广州数学中考考点分析
广州市中考数学历年考点分析.doc

广州市中考数学历年考点分析
1、试卷满分都是150分,考试时间120分钟;
2、题型的分布都是总共25道题,英中选择题10道(30分),填空题6道(18分),解答题9 道(102分);
3、试卷难度不大,基础题占有122分(82%),有难度拔高题占有28分(18%);
4、代数部分考查分数大概是90〜100分,儿何部分考査分数50〜60分(37%);
5、知识点的考查比较有规律,常规题型的变化不大
F面是我对2009-2011年广州市中考数学试卷的分析表,仅供参考:
2009 年2010 年2011 年函数35 分(25%)30 分(20%)35 分(25%)不等式与方程32 分(21% )23 分(15%)27 分(16%)代数式20 分(14%)23 分(15%)25 分(17%)
概率与统计15 分(10%)16 分(10%)15 分(10%)几何48 分(32%)58 分(40%)48 分(32%)
下面是我対2010〜2012年广州市中考数学试卷的分析表
各模块近三年考查分析。
2023年广州中考数学题型分值

2023年广州中考数学题型分值摘要:1.2023年广州中考数学试卷整体分析2.试卷分值分布3.试题特点及应对策略4.备考建议正文:随着2023年广州中考数学试卷的陆续发布,广大考生及家长对其关注度逐渐攀升。
本文将对2023年广州中考数学试卷进行详细分析,帮助考生了解试卷结构、特点及应对策略,为备考提供有效指导。
一、2023年广州中考数学试卷整体分析2023年广州中考数学试卷整体难度相较于历年有所降低,尤其选择填空的压轴题相对简单,有利于考生在基础题型上取得较高分数。
然而,最后两道压轴大题仍具有较高难度,考查考生们的计算能力和思维能力。
二、试卷分值分布根据历年广州中考数学试卷分值分布,满分120分,具体分值分布如下:1.选择题(共12分,每题3分)2.填空题(共18分,每题6分)3.解答题(共72分,其中第23题-第26题)三、试题特点及应对策略1.注重基础知识和基本技能:试卷中基础知识题型占据较大比重,考查考生对初中数学基本概念、定理、公式等的掌握。
因此,考生在备考过程中要扎实掌握基础知识。
2.考查综合能力:试卷中的压轴题涉及较复杂的思维过程,需要考生具备较强的综合分析、解决问题的能力。
考生在备考时应注重培养自己的综合能力。
3.注重实际应用:试卷中有一定比例的题目与实际生活相结合,考查考生运用数学知识解决实际问题的能力。
考生在备考过程中要关注数学与实际生活的联系。
4.注重运算能力:试卷中对考生的运算能力有较高要求,特别是最后两道压轴题。
考生要加强对运算技巧和运算速度的训练。
四、备考建议1.系统复习:考生应按照教材和教学大纲,对初中数学知识进行系统复习,确保扎实掌握基础知识。
2.强化训练:多做真题和模拟题,提高解题速度和正确率,尤其要关注压轴题的解题方法。
3.查漏补缺:通过复习和练习,找出自己在知识体系中的薄弱环节,有针对性地进行补充和巩固。
4.调整心态:保持良好的学习心态,积极面对中考挑战,充分发挥自己的实力。
202X广州数学中考考点解析

千里之行,始于足下。
202X广州数学中考考点解析
根据历年的广州市中考数学试卷和教学大纲,可以分析出以下可能的考点:
1. 四则运算与分数运算:中考中会涉及到四则运算的基本规则和分数的加减乘除,包括带分数和混合运算等。
2. 数与代数:考察对实数的认识和运用,了解数与代数关系,包括等式、方程和不等式等。
3. 几何图形与测量:涉及几何图形的性质、分类和测量,包括直线、线段、角、三角形、四边形和圆等。
4. 数据与统计:考察对数据的收集、整理和分析能力,包括频数表、统计图和概率等。
5. 函数与图像:了解函数的定义和性质,能够进行函数图像的描绘和分析。
6. 空间与立体几何:考察对立体几何的认识和分析能力,包括立体图形的表示和计算等。
注意,以上仅是对广州数学中考可能的考点进行了简要的概述,具体的考
点还需要根据教学大纲和试卷要求进行具体分析和准备。
建议你加强对这些考
点的理解和掌握,多做一些相关的习题和模拟试题,以提高应试能力。
第1页/共1页。
2023年广州市中考数学真题试卷解析版

