙车追 上甲车?设x小时后乙车追上甲车,则下面所列方程
正确的是( C )
A.60x=500
B.60x=40x-500
C .60x=40x+500
D.40x=500
3.甲、乙两站间的距离为450千米,一列慢车从甲站 开出,每小时行驶65千米,一列快车从乙站开出,每 小时行驶85千米.设两车同时开出,同向而行,则快 车几小时后追上慢车?其等量关系式是 : _快__车__的__路__程__=_慢__车__的__路__程__+_甲__、__乙__两__站__间__的__距__离_____
6.应用一元一次方程 ——追赶小明
情境引入
你知道它蕴含的是我们数学中的什么问题吗?
讲授新课
一 速度、路程、时间之间的关系
做一做
1.若杰瑞的速度是6米/秒,则它5秒跑了___3_0____米. 2.若汤姆的速度是7米/秒,要抓到14米远处正在吃食物而 毫无防备的杰瑞需要____2____秒. 3.若杰瑞想在4秒钟内抢在汤姆前面吃到放在30米处的奶 酪,则它至少每秒钟要跑____7_.2_5__米.
(1)爸爸追上小明用了多长时间? (2)追上小明时,距离学校还有多远?
分析:等量关系:小明所用时间=5+爸爸所用时间; 小明走过的路程=爸爸走过的路程.
线段图:
解:(1)设爸爸追上小明用了x分钟, 据题意得 80×5+80x=180x. 解,得 x=4. 答:爸爸追上小明用了4分钟. (2)180×4=720(米),1000-720=280(米).
6米,甲先跑10秒,乙开始跑,设乙x秒后追上甲, 依题意列方程得( B )
A. 6x =4x
B. 6x=4x+40
C. 6x= 4x-40
D. 4x+10=6x
2.甲车在乙车前500千米,同时出发,速度分别为每 小时40千米和每小时60千米,多少小时后,乙车追 上甲车?设x小时后乙车追上甲车,则下面所列方程
正确的是( C )
A.60x=500
B.60x=40x-500
C .60x=40x+500
D.40x=500
3.甲、乙两站间的距离为450千米,一列慢车从甲站 开出,每小时行驶65千米,一列快车从乙站开出,每 小时行驶85千米.设两车同时开出,同向而行,则快 车几小时后追上慢车?其等量关系式是 : _快__车__的__路__程__=_慢__车__的__路__程__+_甲__、__乙__两__站__间__的__距__离_____
应用一元一次方程-追赶小明课件-七年级数学上册同步精品课件(北师大版)
由题意得
解得
+
−
−
= ,
x=286,
答:甲、乙两地的距离是286千米.
二、新知探究
知识归纳
1.顺(逆)水问题中的有关公式:
①顺水速度=静水中的速度+水流速度;
②逆水速度=静水中的速度-水流速度;
③顺水速度-逆水速度=2×水流速度.
2.顺(逆)风问题中的有关公式:
①顺风速度=无风速度+风速;
追及问题
②同时同地、背向而行: v甲t+v乙t=s.
相遇问题
二、新知探究
做一做
已知船在静水中的速度是24千米/时,水流速度是2千米/时,该船在甲、
乙两地间行驶一个来回共用了24小时,求甲、乙两地的距离是多少?
分析:本题涉及水流速度:
顺水速度=船速+水速;逆水速度=船速-水速.
解:设甲、乙两地距离是x千米,
快车在慢车走
快车先开30min行驶
线段图:慢车行驶
相遇 时行驶的路程 的路程85×0.5
的路程65y
85y
甲
乙
甲乙两地之间的距离450km
解:(2)设慢车行驶了y小时两车相遇.
据题意得 65y+85(y+0.5)=450,
��
解,得 y=
.
��
答:慢车行驶了
小时两车相遇.
二、新知探究
北师大版 数学 七年级上册
第五章 一元一次方程
6 应用一元一次方程----追赶小明
学习目标
1.借助“线段图”分析复杂问题中的数量关系,从而建立
方程解决实际问题.(重点)
2.发展分析问题,解决问题的能力,进一步体会方程模型
解得
+
−
−
= ,
x=286,
答:甲、乙两地的距离是286千米.
