2019年中考数学考点汇总
2019中考数学《计数方法》专题复习考点讲解(含答案)
计数方法考点图解技法透析1.计数计数,通俗地说就是数数,即把我们研究的对象的个数数出来.在计数时应遵循的原则是:既不重复也不遗漏.2.计数问题中常运用的方法(1)穷举计数法:当研究对象比较简单数目也不大时,穷举法是最基本而又简单的方法,即把对象的所有可能一一列举出来,最后再求出总数.(2)分类计数法:将研究对象按一定标准分类,然后逐步计数,得出总数,这种方法要用到加法原理.(3)分步计数法:当研究对象较复杂时,为了有序而又正确地思维,我们需要将其分成若干步,然后将每一步的方法数相乘,便可得出总数,这种方法要用到乘法原理.(4)递推过渡法:当研究的对象数目较多又比较复杂时,我们常通过对较少数量对象的观察,采用从简单到复杂,从特殊到一般,探究其变化的规律,最后计算出总数.(5)加法原理和乘法原理:当研究的对象比较复杂,且数目较大时,计数时常常要用到如下两原理:①加法原理:完成一件事情,共有n类办法,第一类办法中又有m1种不同的方法,第二类办法中有m2种不同的方法,第三类办法中又有m3种不同的方法……,第n类办法中有mn种不同的方法,那么完成这件事情共有:m1+m2+m3+…+m n种不同方法.②乘法原理:完成一件事情,共分n个步骤,第一步中又有m1种不同方法,第二步中又有m2种不同方法,第三步中又有m3种不同方法…….第n步中有m n种不同方法,那么完成这件事情共有:m1·m2·m3…·m n种不同方法.3.几何计数问题(1)简单图形个数的计算:这类问题中出现的图形的组成一般比较简单,没有过多的限制条件,但图形数量和计算量都很大,此类计数问题通常需要根据具体问题寻求一定的规律和运用一定的计数方法来解决.(2)条件图形个数的计算:这类问题的图形数目较多且较复杂,所求的是满足某种限制条件的几何图形的个数,解决此类问题的关键是对限制条件的分析,这些条件的要求往往决定了所求图形的不同情况和种类,此为分类计数的重要依据.(3)分割或包围图形个数的计算:它们是指用一类几何图形(如直线)去分割另一类几何图形(如平面或其他封闭图形),或者一类封闭图形包含另一类封闭图形,解决此类问题,除了掌握必要的分割与包含的几何知识之外,还需要借助有关统计的方法和技巧.名题精讲考点1 分类枚举法计数例1 在1到300这300个自然数中,不含有数字3的自然数有_______个.【切题技巧】利用分类枚举法,按数的位数分类;即不含有数字3的一位数有几个;不含数字3的两位数有几个;不含数字3的三位数有几个,最后求出总数.【规范解答】∵不含有数字3的一位数有8个;不含有数字3的两位数有72个;不含有数字3的三位数有162个.∴不含有数字3的自然数共有8+72+162=242个.【借题发挥】分类枚举法就是将所研究对象按某一标准分类,然后把研究对象的各种可能一一列举出来,最后数出总数的方法,这种方法要用到加法原理.在运用枚举法时,必须无一重复,无一遗漏,且枚举法常与分类讨论结合运用,故称为分类枚举法.【同类拓展】1.在1000以内的自然数中,各位数字之和等于16的有多少个?考点2 分步法计数例2 某城市街道如图,一个居民要从A处前往B处,如果规定,只能沿从左向右或从上向下的方向走,那么该居民共有几条可选择的路线?【切题技巧】本例看起来复杂,但可以从简单情况入手寻找规律,按从上向下,从左向右的顺序,从简单情况分步来看复杂问题.如先考虑简单情况如图(1)中的正方形,可知以A到C的方法有2种,再考虑如图(2)中的情况,可以从A到D的方法共有3种……【规范解答】从简单情况入手,先考虑如图(1)中的小正方形,不难发现,从A到C共有2种方法;再考虑如图(2)中的情况,同样可知:从A到D共有3种方法……从而可总结出下述规律:到右下角终点的走法等于它所在小正方形右上角和左下角走法之和,故依次标出每个小正方形的走法不断累加,即可得到答案.由图(3)可知共有40种走法.【借题发挥】(1)分步计数法就是指当所研究对象较复杂时,为了有序而又正确地思维,将问题分成若干步,最后求出各步的总数.(2)在利用分步法计数时,要克服盲目性和随意性,一定要按照法则或顺序进行、从简单情况人手分步来思考复杂问题是解决问题的常用技巧.(3)分步法常与分类法结合求解.【同类拓展】2.在期中考试中,同学甲、乙、丙、丁分别获得第一、第二、第三、第四名,在期末考试中,他们又是班上的前四名,如果他们当中只有一位的排名与期中考试的排名相同,那么排名情况有_______种可能;如果他们排名都与期中考试中的排名不同,那么排名情况有_______种可能.考点3 递推过渡法计数例3 小美步行上楼的习惯是每次都只跨一级或两级,若她要从地面(0级)步行到第9级,问她共有多少种不同的上楼梯的方式.【切题技巧】因为楼梯台阶较多,我们可以先考虑以简单入手.(1)若只有1级台阶,则只有唯一上楼梯方式;(2)若有2级台阶,则有两种上楼梯的方式:①一级一级地上;②一步两级地上;(3)若有3级台阶,则有三种上楼梯的方式:①一级一级地上,②先一级后2级地上,③先2级后1级地上……如此类推.【规范解答】设小美上第n级楼梯有a n种上法,通过分析易知a1=1,a2=2,a4=5,a n+2=a n+1+a n,n=1,2,3,…,从而递推可得:a5=8,a6=13,a7=21,a8=34,a9=55.所以小美共有55种不同的上楼梯的方式.【借题发挥】(1)当研究对象比较复杂时,要很自然地想到从特殊到一般的思维方式.即从特殊的简单的情况人手探索变化的规律,(2)用递推过渡法计数时先要从最简单情况和特殊情况入手分析,发挥观察、归纳猜想的思想方法,最终探索出变化规律,且在探索一般的规律时,应注意抓住问题的实质为最后计数提供依据.【同类拓展】3.平面上n个圆(n为正整数),最多能把平面分成多少个部分?考点4 加法原理和乘法原理法计数例4 观察如图所示的图形:根据图(1)、(2)、(3)的规律,则图(4)中三角形的个数为_______.【切题技巧】通过观察知:图(1)中三角形的个数为:1+4=5(个);图(2)中三角形的个数为:1+4+3×4=17(个);图(3)中三角形的个数为1+4+3×4+32×4=53(个),由图(1)(2)(3)中三角形的个数的规律,可知图(4)中三角形的个数为1+4+3×4+32×4+33×4=1+4+12+36+108=161(个)【规范解答】 161个【借题发挥】(1)按本例中图(1)、(2)、(3)……的图形规律,则图(n)中三角形的个数为:1+4+3×4+32×4+33×4+…+3n-1×4(个). (2)当研究对象为比较复杂的计数问题中,我们常需要用到加法原理与乘法原理,而且还需要对研究对象进行分析,从简单情形入手,通过观察、归纳、猜想,最后找出其变化规律,再依据规律计算其个数.【同类拓展】4.一个三角形最多将平面分成两部分,两个三角形最多将平面分成8个部分,10个三角形最多将平面分成多少个部分?n个三角形呢?例5 分正方形ABCD的每条边为四等分,取分点(不包括正方形的四个顶点)为顶点可以画出多少个三角形?【切题技巧】显然构成三角形的3个顶点不可能共线,即3个顶点不可能在正方形的同一边上,故最多有2个顶点在正方形的同一边上;又因为三角形顶点只能取分点,故必须在正方形的边上.因此只有两种情况:(1)三角形的顶点分别在正方形的三边长;(2)三角形的顶点分别在正方形的两条边上.【规范解答】分两类计算:(1)第一类:如图(1)三角形的顶点分别在正方形的在三条边上.首先,从4条边中取3条有4种取法;其次从每条边上取一点,各有3种取法,故总共计有4×3×3×3=108(个)三角形.(2)第二类如图(2),三角形的两个顶点位于正方形的一条边上,而第三个顶点在正方形的另一条边上.首先,从4条边取1条有4种取法,在这边3个分点中取2点,也有3种取法;其次,从其余3边中的9点中取1点,有9种取法,故共有4×3×9=108(个)三角形.综上所述,两类合计,共有216个三角形.【借题发挥】(1)在使用加法原理和乘法原理时一定要明确两者的不同之处:在用加法原理时,完成一件事有n类方法,都能完成这件事,而用乘法原理时,完成一件事情可分为n步,只有每一步都完成了,这件事情才得以完成.(2)运用加法原理的关键在于合理适当地进行分类,使所分类既不重复又不遗漏;而运用乘法原理的关键在于分步骤,要正确地设计分步程序,使每步之间既互相联系,又彼此独立.【同类拓展】5.至少有两个数字相同的三位数共有( )个.A.280 B.180 C.252 D.396参考答案1.69个.2.9(种).3.n2-n+2(个部分).4.10个三角形最多将平面分成272个部分,n个三角形最多将平面分成(3n2-3n+2)个部分.5.C2019-2020学年数学中考模拟试卷一、选择题1.下列说法正确的是()A.负数没有倒数 B.﹣1的倒数是﹣1C.任何有理数都有倒数 D.正数的倒数比自身小2.不等式组2010xx-⎧⎨+>⎩…的解集在数轴上表示正确的是()A .B .C .D .3.如图,是由4个大小相同的正方体组合而成的几何体,其主视图是()A. B. C. D.4.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺.设木长为x尺,绳子长为y 尺,则下列符合题意的方程组是()A.4.5112y xy x=+⎧⎪⎨=+⎪⎩B.4.5112y xy x=+⎧⎪⎨=-⎪⎩C.4.5112y xy x=-⎧⎪⎨=+⎪⎩D.4.5112y xy x=-⎧⎪⎨=-⎪⎩5.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )A.12B.13C.14D.166.把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.15 B.17 C.19 D.247.为把我市创建成全国文明城市,某社区积极响应市政府号召,准备在一块正方形的空地上划出部分区域栽种鲜花,如图中的阴影“”带,鲜花带一边宽1m,另一边宽2m,剩余空地的面积为18m2,求原正方形空地的边长xm,可列方程为( )A.(x﹣1)(x﹣2)=18 B.x2﹣3x+16=0C.(x+1)(x+2)=18 D.x2+3x+16=08.如图,点M,N分别是正五边形ABCDE的边BC,CD上的点,且BM=CN,AM交BN于点P,则∠APN的度数为( )A.60°B.120°C.72°D.108°9.若方程3x-2y=1的解是正整数,则x一定是()A.偶数B.奇数C.整数D.正整数10.据池州市统计局发布,2018年我市全年生产总值684.9亿元,比上年增长5.7%,若今、明两年年增长率保持不变,则2020年全年生产总值为()A.(1+5.7%×2)×684.9亿元B .(1+5.7%)2×684.9亿元C .2×(1+5.7%)×684.9亿元D .2×5.7%(1+5.7%)×684.9亿元11x 的取值范围是( ) A .x 3= B .x 3> C .x 3≥ D .x 0≠12.某校九年级3月份中考模拟总分760分以上有300人,同学们在老师们的高效复习指导下,复习效果显著,在4月份中考模拟总分760分以上人数比3月份增长5%,且5,6月份的760分以上的人数按相同的百分率x 继续上升,则6月份该校760分以上的学生人数( ).A .()()30015%12x ++人B .()()230015%1x ++人C .()()3005%3002++人D .()30015%2x ++人 二、填空题13.已知112a b +=,求535a ab b a ab b++=-+_____. 14.如图①,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若直角三角形一个锐角为30°,将各三角形较短的直角边分别向外延长一倍,得到图②所示的“数学风车”设AB =a ,则图中阴影部分面积为_____(用含a 的代数式表示)15.如图,在矩形ABCD 中,AB =10,AD =6,E 为BC 上一点,把△CDE 沿DE 折叠,使点C 落在AB 边上的F 处,则CE 的长为_____.16.如图,AD 为ABC △的角平分线,AC BC = ,E 在AC 延长线上,且AD DE =,若6,2AB CE ==,则BD 的长为______.17有意义的x 的取值范围是_____. 18.如图所示,在矩形ABCD 中,F 是DC 上一点,AE 平分∠BAF 交BC 于点E ,且DE ⊥AF ,垂足为点M ,BE=3,,则MF 的长是___________三、解答题19.已知a+1a=3(a >1),求242241111()()()()a a a a a a a a -⨯+⨯+⨯-的值. 20.如图,甲、乙两座建筑物的水平距离BC 为78m ,从甲的顶部A 处测得乙的顶部D 处的俯角为48°,测得底部C 处的俯角为58°,求乙建筑物的高度CD.(结果取整数,参考数据:tan58°≈1.60,tan48°≈1.11).21.