初中数学教师基本功比赛专业技能比赛试题

合集下载

中学数学教师基本功考试试题及答案

中学数学教师基本功考试试题及答案

中学数学教师基本功考试试题及答案一、选择题(每题5分,共40分)1. 下列说法中,正确的是()A. 有理数的乘法满足交换律和结合律B. 二次函数的图像一定是开口向下的抛物线C. 两个平行线的斜率相等D. 任意三角形的外角等于它不相邻的两个内角之和答案:D2. 已知函数 f(x) = x² - 2x + 1,下列结论正确的是()A. 函数图像开口向上B. 函数图像开口向下C. 函数图像关于y轴对称D. 函数图像关于x轴对称答案:A3. 若等差数列的前三项分别为a, b, c,则下列关系式正确的是()A. a + c = 2bB. a - c = 2bC. b - a = cD. b + c = 2a答案:A4. 下列关于三角形面积的说法,正确的是()A. 三角形的面积等于底乘以高B. 三角形的面积等于底乘以高的一半C. 三角形的面积等于底乘以高的平方D. 三角形的面积等于底乘以高的倒数答案:B5. 已知 |x - 2| < 3,则x的取值范围是()A. x < -1B. -1 ≤ x ≤ 5C. x > 5D. x < 2答案:B6. 下列关于概率的说法,正确的是()A. 概率是介于0和1之间的数B. 概率是介于-1和1之间的数C. 概率是介于0和100%之间的数D. 概率是介于0和无穷大之间的数答案:A7. 下列关于立体图形的说法,正确的是()A. 长方体的体积等于底面积乘以高B. 圆柱的体积等于底面积乘以高C. 圆锥的体积等于底面积乘以高的一半D. 球的体积等于底面积乘以高答案:B8. 下列关于复数的说法,正确的是()A. 复数是实数和虚数的和B. 复数是实数和虚数的积C. 复数是实数和虚数的商D. 复数是实数和虚数的差答案:A二、填空题(每题5分,共40分)9. 已知函数 f(x) = 2x + 3,求f(2)的值。

答案:710. 已知等差数列的前三项分别为2, 4, 6,求第四项的值。

泰州市初中数学青年教师基本功大赛笔试试卷

泰州市初中数学青年教师基本功大赛笔试试卷

专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 26cmC. 28cmD. 无法确定2. 下列函数中,哪一个函数是增函数?A. y = 2x + 3B. y = x^2 4x + 4C. y = x^3D. x = 13. 已知一组数据2,3,5,7,x,若这组数据的平均数为5,则x 的值为多少?A. 1B. 4C. 6D. 84. 下列命题中,真命题是?A. 对顶角相等B. 对顶角互补C. 对顶角互余D. 对顶角都是直角5. 若一个正方形的对角线长为10cm,则这个正方形的面积为多少cm^2?A. 50cm^2B. 100cm^2C. 200cm^2D. 250cm^2二、判断题(每题1分,共5分)1. 若一个四边形的对角线互相平分,则这个四边形是矩形。

()2. 任何两个奇数之和都是偶数。

()3. 两个函数如果它们的图像关于y轴对称,那么这两个函数是相等的。

()4. 若一组数据的方差为0,则这组数据中的每个数都相等。

()5. 在直角坐标系中,两点之间的距离公式是d = √((x2 x1)^2 + (y2 y1)^2)。

()三、填空题(每题1分,共5分)1. 若一个等差数列的首项为3,公差为2,则第10项为______。

2. 若一个等边三角形的边长为6cm,则这个三角形的面积为______cm^2。

3. 若一个正方形的边长为8cm,则这个正方形的对角线长为______cm。

4. 若一个函数的图像关于x轴对称,则这个函数是______函数。

5. 在直角坐标系中,点(3, 4)关于原点对称的点为______。

四、简答题(每题2分,共10分)1. 简述等差数列的定义及通项公式。

2. 简述等边三角形的性质。

3. 简述正方形的性质。

4. 简述一次函数的性质。

5. 简述两点之间的距离公式。

哈尔滨市初中数学教师基本技能大赛试题答案

哈尔滨市初中数学教师基本技能大赛试题答案

哈尔滨市初中数学教师基本技能大赛试题答案一、单项选择题:1、A ;2、B ;3、C ;4、A ;5、D ;6、B ;7、B ;8、C ;9、B ;10、C ;11、C ;12、B 。

二、填空题:13、3.84×105;14、x>5;15、2n(m -2n)(m+2n);16、17;17、5;18、21元;19、150π;20、略; 21、3n+1;22、23π;23、a>-1;24、6。

三、解答题: 25、(1)△AOP ∽△AMB ··················2分∴AP ·AM=AB ·AO=2R 2···················1分 ∴AP ·AM 为定值·························1分 (2)(略)·····························4分26、解:从箱子中抽取一张卡片,每张卡片的机会均等,有10种结果,放回后再抽,也有10种结果,先后抽取两张卡片,一共有100种不同的结果。

哈市初中数学教师基本功大赛

哈市初中数学教师基本功大赛

(A )(B )(C )(D )哈尔滨市初中数学教师基本技能大赛试题一、单项选择题(每小题3分,共36分)1.下列各式运算结果为8x 的是( )A x 4·x 4B (x 4)4C x 16÷x 2D x 4+x 42.下列平面图形中,既是轴对称图形又是中心对称图形的是( )3.不等式组⎩⎨⎧≥+->+053032x x 的整数解的个数是( )A 1B 2C 3D 44.已知二次函数y=x 2-6x+m 的最小值是1,那么m 的值等于( ) A 10 B 4 C 5 D 65.如图,⊙O 是△ABC 的外接圆,OD ⊥AB 于点D ,交⊙O 于点E ,∠C=60o,如果⊙O 的半径为2,则下列结论错误的是( )A AD=DB B AE=EBC OD=1D AB=36.下面四个图形中,经过折叠能围成如图只有三个面上印有图案的正方体纸盒的是( ) C 7.若点(x 1,y 1), (x 2,y 2), (x 3,y 3)都在反比例函数1y x=-的图象上,并且x 1<0<x 2<x 3,则下列各式中正确的是( )A y 1<y 2<y 3B y 2<y 3<y 1C y 3<y 2<y 1D y 1<y 3<y 2得分A B D(第6题图)8.只用下列一种正多边形不能镶嵌成平面图案的是( ) A 正三角形 B 正方形 C 正五边形 D 正六边形 9.如图是关于x 的函数y=kx+b (k ≠0)的图象,则不等式kx+b ≤0的解集在数轴上可表示为( )10.如图,将矩形ABCD 沿对角线BD 折叠,使C 落在C '处,BC '交AD 于点E ,则下列结论不一定成立的是( )A AD =BC 'B ∠EBD =∠EDBC △ABE ∽△CBD D EDAEABE =∠sin 11.甲、乙二人沿相同的路线由A 到B 匀速行进,A ,B 两地间的路程为20km .他们行进的路程s (km )与甲出发后的时间t (h )之间的函数图像如图所示.根据图像信息,下列说法正确的是( )A 甲的速度是4 km/ hB 乙的速度是10 km/ hC 乙比甲晚出发1 hD 甲比乙晚到B 地3 h12.如图,面积为12cm 2的△ABC 沿BC 方向平移至△DEF 的位置,平移的距离是边BC 长的两倍,则图中四边形ACED 的面积为( )A 24cm 2B 36cm 2C 48cm 2D 无法确定二、填空题(每小题3分,共36分)13.地球距离月球表面约为384000千米,将这个距离用科学记数法(保留三个有效数字)表示应为__________________千米.14.在函数52-=x x y 中,自变量x 的取值范围是___ __________.15.分解因式:2m 2n -8n 3=___________________________. 16.当x=-3时,代数式2x 2+3x的值是_____________. 17.如图,在△ABC 中,∠A=30°,tanB=23,AC=32,则AB=________________. 18.某商店把一商品按标价的九折出售(即优惠10%),仍可获利20%,若该商品的标价为每件28元,则该商品的进价为_________元.得分19.一个圆锥形的圣诞帽底面半径为10cm ,母线长为15cm ,则圣诞帽的侧面积为_______cm 2(结 果保留π).20.已知点P (x ,y )位于第二象限,并且y ≤x+4,x 、y 为整数,写出一个符合上述条件的点P 的坐标:_______________.21.下面由火柴棒拼出的一列图形中,第n 个图形由n 个正方形组成,根据下图所反映的规律,猜想第n 个图形中火柴棒的根数是___________________(n 是正整数且n ≥1).22.如图,⊙O 的半径为3,OA=6,AB 切⊙O 于B ,弦BC ∥OA ,连结AC ,图中阴影部分的面积为 ________ .23.如果a 、b 、c 为互不相等的实数,且满足关系式b 2+c 2=2a 2+16a+14与bc=a 2-4a-5,那么a 的取值范围是_______________.24.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,则△AMN 的周长为 .三、解答题(其中第25~27题各8分,第28~29题各10分,第30题16分,第31题18分,共78分)25.(本题8分)如图,已知⊙O 的半径为R ,AB 是⊙O 的直径,C 是»AB 的中点,动点M 在»BC 上运动(不与B 、C 重合),AM 交OC 于点P ,OM 与PB 交于点N .(1)求证:AP ·AM 是定值;(2)请添加一个条件(要求添加的条件是图中两条线段或多条线段之间的数量关系),使OM ⊥PB .并加以证明.26.(本题8分)在箱子中有10张卡片,分别写有1到10的十个整数,从箱子中任取一张卡片,记下它的读数x ,然后再放回箱子中,第二次再从箱子中任取一张卡片,记下它的读数y ,试求x+y 是10的倍数的概率.得分得分…n=1n=2n=3n=427.(本题8分)请阅读下列材料: 问题:现有5个边长为1的正方形,排列形式如图①,请把它们分割后拼接成一个新的正方形.要 求画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x(x >0).依题意,割补前后图形的面积相等,有x 2=5,解得x=5.由此可知新正方形得边长等于两个小正方形组成的矩形对角线的长.于是,画出如图②所示的分割线,拼出如图③所示的新正方形. 请你参考小东同学的做法,解决如下问题: 现有10个边长为1的正方形, 排列形式如图④,请把它们分割后拼接成一个新的正方形.要求:在图④中画出分割线,并在图⑤的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.说明:直接画出图形,不要求写分析过程.28.(本题满分10分)一服装经销商计划购进某品牌的A 型、B 型、C 型三款服装共60套,每款服装至少要购进8套,且恰好用完购服装款61000元.设购进A 型服装x 套,B 型服装y 套,三款服装的进价和预售价如下表:(1)如果所购进的A 型服装与B 型服装的费用不超过39000元,购进B 型服装与C 型服装的费用不超过34000元,那么购进三款服装各多少套?(2)假设所购进服装全部售出,综合考虑各种因素,该服装经销商在购进这批服装过程中需另外支出各种费用共1500元.①求出预估利润P (元)与x (套)的函数关系式;(注:预估利润P=预售总额 - 购服装款 - 各种费用)②求出预估利润的最大值,并写出此时购进三款服装各多少套.得分得分服装型号 A 型 B 型 C 型 进价(元/套) 900 1200 1100 预售价(元/套) 1200 1600 130029.(本题满分10分)已知:在锐角△ABC中,AB=AC.D为底边BC上一点,E为线段AD上一点,且∠BED=∠BAC=2∠DEC,连接CE.(1)求证:∠ABE=∠DAC;(2)若∠BAC=60°,试判断BD与CD有怎样的数量关系,并证明你的结论;(3)若∠BAC=α那么(2)中的结论是否还成立.若成立,请加以证明;若不成立,请说明理由.30.(本题满分16分)问题:在平面直角坐标系中,直线y=12x+5交x轴于点A,交y轴于点B,交直线y=x-1于点C.过点A作y轴的平行线交直线y=x-1于点D.点E为线段AD上一点,且tan∠DCE=12.点P从原点O出发沿OA边向点A匀速移动,同时,点Q从B点出发沿BO边向原点O匀速移动,点P 与点Q同时到达A点和O点,设BQ=m.(1)求点E的坐标;(2)在整个移动过程中,是否存在这样的实数m,使得△PQD为直角三角形.若存在这样的实数m,求m得值,若不存在,请说明理由;(3)函数y=kx经过点C,R为y=kx上一点,在整个移动过程中,若以P、Q、E、R为顶点的四边形是平行四边形,求R点的坐标.要求:①解答上面问题;②根据你对上面问题的解答,任意选择其中一问,说出你的主要解题思路.得分得分第30题备用图一31.(本题满分18分)得分习题改编.原题:梯形ABCD,AD∥BC,∠B=900,∠DCB=600,BC=4,AD=2,ΔPMN,PM=MN=NP=a,BC与MN 在一直线上,NC=6,将梯形ABCD向左翻折1800.⑴向左翻折二次,a≥2时,求两图形重叠部分的面积;⑵向左翻折三次,重叠部分的面积等于梯形ABCD的面积,a的值至少应为多少?⑶向左翻折三次,重叠部分的面积恰好等于梯形ABCD的面积的一半,求a的值.。