2023年广州市中考数学真题试卷(解析版)一、选择题(每题3分,共30分)1、(2023•广州)四个数﹣5,﹣0.1,,中为无理数旳是()A、﹣5B、﹣0.1C、D、考点:无理数。
分析:本题需先把四个数﹣5,﹣0.1,,判断出谁是有理数,谁是无理数即可求出成果.解答:解:∵﹣5、﹣0.1、是有理数,∵无限不循环旳小数是无理数∴是无理数.故选D.点评:本题重要考察了什么是无理数,在判断旳时候懂得什么是无理数,什么是有理数这是解题旳关键.2、(2023•广州)已知▱ABCD旳周长为32,AB=4,则BC=()A、4B、12C、24D、28考点:平行四边形旳性质。
专题:计算题。
分析:根据平行四边形旳性质得到AB=CD,AD=BC,根据2(AB+BC)=32,即可求出答案.解答:解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵平行四边形ABCD旳周长是32,∴2(AB+BC)=32,∴BC=12.故选B.点评:本题重要考察对平行四边形旳性质旳理解和掌握,能运用平行四边形旳性质进行计算是解此题旳关键.3、(2023•广州)某车间5名工人日加工零件数分别为6,10,4,5,4,则这组数据旳中位数是()A、4B、5C、6D、10考点:中位数。
专题:应用题。
分析:中位数是一组数据重新排序后之间旳一种数或之间两个数旳平均数,由此即可求解.解答:解:∵某车间5名工人日加工零件数分别为6,10,4,5,4,∴重新排序为4,4,5,6,10,∴中位数为:5.故选B.点评:此题为记录题,考察中位数旳意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间旳那个数(最中间两个数旳平均数),叫做这组数据旳中位数,假如中位数旳概念掌握得不好,不把数据按规定重新排列,就会出错.4、(2023•广州)将点A(2,1)向左平移2个单位长度得到点A′,则点A′旳坐标是()A、(0,1)B、(2,﹣1)C、(4,1)D、(2,3)考点:坐标与图形变化-平移。
2023广东中考数学专题课件第3讲 代数式、整式与因式分解

(2)再考虑运用公式法;
(1)a3b-ab=ab(a+1)(a-1);
(3)分解因式必须进行到每一 (2)3ax2+6axy+3ay2=
个多项式因式都不能再分解 3a(x+y)2 .
为止,简记为一“提”、二“套”、
三“检查”.
·数学
代数式与代数式求值
1.(2022吉林)篮球队要购买10个篮球,每个篮球m元,共需要 10m 元.(用含m的代数式表示)
实得:
分
·数学
8.(2022常州)计算:m4÷m2= m2 . 9.(2022包头)若一个多项式加上3xy+2y2-8,结果得 2xy+3y2-5,则这个多项式为 y2-xy+3 .
·数学
10.(2022广西)先化简,再求值:(x+y)(x-y)+(xy2-2xy)÷x,其 中x=1,y=12. 解:原式=x2-y2+y2-2y=x2-2y. 当x=1,y=12时,原式=12-2×12=0.
教材拓展
·数学
27. (人教8上P112拓广探索变式) (运算能力、几何直观、推 理能力、应用意识、创新意识)已知矩形的面积为3,是否存在 周长为10的矩形?设矩形的长和宽分别为x,y. (1)求x,y满足的关系式,并回答题中的问题; (2)面积为定值a(a>0)的矩形有多少个?
·数学
解:(1)∵矩形的面积为3,∴x,y满足的关系式为xy=3. ∵(x-y)2=x2+y2-2xy≥0,∴x2+y2≥6, ∴x2+y2+2xy≥12,∴x+y≥2 3. ∵矩形的周长为2(x+y),∴2(x+y)≥4 3. ∵10≥4 3,∴存在周长为10的矩形. (2)∵矩形的面积为xy=a,即y=ax, ∴面积为定值a(a>0)的矩形有无数个.
6.
·数学
2024年广东省广州市中考数学试卷+答案解析