庐阳春风体育运动品商店从厂家购进甲,乙两种T 恤共400件,其每件的售价与进货量m (件)之间的关系及成本如下表所示:(1)当甲种T 恤进货250件时,求两种T 恤全部售完的利润是多少元;(2)若所有的T 恤都能售完,求该商店获得的总利润y (元)与乙种T 恤的进货量x (件)之间的函数关系式;(3)在(2)的条件下,已知两种T 恤进货量都不低于100件,且所进的T 恤全部售完,该商店如何安排进货才能使获得的利润最大?22.已知,抛物线C 1:y=- 12x 2+mx+m+ 12(1)①当m=1时,抛物线与x 轴的交点坐标为_______;②当m=2时,抛物线与x 轴的交点坐标为________;(2)①无论m 取何值,抛物线经过定点P________;②随着m 的取值的变化,顶点M (x ,y )随之变化,y 是x 的函数,记为函数C 2 , 则函数C 2的关系式为:________ ;(3)如图,若抛物线C 1与x 轴仅有一个公共点时,①直接写出此时抛物线C 1的函数关系式;②请在图中画出顶点M 满足的函数C 2的大致图象,在x 轴上任取一点C ,过点C 作平行于y 轴的直线l 分别交C 1、C 2于点A 、B ,若△PAB 为等腰直角三角形,求点C 的坐标;(4)二次函数的图象C 2与y 轴交于点N ,连接PN ,若二次函数的图象C 1与线段PN 有两个交点,直接写出m 的取值范围.23.已知关于x 的方程2(21)(21)10m x m x --++=.(1)求证:不论m为何值,方程必有实数根;(2)当m为整数时,方程是否有有理根?若有,求出m的值;若没有,请说明理由. 24.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连结DE、OE.(1)判断DE与⊙O的位置关系,并说明理由.(2)求证:BC2=2CD•OE.25.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元(1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?【参考答案】***一、选择题二、填空题13.1314.(2215.10 316.2 17.x>318三、解答题19【解析】 【分析】由已知13a a +=套用21a a ⎛⎫+ ⎪⎝⎭=221a a ++2可得221a a +=7,同理可得441a a +=47,21a a ⎛⎫- ⎪⎝⎭=21a a ⎛⎫+⎪⎝⎭-4=5,进而可得结果. 【详解】 解: ∵13a a+=(a >1), ∴21a a ⎛⎫+ ⎪⎝⎭=9,化简得221a a+=7, 两边平方,可得441a a+=49﹣2=47,∵21a a ⎛⎫- ⎪⎝⎭=221a a +﹣2=7﹣2=5,且a >1,∴1a a-, ∴242241111()()()()a a a a aa a a-⨯+⨯+⨯-= 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.代入求值时,有直接代入法,整体代入法等常用方法.解题时可根据题目的具体条件选择合适的方法. 20.乙建筑物的高度CD 约为38m. 【解析】 【分析】作AE ⊥CD 于E ,根据正切的定义分别求出CE 、DE ,得到答案.【详解】解:如图,作AE⊥CD交CD的延长线于点E,则四边形ABCE是矩形.∴AE=BC=78在Rt△ACE中,tan58°=CE AE∴CE=AE ·tan58°≈78×1.60=124.8(m)在Rt△ADE中,tan48°=DE AE∴DE= AE ·tan48°≈78×1.11=86.58(m)∴CD=CE—DE=124.8—86.58≈38(m)即乙建筑物的高度CD约为38m.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.21.(1)10750;(2)220.3904000(0200)0.12010000(200400)x x xyx x x⎧-++<<=⎨-++≤≤⎩;(3)最大利润为10750元.【解析】【分析】(1)根据“利润=销售总额-总成本”结合两种T恤的销售数量代入相关代数式进行求解即可;(2)根据题意,分两种情况进行讨论:①0<m<200;②200≤m≤400时,根据“利润=销售总额-总成本”即可求得各相关函数关系式;(3)求出(2)中各函数最大值,进行比较即可得到结论.【详解】(1)∵甲种T恤进货250件∴乙种T 恤进货量为:400-250=150件故由题意得,()()7550250906015010750-⨯+-⨯=;(2)①()()()20200,0.2120600.1400100504000.390+4000x y x x x x x x <<=-+-+⎡--+-⎤-=-+⎣⎦②()()26000200400,0.14001005040050600.12010000x y x x x x x x ⎛⎫≤≤=⎡--+-⎤-++-=-++⎪⎣⎦⎝⎭; 故220.3904000(0200)0.12010000(200400)x x x y x x x ⎧-++<<=⎨-++≤≤⎩. (3)由题意,100300x ≤≤,①100200x ≤<,()20.315010750y x =--+,max 150,10750x y ∴== ②()2200400,0.110011000,10000x y x y ≤≤=--+∴≤, 综上,最大利润为10750元. 【点睛】本题考查了二次函数的应用,找出题中的等量关系以及根据题意确定二次函数的解析式是解题的关键.22.(1)(﹣1,0)(3,0);(﹣1,0)(5,0);(2)(-1,0); y= 12(x+1);(3)点C 的坐标为(1,0)或(-3,0);(4)- 12<m≤0 【解析】 【分析】(1)①把m=1,y=0分别代入抛物线C1,得到一个一元二次方程,解方程即可求出交点横坐标。
2019中考数学专题复习《二次函数与线段最值问题》含解析
2019中考数学专题复习二次函数与线段最值问题含解析二次函数与线段最值问题一.填空题1.如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为 .二.解答题2.已知函数y=(m+2)x2+kx+n.(1)若此函数为一次函数;①m,k,n的取值范围;②当﹣2≤x≤1时,0≤y≤3,求此函数关系式;③当﹣2≤x≤3时,求此函数的最大值和最小值(用含k,n的代数式表示);(2)若m=﹣1,n=2,当﹣2≤x≤2时,此函数有最小值﹣4,求实数k的值.3.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x、y轴交于A、B、C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标;(2)当a≤x≤b时,函数y的最小值为,最大值为4,求a,b应满足的条件;(3)在y轴右侧的抛物线上是否存在点P,使得三角形PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由.4.已知点A(t,1)为函数y=ax2+bx+4(a,b为常数,且a≠0)与y=x图象的交点.(1)求t;(2)若函数y=ax2+bx+4的图象与x轴只有一个交点,求a,b;(3)若1≤a≤2,设当x≤2时,函数y=ax2+bx+4的最大值为m,最小值为n,求m﹣n的最小值.5.已知y关于x的函数y=nx2﹣2(m+1)x+m+3(1)若m=n=﹣1时,当﹣1≤x≤3时,求函数的最大值和最小值;(2)若n=1,当m取何值时,抛物线顶点最高?(3)若n=2m>0,对于任意m的值,当x<k时,y随x的增大而减小,求k的最大整数;(4)若m=2n≠0,求抛物线与x轴两个交点之间的最短距离.6.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x,y轴交于A,B,C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标.(2)连接AD,CD,CA,求△ACD外接圆圆心E的坐标和半径;(3)当x≤n时,函数y所取得的最大值为4,最小值为1,求n的取值范围.7.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,点A的坐标为(﹣1,0),抛物线的对称轴为直线.点M为线段AB上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=﹣x+n于点C.(1)求直线AC及抛物线的解析式;(2)若,求PC的长;(3)过P作PQ∥AB交抛物线于点Q,过Q作QN⊥x轴于N,若点P在Q左侧,矩形PMNQ的周长记为d,求d的最大值.8.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,点A的坐标为(﹣1,0),抛物线的对称轴为直线x=1.5,点M为线段AB上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=﹣x+n于点C.(1)求直线AC及抛物线的解析式;(2)M位于线段AB的什么位置时,PC最长,并求出此时P点的坐标;(3)若在(2)的条件下,在x轴上方的抛物线上是否存在点Q,使,求点Q的坐标.9.如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F 作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.10.如图,抛物线y=﹣x2+bx+c的图象交x轴于A(﹣2,0),B(1,0)两点.(1)求抛物线的解析式;(2)点M为线段AB上一点(点M不与点A,B重合),过点M作x轴的垂线,与抛物线交于点P,过点P作PC∥AB交抛物线于点C,过点C作CD⊥x轴于点D.若点P在点C的左边,当矩形PCDM的周长最大时,求点M的坐标;(3)在(2)的条件下,当矩形PCDM的周长最大时,连接AC,我们把一条抛物线与直线AC的交点称为该抛物线的“恒定点”,将(1)中的抛物线平移,使其平移后的顶点为(n,2n),若平移后的抛物线总有“恒定点”,请直接写出n的取值范围.11.如图,在平面直角坐标系中,抛物线y x2x+2与x轴交于B、C两点(点B 在点C的左侧),与y轴交于点A,抛物线的顶点为D.(1)填空:点A的坐标为( , ),点B的坐标为( , ),点C的坐标为( , ),点D的坐标为( , );(2)点P是线段BC上的动点(点P不与点B、C重合)①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是线段AB上的动点(点Q不与点A、B重合),点R是线段AC上的动点(点R不与点A、C重合),请直接写出△PQR周长的最小值.12.如图,抛物线与直线相交于A,B两点,若点A在x轴上,点B的坐标是(2,4),抛物线与x轴另一交点为D,并且△ABD的面积为6,直线AB与y轴的交点的坐标为(0,2).点P是线段AB(不与A,B重合)上的一个动点,过点P作x轴的垂线,交抛物线与点Q.(1)分别求出抛物线与直线的解析式;(2)求线段PQ长度的最大值;(3)当PQ取得最大值时,在抛物线上是否存在M、N两点(点M的横坐标小于N的横坐标),使得P、D、M、N为顶点的四边形是平行四边形?若存在,求出MN的坐标;若不存在,请说明理由.13.如图,抛物线y x2x﹣4与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A,B,C的坐标.(2)当点P在线段OB上运动时,直线l分别交BD于点M,求线段MQ长度的最大值.(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.(4)当点P在线段EB上运动时,直线l与菱形BDEC的某一边交于点S,是否存在m 值,使得点C、Q、S、D为顶点的四边形是平行四边形?如果存在,请直接写出m值,不存在,说明理由.14.如图,已知二次函数y=﹣x2﹣2x+3的图象交x轴于A、B两点(A在B左边),交y 轴于C点.(1)求A、B、C三点的坐标和直线AC的解析式;(2)点P是直线AC上方抛物线上一动点(不与A,C重合),过点P作x轴平行线交直线AC于M点,求线段PM的最大值.15.(1)如图,已知二次函数y=﹣x2+2x+3的图象交x轴于A,B两点(A在B左边),直线y=x+1过点A,与抛物线交于点C,点P是直线AC上方抛物线上一动点(不与A,C重合),过点P作y轴平行线交直线AC于Q点,求线段PQ的最大值.(2)在(1)条件下,过点P作y轴垂线交直线AC于Q点,求线段PQ的最大值.16.如图1,抛物线y=﹣x2﹣4x+5与x轴交于点A、B两点,与y轴交于点C,点D为抛物线的顶点.(1)求直线AC的解析式及顶点D的坐标;(2)连接CD,点P是直线AC上方抛物线上一动点(不与点A、C重合),过P作PE∥x轴交直线AC于点E,作PF∥CD交直线AC于点F,当线段PE+PF取最大值时,在抛物线对称轴上找一点L,在y轴上找一点K,连接OL,LK,PK,求线段OL+LK+PK的最小值,并求出此时点L的坐标.