数学教师教学基本功比赛测试卷(一)初级中学教师基本功大赛试题附答案

数学教师教学基本功比赛测试卷(一)初级中学教师基本功大赛试题附答案

初级中学数学教师教学基本功比赛测试卷(一)一.新课程标准,填空。

(每空2分,共20分)1数学是人们对客观世界定性把握和________________ 、逐渐____________ .形成方法和理论,并进行广泛应用的过程。

2教师的主要任务是激发学生的________________________ ,向学生提供充分从事数学活动的机会,帮助学生成为学习的__________________ 33、初中阶段的数学内容分为数与代数、 _______________ .统计与概率和 ______________ 四个领域。

4、动手操作、________________ 、_______________ 是学生学习数学的重要方式。

5、不同的人在数学上得到不同的发展的意思是:教学要面向全体,必须适应每一位学生的_________________ :人的发展不可能整齐划一,必须____________________ ,尊重差异。

二、专业知识(共70分)(-)填空题(每小题2分,共8分)1、如图,己知C)O的半径为5,弦AB=8, P是弦AB上的任意一点,则OP的取值范围是 _________ o■2、已知关于X的不等式组Fi的整数解共有6个,则“的取值3— 2x>0范围是_______________3、若ΔABC 的三边"、b、C 满足条件:a2 + b2 + c2 + 338 = 1 Oa + 24Z? + 26c,则这个三角形最长边上的髙为_________ 。

4、抛物线y = 2(x-2)2-6的顶点为(7,已知),= -也+ 3的图象经过点C ,则这个一次函数图象与两坐标轴所囤成的三角形面积为____________ o(二)选择题(每小题3分,共12分)5、如图,由几个小正方体组成的立体图形的左视图是⅛⅛⅛⅛6.有5张写有数字的卡片(如图1),它们的背面都相同,现将它们背面朝上(如图2),从中翻开任意一张是数字2的概率是()图2(三)解答题(共50分)9. (本题满分6分)计算:4 l +2tan30υ- 10. (本题满分6分)因式分解:a :x : — 4+a c y 3—2a :xy: 11・(本题满分6分)某学校为了学生的身体健康,每天开展体冇活动一小时,开设排球、篮球、羽毛球、体操课•学生可根拯自己的爱好任选其中一项,老师根据学生报划情况进 行了统讣,并绘制了下边尚未完成的扇形统汁图和频数分布直方图,请你结合图中的信 息,解答下列问题:A. 15C. ~3 B.- 5 D. 1 27.正方形网格中, B.琴1C.-2 D. 2&已知甲、乙两组数据的平均数都是◎存则以下说法正确的是( A. 甲组数据比乙组数据的波动大 B. 乙组数据比甲组数据的波动大C. 甲组数据与乙组数据的波动一样大D •甲、乙两组数据的波动大小不能比较 2√3-IZAOB 如图放置,)(1) 该校学生报名总人数有多少人?(2) 选羽毛球的学生有多少人?选排球和篮球的人数分别占报轲总人数的百分之几?(3) 将两个统计图补充完整12.(本题满分10分)如图,点A ∙ B, G D 是直径为AB 的(Do 上四个点,C 是劣弧BD 的中点,AC 交BD 于点 E, AE=2, EC = 1.(1) 求证:ADEC AADC :(2)连结DO,试探究四边形OBCD 是否是菱形?若是,请你给予证明并求岀它的而积: 若不是,请说明理由.(3)延长AB 到乩 使BH =OB,求证:CH 是OO 的切线・13,(本题满分10分)某污水处理公司为学校建一座三级污水处理池,平面图形为矩形, 而积为200平方米(平面图如图22所示的ABCD ).已知池的外围墙建造单价为每米400元. 中间两条隔墙建造单价每米300元,池底建造的单价为每平方米80元(池墙的厚度不考虑)(1) 如果矩形水池恰好被隔墙分成三个正方形,试计算此项工程的总造价(精确到100 元)(2) 如果矩形水池的形状不受(1)中长、宽的限制,问预算45600元总造价,能否 完A 0 B成此项工程?试通过计算说明理由.(3)请给出此项工程的最低造价(多岀部分只展不超过100元就有效). D14,(本题满分12分)已知抛物线C1:y= -χ2+2πιx+n (In t"为常数,且m≠0,∕ι>0)的顶点为A,与y轴交于点C,抛物线C?与抛物线Cl关于y轴对称,英顶点为B,连结AU BC、AB.(1)写出抛物线C?的解析式:(2)当〃?=1时,判⅛∆ABC的形状,并说明理由:(3)抛物线G是否存在点P,使得四边形ABCP为菱形?如果存在,请求岀〃?的值;如果不存在,请说明理由.答案一. 新课标(20分)K 定量刻画.抽象概括2学习积极性.主人3空间与图形、课题学习4自主探 究、合作交流5发展需要、承认差异二、 专业知识(共70分)(-)填空题(共8分)1、3≤(9P≤52、-5≤67<-4 3. — 4. 113(-)选择题(共12分))5、 A6、 B7、 D 8. B(三)解答题(共70分)9. 原式出+ 2x 逅—严学一2 •…. 3 3 (√3-l )(√3+l) = √3-(√3 + l)-2 = √3-√3-l-2二-310. a :x c — 4+aV - 2a :xy =(a :x :—2a 2∑3r ÷a 2y 2) —4 ......... 2 分=a' (X2xy+j r ) —4=a' (χ-y ) 2~22 =(a X -ay+2) ( a x - ay-2) 11・解:(1)设该校报需总人数为X 人,则由两个统讣图可得 40%x = 160.(2)设选羽毛球的人数为y,则由两个统计图可蒔y= 400×25% = 100 (人)・ ...................IOO因为选排球的人数是K )。