二、新知探究
知识归纳
1.顺(逆)水问题中的有关公式:
①顺水速度=静水中的速度+水流速度;
②逆水速度=静水中的速度-水流速度;
③顺水速度-逆水速度=2×水流速度.
2.顺(逆)风问题中的有关公式:
①顺风速度=无风速度+风速;
追及问题
②同时同地、背向而行: v甲t+v乙t=s.
相遇问题
二、新知探究
做一做
已知船在静水中的速度是24千米/时,水流速度是2千米/时,该船在甲、
乙两地间行驶一个来回共用了24小时,求甲、乙两地的距离是多少?
分析:本题涉及水流速度:
顺水速度=船速+水速;逆水速度=船速-水速.
解:设甲、乙两地距离是x千米,
快车在慢车走
快车先开30min行驶
线段图:慢车行驶
相遇 时行驶的路程 的路程85×0.5
的路程65y
85y
甲
乙
甲乙两地之间的距离450km
解:(2)设慢车行驶了y小时两车相遇.
据题意得 65y+85(y+0.5)=450,
��
解,得 y=
.
��
答:慢车行驶了
小时两车相遇.
二、新知探究
北师大版 数学 七年级上册
第五章 一元一次方程
6 应用一元一次方程----追赶小明
学习目标
1.借助“线段图”分析复杂问题中的数量关系,从而建立
方程解决实际问题.(重点)
2.发展分析问题,解决问题的能力,进一步体会方程模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
450KM
慢车的速度× 慢车的时间
快车的速度× 快车的时间
450 = 65 X + 85X
即:65X+85X=450
巩固与练习 ☞
甲、乙骑自行车同时从相距 65千米的两地相向而行, 2小时相遇.甲比乙每小时多骑2.5千米,求乙的时速
解:设乙的速度为x千米/时,则甲的速度为(x+2.5) 千米/时,根据题意,得
问题2:后队追上前队时联络员行 了多少路程?
解 .由问题1得后队追上前队用了2小 时,因此联络员共行进了
12 × 2 = 24 (千米) 答:后队追上前队时联络员行 了24千米。
问题3:联络员第一次追上前队时用 了多长时间?
解:设联络员第一次追上前队时 用了x小时, 由题意列方程得;
12x = 4x + 4
知道乌龟最后战胜了小白兔,小白兔不
服气,便邀请乌龟进行第二次比赛,并
且礼让乌龟先跑1000米,然后以101米/
分的速度奋起直追,而乌龟仍然以1米/
分的速度爬行,设小白兔需要 x分钟后
追上乌龟,则可列方程为:_1_0_0_0_+_x_=_1_01_x
1000
x
101x
方法导航
文字语言 图形语言
符号语言
小明5 分钟走 的路程
小明在爸 爸追赶时 走的路程
追上小明 时,距学校
的距离
家
校
爸爸追赶小明时走 的路程
五初中七年级学生步行到郊外旅行,9班的 学生组成前队,步行的速度为4千米/小时, 10班的学生组成后队,速度为6千米/小时, 前队出发1小时后,后队出发, 同时后队
派一名联络员骑自行车在两队之间不间断 地 来回进行联络,他骑车的速度为12千米 /
应用一元一次方程 ——追赶小明
1.小明每秒跑4米,那么他5秒能跑 _2_0_米; 2.小用2分钟在学校的操场跑了 一圈 (每圈为400 米),那么他的速 度为__2_00_米/ 分; 3.小明家距离车站2400米,他以4 米/秒的速度骑车到达车站需_1_0_分 钟.
我们小时候听过了龟兔赛跑的故事,都
生活背景
线段图
方程
1.小明家距学校1000米,小明以 80 米/分钟的速度上学,5分钟后小明 爸爸发现小明没 带语文课本,以 180米/分钟的速度追小明,并在途 中追上小明.
(1) 爸爸追上小明用了多少时间?
(2) 追上小明时距离学校还有多远?
相等关系:
小明先行路程 + 小明后行路程 =爸爸的路程
10千米
一条船在两个码头之间航行,顺水时需 要4.5小时,逆水返回需要5小时,水流 速度是1千米/时。这两个码头相距多少 千米?