(3)如图2,点M(﹣2,﹣1)为抛物线对称轴上一点,点N(2,7)为直线AC上一点,点G为直线AC与抛物线对称轴的交点,连接MN,AM.点H是线段MN上的一个动点,连接GH,将△MGH沿GH翻折得到△M′GH(点M的对称点为M′),问是否存在点H,使得△M′GH与△NGH重合部分的图形为直角三角形,若存在,请求出NH的长,若不存在,请说明理由.17.如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)当D在线段AC上运动时,求点P在运动的过程中线段PD长度的最大值;(3)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.18.如图,在平面直角坐标系xOy中,直线y x交x轴于点A,交y轴于点B,经过点A的抛物线y x2+bx+c交直线AB另一点D,且点D到y轴的距离为8.(1)求抛物线解析式;(2)点P是直线AD上方的抛物线上一动点,(不与点A、D重合),过点P作PE⊥AD于E,过点P作PF∥y轴交AD于F,设△PEF的周长为L,点P的横坐标为m,求L与m的函数关系式,并直接写出自变量m的取值范围;(3)在图(2)的条件下,当L最大时,连接PD.将△PED沿射线PE方向平移,点P、E、F的对应点分别为Q、M、N,当△QMN的顶点M在抛物线上时,求M点的横坐标,并判断此时点N是否在直线PF上.(参考公式:二次函数y=ax2+bx+c(c≠0).当x时,y最大(小)值)19.如图,已知抛物线y=ax2+bx+c(a≠0)过点A(3,0),B(1,0),且与y轴交于点C(0,﹣3),点P是抛物线AC间上一动点,从点C沿抛物线向点A运动(点P 与A、C不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,直接写出点P的坐标;(3)求线段PD的最大值,并求最大值时P点的坐标;(4)在问题(3)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.20.已知二次函数y=ax2+bx+c与x轴只有一个交点,且系数a、b满足条件:.(1)求y=ax2+bx+c解析式;(2)将y=ax2+bx+c向右平移一个单位,再向下平移一个单位得到函数y=mx2+nx+k,该函数交y轴于点C,交x轴于A、B(点A在点B的右侧),点P是该抛物线上一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.当△ADP是直角三角形时,求点P的坐标;(3)在问题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.21.已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P 作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.22.如图1,抛物线y=﹣x2+bx+c经过点A(2,0),B(0,2),与x轴交于另一点C.(1)求抛物线的解析式及点C的坐标;(2)点P是抛物线y=﹣x2+bx+c在第一象限上的点,过点P分别向x轴、y轴作垂线,垂足分别为D,E,求四边形ODPE的周长的最大值;(3)如图2,点P是抛物线y=﹣x2+bx+c在第一象限上的点,过点P作PN⊥x轴,垂足为N,交AB于M,连接PB,PA.设点P的横坐标为t,当△ABP的面积等于△ABC面积的时,求t的值.23.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,与y轴交于点C,三个交点的坐标分别为A(﹣1,0),B(3,0),C(0,3).(1)求抛物线的解析式及顶点D的坐标;(2)若P为线段BD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAC面积的最大值和此时P点的坐标;(3)若点P是抛物线在第一象限上的一个动点,过点P作PQ∥AC交x轴于点Q.当点P的坐标为 时,四边形PQAC是平行四边形;(直接写出结果,不写求解过程).24.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线1与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,设P点的横坐标为m.①求线段PE长度的最大值;②点P将线段AC分割成长、短两条线段PA、PC,如果较长线段与AC之比等于,则称P为线段AC的“黄金分割点”,请直接写出使得P为线段AC黄金分割点的m的值.25.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE 长度的最大值;(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.26.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE 长度的最大值.27.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,(不与A、C重合),过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值,并直接写出△ACE面积的最大值;(3)点G为抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,请说明理由.28.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,当点P运动到什么位置时,△ACE的面积最大?求出此时P点的坐标和S△ACE的最大值;(3)点G是抛物线上的动点,在x轴上是否存在点F,使以A、C、F、G为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,请说明理由.29.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点.求线段PE 长度的最大值;(3)若点G是抛物线上的动点,点F是x轴上的动点,判断有几个位置能使以点A、C、F、G为顶点的四边形为平行四边形,直接写出相应的点F的坐标.30.如图,抛物线y=﹣x2﹣2x+3与x轴交A、B两点(A点在B点右侧),直线l与抛物线交于A、C两点,其中C点的横坐标为﹣2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)若点P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求当点P坐标为多少时,线段PE长度有最大值,最大值是多少?(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.二次函数与线段最值问题参考答案与试题解析一.填空题1.如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为 6 .【考点】H5:二次函数图象上点的坐标特征.【分析】设P(x,y)(2>x>0,y>0),根据矩形的周长公式得到C=﹣2(x﹣1)2+6.根据二次函数的性质来求最值即可.【解答】解:∵y=﹣x2+x+2,∴当y=0时,﹣x2+x+2=0即﹣(x﹣2)(x+1)=0,解得x=2或x=﹣1故设P(x,y)(2>x>0,y>0),∴C=2(x+y)=2(x﹣x2+x+2)=﹣2(x﹣1)2+6.∴当x=1时,C最大值=6,.即四边形OAPB周长的最大值为6.故答案是:6.【点评】本题考查了二次函数的最值,二次函数图象上点的坐标特征.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.本题采用了配方法.二.解答题2.已知函数y=(m+2)x2+kx+n.(1)若此函数为一次函数;①m,k,n的取值范围;②当﹣2≤x≤1时,0≤y≤3,求此函数关系式;③当﹣2≤x≤3时,求此函数的最大值和最小值(用含k,n的代数式表示);(2)若m=﹣1,n=2,当﹣2≤x≤2时,此函数有最小值﹣4,求实数k的值.【考点】F5:一次函数的性质;H7:二次函数的最值.【分析】(1)①根据二次项系数为0,一次项系数不为0,常数项为任意实数解答即可;②根据k>0,k<0时x、y的对应关系确定直线经过的点的坐标,求出解析式;③根据一次函数的性质即增减性解答即可;(2)把m=﹣1,n=2代入关系式,得到二次函数解析式,确定对称轴,顶点坐标,分情况讨论求出k的值.【解答】解:(1)①m=﹣2,k≠0,n为任意实数;②当k>0时,直线经过(﹣2,0)(1,3),函数关系式为:y=x+2当k<0时,直线经过(﹣2,3)(1,0),函数关系式为:y=﹣x+1③当k>0时,x=﹣2,y有最小值为﹣2k+nx=3时,y有最大值为3k+n当k<0时,x=﹣2,y有最大值为﹣2k+nx=3时,y有最小值为3k+n(2)若m=﹣1,n=2时,二次函数为y=x2+kx+2对称轴为x,当2,即k≥4时,把x=﹣2,y=﹣4代入关系式得:k=5当﹣22,即﹣4<k<4时,把x,y=﹣4代入关系式得:k=±2(不合题意)当2,即k≤﹣4时,把x=2,y=﹣4代入关系式得:k=﹣5.所以实数k的值为±5.【点评】本题考查了一次函数的概念、一次函数的性质、一次函数最值的应用以及二次函数的性质,综合性较强,需要学生灵活运用性质,把握一次函数的增减性和二次函数的增减性,解答题目.3.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x、y轴交于A、B、C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标;(2)当a≤x≤b时,函数y的最小值为,最大值为4,求a,b应满足的条件;(3)在y轴右侧的抛物线上是否存在点P,使得三角形PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)先把A(3,0)代入y=﹣x2+2(m﹣2)x+3,得到关于m的方程,解方程求出m的值,再利用配方法将二次函数写成顶点式,即可求出顶点D的坐标;(2)先把y=1代入y=﹣x2+2x+3,得到方程1x2+2x+3,解方程求出x1,x2,再利用二次函数的性质结合图象即可得出a,b应满足的条件;(3)先求出二次函数与y轴交点C的坐标,当三角形PDC是等腰三角形时,分三种情况进行讨论:①当DC=DP时,易求点P坐标为(2,3);②当PC=PD时,过点D 作x轴的平行线,交y轴于点H,过点P作PM⊥y轴于点M,PN⊥DH于点N.由HD=HC,PC=PD,根据线段垂直平分线的判定与等腰三角形的性质得出HP平分∠MHN,再由线段垂直平分线的性质得出PM=PN.设P(m,﹣m2+2m+3),则m=4﹣(﹣m2+2m+3),解方程求出m的值,得出点P的坐标为或;③当CD=CP时,不符合题意.【解答】解:(1)把A(3,0)代入y=﹣x2+2(m﹣2)x+3,得﹣9+6(m﹣2)+3=0,解得m=3.则二次函数为y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4);(2)把y=1代入y=﹣x2+2x+3,得1x2+2x+3,解得x1,x2,结合图象知a≤1.当a时,1≤b,当a≤1时,b;(3)x=0时,y=3,所以点C坐标为(0,3).当三角形PDC是等腰三角形时,分三种情况:①如图1,当DC=DP时,∵点P与点C关于抛物线的对称轴x=1对称,∴点P坐标为(2,3);②如图2,当PC=PD时,过点D作x轴的平行线,交y轴于点H,过点P作PM⊥y 轴于点M,PN⊥DH于点N.∵HD=HC=1,PC=PD,∴HP是线段CD的垂直平分线.∵HD=HC,HP⊥CD,∴HP平分∠MHN,∵PM⊥y轴于点M,PN⊥DH于点N,∴PM=PN.设P(m,﹣m2+2m+3),则m=4﹣(﹣m2+2m+3),解得m,∴P的坐标为或;③如图3,当CD=CP时,点P在y轴左侧,不符合题意.综上所述,所求点P的坐标为(2,3)或或.【点评】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数的解析式,抛物线顶点坐标的求法,二次函数的性质,线段垂直平分线的判定与性质,等腰三角形的性质,综合性较强,难度适中.利用数形结合、分类讨论及方程思想是解题的关键.4.已知点A(t,1)为函数y=ax2+bx+4(a,b为常数,且a≠0)与y=x图象的交点.(1)求t;(2)若函数y=ax2+bx+4的图象与x轴只有一个交点,求a,b;(3)若1≤a≤2,设当x≤2时,函数y=ax2+bx+4的最大值为m,最小值为n,求m﹣n的最小值.【考点】H7:二次函数的最值;HA:抛物线与x轴的交点.