初中数学青年教师教学基本功比赛试题

初中数学青年教师教学基本功比赛试题

初中数学青年教师教学基本功比赛试题一、选择题1. 下列四个分数中,哪一个是一个无限循环小数?A. 0.9B. 0.45C. 0.16D. 0.252. 一个多面体的五个顶点互不相同,它的棱数比它的面数多3,那么这个多面体的面数是多少?A. 5B. 6C. 7D. 83. 下图中,小正方形的边长为1cm。

请问中间的五角星的面积是多少平方厘米?(图片)A. 2B. 2.5C. 34. 已知a:b = 2:3,b:c = 5:6,那么a:c =?A. 5:6B. 3:2C. 4:5D. 1:15. 若5的倒数加上4的倒数等于x的倒数,那么x的值是多少?A. 0.25B. 0.2C. 0.125D. 0.1二、填空题1. 如果a的值为5,b的值为3,那么a的正数次方与b的正数次方的和是多少?答案:1522. 以下列出了一组坐标,请问这些坐标中x轴上的最小值是多少?(6,1),(-3,2),(0,-5),(2,4)答案:-33. 某数的几何平均数是3,算术平均数是4,那么这个数是多少?4. 某个数增加了原来的60%,结果是48,那么这个数原来是多少?答案:305. 在一个等差数列中,首项是2,公差是3,那么这个数列的第11项是多少?答案:32三、解答题1. 一张纸的长度是18cm,宽度是15cm,这张纸的面积是多少平方厘米?2. 请用两种方法计算下列两个分数的和:1/4 + 1/63. 某个数的平方比这个数的三倍大21,求这个数。

4. 一根木棍从一头经过10cm的地方折断,两段的长度分别是3:4,请问原始木棍的长度是多少?5. 下图是一个等边三角形,求阴影部分的面积。

(图片)四、解答题1. 给定函数f(x) = 3x + 1,求f(4)和f(10)的值。

2. 某地一天的气温变化如下:上午9时,气温是18℃,到中午12时气温上升到30℃,下午的最高温度是35℃。

上述变化可以用什么样的图象来表示?3. 请找出以下等差数列中的规律,并给出下一个数:8,14,20,26,32,...4. 甲、乙两人一起筹集某项物资,甲筹集了总数的1/3,乙筹集了总数的2/5,剩下的部分由其他人筹集。

初中数学教师教学基本功比赛试卷

初中数学教师教学基本功比赛试卷

方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为
面.积.法..
学有所用: 在等腰三角形 ABC中, AB=AC,其一腰上的高为 h , M 是底边 BC 上的任意一点, M 到

校 学
腰 AB、AC的距离分别为 h1 、 h2 . ( 1)请你结合图形 1 来证明: h1 + h2 = h .
D A
P
A
D
H
G
B 图一
C
M
N
图二
三、解答题(共 50 分)
21、(本题 8 分)某商品的进价为每件 40 元,售价为每件 50 元,每个月可卖出 210 件;如果每
件商品的售价每上涨 1 元,则每个月少卖 10 件(每件售价不能高于 65 元).设每件商品的
售价上涨 x 元( x 为正整数),每个月的销售利润为 y 元.
+ b= ___________.
12. 已知 a、 b 实数且满足( a2+b 2) 2- (a2+b2)- 6=0,则 a2+b2 的值为
.
13. 如图, 将半径为 1、圆心角为 60°的扇形纸片 AOB,在直线 l 上向右作无滑动的滚动至扇形 A′
O′B′处,则顶点 O经过的路线总长为

14. 在直角坐标系中, 0 为坐标原点, A(1 , 1) ,在坐标轴上确定一点 P,使△ AOP为等腰三
B
.3 C .4 D .5
6.如图, A, B 的坐标为( 2 , 0),( 0, 1)若将线段 AB 平移至 A1B1 ,则 a b 的值为(

A.2
B .3
C .4
D .5
y
B1 ( a,2)

初中数学青年教师教学基本功比赛试题

初中数学青年教师教学基本功比赛试题

初中数学青年教师教学根本功比赛试题根底知识测试题〔下关〕一、填空题〔共6小题,每空0.5分,计10分〕1.数学是研究________________________的科学,这一观点是由____________首先提出的.2.通过义务教育阶段的学习,学生能获得适应社会生活和进一步开展所必须的数学的____________、____________、____________、____________.3.维果斯基的“最近开展区理论〞认为学生的开展有两种水平:一种是学生的___________开展水平;另一种是学生_________________开展水平,两者之间的差异就是最近开展区.4.从数学史上看,有理数的概念传入我国存在着翻译上的错误,其原意是_________数,包括______________小数和______________小数,______________的发现,引发了第一次数学危机.5._________是概率论开展史上首先被人们研究的概率模型,它具有两个特征:一是_________、二是_______________.6.波利亚在其名著?怎样解题?中提出的解数学题的四个步骤是:_________________、_________________、_________________、_________________;他认为“怎样解题表〞有两个特点,即普遍性和_____________性.二、简答题〔共3小题,每题5分,计15分〕7.大约在公元前6世纪至4世纪之间,古希腊人遇到了令他们百思不得其解的三大尺规作图问题,这就是著名的古代几何学作图三大难题.请你简述这三大难题分别是什么?8.?义务教育数学课程标准?〔2011年版〕从知识与技能等四个方面对总目标进展了阐述.〔1〕请写出其他三个方面目标的名称;〔2〕请简述总目标的这四个方面之间的关系.9.“角平分线上的一点到角的两边距离相等〞这一结论在教版义务教育数学教材八上的?1.4线段、角的轴对称性?以及九上的?1.2直角三角形全等的判定?中都有所出现.请你结合教学实际,简述课本上八上和九上分别是如何引导学生得到这一结论的,说说它们之间的区别、联系和这样安排的意义.参考答案:1.数量关系和空间形式.2.根底知识、根本技能、根本思想、根本活动经历.3.现有,可能的.4.成比例的数,有限,无限循环,无理数.5.古典概型,〔试验结果的〕有限性,〔每个结果的〕等可能性.6.弄清问题、拟定方案、实施方案、回忆反思;常识.7.三等分角问题:将任一个给定的角三等分.立方倍积问题:求作一个正方体的棱长,使这个正方体的体积是正方体体积的二倍.化圆为方问题:求作一个正方形,使它的面积和圆的面积相等.8.〔1〕数学思考、问题解决、情感态度;〔2〕四个方面是一个有机的整体;教学要兼顾这四个目标,这些目标的实现,是学生受到良好数学教育的标志;后三个目标的开展离不开知识技能的学习,知识技能的学习必须有利于其他三个目标的实现.9.八上?1.4线段、角的轴对称性?中是通过学生动手操作,采取折纸的方法折出角的平分线,再过角平分线上一点折出角的两边垂线段,然后度量这两条线段的长度得出结论的;九上?1.2直角三角形全等的判定?是通过严格的推理论证,采用自己画图、写、求证并证明得出结论的.它们的区别是,一个是通过动手操作,一个是通过严格证明.联系是,前面的学习为后面的学习作铺垫,在进展严格的证明之前,学生已经熟练地掌握了这一结论的运用.意义是,符合学生的认知开展规律,使学生的认知从感性上升到理性,既培养了学生的动手能力,又培养了学生的推理论证能力.符带说明:1.专业技能比赛包括根底知识测试和解题能力测试两局部.根底知识测试容包括数学文化〔数学史〕常识和数学教育根底知识〔教材、课程标准、教育学、心理学、教学论、教学法等〕.解题能力测试容包括根底题〔教材中的根本定理、公式的证明,教材例题、习题、复习题〕与综合题〔与中考中档题难度相当〕.2.第1、2、8题考察对?课标?学习和理解情况〔称为课标板块〕;第4、5、7题结合教版初中数学教科书的教学容对数学史进展简单的考察〔称为数学史板块〕;第3、6、9题是对心理学、数学教育学、教材和教学法等相关知识的考察〔称为综合板块〕.2012年雨花台区小学数学青年教师教学根本功比赛教育教学知识常识比赛试卷〔总分值100分,时间60分钟〕成绩一、填空题:本大题共8个小题,共22个空,每空1分,共22分。

初中数学教师基本能力竞赛(含答案)

初中数学教师基本能力竞赛(含答案)

第5题图第6题初中数学教师基本能力竞赛全卷共四大题28小题,满分150分,考试时间120分钟.一、选择题(本大题共10小题,每小题3分,满分30分)1、雄风商城春节期间,开设一种摸奖游戏,中一等奖的机会为20万分之一,用科学记数法表示为( )A 、2×10-5B 、5×10-6C 、5×10-5D 、2×10-62、图(1)表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A ,且当钟面显示3点30分时,分针垂直于桌面,A 点距桌面的高度为10厘米。