2024年广东省广州市中考数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.四个数,,0,10中,最小的数是()A. B. C.0 D.102.下列图案中,点O为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O对称的是()A. B. C. D.3.若,则下列运算正确的是()A. B. C. D.4.若,则()A. B. C. D.5.为了解公园用地面积单位:公顷的基本情况,某地随机调查了本地50个公园的用地面积,按照,,,,的分组绘制了如图所示的频数分布直方图,下列说法正确的是()A.a的值为20B.用地面积在这一组的公园个数最多C.用地面积在这一组的公园个数最少D.这50个公园中有一半以上的公园用地面积超过12公顷6.某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的倍还多1100辆.设该车企去年5月交付新车x辆,根据题意,可列方程为()A. B.C. D.7.如图,在中,,,D为边BC的中点,点E,F分别在边AB,AC上,,则四边形AEDF的面积为()A.18B.C.9D.8.函数与的图象如图所示,当时,,均随着x的增大而减小.A.B.C.D.9.如图,中,弦AB的长为,点C在上,,所在的平面内有一点P,若,则点P与的位置关系是()A.点P在上B.点P在内C.点P在外D.无法确定10.如图,圆锥的侧面展开图是一个圆心角为的扇形,若扇形的半径l是5,则该圆锥的体积是()A.B.D.二、填空题:本题共6小题,每小题3分,共18分。
11.如图,直线l分别与直线a,b相交,,若,则的度数为______.12.如图,把,,三个电阻串联起来,线路AB上的电流为I,电压为U,则,当,,,时,U的值为______.13.如图,▱ABCD中,,点E在DA的延长线上,,若BA平分,则______.14.若,则______.15.定义新运算:例如:,若,则x的值为______.16.如图,平面直角坐标系xOy中,矩形OABC的顶点B在函数的图象上,,将线段AB沿x轴正方向平移得线段点A平移后的对应点为,交函数的图象于点D,过点D作轴于点E,则下列结论:①;②的面积等于四边形的面积;③AE的最小值是;其中正确的结论有______填写所有正确结论的序号三、解答题:本题共9小题,共72分。
广州中考数学知识点总结

《广州中考数学知识点总结》数学作为中考的重要科目之一,对于广州的考生来说,掌握好数学知识点至关重要。
本文将对广州中考数学的知识点进行全面总结,帮助考生更好地复习备考。
一、数与代数1. 实数(1)实数的分类:有理数和无理数。
有理数包括整数和分数,无理数是无限不循环小数。
(2)实数的运算:加、减、乘、除、乘方、开方。
运算顺序为先算乘方、开方,再算乘除,最后算加减,有括号的先算括号里面的。
(3)实数的性质:相反数、绝对值、倒数。
(4)科学记数法:把一个数表示成a×10ⁿ的形式,其中1≤|a|<10,n 为整数。
2. 代数式(1)整式:单项式和多项式统称为整式。
整式的运算包括加减、乘除。
- 幂的运算:同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
- 整式的乘法:单项式乘以单项式,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式;单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加;多项式乘以多项式,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
- 整式的除法:单项式除以单项式,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式;多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
(2)分式:形如 A/B(A、B 是整式,且 B 中含有字母,B≠0)的式子叫做分式。
分式的基本性质:分式的分子与分母同乘(或除以)一个不等于 0 的整式,分式的值不变。
分式的运算包括加减、乘除。
- 分式的加减:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母分式,再加减。
- 分式的乘除:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
广州中考数学难点归纳总结