【分析】(1)把A(t,1)代入y=x即可得到结论;(2)根据题意得方程组,解方程组即可得到结论;(3)把A(1,1)代入y=ax2+bx+4得,b=﹣3﹣a,得到y=ax2﹣(a+3)x+4的对称轴为直线x,根据1≤a≤2,得到对称轴的取值范围x≤2,当x时,得到m,当x=2时,得到n,即可得到结论.【解答】解:(1)把A(t,1)代入y=x得t=1;(2)∵y=ax2+bx+4的图象与x轴只有一个交点,∴,∴或;(3)把A(1,1)代入y=ax2+bx+4得,b=﹣3﹣a,∴y=ax2﹣(a+3)x+4=a(x)2,∴对称轴为直线x,∵1≤a≤2,∴x2,∵x≤2,∴当x时,y=ax2+bx+4的最大值为m,当x=2时,n,∴m﹣n,∵1≤a≤2,∴当a=2时,m﹣n的值最小,即m﹣n的最小值.【点评】本题考查了抛物线与x轴的交点,二次函数的最值,正确的理解题意是解题的关键.5.已知y关于x的函数y=nx2﹣2(m+1)x+m+3(1)若m=n=﹣1时,当﹣1≤x≤3时,求函数的最大值和最小值;(2)若n=1,当m取何值时,抛物线顶点最高?(3)若n=2m>0,对于任意m的值,当x<k时,y随x的增大而减小,求k的最大整数;(4)若m=2n≠0,求抛物线与x轴两个交点之间的最短距离.【考点】H3:二次函数的性质;H7:二次函数的最值;HA:抛物线与x轴的交点.【分析】(1)利用待定系数法即可解决问题;(2)构建二次函数,利用二次函数的性质即可解决问题;(3)抛物线的解析式为y=2mx2﹣2(m+1)x+m+3,对称轴x,因为对于任意m的值,当x<k时,y随x的增大而减小,所以k,由此即可解决问题;(4)构建二次函数,利用二次函数的性质,解决最值问题;【解答】解:(1)当m=n=﹣1时,函数解析式为y=﹣x2+2,顶点坐标为(0,2),函数最大值为2,∵﹣1≤x≤3,x=﹣1时,y=1,x=3时,y=﹣7.∴函数的最大值为2和最小值为﹣7.(2)n=1时,函数解析式为y=x2﹣2(m+1)x+m+3,∵顶点的纵坐标m2﹣m+2,∵﹣1<0,∴m时,抛物线顶点的纵坐标最大,顶点最高.(3)∵n=2m,∴抛物线的解析式为y=2mx2﹣2(m+1)x+m+3,对称轴x,∵对于任意m的值,当x<k时,y随x的增大而减小,∴k,∴k的最大整数为0.(4)∵m=2n,∴抛物线的解析式为y=nx2﹣2(2n+1)x+2n+3,设抛物线与x轴的交点为(x1,0)和(x2,0),则|x1﹣x2|,∴当时,抛物线与x轴两个交点之间的距离最短,最小值为.【点评】本题考查抛物线与x轴的交点、二次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建二次函数解决最值问题,所以中考常考题型.6.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x,y轴交于A,B,C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标.(2)连接AD,CD,CA,求△ACD外接圆圆心E的坐标和半径;(3)当x≤n时,函数y所取得的最大值为4,最小值为1,求n的取值范围.【考点】HF:二次函数综合题.【分析】(1)把A点坐标代入可求得m的值,可求得二次函数解析式,化为顶点式可求得D的坐标;(2)利用两点间的距离公式可求得AC、CD、AD,可知△ACD为直角三角形,AD为斜边,可知E为AC的中点,可求得E的坐标及半径;(3)当x时,可求得y=1,且当x=1时y=4,根据二次函数的对称性可求得n的范围.【解答】解:(1)∵抛物线过A点,∴代入二次函数解析式可得﹣9+6(m﹣2)+3=0,解得m=3,∴二次函数为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D为(1,4);(2)由(1)可求得C坐标为(0,3),∴AC3,CD,AD2,∴AC2+CD2=AD2,∴△ACD为直角三角形,∴E为AD的中点,∴E点坐标为(2,2),外接圆的半径r AD;(3)当x时,y=1,当x=1时,y=4,∴当x≤1时,1y≤4,根据二次函数的对称性可知当1≤x时,1y≤4,∴1≤n.【点评】本题主要考查待定系数法求函数解析式及二次函数的顶点坐标、增减性、及直角三角形的判定等知识的综合应用.在(1)中掌握点的坐标满足函数的解析式是解题的关键,在(2)中判定出△ACD为直角三角形是解题的关键,在(3)中利用二次函数的对称性,结合二次函数在对称轴两侧的增减性可确定出n的范围.本题难度不大,注重基础知识的综合,较易得分.7.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,点A的坐标为(﹣1,0),抛物线的对称轴为直线.点M为线段AB上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=﹣x+n于点C.(1)求直线AC及抛物线的解析式;(2)若,求PC的长;(3)过P作PQ∥AB交抛物线于点Q,过Q作QN⊥x轴于N,若点P在Q左侧,矩形PMNQ的周长记为d,求d的最大值.【考点】HF:二次函数综合题.【分析】(1)将A(﹣1,0)代入y=﹣x+n,运用待定系数法求出直线AC的解析式;根据抛物线的对称轴为x,把点A的坐标代入y=ax2+bx+2,组成关于a、b的二元一次方程组,求解即可得到抛物线的解析式;(2)设M点横坐标为m,则P(m,m2m+2),C(m,﹣m﹣1),得出PMm2m+2,PC m2m+3.由PM,得到m2m+2,即m2=3m+1,m,进而求出PC;(3)设M点横坐标为m,则PM m2m+2,MN=2(m)=3﹣2m,矩形PMNQ的周长d=﹣m2﹣m+10,将﹣m2﹣m+10配方,根据二次函数的性质,即可得出矩形PMNQ的周长的最大值.【解答】解:(1)∵直线y=﹣x+n过点A(﹣1,0),∴0=1+n,解得n=﹣1,∴直线AC的解析式为y=﹣x﹣1;∵抛物线y=ax2+bx+2的对称轴为直线x,经过点A(﹣1,0),∴,解得.∴抛物线的解析式是:y x2x+2;(2)如图,设M点横坐标为m,则P点坐标为(m,m2m+2),C点坐标为(m,﹣m﹣1).∵点M为线段AB上一点,∴﹣1<m<4.∴PM m2m+2,PC=(m2m+2)﹣(﹣m﹣1)m2m+3.∵PM,∴m2m+2,整理,得m2﹣3m﹣1=0,∴m2=3m+1,m,∴PC m2m+3(3m+1)m+3=m,∴当m时,PC;(3)设M点横坐标为m,则PM m2m+2,MN=2(m)=3﹣2m,∴矩形PMNQ的周长d=2(PM+MN)=2(m2m+2+3﹣2m)=﹣m2﹣m+10.∵﹣m2﹣m+10=﹣(m)2,∴当m时,d有最大值.【点评】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求一次函数、二次函数的解析式,平行于坐标轴上的两点之间的距离,矩形的性质,一元二次方程的解法,二次函数最值的求法,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.8.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,点A的坐标为(﹣1,0),抛物线的对称轴为直线x=1.5,点M为线段AB上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=﹣x+n于点C.(1)求直线AC及抛物线的解析式;(2)M位于线段AB的什么位置时,PC最长,并求出此时P点的坐标;(3)若在(2)的条件下,在x轴上方的抛物线上是否存在点Q,使,求点Q的坐标.【考点】HF:二次函数综合题.【分析】(1)将A(﹣1,0)代入y=﹣x+n,运用待定系数法求出直线AC的解析式;根据抛物线的对称轴为x,把点A的坐标代入y=ax2+bx+2,组成关于a、b的二元一次方程组,求解即可得到抛物线的解析式;(2)设M点横坐标为m,则P(m,m2m+2),C(m,﹣m﹣1),得出PMm2m+2,化成顶点式即可;(3)根据抛物线的对称轴和A的坐标,求得B的坐标,求得AB,从而求得三角形APB的面积,进而求得三角形ABQ的面积,得出Q的纵坐标,把纵坐标代入抛物线的解析式即可求得横坐标,从而求得Q的坐标.【解答】解:(1)∵直线y=﹣x+n过点A(﹣1,0),∴0=1+n,解得n=﹣1,∴直线AC的解析式为y=﹣x﹣1;∵抛物线y=ax2+bx+2的对称轴为直线x,经过点A(﹣1,0),∴,解得.∴抛物线的解析式是:y x2x+2;(2)如图,设M点横坐标为m,则P点坐标为(m,m2m+2),C点坐标为(m,﹣m﹣1).∵点M为线段AB上一点,∴﹣1<m<4.∴PC=(m2m+2)﹣(﹣m﹣1)m2m+3.∵PC m2m+3(m)2,所以,当m时,PC最长,此时P(,),AM;(3)存在;∵抛物线y=ax2+bx+2的对称轴为直线x,经过点A(﹣1,0),∴B(4,0)∴AB=5,∵S△APB AB•PM5,∵,∴S△ABQ,设Q点纵坐标为n,∵S△ABQ AB•n,∴n,(或n这样计算比较方便),∴x2x+2,解得:x或x,∴Q(,)或(,)【点评】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求一次函数、二次函数的解析式,平行于坐标轴上的两点之间的距离,一元二次方程的解法,二次函数最值的求法,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.9.如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F 作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.【考点】HF:二次函数综合题.【专题】153:代数几何综合题;16:压轴题.。
2019最新版历年中考数学试卷易错题知识点汇总299325
最新版历年中考数学试卷易错题知识点汇总学校:__________考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.在△ABC 中,AB = BC ,∠A =80°, 则∠B 的度数是( )A .100°B .80°C . 20D . 80°或 20°2.若2a b -=,1a c -=,则22(2)()a b c c a --+- =( )A .10B .9C .2D .13.如果改动三项式2246a ab b -+中的某一项,能使它变为完全平方式,那么改动的办法是( )A .可以改动三项中的任意一项B .只能改动第一项C .只能改动第二项D .只能改动第三项4.某商店销售一批服装,每件售价 150 元,可获利 25%,求这种服装的成本价. 设这种服装的成本价为x 元,则得到方程( )A .15025%x =⨯B .25%150x ⋅=C .15025%x x -=D .15025%x -=5.若220a b a b x y -+--=是二元一次方程,那么a 、b 的值分别是( )A .1,0B .0,-1C .2,1D .2,-36.下列方程中,是二元一次方程的是( )A .5=+y xB .132=+y xC .3=xyD .21=+y x7.方程组5210x y x y +=⎧⎨+=⎩ ,由②-①,得正确的方程是( ) A . 310x =B . 5x =C . 35x =-D . 5x =- 8.已知方程组42ax by ax by -=⎧⎨+=⎩的解为21x y =⎧⎨=⎩,则2a-3b 的值为( ) A .4 B .6 C .-6 D .-4① ②9.下列各等式中正确的是( )A .(x-2y )2=x 2-2xy+4y 2B .(3x+2)2=3x 2+12x+4C .(-3x-y )2=9x 2-6xy+y 2D .(-2x-y )2=4x 2+4xy+y 210.如图,点A 在⊙0上,下列条件不能说明PA 是⊙O 的切线的是( )A .OA 2+PA 2=0P 2B .PA ⊥OAC .∠P=30°,∠O=60°D .0P=20A 11.若关于x 的方程652m x =-的根为 1,则m 等于( ) A . 1 B . 8 C .18 D . 4212.小珍用 12. 4 元恰好买了单价为 0.8 元和1. 2 元两种贺卡共 12 张,则其中单价为0. 8元的贺卡有( )A .5 张B .7 张C .6 张D . 4 张13.有下列长度的三条线段:①3、3、1;②2、2、4;③4、5、6;④4、4、3. 其中能构成等腰三角形的有( )A . ①④B . ①②④C . ②④D . ①②14.如图是一个正三棱柱,它的俯视图为( )15.如图是由若干个同样大小的立方体搭成的几何体的俯视图,小正方形中的数字表示 的是该位置上立方体的个数,则这个几何体的主视图是( )A .B .C .D .16.甲、乙两个学生在一年里学科平均分相等,但他们的方差不相等,正确评价他们的学习情况是( )A .因为他们的平均分相等,所以学习水平一样B .成绩虽然一样,方差较大的,说明潜力大,学习态度踏实C .表面上看这两个学生平均成绩一样,但方差小的学习成绩稳定D .平均分相等,方差不等,说明学习水平不一样,方差较小的同学,学习成绩不稳定,忽高忽低17.刘翔在今年五月结束的“好运北京”田径测试赛中获得了110m 栏的冠军.赛前他进行了刻苦训练,如果对他10次训练成绩进行统计分析,判断他的成绩是否稳定,则需要知道刘翔这10次成绩的( )。