如图(2),若此钟面显示3点45分时,A 点距桌面的高度为16厘米,则钟面显示3点50分时,A 点距桌面的高度为( )?A 、(22-3 3)厘米B 、(16+π)厘米C 、18厘米D 、19厘米3、已知一组正数12345,,,,x x x x x 的方差为:222222123451(20)5S x x x x x =++++-,则关于数据123452,2,2,2,2x x x x x + + + + +的说法:①方差为S 2;②平均数为2;③平均数为4;④方差为4S 2。

其中正确的说法是( )A 、 ①②B 、①③C 、②④D 、③④4.如图,ABC ∆的角,,A B C 所对边分别为,,a b c ,点是O ABC ∆的外心,,于,于E AC OE D BC OD ⊥⊥,于F AB OF ⊥ 则OD OE OF =∶∶( ) .A 、a b c ∶∶B 、cb a 1:1:1 C 、C B A cos :cos :cos D 、C B A sin :sin :sin5、用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面.已知正AB CEFO第8题图AB QOxy 第10题多边形的边数为x 、y 、z ,则zy x 111++的值为( ) A 、1 B 、32 C 、21 D 、31 6、如图,以Rt △ABC 的斜边BC 为一边在△ABC 的同侧作正方形BCEF ,设正方形的中心为O ,连结AO ,如果AB =4,AO =26,那么AC 的长等于( ) A 、12 B 、16 C 、43 D 、827、已知函数()()()()22113513x x y x x ⎧--⎪=⎨--⎪⎩≤>,则使y =k 成立的x 值恰好有三个,则k 的值为( )A 、0B 、1C 、2D 、38、二次函数2y ax bx c =++的图象如图所示,)2,(n Q 是图象上的一点,且BQ AQ ⊥,则a 的值为( ). A 、13- B 、12-C 、-1D 、-2 9、将一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a,第二次掷出的点数为b,则使关于y x ,的方程组223=+=+y x by ax 只有正数解的概率为( )A 、121 B 、92 C 、185 D 、3613 10、如图,在平面直角坐标系xoy 中,等腰梯形ABCD 的顶点坐标分别为A (1,1),B (2,-1),C (-2,-1),D (-1,1)。

中学数学青年教师基本功大赛笔试试卷(专业知识)

中学数学青年教师基本功大赛笔试试卷(专业知识)

中学数学青年教师基本功大赛笔试试卷(专业知识)1.数学课堂教学的目标是什么?它们分别是什么维度的?答:数学课堂教学的目标有三维,分别是知识与技能、过程与方法、情感与价值观。

2.谁被称为解析几何学的创始人?答:法国哲学家、物理学家、数学家、生理学家______被称为解析几何学的创始人。

3.科学家们在探寻“外星人”方面曾借助哪个数学定理?答:数学家曾建议用勾股定理作为人类探寻“外星人”并与“外星人”联系的语言。

4.数学危机中最重要的悖论是什么?答:数学危机中最重要的悖论是___悖论。

5.课程标准的支撑理论是什么?代表人物有哪些?答:课程标准的支撑理论是建构主义,代表人物有___、___、___。

6.数学的作用是什么?答:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。

7.教师的主要任务是什么?答:教师的主要任务是激发学生的研究积极性,向学生提供充分从事数学活动的机会,帮助学生成为研究的主人。

8.初中阶段的数学内容分为哪些领域?答:初中阶段的数学内容分为数与代数、空间与图形、统计与概率和课题研究四个领域。

9.学生研究数学的重要方式有哪些?答:学生研究数学的重要方式有动手操作、自主探究、合作交流。

10.为什么教学要面向全体学生?如何才能实现这一目标?答:不同的人在数学上得到不同的发展,教学要面向全体学生,必须适应每一位学生的发展需要;实现这一目标需要承认差异、尊重差异。

11.义务教育阶段的数学课程标准应该体现哪些方面?答:义务教育阶段的数学课程标准应该体现基础性、普及性、发展性,使数学教育面向全体学生,实现人人学有价值的数学、人人获得必需的数学、不同的人在数学上获得不同的发展。

12.在新课程理念下,教师的角色发生了什么变化?答:在新课程理念下,教师的角色已经由原来的主导者转变成了学生研究活动的组织者、学生探究发现的引导者、与学生共同研究的合作者。