广州中考数学难点归纳总结数学作为中考科目之一,经常被许多考生视为难点和挑战。
广州中考数学试卷通常涵盖了各个知识点和难度级别,因此掌握数学的难点是提高分数的关键。
本文将对广州中考数学的难点进行归纳总结,在题型、考点和解题技巧等方面提供帮助和指导。
一、整数与有理数整数与有理数是广州中考数学重点和难点之一。
在整数与有理数的计算中,考生容易出现错位运算、符号迷失以及正负号的混淆等问题。
此外,涉及到最大公约数、最小公倍数、约数倍数等概念时,考生也常常感到困惑。
对于整数与有理数的计算,考生需要掌握加减乘除法则,并注意正负号的运用。
同时,掌握最大公约数、最小公倍数的求解方法,可以通过列举法、质因数分解法或辗转相除法等方式进行求解。
二、代数式与方程代数式与方程是中考数学的重中之重,也是考生容易出错的地方。
在解代数式与方程的过程中,考生常常忽略符号、计算错误、运算步骤不清晰,导致答案错误或无法得出结论。
解决代数式与方程的难点,考生可以通过以下步骤进行:1. 仔细阅读题目,理解问题的含义与要求。
2. 根据题目给出的条件和要求,设立未知数,建立方程。
3. 运用代数运算规则和等式性质,进行方程的变形和求解。
4. 检查解的合理性,判断是否满足题意。
三、几何与图形几何与图形是广州中考数学的难点之一。
在几何证明和图形运算中,考生容易遇到条件理解错误、计算混乱、步骤不清晰等问题。
为了应对几何与图形的难点,考生应该做到:1. 认真阅读题目,理解题意,分析几何关系。
2. 灵活使用几何定理和性质,合理选取几何方法进行证明或计算。
3. 注意几何关系之间的转化与推理,严谨地推导证明过程。
4. 确保计算准确,各步骤清晰明了。
四、概率与统计概率与统计也是广州中考数学的难点之一。
在概率与统计的计算与分析中,考生容易出现搞混概念、计算错误、未按要求解答等问题。
为了应对概率与统计的难点,考生应该掌握以下技巧:1. 理解概率和统计的基本概念,熟悉相关术语和计算方法。
广东中考数学课件:第3节代数式、整式与因式分解

考点梳理
1.代数式的概念 用基本运算符号(加、减、乘、除、乘方、开方等) 把 数与字母 连接而成 的式子 叫代数式 .单 独的数字 与单独的字母 是 (是或不是)代数式. 2.代数式的值 用具体数代替代数式中的字母,按运算顺序计算出 的结果叫代数式的值.求代数式的值分两步:代数, 计算.要充分利用“整体”思想求代数式的值. 3.整式分类:整式分为单项式和多项式.
解答:解:A、2a3+a3=3a3,故错误;B、(﹣a)2•a3=a5,故错误; C、正确;D、(﹣2)0=1,故错误;故选:C. 点评:本题考查了合并同类项,同底数幂的乘法,负整数指数幂, 零指数幂,理清指数的变化是解题的关键.
数学
首页
末页
课堂精讲
考点3 整式的运算
7.(2015•青岛)计算:3a3•a2﹣2a7÷a2= a5 .
数学
首页
末页
课堂精讲
考点4 因式分解、乘法公式
9.(2015•贵港)下列因式分解错误的是(C)
A.2a﹣2b=2(a﹣b)
B.x2﹣9=(x+3)(x﹣3)
C.a2+4a﹣4=(a+2)2
D.﹣x2﹣x+2=﹣(x﹣1)(x+2)
考点:因式分解-运用公式法;因式分解-提公因式法;因式分解-十 字相乘法等.
分析:根据单项式系数、次数的定义来求解.单项式中数字因数叫 做单项式的系数,所有字母的指数和叫做这个单项式的次数.
解答:解:此题规定了单项式的系数和次数,但没规定单项式中含 几个字母.A、﹣2xy2系数是﹣2,错误;B、3x2系数是3,错误;C 、2xy3次数是4,错误;D、2x3符合系数是2,次数是3,正确;故选 D. 点评:此题考查单项式问题,解答此题需灵活掌握单项式的系数和 次数的定义.
2021年广东省广州市中考数学试卷及解析(真题样卷)