顺水速度=船在静水中的速度+水速
逆水速度=船在静水中的速度-水速
等量关系:
顺水的行程=逆水的行程
同向追及问题:
①同时不同地——甲路程+路程差=乙路程 甲时间=乙时间. ②同地不同时——甲时间+时间差=乙时间 甲路程=乙路程.
400
6x
8x
2.小明和爸爸在环形跑道上练习跑步,已知 环形跑道一圈长400米,爸爸每秒跑8米,小 明每秒跑6米.
(向出变发式等,)量那如么关果经系爸过爸多在少小秒明两前人面首8米次处相同遇时?同 甲行的路程-乙行的路程=(400-8)米
440000-8 6x
8x
3.小明和爸爸进行骑自行车训练,训 练时两都以10千米/时的速度前进.突 然小明以15千米/小时的速度独自行进, 行进10千米后掉转车头,仍以15千米/ 时的速度回骑,直到与爸爸会合,小 明从离开爸爸开始与爸爸重新会合, 经过了多长时间?
②同地不同时——甲时间+时间差=乙 时间甲路程=乙路程.
若小明到校后才发现忘带语文
书,打电话让爸爸送书,同时
自己也返回去取,如果他们的
速度都不变,两人几分钟后相
遇?
相
遇
180x米
80x米
家
校
1000米
小明打完电话立即返回,爸爸在家 找书花了1分钟后再出发,爸爸出发 后几分钟两人相遇?
180x米 相遇 80x米 80米
1:后队追上前队用了多长时间 ? 2后队追上前队时联络员行了多少路程? 3联络员第一次追上前队时用了多长间?
4:当后队追上前队时,他们已经行进了 多少路程?
问题1:后队追上前队用了多长时间 ?
解:设后队追上前队用了x小时, 由题意列方程得:
6x = 4x + 4
解方程得:x =2 答:后队追上前队时用了2小时。
2(x+2.5)+2x=65 2x+5+2x=65 4x=60 X=15
答:乙的时速为15千米/时.
探究与合作 ☞
例2:甲乙两站的路程为450千米,一列慢车从甲 站开出,每小时行驶65千米,一列快车从乙站开 出,每小时行驶85千米。 求:(2)快车先开30分钟,两车相向而行,慢 车行驶了多少小时两车相遇?
解方程得:x =0.5
答:联络员第一次追上前队时用了0.5 小时。
问题4:当后队追上前队时,他们已 经行进了多少路程?
解:设当后队追上前队时,他们已经
行进了x千米,由题意列方程得:
x 1 x
6
4
解得; x = 12
答:当后队追上前队时,他们已经行进12千
同向追及问题: ①同时不同地——甲路程+路程差=乙 路程 甲时间=乙时间.
家
校
1000米
探究与合作 ☞
例1:(相遇问题)
• 甲乙两站的路程为450千米,一列 慢车从甲站开出,每小时行驶65千米, 一列快车从乙站开出,每小时行驶85 千米。
• • 求(1)两车同时开出,相向而行,多
少小时相遇?
•
甲
乙
450KM
慢车的路程
快车的路程
相等关系:总路程=慢车的路程+快车的路程
总路程= 慢车的路程+快车的路程
米,小明每秒跑6米. 2)两人从同一处同时反向出发,经过多少秒
首次相遇?
等量关系
甲行的路程+乙行的路程=(400-8)米
6x 8x
400-8=392
2.小明和爸爸在环形跑道上练习跑步, 已知环形跑道一圈长400米,爸爸每秒跑 8米,小明每秒跑6米.
(1)两人从同一处同时同向出发,经过
多少秒首次等相量遇关?系 甲行的路程-乙行的路程=400米
甲
乙
450KM
先行路程
+ 慢车路程
快车行驶的总程
总路程= 慢车的路程+快车的路程
450KM
慢车的速度× 慢车的时间
快车先走的路程+ 快车后走的路程
450 = 65 X + 85×0.5+ 85X 即:65X+(85×0.5+ 85X)=450
2.小明和爸爸在环形跑道上练习跑步,已
知环形跑道一圈长400米,爸爸每秒跑8