13.举例适合课外学生数学活动的形式。

数学教师教学基本功比赛测试卷(一)初级中学教师基本功大赛试题附答案

数学教师教学基本功比赛测试卷(一)初级中学教师基本功大赛试题附答案

初级中学数学教师教学基本功比赛测试卷(一)一、新课程标准,填空。

(每空2分,共20分)1数学是人们对客观世界定性把握和 、逐渐 、形成方法和理论,并进行广泛应用的过程。

2 教师的主要任务是激发学生的 ,向学生提供充分从事数学活动的机会,帮助学生成为学习的 。

3、初中阶段的数学内容分为数与代数、 、统计与概率和 四个领域。

4、动手操作、 、 是学生学习数学的重要方式。

5、不同的人在数学上得到不同的发展的意思是:教学要面向全体,必须适应每一位学生的 ;人的发展不可能整齐划一,必须 ,尊重差异。

二、专业知识(共70分)(一)填空题(每小题2分,共8分)1、如图,己知⊙O 的半径为5,弦AB=8,P 是弦AB 上的任意一点,则OP 的取值范围是 。

2、已知关于x 的不等式组⎩⎨⎧--0x 230a x >>的整数解共有6个,则a 的取值范围是 。

3、若ABC ∆的三边a 、b 、c 满足条件:222338102426a b c a b c +++=++,则这个三角形最长边上的高为 。

4、抛物线()2226y x =--的顶点为C ,已知3y kx =-+的图象经过点C ,则这个一次函数图象与两坐标轴所围成的三角形面积为 。

(二)选择题(每小题3分,共12分)5.如图,由几个小正方体组成的立体图形的左视图是6.有5张写有数字的卡片(如图1),它们的背面都相同,现将它们背面朝上(如图2),从中翻开任意一张是数字2的概率是( )OPBA羽毛球 25% 体操40%A .15 B .25C .23D .127.正方形网格中,AOB ∠如图放置,则tan ∠AOB 的值为( )A.55B.55C.12D.28. 已知甲、乙两组数据的平均数都是5,甲组数据的方差2112S =甲,乙组数据的方差2110S =乙,则以下说法正确的是( ) A.甲组数据比乙组数据的波动大B.乙组数据比甲组数据的波动大 C.甲组数据与乙组数据的波动一样大D.甲、乙两组数据的波动大小不能比较(三)解答题(共50分) 9.(本题满分6分)01112tan 30()3231---;10.(本题满分6分)因式分解:a 2x 2-4+a 2y 2-2a 2xy ;11.(本题满分6分)某学校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操课.学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了下边尚未完成的扇形统计图和频数分布直方图,请你结合图中的信息,解答下列问题:ABO(1)该校学生报名总人数有多少人?(2)选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之几? (3)将两个统计图补充完整 12.(本题满分10分) 如图,点A ,B ,C ,D 是直径为AB 的⊙O 上四个点,C 是劣弧BD 的中点,AC 交BD 于点E , AE =2, EC =1.(1)求证:DEC △∽ADC △;(2)连结DO ,试探究四边形OBCD 是否是菱形?若是,请你给予证明并求出它的面积;若不是,请说明理由.(3)延长AB 到H ,使BH =OB ,求证:CH 是⊙O 的切线.13,(本题满分10分)某污水处理公司为学校建一座三级污水处理池,平面图形为矩形,面积为200平方米(平面图如图22所示的ABCD ).已知池的外围墙建造单价为每米400元.中间两条隔墙建造单价每米300元,池底建造的单价为每平方米80元(池墙的厚度不考虑)(1)如果矩形水池恰好被隔墙分成三个正方形,试计算此项工程的总造价(精确到100元)(2)如果矩形水池的形状不受(1)中长、宽的限制,问预算45600元总造价,能否完成此项工程?试通过计算说明理由.(3)请给出此项工程的最低造价(多出部分只要不超过100元就有效).14,(本题满分12分)已知抛物线C 1:y =-x 2+2mx +n (m ,n 为常数,且m ≠0,n >0)的顶点为A ,与y 轴交于点C ,抛物线C 2与抛物线C 1关于y 轴对称,其顶点为B ,连结AC 、BC 、AB .(1)写出抛物线C 2的解析式;(2)当m =1时,判定△ABC 的形状,并说明理由;(3)抛物线C 1是否存在点P ,使得四边形ABCP 为菱形?如果存在,请求出m 的值;如果不存在,请说明理由.A D 隔 隔 墙 墙BC 图22答案一、新课标(20分)1、定量刻画、抽象概括2学习积极性、主人3空间与图形、课题学习4自主探究、合作交流5发展需要、承认差异二、专业知识(共70分)(一)填空题(共8分)1、3≤OP≤52、-5≤a<-43、60134、1(二)选择题(共12分))5、 A6、 B7、 D8、B (三)解答题(共70分)9.原式=332(32233(31)(31)+⨯--+……..……….2分331)2-………………4分3312-=-3 ………………6分10.a2x2-4+a2y2-2a2xy=(a2x2-2a2xy+a2y2)-4 …………………2分= a2(x2-2xy+y2)-4= a2(x-y)2-22 ………………4分=( a x-ay+2)( a x–ay-2)………………6分11.解:(1)设该校报名总人数为x人,则由两个统计图可得40%160x=.∴x=16016040040%0.4==(人). ·······················································1分(2)设选羽毛球的人数为y,则由两个统计图可得y=40025%100⨯=(人). ·····························2分因为选排球的人数是100人,所以10025%400=, ·································3分因为选篮球的人数是40人,所以4010%400=, ·························································································4分即选排球.篮球的人数占报名的总人数分别是25%和10%.(3)如图···························································································6分12.(共10分)(1)证明:∵C 是劣弧BD 的中点,∴ DAC CDB ∠=∠. 而ACD ∠公共,∴ DEC △∽ADC △. ·························· 1分 (2)证明:由⑴得DC ECAC DC=, ∵ 1.213CE AC AE EC ==+=+=, ∴2313DC AC EC ==⨯= . ∴3DC = .(2分)由 已知3BC DC ==AB 是⊙O 的直径,∴90ACB ∠=︒. ∴ 222223312AB AC CB =+=+=. ∴23AB =∴ 3OD OB BC DC ====. ∴ 四边形OBCD 是菱形. ········································································· 5分 过C 作CF 垂直AB 于F ,连结OC ,则3OB BC OC ===. ∴ 60OBC ∠=︒. ∴ sin 60CFBC︒=,33sin 60322CF BC =︒==, ∴ 33332BCD S OB CF =⨯==菱形O . ··················································· 7分 (3)证明:连结OC 交BD 于G ,∵ 四边形OBCD 是菱形, ∴OC BD ⊥且OG GC =.又 已知OB =BH ,∴ BG CH ∥. ∴90OCH OGB ∠=∠=︒,∴CH 是⊙O 的切线. ·································································· 10分13,(共10分)(1)设AB=x,则AD=3x,依题意3x2=200,x≈8.165.设总造价W元.W=8x×400+2x×300+200×80=3800x+16000=47000(元).(2)设AB=x,则AD=200 x.所以(2x+200x×2)×400+2x×300+80×200=45600.整理,得7x2-148x+800=0.此时求根公式中的被开方式=-496<0,所以此方程无实数解,即预算45600元不能完成此项工程.(3)估算:造价45800元. (2x+400x)×400+600x+16000=45800.整理,得7x2-149x+800=0.此时求根公式中的被开方式=-199<0,仍不够.造价46000元,同法可得7x2-150x+800=0.此时求根公式中的被开方式=100>0,够了.造价45900元,可得求根公式中的被开方式=-49.75<0,不够.最低造价为46000元.14(共12分),(1)y=-x2-2mx+n.(2)当m=1时,△ABC为等腰直角三角形.理由如下:因为点A与点B关于y轴对称,点C又在y轴上,AC=BC,过点A作抛物线C的对称轴交x轴于D.过点C作CE⊥AD于E.当m=1时,顶点A的坐标为A(1,1+n),CE =1,又点C的坐标为(0,n),AE=1+n-n=1,所以AE=CE,∠ECA=45°,∠ACy=45°,由对称性知∠BCy=45°,∠ACB=90°,所以△ABC为等腰直角三角形.(3)假设抛物线C,上存在点P,使得四边形ABCP为菱形,则PC=AB=BC,由(2)知,AC=BC,AB=BC=AC,从而△ABC为等边三角形,所以∠ACy=∠BCy=30°.又四边形ABCP为菱形,且点P在C1上,点P与点C关于AD对称,PC与AD的交点也为E,∠ACE =90°-30°=60°,点A、C的坐标分别为A(m,m2+n),C(0,n),AE2=m2+n-n=m2,CE=│m│,在Rt•△ACE中,tan60°=2||AE mCE m=3,│m│=3.所以m=±3.故抛物线C上存在点P,使得四边形ABCP为菱形.此时m=±3.。

全国 初中数学青年教师教学基本功竞赛专业技能考试

全国 初中数学青年教师教学基本功竞赛专业技能考试

初中数学青年教师教学基本功竞赛专业技能考试数 学 试 卷(试卷满分120分,考试时间120分钟)解题能力题号基础知识一二三四五总分合分人复核人得分 第一部分 基础知识(共30分)一、选择题(本大题共8小题,每题2分,共16分.将答案选项直接填写在题中括号内)1.教育的根本任务是( ).A.传授知识 B.增强技能 C.教书育人 D.学会认知 2. 课外校外教育与课内教育的共同之处在于,它们都是( ).A.受教学计划和教学大纲规范的 B.有目的、有计划、有组织进行的 C.师生共同参与的 D.学生自愿选择的3. 教师在教育工作中要做到循序渐进,这是因为 ( ). A.学生只有机械记忆的能力 B.教师的知识、能力是不一样的 C.教育活动中要遵循人的身心发展的一般规律 D.教育活动完全受到人的遗传素质的制约4. 在教育活动中,教师负责组织、引导学生沿着正确的方向,采用科学的方法,获得良好的发展,这句话的意思是说( ). A.学生在教育活动中是被动的客体 B.教师在教育活动中是被动的客体 C.要充分发挥教师在教育活动中的主导作用 D.教师在教育活动中是不能起到主导作用5. 身处教育实践第一线的研究者与受过专门训练的科学研究者密切协作,以教育实践中存在的某一问题作为研究对象,通过合作研究,再把研究结果应用到自身从事的教育实践中的一种研究方法,这种研究方法是( ).A.观察法 B.读书法 C.文献法 D.行动研究法6. 注意的两种最基本的特性是( ) . A.指向性与选择性 B.指向性与集中性 C.指向性与分散性 D.集中性与紧张性7. 班级授课制的实施在我国始于( ). A .唐代 B .清末C .民国初期 D .新中国成立 8. 孔子说:“其身正,不令而行;其身不正,虽令不从。

”这反映教师劳动的哪种特点?( ) A .主体性 B .创造性 C .间接性 D .示范法二、填空题(本大题共3小题,每空格2分,共14分.将答案直接填写在题中横线上)1.义务教育阶段的数学课程标准应体现基础性、普及性、__________, 使数学教育面向全体学生,实现:①人人学有价值的数学;②_________________________;③___ ___________________________。

初中数学教师基本能力竞赛(含问题详解)

初中数学教师基本能力竞赛(含问题详解)

第5题图第6题初中数学教师基本能力竞赛全卷共四大题28小题,满分150分,考试时间120分钟.一、选择题(本大题共10小题,每小题3分,满分30分)1、雄风商城春节期间,开设一种摸奖游戏,中一等奖的机会为20万分之一,用科学记数法表示为( )A 、2×10-5B 、5×10-6C 、5×10-5D 、2×10-62、图(1)表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A ,且当钟面显示3点30分时,分针垂直于桌面,A 点距桌面的高度为10厘米。

如图(2),若此钟面显示3点45分时,A 点距桌面的高度为16厘米,则钟面显示3点50分时,A 点距桌面的高度为( )?A 、(22-3 3)厘米B 、(16+π)厘米C 、18厘米D 、19厘米3、已知一组正数12345,,,,x x x x x 的方差为:222222123451(20)5S x x x x x =++++-,则关于数据123452,2,2,2,2x x x x x + + + + +的说法:①方差为S 2;②平均数为2;③平均数为4;④方差为4S 2。

其中正确的说法是( )A 、 ①②B 、①③C 、②④D 、③④4.如图,ABC ∆的角,,A B C 所对边分别为,,a b c ,点是O ABC ∆的外心,,于,于E AC OE D BC OD ⊥⊥,于F AB OF ⊥ 则OD OE OF =∶∶( ) .A 、a b c ∶∶B 、cb a 1:1:1 C 、C B A cos :cos :cos D 、C B A sin :sin :sin5、用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面.已知正AB CEFO第8题图多边形的边数为x 、y 、z ,则zy x 111++的值为( ) A 、1 B 、32 C 、21 D 、31 6、如图,以Rt △ABC 的斜边BC 为一边在△ABC 的同侧作正方形BCEF ,设正方形的中心为O ,连结AO ,如果AB =4,AO =26,那么AC 的长等于( ) A 、12 B 、16 C、 D、7、已知函数()()()()22113513x x y x x ⎧--⎪=⎨--⎪⎩≤>,则使y =k 成立的x 值恰好有三个,则k 的值为( )A 、0B 、1C 、2D 、38、二次函数2y ax bx c =++的图象如图所示,)2,(n Q 是图象上的一点,且BQ AQ ⊥,则a 的值为( ). A 、13- B 、12-C 、-1D 、-2 9、将一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a,第二次掷出的点数为b,则使关于y x ,的方程组223=+=+y x by ax 只有正数解的概率为( )A 、121 B 、92 C 、185 D 、3613 10、如图,在平面直角坐标系xoy 中,等腰梯形ABCD 的顶点坐标分别为A (1,1),B (2,-1),C (-2,-1),D (-1,1)。