2019年数学中考考点汇总
2019年数学中考考点汇总
中考考点直击
考点1:数的简单计算或判断对错(相反数、倒数、绝对值、平方根、立方根)
考点2:三视图、轴对称图形和中心对称图形
考点3:科学计数法
考点4:式的简单计算或判断对错(幂的计算、乘法公式、根式与分式等计算)
考点5:概率统计(统计三数和求简单事件的概率,小题)
考点6:式子有意义条件及非负数之和
考点7:因式分解考点
8:正多边形的内角、外角和
考点9:三角形的边、角、线
考点10:函数图像(小题)考点
11:相交线、平行线以及所产生的角之间的关系
考点12:特殊四边形的性质和判定考。
2019年中考数学分类汇编汇总知识点39投影、三视图与展开图(第一期)解析版
2. ( 2019江苏省无锡市,5,3) —个几何体的主视图、 左视图、俯视图都是长方形,这个几何体可能是 ( )A.长方体B.四棱锥C.三棱锥D.圆锥【答案】A【解析】 本题考查了由视图判断几何体,主视图、左视图、俯视图都是长方形的几何体是长方体,故选 A.【知识点】三视图3. (20佃山东滨州,4,3分)如图,一个几何体由5个大小相同、棱长为 1的小正方体搭成,下列说法正确的 A •主视图的面积为 4 B •左视图的面积为 4 C .俯视图的面积为 3 D •三种视图的面积都是 4【答案】A【解析】 观察该几何体,主视图有四个小正方形,面积为 4 ;左视图有3个小正方形,面积为 3;俯视图有四个 小正方形,面积为 4,故A 正确. 【知识点】三视图4. (2019山东省济宁市,7, 3分)如图,一个几何体上半部为正四校锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是()ABC D【答案】B【解析】 选项A 和C 带图案的一个面是底面,不能折叠成原几何体的形式;选项 B 能折叠成原几何体的形式;选项D 折叠后下面带三角形的面与原几何体中的位置不同.一、选择题 1. ( 20佃湖南省岳F 列立体图形中,俯视图不是圆的是(A【答案】C 【解析】 正方体的俯视图与正方形,其它三个的俯视图都是圆,故选择【知识点】物体的三视图△【知识点】立体图形的展开图5. (2019山东聊城,2,3分)如图所示的几何体的左视图是A R C D第2题图【答案】B【解析】A中间是虚线,•••是从右边看得到的图形,故A错误;B是左视图,正确;C是主视图,故C错误;D是俯视图,故D错误;故选B.【知识点】三视图6.(2019山东省潍坊市,4, 3分)如图是由10个同样大小的小正方体摆成的几何体,将小正方体①移走后,则关于新几何体的三视图描述正确的是()A.俯视图不变,左视图不变B.主视图改变,左视图改变C•俯视图不变,主视图不变D•主视图改变,俯视图改变【答案】A【解析】通过小正方体①的位置可知,只有从正面看会少一个正方形,故主视图会改变,而俯视图和左视图不变,故选择A. 【知识点】三视图7.(2019山东淄博,3, 4分)下列几何体中,其主视图、左视图和俯视图完全相同的是()【答案】D.【解析】:A 、圆柱的主视图和左视图是长方形、俯视图是圆形,故本选项不符合题意;B、三棱柱的主视图和左视图是相同的长方形,但是俯视图是一个三角形,故本选项不符合题意;C、长方体的主视图和左视图是不一样的长方形,俯视图也是一个长方形,故本选项不符合题意;D、球体的主视图、左视图和俯视图是相同的圆,故本选项符合题意.故选:D .【知识点】简单几何体的三视图8. (2019四川巴中,4,4分)如图是由一些小立方体与圆锥组合成的立体图形,它的主视图是()【答案】C【解析】从正面看这个组合体,可以看到四个正方体和一个圆锥的侧面 方形,右边是三角形,故选C.【知识点】三视图 4,3分)下图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该【知识点】三视图10. (20佃四川省眉山市,3,3 分)如图是由6个完全相同的小正方体组成的立体图形,它的左视图 是【答案】D【解析】解:从左侧看,共有 3列,第一列有两个正方形,第二列有一个正方形,第三列有一个正方形,故选D.【知识点】立体图形的三视图11. (2019四川省自贡市,5,4分)下图是一个水平放置的全封闭物体,则它的俯视图是( )rL 一 ■ ■・9.( 2019四川达州,题号 位置小立方块的个数,这个几何体的左视图是()【解析】这个几何体的第一行有三层,第二行有一层,故应选 CA B C D【答案】C.【解析】解:俯视图就是从上面看,从上面看可以看到两个矩形,并且都是实线故选C.【知识点】三视图12. (2019天津市,5,3分)右图是一个由6个相同的正方体组成的立体图形,它的主视图是【解析】从正面看由两层组成,上面一层 1个正方形,下面一层三个正方形,所以选 B【知识点】三视图•13. (2019浙江宁波,5题,4分)如图,下列关于物体的主视图画法正确的是【答案】A【解析】本题考查主视图的识别,该几何体从正面看看到的图形是 【知识点】三视图15. (2019浙江台州,2题,4分)如图是某几何体的三视图第2题图 【答案】C【解析】圆柱从正面看是长方形,从左面看底面是圆形,从上面看是长方形,符合图示的三视图 【知识点】几何体三视图/主盘方闻 第5题图 【答案】C 【解析】 如图所示是一个空心圆柱,其左视图轮廓应该是长方形,内部的两条线段看不到,应该用虚线表示 【知识点】三视图的画法 14. ( 20佃浙江省衢州市, 3,3分)如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图 ,故选C.是(A )£视方商C. D.A.长方体B.正方体C.圆柱D.球A 图,故选A 。
2019最新版历年中考数学试卷易错题知识点汇总295269
最新版历年中考数学试卷易错题知识点汇总学校:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.三角形的三边长a 、b 、c 满足等式22()2a b c ab +-=,则此三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形2.计算:3÷6的结果是( )A .12B .62C .32D .2 3.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( )A .13cmB .6cmC .5cmD .4cm4.在“工、木、口、民、公、晶、离”这几个汉字中,是轴对称的有( )A .2个B .3个C .4个D .5个5.下列各式中,是分式的个数有( )①2a ;②3a -;③2c d -;④2a b -;⑤s a b +;⑥4y x-. A .1 个B . 2个C .3个D .4个 6.下列事件中,届于不确定事件的是( )A .2008年奥运会在北京举行B .太阳从西边升起C .在1,2,3,4中任取一个教比 5大D .打开数学书就翻到第10页7.下列说法中,正确的是( )A .一颗质地均匀的骰子已连续抛掷了 2000次,其中抛掷出 5点的次数最少,则第2001次一定抛掷出 5点B .某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C .天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D .抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等8.计算43x x ÷结果是( )A . xB . 1C .7xD .1x 9.与分式2x y的值相等的是( ) A .222x y ++ B .63x y C .3(2x)y D .2xy -10.下列各图中,正确画出△ABC 的AC 边上的高的是( )A .B .C .D .11.下面三种说法:①两个能够重合的三角形是全等三角形;②全等三角形的形状和大小相同;③全等三角形的面积相等.其中正确的个数有 ( )A .3个B .2个C .1个D .0个12.如图,EA ⊥AB ,BC ⊥AB ,AB=AE=2BC ,D 为AB 的中点,有以下判断:(1)DE=AC ;(2)DE ⊥AC ;(3)∠CAB=30°;(4)∠EAF=∠ADE ,其中不正确结论的个数有( )A .0个B .l 个C .2个D .以上选项均错误13.如图,在ABC ∆中,AB=AC=10,AB 的垂直平分线交AC 于G ,BC=7,则GBC ∆的周长是( )A .10B .20C .17D .1314.下列语句中,不是命题的是 ( )A .两点之间线段最短B .不平行的两条直线有一个交点C .x 与y 的和等于0吗D .对顶角不相等15.在同一平面内,两条直线可能的位置关系是( )A .平行B .相交C .平行或相交D .平行、相交或垂直。
2019年全国各地中考数学试题分类汇编(第一期) 专题36 规律探索(含解析)
规律探索一.选择题1. (2019•山东省济宁市 •3分)已知有理数a ≠1,我们把称为a 的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=.如果a 1=﹣2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数……依此类推,那么a 1+a 2+…+a 100的值是( ) A .﹣7.5B .7.5C .5.5D .﹣5.5【考点】数字的变化【分析】求出数列的前4个数,从而得出这个数列以﹣2,,依次循环,且﹣2++=﹣,再求出这100个数中有多少个周期,从而得出答案. 【解答】解:∵a 1=﹣2, ∴a 2==,a 3==,a 4==﹣2,……∴这个数列以﹣2,,依次循环,且﹣2++=﹣, ∵100÷3=33…1,∴a 1+a 2+…+a 100=33×(﹣)﹣2=﹣=﹣7.5,故选:A .【点评】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况. 2. (2019•广东深圳•3分)定义一种新运算:⎰-=⋅-abn n n b a dx x n 1,例如:⎰-=⋅khh k xdx 222,若⎰-=--m522mdx x ,则m =( )A. -2B. 52-C. 2D.52【答案】B 【解析】⎰-=-=-=----m51122511)5(mmm m m dx x ,则m =52-,故选B.3.(2019,山东枣庄,3分)如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( )A.B.C.D.【分析】根据题意知原图形中各行、各列中点数之和为10,据此可得.【解答】解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有故选:D.【点评】本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10.4. (2019•湖北十堰•3分)一列数按某规律排列如下:,,,,,,,,,,…,若第n个数为,则n=()A.50 B.60 C.62 D.71【分析】根据题目中的数据可以发现,分子变化是1,(1,2),(1,2,3),…,分母变化是1,(2,1),(3,2,1),…,从而可以求得第n个数为时n的值,本题得意解决.【解答】解:,,,,,,,,,,…,可写为:,(,),(,,),(,,,),…,∴分母为11开头到分母为1的数有11个,分别为,∴第n个数为,则n=1+2+3+4+…+10+5=60,故选:B.【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.5. (2019•湖北武汉•3分)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251.252.…、299.2100.若250=a,用含a的式子表示这组数的和是()A.2a2﹣2a B.2a2﹣2a﹣2 C.2a2﹣a D.2a2+a【分析】由等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2,得出规律:2+22+23+…+2n=2n+1﹣2,那么250+251+252+…+299+2100=(2+22+23+…+2100)﹣(2+22+23+…+249),将规律代入计算即可.【解答】解:∵2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…∴2+22+23+…+2n=2n+1﹣2,∴250+251+252+…+299+2100=(2+22+23+...+2100)﹣(2+22+23+ (249)=(2101﹣2)﹣(250﹣2)=2101﹣250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2﹣a.故选:C.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1﹣2.二.填空题1. (2019•江苏连云港•3分)如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1.2.3.4.5.6.7.8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,1,3),按此方法,则点C的坐标可表示为(2,4,2).【分析】根据点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,1,3)得到经过点的三条直线对应着等边三角形三边上的三个数,依次为左、右,下,即为该点的坐标,于是得到结论.【解答】解:根据题意得,点C的坐标可表示为(2,4,2),故答案为:(2,4,2).【点评】本题考查了规律型:点的坐标,等边三角形的性质,找出题中的规律是解题的关键.2.(2019•浙江衢州•4分)如图,由两个长为2,宽为1的长方形组成“7”字图形。