初中数学教师教学基本功比赛试卷

初中数学教师教学基本功比赛试卷

)b第6题x初中数学教师教学基本功比赛试卷一、选择题(每小题3分,共30分)1.方程1116x y+=的正整数解的个数是()A.7个 B.8个 C.9 个 D.10个2. 已知圆O1、圆O2的半径不相等,圆O1的半径长为3,若圆O2上的点A满足AO1 = 3,则圆O1与圆O2的位置关系是()A.相交或相切B.相切或相离C.相交或内含D.相切或内含3. 如图是某几何体的三视图,则该几何体的全面积是()A.36π B.60π C.96π D.120π4.如图,八边形ABCDEFGH中,∠A=∠B=∠C=∠D=∠E=∠F=∠G=∠H=135º,AB=CD=EF=GH=1,BC=DE=FG=HA=2,则这个八边形的面积等于()A.7 B.72 C.8 D.1425. 如图,是由大小一样的小正方形组成的网格,△ABC的三个顶点落在小正方形的顶点上.在网格上能画出三个顶点都落在小正方形的顶点上,且与△ABC成轴对称的三角形共( )个.A.2 B.3 C.4 D.56.如图,A,B的坐标为(2,0),(0,1)若将线段AB平移至11A B,则a b+的值为()A.2 B.3 C.4 D.5第7题7.在直线l上依次摆放着7个正方形,已知斜放置的3个的面积分别是a、b、c,正放置的4个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4的值为() A.cba++ B.ca+ C.cba++2 D.cba+-8.A是半径为5的⊙O内的一点,且OA=3,过点A且长小于8的弦有()A.0条 B.1条 C.2条 D.无数条9.从2,3,4,5这四个数中,任取两个数p和q(p≠q),构成函数y1=px-2和y2=x+q,使两个函数图象的交点在直线x=2的左侧,则这样的有序数组(p,q)共有()组.A.3 B.4 C.5 D.610.若关于x的不等式⎩⎨⎧≤-<-127xmx的整数解共有4个,则m的取值范围是()学校姓名密封线A .76<<mB .76<≤mC .76≤≤mD .76≤<m 二、填空题(每小题2分,共20分)11. 在地面上某一点周围有a 个正三角形、b 个正六边形(a 、b 均不为0),恰能铺满地面,则a +b =___________.12.已知a 、b 实数且满足(a 2+b 2)2-(a 2+b 2)-6=0,则a 2+b 2的值为 .13.如图,将半径为1、圆心角为60°的扇形纸片AOB ,在直线l 上向右作无滑动的滚动至扇形A ′O ′B ′处,则顶点O 经过的路线总长为 . 14.在直角坐标系中,0为坐标原点,A(1,1),在坐标轴上确定一点P ,使△AOP 为等腰三 角形,则符合条件的点P 共有__________个.15.如图,A 、B 是双曲线 y = k x(k >0) 上的点, A 、B 两点的横坐标分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若S △AOC =6.则k= .16.如图,矩形ABCD 中,由8个面积均为1的小正方形组成的L 型模板如图放置,则矩形ABCD 的周长为___ ___.17.已知正方形ABCD 的面积35平方厘米, E 、F 分别为边AB 、BC 上的点, AF 和CE 相交于点G ,并且ABF ∆的面积为5平方厘米,BCE ∆的面积为14平方厘米,那么四边形BEGF 的面积是___________平方厘米.18.已知点A (0,2)、B (4,0),点C 、D 分别在直线1=x 与2=x 上,且CD x //轴,则AC+CD+DB 的最小值为 .19.如图正方形ABCD,E 、F 分别为AB 、BC 上的点,连AF 、CE 相交于一点G ,若72==∆∆AB C AB F S S BC BF ,54=BA BE ,⊿ABF 的面积等于5,⊿BCE 的面积等于14,求四边形EBFG 的面积20.把图一的矩形纸片ABCD 折叠,B 、C 两点恰好重合落在AD 边上的点P 处(如图二)已知∠MPN=090,PM=3,PN=4,那么矩形纸片ABCD 的面积为 。

初中数学教师技能考试试卷(含解答)

初中数学教师技能考试试卷(含解答)

初中数学教师技能考试试卷(含解答)第一部分:选择题(共40分)1. 下列哪个数是无理数?- A. 2- B. -1/2- C. √5- D. 3/4正确答案:C2. 三角形的内角和是多少度?- A. 90度- B. 180度- C. 360度- D. 540度正确答案:B3. 以下哪个图形不是正多边形?- A. 正方形- B. 正三角形- C. 正五边形- D. 正六边形正确答案:D4. 以下哪个数是一个完全平方数?- A. 18- B. 25- C. 33- D. 42正确答案:B5. 一个长方形的长是5cm,宽是3cm,它的面积是多少平方厘米?- A. 8- B. 10- C. 15- D. 16正确答案:C...第二部分:解答题(共60分)1. 请计算以下等式的解:2x + 5 = 15。

解答:将等式两边减去5,得到2x = 10。

再将等式两边除以2,得到x = 5。

所以方程的解是x = 5。

2. 请画出一个正方形,并标注出它的边长、对角线等重要特征。

解答:(插入正方形示意图)3. 请计算以下等式的解:3(x + 2) = 15。

解答:首先将等式左边进行分配律展开,得到3x + 6 = 15。

然后将等式两边减去6,得到3x = 9。

最后将等式两边除以3,得到x = 3。

所以方程的解是x = 3。

...第三部分:应用题(共40分)1. 某商店举办打折促销活动,商品原价为100元,现在打8折出售。

请计算打折后的价格是多少元?解答:打8折相当于原价乘以0.8,所以打折后的价格是100元 × 0.8 = 80元。

2. 一辆汽车以每小时60公里的速度行驶,行驶了3小时,请计算汽车行驶的总路程是多少公里?解答:汽车以每小时60公里的速度行驶3小时,所以总路程是60公里/小时 × 3小时 = 180公里。

...第四部分:解析题(共60分)1. 请解析以下数列的规律:2, 4, 6, 8, ...解答:这是一个等差数列,公差为2,首项为2。

初中数学教师基本功竞赛试卷(附答案)

初中数学教师基本功竞赛试卷(附答案)

初中数学教师基本功竞赛试卷(附答案)第一题 - 四则运算计算下列各式的结果:1. $12 + 5 =$2. $20 - 8 =$3. $4 \times 7 =$4. $36 \div 9 =$答案:1. $12 + 5 = 17$2. $20 - 8 = 12$3. $4 \times 7 = 28$4. $36 \div 9 = 4$第二题 - 分数计算对下列各题进行分数计算:1. $\frac{3}{4} + \frac{1}{2} =$2. $\frac{5}{8} - \frac{1}{4} =$3. $\frac{2}{3} \times \frac{3}{5} =$4. $\frac{2}{9} \div \frac{1}{3} =$答案:1. $\frac{3}{4} + \frac{1}{2} = \frac{5}{4}$2. $\frac{5}{8} - \frac{1}{4} = \frac{3}{8}$3. $\frac{2}{3} \times \frac{3}{5} = \frac{6}{15}$4. $\frac{2}{9} \div \frac{1}{3} = \frac{6}{9}$第三题 - 方程求解解下列方程:1. $2x + 3 = 9$2. $\frac{3}{4}x - \frac{1}{2} = 1$3. $5 - 2x = 8$4. $\frac{1}{3}x + 5 = 7$答案:1. $x = 3$2. $x = \frac{9}{5}$3. $x = -1.5$4. $x = 6$第四题 - 几何图形选择正确的答案:1. 三角形的内角和为多少?- A. 90度- B. 180度- C. 360度- D. 45度答案:B. 180度2. 一个正方形有几条对角线?- A. 1条- B. 2条- C. 4条- D. 0条答案:C. 4条3. 直线与平行线相交,对应角为:- A. 互补角- B. 对顶角- C. 相等角- D. 余角答案:B. 对顶角4. 直角三角形的斜边是:- A. 最长边- B. 最短边- C. 邻边- D. 对边答案:A. 最长边第五题 - 数学推理根据给定的条件选择正确的答案:1. 如果$a = 3$,$b = 5$,则$a + b =$ _____?- A. 7- B. 8- C. 9- D. 15答案:A. 82. 如果$a = 2$,$b = 4$,则$a \times b =$ _____?- A. 2- B. 4- C. 6- D. 8答案:D. 83. 如果$a = 6$,$b = 2$,则$a - b =$ _____?- A. 2- B. 3- C. 4- D. 5答案:C. 44. 如果$a = 10$,$b = 2$,则$a \div b =$ _____?- A. 1- B. 2- C. 5- D. 10答案:B. 5以上是初中数学教师基本功竞赛试卷及答案。

初中数学教师基本功比赛专业技能比赛试题

初中数学教师基本功比赛专业技能比赛试题

初中数学教师基本功比赛专业技能比赛试题1.试求证:圆的切线垂直于经过切点的半径. (书本定理的证明)2.如图,已知AB =1,点C 是线段AB 的黄金分割点,试用一元二次方程求根公式验证黄金 比215-=AB AC .(书本习题)3.三座城市A 、B 、C 分别位于一个等腰三角形ABC 的三个顶点处,且AB =AC =50km ,BC =80km ,要在这三个城市之间铺设通讯电缆,现设计了三种连接方案. 方案一:沿AB 、BC 铺设;方案二:沿BC ,和BC 边上的中线AD 铺设;方案三:在ABC ∆内找一点O ,使OA =OB =OC ,沿OA =OB =OC 铺设. (1)请你用尺规画出三种方案的示意图;(2)请你在这三种方案中选择最短的方案,并加以说明.4.如图,在△ABC 中,45ABC ∠=,点D 在边BC 上,60ADC ∠=,且12BD CD =.将△ACD 以直线AD 为轴做轴对称变换,得到△AC D ',连接BC ',(1)求证BC BC '⊥; (2)求C ∠的大小.ABCDC /5.已知抛物线①经过点A (-1,0)、B (4,5)、C (0,-3),其对称轴与直线BC 交于点P 。

(1)求抛物线①的表达式及点P 的坐标;(2)将抛物线①向右平移1个单位后再作上下平移,得到的抛物线②恰好过点P ,求上下平移的方向和距离;(3)设抛物线②的顶点为D ,与y 轴的交点为E ,试求∠EDP 的正弦值.参考答案:4.(1)∵△AC D '是△ACD 沿AD 做轴对称变换得到的,∴△AC D '≌△ACD .有C D CD '=,ADC ADC '∠=∠.………………3分∵12BD CD =,60ADC ∠=,∴12BD C D '=,18060BDC ADC ADC ''∠=-∠-∠=.……5分取C D '中点P ,连接BP ,则△BDP 为等边三角形,△BC P '为等腰三角形,…8分有113022BC D BPD BDC ''∠=∠=∠=︒.∴90C BD '∠=,即BC BC '⊥. ……10分(2)如图,过点A 分别作,,BC C D BC ''的垂线,垂足分别为,,E F G .∵ADC ADC '∠=∠,即点A 在C DC '∠的平分线上, ∴AE AF =.……13分 ∵90C BD '∠=,45ABC ∠=, ∴45GBA C BC ABC '∠=∠-∠=,ABDC 'PBDC 'FGA即点A 在GBC ∠的平分线上,∴AG AE =.……16分于是,AG AF =,则点A 在GC D '∠的平分线上.…………………………18分 又∵30BC D '∠=︒,有150GC D '∠=. ∴12AC D '∠=75GC D '∠=.∴C ∠75AC D '=∠=.………………………20分 解:(1)据题意设抛物线的表达式为23y ax bx =+-,则0351643a b a b =--⎧⎨=+-⎩,解得12a b =⎧⎨=-⎩,∴抛物线的表达式为223y x x =-- ∴对称轴为直线1x =据题意设直线BC 的解析式为3y kx =-,则543,2k k =-=, ∴直线BC 的解析式为23y x =-,∴P (1,-1)(2)设抛物线①向右平移1个单位后再向上平移m 个单位得抛物线②, 则抛物线②的表达式为2(11)4y x m =---+∵抛物线②过点P ,∴21(111)4m -=---+,∴2m = ∴再将它向上移动2个单位可得到抛物线②(3)∵抛物线①向右移动1个单位,再向上平移2个单位得到抛物线②,∴抛物线②的表达式是2(11)42y x =---+即2(2)2y x =--,∴D (2,-2),E (0,2) ∵P(1,-1),∴直线DP 过点O ,且与x 轴夹角为45°, 过点E 作EH ⊥DP 于点H ,∴∠EOH= 45°∵E (0,2),∴=∴sin ∠EDP=EH DE ==x备用:某一学生把一座正确的时钟的时针装在分针的轴上,把分针装在时针的轴上,问这座时钟一天中有 次显示正确的时刻.221、设a 为质数,并且278a +和287a +也都是质数,若记778,887x a y a =+=+,则在以下情况中,必定成立的是( ).()A 、,x y 都是质数; ()B 、,x y 都是合数;()C 、,x y 一个是质数,一个是合数; ()D 、对不同的a ,以上各情况皆可能出现.答案:A .解:当3a =时,27871a +=与28779a +=皆为质数,而778239x a =+=,887271y a =+=都是质数;当质数a 异于3时,则2a 被3除余1,设231a n =+,于是2782115a n +=+,2872415a n +=+,它们都不是质数,与条件矛盾!绕圆周填写了十二个正整数,其中每个数取自{}1,2,3,4,5,6,7,8,9之中(每一个数都可以多次出现在圆周上),若圆周上任何三个相邻位置上的数之和都是7的倍数,用S 表示圆周上所有十二个数的和,那么数S 所有可能的取值情况有 种. 答案:9种.解:对于圆周上相邻的三个数{}12,,k k k a a a ++,12k k k a a a ++++可以是7,或14,或21,例如,当三数和为7时,{}12,,k k k a a a ++可以取{}1,2,4或{}1,1,5或{}2,2,3;又对于圆周上任意相邻的四数,若顺次为123,,,k k k k a a a a +++,由于12k k k a a a ++++和123k k k a a a +++++都是7的倍数,那么必有37k k a a +-,于是k a 与3k a +或者相等,或者相差7;又在圆周上,1与8可互换,2与9可互换;现将圆周分成四段,每段三个数的和皆可以是7,或14,或21,因此四段的总和可以取到{}28,35,42,49,56,63,70,77,84中的任一个值,总共九种情况.(其中的一种填法是:先在圆周上顺次填出十二个数:1,2,4,1,2,4,1,2,4,1,2,4,其和为28,然后每次将一个1改成8,或者将一个2改成9,每一次操作都使得总和增加7,而这样的操作可以进行八次).变式:求35=S 的概率是多少?众所周知,菠萝味道鲜美,很受大家喜爱.某超市为方便顾客,把菠萝去皮后出售,但由于定价不合理而无人问津.现根据如下统计数据重新定价,你认为如何划定去皮菠萝的价为庆祝“神州五号”载人飞行成功返航,某学校科技小组要举行科技小作品展,小东在制作一件参展作品过程中,遇到这样一个问题:如图1,一块金属板上有三个圆洞,现要作一个与这三个圆洞都相切的圆板(大小不限),请你帮助他提供6种不同方案.20.在某省举行的中学教师课件及观摩课比赛中,其中一个参赛课件是这样的:在平面上有n 个过同一点P 且半径相等的圆,其中任何两个圆都有两个交点,任何三个圆除P 点外无其它交点,演示探索这样的n 个圆把平面划分成几个平面区域的问题.大屏幕上首先依次显现了如下几个场景:试问:当有n 个圆按此规律相交时,可把平面划分成多少个平面区域?这n 个圆共有几个交点?答案:平面区域:2)1(+n n ,交点个数:12)1(+-n n场景一 场景二 场景三 场景四 场景五 图1。

初中数学青年教师基本功大赛笔试试卷(专业知识)

初中数学青年教师基本功大赛笔试试卷(专业知识)

初中数学青年教师基本功比赛——理论部分(一)填空题1.数学课堂教学的三维目标是知识与技能、过程与方法、情感与价值观。

2.法国哲学家、物理学家、数学家、生理学家勒奈笛卡尔被称为解析几何学的创始人。

3.今天,世界各国的科学家们都在试探寻找“外星人”,科学家们一次又一次地向宇宙发射了地球上人类的形象、问候语言、自然音响、世界名曲等信号,尝试与“他们”通话、建立友谊。

数学家曾建议用勾股定理作为人类探寻“外星人”并与“外星人”联系的语言。

4.1900年前后,在数学的集合论中出现了三个著名悖论,其中最重要的悖论罗素悖论,这些悖论触发了第三次数学危机。

5.课程标准的一个重要支撑理论是建构主义,其代表人物有:皮亚杰、卡茨、维果斯基。

(填两个)6.数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。

7. 教师的主要任务是激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助学生成为学习的主人。

8、初中阶段的数学内容分为数与代数、空间与图形、统计与概率和课题学习四个领域。

9、动手操作、自主探究、合作交流是学生学习数学的重要方式。

10、不同的人在数学上得到不同的发展的意思是:教学要面向全体,必须适应每一位学生的发展需要;人的发展不可能整齐划一,必须承认差异,尊重差异。

11.义务教育阶段的数学课程标准应体现基础性、普及性_、_发展性_, 使数学教育面向全体学生,实现:①人人学有价值的数学;②_人人获得必需的数学__;③_不同的人在数学上获得不同的发展_。

12.新课程理念下教师的角色发生了变化,已有原来的主导者转变成了学生学习活动的__组织者__,学生探究发现的_引导者__,与学生共同学习的_合作者__。

13.例举三个以上适合课外学生数学活动的形式___数学手抄报、数学专题报告、数学小调查、数学演讲__14.古希腊的三大几何问题是三等分角、立方倍角、化圆为方;15.数学史上三大数学危机是无理数的发现、无穷小是零、悖论的产生;116.我国著名数学家陈景润证明了数论中的命题“1+2”,这个命题的具体名称是任何一个大于2的偶数都可以表示成两个质数的和;17.把实数表示在数轴上体现了数形结合数学思想;(二)简答题18.大约在公元前6世纪至4世纪之间,古希腊人遇到了令他们百思不得其解的三大尺规作图问题,这就是著名的古代几何作图三大难题。