2019年中考数学知识点总结(完整版)
中考数学复习资料第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a≥0;若|a|=-a ,则a≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0)0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
2019年中考数学28个考点一定要吃透
2019年中考数学28个考点一定要吃透各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢很多省份开始中考,根据统计,初中数学中有很多重难点,也是大多数同学的易错点!很多同学会在一些基础题上粗心,虽说是粗心,归根结底也是没有掌握牢固。
再者,一些稍许设置陷阱的题,只有班上少数数学成绩较好的同学能够幸免。
其他同学几乎都做错了,所以,这类似的题就极具代表性了,是典型题。
这些常考、易错的知识点做了一个总结!!可以说中考必考,都是初中时期的典型重点,尤其是在期末考试之前就必须“吃透”。
一、相似三角形考点1相似三角形的概念、相似比的意义、画图形的放大和缩小考核要求理解相似形的概念;掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。
考点2平行线分线段成比例定理、三角形一边的平行线的有关定理考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。
注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。
考点3相似三角形的概念考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
考点4相似三角形的判定和性质及其应用考核要求:熟练掌握相似三角形的判定定理和性质,并能较好地应用。
考点5三角形的重心考核要求:知道重心的定义并初步应用。
考点6向量的有关概念考点7向量的加法、减法、实数与向量相乘、向量的线性运算考核要求:掌握实数与向量相乘、向量的线性运算二、锐角三角比考点8:锐角三角比的概念,30度、45度、60度角的三角比值。
考点9:解直角三角形及其应用考核要求:理解解直角三角形的意义;会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。
各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢。
2019最新版历年中考数学试卷易错题知识点汇总341237
最新版历年中考数学试卷易错题知识点汇总学校:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全一样的玻璃.那么最省事的办法是带( )A .①B .②C .③D .①和②2.在△ABC 中,AB= 14,BC= 2x ,AC= 3x ,则x 的取值范围是( )A . 2.8x >B .2.814x <<C .14x <D .714x << 3.2222)(4)(12)(9b a b a b a ++-+-因式分解的结果是( )A .2)5(b a -B .2)5(b a +C .)23)(23(b a b a +-D .2)25(b a - 4.AD 是△ABC 中BC 边上的中线,若AB =4,AC =6,则AD 的取值范围是( ) A .AD >1 B .AD <5 C .1<AD <5 D .2<AD <105.如图所示的图形由四个相同的正方形组成,通过旋转不可能得到的图形是( •)6.甲、乙、丙三个同学排成一排拍照,则甲排在中间的概率是( )A .16B .14C .13D .127.如图所示,在4×4的正方形网格中,∠1,∠2,∠3的大小关系是( )A .∠1>∠2>∠3B .∠l<∠2=∠3C .∠1=∠2>∠3D .∠1=∠2=∠38. 小王身上只有 2元和 5元两种面值的人民币,他买一件学习用品要支付27元,则付款的( )A .1种B .2种C .3种D .4种9. 下列方程中,是二元一次方程的是( )A .230x +=B .122x y -=C .351x y -=D .3xy =10.如图,把图形沿BC 对折,点A 和点D 重合,那么图中共有全等三角形( )A . 1对B .2对C .3对D .4对11.4a 7b 5c 3÷(-16a 3b 2c )÷81a 4b 3c 2等于( ) A .aB .1C .-2D .-1 12.若关于x 的方程652m x =-的根为 1,则m 等于( ) A . 1 B . 8 C .18 D . 4213.如图是一个可以自由转动的转盘,转动这个转盘,当它停止转动时,指针最可能停留的区域是( )A .1B . 2C . 3D . 414.如图 是一个自 由转动的转盘,转动这个转盘,当它停止转动时,指针最有可能停留的区域是( )A . A 区域B .B 区域C .C 区域D . D 区域15.如图所示,把直线1l 沿箭头方向平移2.5 cm ,得直线2l , 则这两条直线之间的距离是( )A .等于 2.5 cmB .小于2.5 cmC .大于2.5 cmD . 以上都不对。
(完整版)2019年中考数学专题复习第二十讲多边形与平行四边形(含详细参考答案)
2019 年中考数学专题复习第五章四边形第二十讲多边形与平行四边形【基础知识回顾】一、多边形:1、定义:在平面内,由若干条不在同一直线上的线段相连组成的图形叫做多边形,各边相等、也相等的多边形叫做正多边形2、多边形的内外角和:n(n≥3)的内角和是外角和是正n 边形的每个外角的度数是,每个内角的度数是。
3、多边形的对角线:多边形的对角线是连接多边形的两个顶点的线段,从n 边形的一个顶点出发有条对角线,将多边形分成个三角形,一个n 边形共有条对边线【名师提醒:1、三角形是边数最少的多边形2、所有的正多边形都是轴对称图形,正n 边形共有条对称轴,边数为数的正多边形也是中心对称图形】二、平面图形的密铺:1、定义:用、完全相同的一种或几种平面图形进行拼接,彼此之间、地铺成一起,这就是平面图形的密铺,又称作平面图形的。
2、密铺的方法:⑴用同一种正多边形密铺,可以用、或⑵用两种正多边形密铺,组合方式有:和、和、和等几种【名师提醒:能密铺的图形在一个拼接处的特点:几个图形的内角拼接在一起时,其和等于并使相等的边互相平合】三、平行四边形1、定义:两组对边分别的四边形是平行四边形,平行四边形ABCD 可表示为2、平行四边形的特质:⑴平行四边形的两组对边分别⑵平行四边形的两组对角分别⑶平行四边形的对角线【名师提醒:1、平行四边形是对称图形,对称中心是过对角线交点的任一直线被一组对边截得的线段该直线将原平行四边形分成全等的两个部分】3、平行四边形的判定:⑴用定义判定⑵两组对边分别的四边形是平行四边形⑶一组对边的四边形是平行四边形⑷两组对角分别的四边形是平行四边形⑸对角线的四边形是平行四边形【名师提醒:特别的:一组对边平行,另一组对边相等的四边形和一组对边相等、一组对角相等的四边形都不能保证是平行四边形】4、平行四边形的面积:计算公式×同底(等底)同高(等高)的平行四边形面积【名师提醒:夹在两平行线间的平行线段两平行线之间的距离处处】【重点考点例析】考点一:多边形内角和、外角和公式例1 (2018•铜仁市)如果一个多边形的内角和是外角和的3 倍,则这个多边形的边数是()A.8 B.9C.10 D.11【思路分析】根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是360°,根据题意得:180°•(n-2)=3×360°解得n=8.故选:A.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.考点二:平行四边形的性质例2 (2018•青岛)已知:如图,平行四边形ABCD,对角线AC 与BD 相交于点E,点G 为AD 的中点,连接CG,CG 的延长线交BA 的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF 的形状,并证明你的结论.【思路分析】(1)只要证明AB=CD,AF=CD 即可解决问题;(2)结论:四边形ACDF 是矩形.根据对角线相等的平行四边形是矩形判断即可;【解答】(1)证明:∵四边形ABCD 是平行四边形,∴AB∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=AF.(2)解:结论:四边形ACDF 是矩形.理由:∵AF=CD,AF∥CD,∴四边形ACDF 是平行四边形,∵四边形ABCD 是平行四边形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF,∴△AFG 是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF 是矩形.【点评】本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.考点三:平行四边形的判定例3 (2018•东营)如图,在四边形ABCD 中,E 是BC 边的中点,连接DE 并延长,交AB 的延长线于点F,AB=BF.添加一个条件使四边形ABCD 是平行四边形,你认为下面四个条件中可选择的是()A.AD=BC B.CD=BFC.∠A=∠C D.∠F=∠CDF【思路分析】正确选项是D.想办法证明CD=AB,CD∥AB 即可解决问题;【解答】解:正确选项是D.理由:∵∠F=∠CDF,∠CED=∠BEF,EC=BE,∴△CDE≌△BFE,CD∥AF,∴CD=BF,∵BF=AB,∴CD=AB,∴四边形ABCD 是平行四边形.故选:D.【点评】本题考查平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.【备考真题过关】一、选择题1.(2018•北京)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°2.(2018•乌鲁木齐)一个多边形的内角和是720°,这个多边形的边数是()A.4 B.5C.6 D.73.(2018•济宁)如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP、CP 分别平分∠EDC、∠BCD,则∠P 的度数是()A.50°B.55°C.60°D.65°4.(2018•台州)正十边形的每一个内角的度数为()A.120°B.135°C.140°D.144°5.(2018•宁波)如图,在▱ABCD 中,对角线AC 与BD 相交于点O,E 是边CD 的中点,连结OE.若∠ABC=60°,∠BAC=80°,则∠1 的度数为()A.50°B.40°C.30°D.20°6.(2018•黔南州)如图在▱ABCD 中,已知AC=4cm,若△ACD 的周长为13cm,则▱ABCD 的周长为()A.26cm B.24cmC.20cm D.18cm7.(2018•泸州)如图,▱ABCD 的对角线AC,BD 相交于点O,E 是AB 中点,且AE+EO=4,则▱ABCD 的周长为()A.20 B.16C.12 D.88.(2018•玉林)在四边形ABCD 中:①AB∥CD②AD∥BC③AB=CD④AD=BC,从以上选择两个条件使四边形ABCD 为平行四边形的选法共有()A.3 种B.4 种C.5 种D.6 种9.(2018•呼和浩特)顺次连接平面上A、B、C、D 四点得到一个四边形,从①AB∥CD②BC=AD③∠A=∠C④∠B=∠D 四个条件中任取其中两个,可以得出“四边形ABCD 是平行四边形”这一结论的情况共有()A.5 种B.4 种C.3 种D.1 种10.