2021年雨花台区初中数学教师基本功大赛专业技能考试卷终稿

2021年雨花台区初中数学教师基本功大赛专业技能考试卷终稿

数的积分和为 150,则 m 的值是

18. 如图,在△ABC 中,∠C=90°,∠BAC=30°,BC=1,分别以 AB、AC 为边作正三角形 ABD、ACE,
连接 DE,交 AB 于点 F,则 DF 的长是

D'
DM
F
C
D
A
A D
F
B
C
(第 18 题)
E
E
A
N
B
(第 19 题)
P
E
B
ห้องสมุดไป่ตู้
C
(第 20 题)

.
6.《义务教育课程标准(2011 年版)》提出发展“四基”,即

发展“四能”,即

7. 美 国 著 名 数 学 家 乔 治 ·波 利 亚 在 其 名 著 《 怎 样 解 题 》 中 提 出 解 决 问 题 的 四 个 步 骤
是:




8.二次函数 y=ax2+bx+c(a,b,c 为常数,a<0)的图像经过 A(1,0),B(-3,0)两点.若对于 a 的每
成绩

2.义务教育阶段的数学课程是培养公民素质的基础课程,具有基础性、

的科学. .
3.学生体会和理解数学与外部世界联系的基本途径是
的建立.
4. 数学知识的教学,要注重知识的“
”与“
”,注重知识的结构和体系,引导学生感受
数学的整体性、体会某些数学知识可以多角度分析、不同层次理解。
5. 有效教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、


11. 直角三角形的三边的长度都是正整数,其中一条直角边的长度为 13,则它的周长是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学教师基本功比赛专业技能比赛试题
1.试求证:圆的切线垂直于经过切点的半径. (书本定理的证明)
2.如图,已知AB =1,点C 是线段AB 的黄金分割点,试用一元二次方程求根公式验证黄金 比2
1
5-=AB AC
.(书本习题)
3.三座城市A 、B 、C 分别位于一个等腰三角形ABC 的三个顶点处,且AB =AC =50km ,BC =80km ,要在这三个城市之间铺设通讯电缆,现设计了三种连接方案. 方案一:沿AB 、BC 铺设;
方案二:沿BC ,和BC 边上的中线AD 铺设;
方案三:在ABC ∆内找一点O ,使OA =OB =OC ,沿OA =OB =OC 铺设. (1)请你用尺规画出三种方案的示意图;
(2)请你在这三种方案中选择最短的方案,并加以说明.
4.如图,在△ABC 中,45ABC ∠=,点D 在边BC 上,60ADC ∠=,且1
2
BD CD =.将△
ACD 以直线AD 为轴做轴对称变换,得到△AC D ',连接BC ',
(1)求证BC BC '⊥; (2)求C ∠的大小.
A
B
C
D
C /
5.已知抛物线①经过点A (-1,0)、B (4,5)、C (0,-3),其对称轴与直线BC 交于点P 。

(1)求抛物线①的表达式及点P 的坐标;
(2)将抛物线①向右平移1个单位后再作上下平移,得到的抛物线②恰好过点P ,求上下
平移的方向和距离;
(3)设抛物线②的顶点为D ,与y 轴的交点为E ,试求∠EDP 的正弦值.
参考答案:
4.(1)∵△AC D '是△ACD 沿AD 做轴对称变换得到的,
∴△AC D '≌△ACD .
有C D CD '=,ADC ADC '∠=∠.………………3分
∵1
2
BD CD =,60ADC ∠=,
∴1
2BD C D '=,18060BDC ADC ADC ''∠=-∠-∠=.……5分
取C D '中点P ,连接BP ,则△BDP 为等边三角形,△BC P '为等腰三角形,…8分
有11
3022BC D BPD BDC ''∠=∠=∠=︒.∴90C BD '∠=,即BC BC '⊥. ……10分
(2)如图,过点A 分别作,,BC C D BC ''的垂线,垂足分别为,,E F G .
∵ADC ADC '∠=∠,
即点A 在C DC '∠的平分线上, ∴AE AF =.……13分 ∵90C BD '∠=,45ABC ∠=, ∴45GBA C BC ABC '∠=∠-∠=,
A
B
D
C '
P
B
D
C '
F
G
A
C
即点A 在GBC ∠的平分线上,∴AG AE =.……16分
于是,AG AF =,则点A 在GC D '∠的平分线上.…………………………18分 又∵30BC D '∠=︒,有150GC D '∠=. ∴1
2
AC D '∠=
75GC D '∠=.∴C ∠75AC D '=∠=.………………………20分 解:(1)据题意设抛物线的表达式为2
3y ax bx =+-,
则0351643
a b a b =--⎧⎨=+-⎩,解得12a b =⎧⎨=-⎩,∴抛物线的表达式为223y x x =--
∴对称轴为直线1x =
据题意设直线BC 的解析式为3y kx =-,则543,2k k =-=, ∴直线BC 的解析式为23y x =-,∴P (1,-1)
(2)设抛物线①向右平移1个单位后再向上平移m 个单位得抛物线②, 则抛物线②的表达式为2
(11)4y x m =---+
∵抛物线②过点P ,∴21(111)4m -=---+,∴2m = ∴再将它向上移动2个单位可得到抛物线②
(3)∵抛物线①向右移动1个单位,再向上平移2个单位得到抛物线②,
∴抛物线②的表达式是2
(11)42y x =---+即
2(2)2y x =--,∴D (2,-2),E (0,2)
∵P(1,-1),∴直线DP 过点O ,且与x 轴夹角为45°, 过点E 作EH ⊥DP 于点H ,∴∠EOH= 45°
∵E (0,2),∴
,而
=∴sin ∠
EDP=EH DE ==
x
备用:
某一学生把一座正确的时钟的时针装在分针的轴上,把分针装在时针的轴上,问这座时钟一天中有 次显示正确的时刻.22
1、设a 为质数,并且278a +和287a +也都是质数,若记778,887x a y a =+=+,
则在以下情况中,必定成立的是( ).
()A 、,x y 都是质数; ()B 、,x y 都是合数;
()C 、,x y 一个是质数,一个是合数; ()D 、对不同的a ,以上各情况皆可能出现.
答案:A .
解:当3a =时,2
7871a +=与2
8779a +=皆为质数,而778239x a =+=,
887271y a =+=都是质数;
当质数a 异于3时,则2
a 被3除余1,设2
31a n =+,于是2
782115a n +=+,
2872415a n +=+,它们都不是质数,与条件矛盾!
绕圆周填写了十二个正整数,其中每个数取自{}1,2,3,4,5,6,7,8,9之中(每一个数都可以多次出现在圆周上),若圆周上任何三个相邻位置上的数之和都是7的倍数,用S 表示圆周上所有十二个数的和,那么数S 所有可能的取值情况有 种. 答案:9种.
解:对于圆周上相邻的三个数{}12,,k k k a a a ++,12k k k a a a ++++可以是7,或14,或21,例如,当三数和为7时,{}12,,k k k a a a ++可以取{}1,2,4或{}1,1,5或{}2,2,3;又对于圆周上任意相邻的四数,若顺次为123,,,k k k k a a a a +++,由于12k k k a a a ++++和123k k k a a a +++++都是7的倍数,那么必有37k k a a +-,于是k a 与3k a +或者相等,或者相差7;
又在圆周上,1与8可互换,2与9可互换;现将圆周分成四段,每段三个数的和皆可以是7,或14,或21,因此四段的总和可以取到{}28,35,42,49,56,63,70,77,84中的任一个值,总共九种情况.
(其中的一种填法是:先在圆周上顺次填出十二个数:1,2,4,1,2,4,1,2,4,1,2,4,其和
为28,然后每次将一个1改成8,或者将一个2改成9,每一次操作都使得总和增加7,而这样的操作可以进行八次).
变式:求35=S 的概率是多少?
众所周知,菠萝味道鲜美,很受大家喜爱.某超市为方便顾客,把菠萝去皮后出售,但由于定价不合理而无人问津.现根据如下统计数据重新定价,你认为如何划定去皮菠萝的价
为庆祝“神州五号”
载人飞行成功返航,某学校科技小组要举行科技小作品展,小东在制作一件参展作品过程中,遇到这样一个问题:如图1,一块金属板上有三个圆洞,现要作一个与这三个圆洞都相切的圆板(大小不限),请你帮助他提供6
种不同方案.
20.
在某省举行的中学教师课件及观摩课比赛中,其中一个参赛课件是这样的:
在平面上有n 个过同一点P 且半径相等的圆,其中任何两个圆都有两个交点,任何三个圆除P 点外无其它交点,演示探索这样的n 个圆把平面划分成几个平面区域的问题.大屏幕上首先依次显现了如下几个场景:
试问:当有n 个圆按此规律相交时,可把平面划分成多少个平面区域?这n 个圆共有几个交点?
答案:平面区域:2)1(+n n ,交点个数:
12
)
1(+-n n
场景一
场景二 场景三 场景四 场景五 图1。

相关文档
最新文档