(2018•眉山)如图,在▱ABCD 中,CD=2AD,BE⊥AD 于点E,F 为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有()DEBCA.1 个B.2 个C.3 个二、填空题11.(2018•宿迁)若一个多边形的内角和是其外角和的3 倍,则这个多边形的边数是.12. (2018•山西)图1 是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2 是从图1 冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.13. (2018•抚顺)将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5= .14.(2018•十堰)如图,已知▱ABCD 的对角线AC,BD 交于点O,且AC=8,BD=10,AB=5,则△OCD 的周长为.215.(2018•株洲)如图,在平行四边形ABCD 中,连接BD,且BD=CD,过点A 作AM⊥BD 于点M,过点D 作DN⊥AB 于点N,且DN=3 ,在DB 的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP= .16.(2018•泰州)如图,▱ABCD 中,AC、BD 相交于点O,若AD=6,AC+BD=16,则△BOC 的周长为.17.(2018•无锡)如图,已知∠XOY=60°,点A 在边OX 上,OA=2.过点A 作AC⊥OY 于点C,以AC 为一边在∠XOY 内作等边三角形ABC,点P 是△ ABC 围成的区域(包括各边)内的一点,过点P 作PD∥OY 交OX 于点D,作PE∥OX 交OY 于点E.设OD=a,OE=b,则a+2b 的取值范围是.三、解答题18.(2018•岳阳)如图,在平行四边形ABCD 中,AE=CF,求证:四边形BFDE 是平行四边形.19.(2018•宿迁)如图,在▱ABCD 中,点E、F 分别在边CB、AD 的延长线上,且BE=DF,EF 分别与AB、CD 交于点G、H.求证:AG=CH.20.(2018•临安区)已知:如图,E、F 是平行四边形ABCD 的对角线AC 上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)EB∥DF.21.(2018•福建)如图,▱ABCD 的对角线AC,BD 相交于点O,EF 过点O 且与AD,BC 分别相交于点E,F.求证:OE=OF.22.(2018•大庆)如图,在Rt△ABC 中,∠ACB=90°,D、E 分别是AB、AC 的中点,连接CD,过 E 作EF∥DC 交BC 的延长线于F.(1)证明:四边形CDEF 是平行四边形;(2)若四边形CDEF 的周长是25cm,AC 的长为5cm,求线段AB 的长度.23. (2018•永州)如图,在△ABC 中,∠ACB=90°,∠CAB=30°,以线段AB 为边向外作等边△ABD,点E 是线段AB 的中点,连接CE 并延长交线段AD 于点F.(1)求证:四边形BCFD 为平行四边形;(2)若AB=6,求平行四边形BCFD 的面积.2019 年中考数学专题复习第五章四边形第二十讲多边形与平行四边形参考答案【备考真题过关】一、选择题1.【思路分析】根据多边形的边数与多边形的外角的个数相等,可求出该正多边形的边数,再由多边形的内角和公式求出其内角和;根据一个外角得60°,可知对应内角为120°,很明显内角和是外角和的2 倍即720.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6-2)×180°=720°.故选:C.【点评】本题考查了多边形的内角与外角,熟练掌握多边形的外角和与内角和公式是解答本题的关键.2.【思路分析】根据内角和定理180°•(n-2)即可求得.【解答】解:∵多边形的内角和公式为(n-2)•180°,∴(n-2)×180°=720°,解得n=6,∴这个多边形的边数是6.故选:C.【点评】本题主要考查了多边形的内角和定理即180°•(n-2),难度适中.3.【思路分析】先根据五边形内角和求得∠ECD+∠BCD,再根据角平分线求得∠PDC+∠PCD,最后根据三角形内角和求得∠P 的度数.【解答】解:如图,∵在五边形ABCDE 中,∠A+∠B+∠E=300°,∴∠ECD+∠BCD=240°,又∵DP、CP 分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP 中,∠P=180°-(∠PDC+∠PCD)=180°-120°=60°.故选:C.【点评】本题主要考查了多边形的内角和以及角平分线的定义,解题时注意:多边形内角和=(n-2)•180(n≥3 且n 为整数).4.【思路分析】利用正十边形的外角和是360 度,并且每个外角都相等,即可求出每个外角的度数;再根据内角与外角的关系可求出正十边形的每个内角的度数;【解答】解:∵一个十边形的每个外角都相等,∴十边形的一个外角为360÷10=36°.∴每个内角的度数为180°-36°=144°;故选:D.【点评】本题主要考查了多边形的内角与外角的关系.多边形的外角性质:多边形的外角和是360 度.多边形的内角与它的外角互为邻补角.5.【思路分析】直接利用三角形内角和定理得出∠BCA 的度数,再利用三角形中位线定理结合平行线的性质得出答案.【解答】解:∵∠ABC=60°,∠BAC=80°,∴∠BCA=180°-60°-80°=40°,∵对角线AC 与BD 相交于点O,E 是边CD 的中点,∴EO 是△DBC 的中位线,∴EO∥BC,∴∠1=∠ACB=40°.故选:B.【点评】此题主要考查了三角形内角和定理、三角形中位线定理等知识,得出EO 是△DBC 的中位线是解题关键.6.【思路分析】根据三角形周长的定义得到AD+DC=9cm.然后由平行四边形的对边相等的性质来求平行四边形的周长.【解答】解:∵AC=4cm,若△ADC 的周长为13cm,∴AD+DC=13-4=9(cm).又∵四边形ABCD 是平行四边形,∴AB=CD,AD=BC,∴平行四边形的周长为2(AB+BC)=18cm.故选:D.【点评】本题考查了平行四边形的性质.此题利用了“平行四边形的对边相等”的性质.7.【思路分析】首先证明:1,由AE+EO=4,推出AB+BC=8 即可解决问题;OE= BC2【解答】解:∵四边形ABCD 是平行四边形,∴OA=OC,∵AE=EB,∴1OE= BC,2∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD 的周长=2×8=16,故选:B.【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.8.【思路分析】根据平行四边形的判定方法中,①②、③④、①③、③④均可判定是平行四边形.【解答】解:根据平行四边形的判定,符合条件的有4 种,分别是:①②、③④、①③、③④.故选:B.【点评】本题考查了平行四边形的判定,平行四边形的判定方法共有五种,在四边形中如果有:1、四边形的两组对边分别平行;2、一组对边平行且相等;3、两组对边分别相等;4、对角线互相平分;5、两组对角分别相等.则四边形是平行四边形.本题利用了第1,2,3 种来判定.9.【思路分析】根据平行四边形的判定定理可得出答案.【解答】解;当①③时,四边形ABCD 为平行四边形;当①④时,四边形ABCD 为平行四边形;当③④时,四边形ABCD 为平行四边形;故选:C.【点评】此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.10.【思路分析】如图延长EF 交BC 的延长线于G,取AB 的中点H 连接FH.想办法证明EF=FG,BE⊥BG,四边形BCFH 是菱形即可解决问题;【解答】解:如图延长EF 交BC 的延长线于G,取AB 的中点H 连接FH.∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,∵S△DFE=S△CFG,∴S 四边形DEBC=S△EBG=2S△BEF,故③正确,∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH 是平行四边形,∵CF=BC,∴四边形BCFH 是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选:D.【点评】本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.二、填空题11.【思路分析】任何多边形的外角和是360°,即这个多边形的内角和是3×360°.n 边形的内角和是(n-2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:设多边形的边数为n,根据题意,得(n-2)•180=3×360,解得n=8.则这个多边形的边数是8.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.12.【思路分析】根据多边形的外角和等于360°解答即可.【解答】解:由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为:360°.【点评】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.13.【思路分析】直接利用三角形内角和定理得出∠6+∠7 的度数,进而得出答案.【解答】解:如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,2 2 2 ∴∠5=180°-(∠6+∠7)=40°. 故答案为:40°.【点评】此题主要考查了三角形内角和定理,正确应用三角形内角和定理是解 题关键.14. 【思路分析】根据平行四边形的性质即可解决问题;【解答】解:∵四边形 ABCD 是平行四边形,∴AB=CD=5,OA=OC=4,OB=OD=5,∴△OCD 的周长=5+4+5=14,故答案为 14.【点评】本题考查平行四边形的性质、三角形的周长等知识,解题的关键是熟 练掌握平行四边形的性质,属于中考基础题.15. 【思路分析】根据 BD=CD ,AB=CD ,可得 BD=BA ,再根据AM ⊥BD ,DN ⊥AB ,即可得到 DN=AM=3 ,依据∠ABD=∠MAP+∠PAB ,∠ABD=∠P+∠BAP ,即可得到△APM 是等腰直角三角形,进而得到 AP= AM=6.【解答】解:∵BD=CD ,AB=CD ,∴BD=BA ,又∵AM ⊥BD ,DN ⊥AB ,∴DN=AM=3 ,又∵∠ABD=∠MAP+∠PAB ,∠ABD=∠P+∠BAP ,∴∠P=∠PAM ,∴△APM 是等腰直角三角形,2∴AP= AM=6,故答案为:6.【点评】本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM 是等腰直角三角形.16.【思路分析】根据平行四边形的性质,三角形周长的定义即可解决问题;【解答】解:∵四边形ABCD 是平行四边形,∴AD=BC=6,OA=OC,OB=OD,∵AC+BD=16,∴OB+OC=8,∴△BOC 的周长=BC+OB+OC=6+8=14,故答案为14.【点评】本题考查平行四边形的性质.三角形的周长等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.【思路分析】作辅助线,构建30 度的直角三角形,先证明四边形EODP 是平行四边形,得EP=OD=a,在Rt△HEP 中,∠EPH=30°,可得EH 的长,计算a+2b=2OH,确认OH 最大和最小值的位置,可得结论.【解答】解:过P 作PH⊥OY 交于点H,∵PD∥OY,PE∥OX,∴四边形EODP 是平行四边形,∠HEP=∠XOY=60°,∴EP=OD=a,Rt △HEP 中,∠EPH=30°,∴ 1 1 EH= EP= a , 2 2 ∴a+2b=2( 1 a+b )=2(EH+EO )=2OH , 2 当 P 在 AC 边上时,H 与 C 重合,此时 OH 的最小值 1,即 a+2b 的 最小值是 2; 当 P 在点 B 时,OH 的最大值是:1+ 3 2 =OC= OA=1 2= 5 ,即(a+2b )的最大值是 5, 2∴2≤a+2b≤5.【点评】本题考查了等边三角形的性质、直角三角形 30 度角的性质、平行四边形的判定和性质,有难度,掌握确认 a+2b 的最值就是确认 OH 最值的范围.三、解答题18. 【思路分析】首先根据四边形 ABCD 是平行四边形,判断出 AB ∥CD ,且AB=CD ,然后根据 AE=CF ,判断出 BE=DF ,即可推得四边形 BFDE 是平行四边形.【解答】证明:∵四边形 ABCD 是平行四边形,∴AB ∥CD ,且 AB=CD ,又∵AE=CF ,∴BE=DF ,∴BE ∥DF 且 BE=DF ,∴四边形 BFDE 是平行四边形.【点评】此题主要考查了平行四边形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:①判定定理 1:SSS--三条边分别对应相等的两个三角形全等.②判定定理 2:SAS--两边及其夹角分别对应相等的两个三角形全等.③ 判定定理 3:ASA--两角及其夹边分别对应相等的两个三角形全等.④判定定理⎨ ⎩4:AAS--两角及其中一个角的对边对应相等的两个三角形全等.⑤判定定理 5:HL--斜边与直角边对应相等的两个直角三角形全等.19. 【思路分析】利用平行四边形的性质得出 AF=EC ,再利用全等三角形的判定与性质得出答案.【解答】证明:∵四边形 ABCD 是平行四边形,∴AD=BC ,∠A=∠C ,AD ∥BC ,∴∠E=∠F ,∵BE=DF ,∴AF=EC ,⎧∠A =∠C 在△AGF 和△CHE 中⎪ AF =EC , ⎪∠F =∠E ∴△AGF ≌△CHE (ASA ),∴AG=CH .【点评】此题主要考查了平行线的性质以及全等三角形的判定与性质,正确掌握平行线的性质是解题关键.20. 【思路分析】(1)要证△ADF ≌△CBE ,因为 AE=CF ,则两边同时加上EF ,得到 AF=CE ,又因为 ABCD 是平行四边形,得出AD=CB ,∠DAF=∠BCE ,从而根据 SAS 推出两三角形全等;(2)由全等可得到∠DFA=∠BEC ,所以得到 DF ∥EB .【解答】证明:(1)∵AE=CF ,∴AE+EF=CF+FE ,即 AF=CE .又 ABCD 是平行四边形,∴AD=CB ,AD ∥BC .∴∠DAF=∠BCE.在△ADF 与△CBE中AF=CE∠DAF=∠BCEAD=CB,∴△ADF≌△CBE(SAS).(2)∵△ADF≌△CBE,∴∠DFA=∠BEC.∴DF∥EB.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.注意:AAA、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.【思路分析】由四边形ABCD 是平行四边形,可得OA=OC,AD∥BC,继而可证得△AOE≌△COF(ASA),则可证得结论.【解答】证明:∵四边形ABCD 是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE 和△OCF 中,∠OAE=∠OCFOA=OC∠AOE=∠COF,∴△AOE≌△COF(ASA),∴OE=OF.【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.22.【思路分析】(1)由三角形中位线定理推知ED∥FC,2DE=BC,然后结合已知条件“EF∥DC”,利用两组对边相互平行得到四边形DCFE 为平行四边形;(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC,即可得出四边形DCFE 的周长=AB+BC,故BC=25-AB,然后根据勾股定理即可求得;【解答】(1)证明:∵D、E 分别是AB、AC 的中点,F 是BC 延长线上的一点,∴ED 是Rt△ABC 的中位线,∴ED∥FC.BC=2DE,又EF∥DC,∴四边形CDEF 是平行四边形;(2)解:∵四边形CDEF 是平行四边形;∴DC=EF,∵DC 是Rt△ABC 斜边AB 上的中线,∴AB=2DC,∴四边形DCFE 的周长=AB+BC,∵四边形DCFE 的周长为25cm,AC 的长5cm,∴BC=25-AB,∵在Rt△ABC 中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(25-AB)2+52,解得,AB=13cm,【点评】本题考查了三角形的中位线定理,直角三角形斜边中线的性质,平行四边形的判定和性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.23.【思路分析】(1)在Rt△ABC 中,E 为AB 的中点,则1 1CE= AB,BE= AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得2 2∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60 度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD∥BC,则四边形BCFD 是平行四边形.(2)在Rt△ABC 中,求出BC,AC 即可解决问题;【解答】(1)证明:在△ABC 中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°.在等边△ABD 中,∠BAD=60°,∴∠BAD=∠ABC=60°.∵E 为AB 的中点,∴AE=BE.又∵∠AEF=∠BEC,∴△AEF≌△BEC.在△ABC 中,∠ACB=90°,E 为AB 的中点,3 3 3 3 ∴ 1 1 CE= AB ,BE= AB .2 2∴CE=AE ,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°.又∵△AEF ≌△BEC ,∴∠AFE=∠BCE=60°.又∵∠D=60°,∴∠AFE=∠D=60°.∴FC ∥BD .又∵∠BAD=∠ABC=60°,∴AD ∥BC ,即 FD ∥BC .∴四边形 BCFD 是平行四边形.(2)解:在 Rt △ABC 中,∵∠BAC=30°,AB=6, ∴ 1 BC= AB=3,AC= BC=3 , 2∴S 平行四边形 BCFD =3×3 =9 .【点评】本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等 三角形解决问题,属于中考常考题型.。
2019年中考数学必考知识点
2019年中考数学必考知识点各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢数学知识点,数学中考对同学们来说很重要,很容易拉分的一门学科,所以一定要记好知识点去复习,下面给同学们列举下知识点,教育带大家共同学习。
一、重要概念1。
数的分类及概念数系表:说明:“分类”的原则:1)相称2)有标准2。
非负数:正实数与零的统称。
常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3。
倒数:①定义及表示法②性质:=?1/a;/a中,a=?0;;a>1时,1/a0时,>0;②a0,<0⑵零指数:=1负整指数:=1/二、运算定律、性质、法则1。
分式的加、减、乘、除、乘方、开方法则2。
分式的性质⑴基本性质:=⑵符号法则:⑶繁分式:①定义;②化简方法3。
整式运算法则4。
幂的运算性质:①·=;②÷=;③=;④=;⑤技巧:5。
乘法法则:⑴单×单;⑵单×多;⑶多×多。
6。
乘法公式:==7。
除法法则:⑴单÷单;⑵多÷单。
8。
因式分解:⑴定义;⑵方法:A。
提公因式法;B。
公式法;C。
十字相乘法;D。
分组分解法;E。
求根公式法。
9。
算术根的性质:=;;;10。
根式运算法则:⑴加法法则;⑵乘、除法法则;⑶分母有理化:A.;B.;C.。
11。
科学记数法:四、数式综合运算第三章统计初步★重点★☆内容提要☆一、重要概念1。
总体:考察对象的全体。
2。
个体:总体中每一个考察对象。
3。
样本:从总体中抽出的一部分个体。
4。
样本容量:样本中个体的数目。
5。
众数:一组数据中,出现次数最多的数据。
6。
中位数:将一组数据按大小依次排列,处在最中间位置的一个数二、计算方法1。
样本平均数:⑴;⑵若,,…,,则;⑶加权平均数:;⑷平均数是刻划数据的集中趋势的特征数。
通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。
2。
样本方差:⑴;⑵若,,…,,则;若、、…、较“小”较“整”,则;⑶样本方差是刻划数据的离散程度的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。
2019最新版历年中考数学试卷易错题知识点汇总122327
最新版历年中考数学试卷易错题知识点汇总学校:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.有四个三角形,分别满足下列条件:(1)一个内角的的度等于另两个内角的度数之和;(2)三个内角的度数之比为 3:4:5;(3)三边长之比为3:4:5;(4)三边长分别为 7、24、25. 其中直角三角形有( )A . 1个B .2个C .3个D .4个2.如图,∠AOP=∠BOP ,PD ⊥OB ,PC ⊥OA ,则下列结论正确的是( )A .PD=PCB .PD<PC C .PD>PCD .PD 和PC 的大小关系是不确定的3.下图中,正确画出△ABC 的 AC 边上的高的是 ( )A .B .C .D .4.如图,将左边图形按逆时针旋转90°得到的图形是( )5.如图,该图形围绕自己的旋转中心,按下列角度旋转后,不能..与其自身重合的是( )A .72B .108C .144D .2166.关于x 的方程4332=-+x a ax 的解为x=1,则a=( ) A .1 B .3 C .-1 D .-37.某城市一年漏掉的水相当于建一个自来水厂,据不完全统计,全市至少有5610⨯个水龙头,5210⨯个抽水马漏水. 如果一个关不紧的水龙头一个月漏a (m 3)水,一个抽水马桶一个月漏掉b (m 3)水,那么一个月造成的水流失量至少是( )A .( 62a b +) m 3B .56210a b +⨯ m 3C .5[(62)10]a b +⨯ m 3D .5[8()10]a b +⨯m 38. 已知 x ,y 满足等式11x y x -=+,则用x 的代数式表示得( ) A .11x y x -=+ B . 11x y x -=+ C .11x y x +=- D .11x y x +=- 9.下列长度的三条线段,能组成三角形的是( ) A . 1,2,3 B .1,3,5 C . 2,2,4 D .2,3,410.用 9根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余、重叠和折断,则能摆出不同的三角形的个数是( )A . 1个B . 2个C .3个D .4个11.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等),任取一个两位数,是“上升数”的概率是( )A .21B .52C .53D .187 12.如图,若∠l=∠2,则在结论:①∠3=∠4;②AB ∥DC ;③AD ∥BC 中,正确的个数是( )A .0个B .1个C .2个D .3个13.2006 年 8月超强台风登陆浙江苍南,苍南遭受严重的损失,各方积极投入抢险,抗洪救灾小组A 地段有 28 人,B 地段有 15 入,现又凋来 29 人,分配在 A ,B 两个地段,使A 地段的人是B 地段的 2倍,则调往A ,B 地段的人数分别是( )A .l8 人, 11人B . 24 人,25 人C. 20人 ,9人 D . 14 人,15 人14.若干桶方便面摆放在桌子上,如图所示是它的三视图,则这一堆方便面共有( )A .6桶B .7桶C .8桶D .9桶15.某几何体的三视图如图所示,则该几何体是( )A . 圆柱B . 球C .圆锥D .长方体16.为了了解八年级400名学生的视力情况,从中抽取40名学生进行测试,这40名学生的 视力是( )A .个体B .总体C .总体的一个样本D .样本容量17.下列说法中,正确的个数是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年中考数学考点汇总
中考数学考点汇总,今天为大家列举下数学重点考点,教育带大家共同学习。
一、计算题:
科学计数法、倒数相反数绝对值、简单概率运算、三视图求原图面积、三角形(相似、全等、内角外交关系)、统计(众数、中位数、平均数)、二次函数(顶点、对称轴、表达式)、函数图像关系
二、填空题:
因式分解、二次函数解析式求解、三角形(相似、周长面积计算)、坐标(坐标点运动规律)、直线和反比例函数图像问题
三、解答题:
次方、开方、三角函数、次幂(0次、-1次)计算;
求解不等式组;
分式、多项式化简(整体代入方法求值);
方程组求解;
几何图形中证明三角形边相等;
一次函数与二次函数;
四、解答题
四边形边长、周长、面积求解;
圆相关问题(切割线、圆周角、圆心角);
统计图;
在数轴中求三角形面积;
五、解答题
二次函数(解析式、直线方程);
圆与直线关系;
三角形角度相关计算;
总体来说中考题,题目多,需要熟练掌握相关的知识点,快速做题。
近些年北京题型都比较固定、难度适宜,需要在正确率方面留心,对于三角形、四边形面积计算知识板块要高度重视。
以上为大家介绍了2017中考数学考点汇总,最后祝大家考试顺利,更多资讯请关注教育。