2021年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,满分30分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2021•广州)四个数﹣3。
14,0,1,2中为负数的是()A.﹣3。
14 B.0C.1D.22.(3分)(2021•广州)将图中所示的图案以圆心为中心,旋转180°后得到的图案是()3.(3分)(2021•广州)已知⊙O的半径为5,直线l是⊙O的切线,则点O到直线l的距离是()A.2。
5 B.3C.5D.104.(3分)(2021•广州)两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A.众数B.中位数C.方差D.以上都不对5.(3分)(2021•广州)下列计算正确的是()A.a b•ab=2ab B.(2a)3=2a3C.3﹣=3(a≥0)D.•=(a≥0,b≥0)6.(3分)(2021•广州)如图是一个几何体的三视图,则该几何体的展开图可以是()A.B.C.D.7.(3分)(2021•广州)已知a,b 满足方程组,则a+b的值为()A.﹣4 B.4C.﹣2 D.28.(3分)(2021•广州)下列命题中,真命题的个数有()①对角线互相平分的四边形是平行四边形;②两组对角分别相等的四边形是平行四边形;③一组对边平行,另一组对边相等的四边形是平行四边形.A.3个B.2个C.1个D.0个9.(3分)(2021•广州)已知圆的半径是2,则该圆的内接正六边形的面积是()A.3B.9C.18D.3610.(3分)(2021•广州)已知2是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或10二、填空题(本大题共6小题,每小题3分,满分18分)11.(3分)(2021•广州)如图,AB∥CD,直线l分别与AB,CD相交,若∠1=50°,则∠2的度数为.12.(3分)(2021•广州)根据环保局公布的广州市2021年至2021年PM2。
近三年广东省中考数学试题考点分析(WORD版)

近三年广东省中考数学试题考点分析(WORD版)题型题号2017年2016年2015年选择题1相反数相反数绝对值2科学记数法数轴科学记数法3求补角中心对称图形中位数4一元二次方程求参数的值(代入法)科学记数法平行求角度5众数正方形的性质对称图形6对称图形(轴对称和中心对称图形)中位数整式计算7用函数图象求点坐标点坐标最大数8整式计算锐角三角函数方程根的个数9圆的基本性质整体思想求值扇形面积10正方形性质、相似几何问题分段函数图像几何问题分段函数图像填空题11因式分解算术平方根多边形外角和12多边形内角和因式分解四边形计算13数轴、比较大小求不等式组的解集分式方程14概率弧长公式相似性质15整式运算(整体代入)矩形与勾股定理找规律16矩形中的折叠问题圆周角与三角函数阴影部分面积解答题一17实数的计算(绝对值、0指数幂,负整数指数幂)实数的计算(绝对值、0指数幂,负整数指数幂)解一元二次方程18分式化简求值分式化简求值分式化简求值19二元一次方程组应用题(1)作垂直平分线(2)利用中位线求边长(1)作垂线(2)利用三角函数求边长解答题二20(1)作垂直平分线(2)利用外角求角度分式方程的应用(1)画树状图(2)求概率21几何证明与计算(菱形的性质、等腰三角和等边三角形的性质)解直角三角形几何证明与计算(折叠)22数据分析(频数分布图、扇形、估算)数据分析(条形、扇形、估算)(1)二元一次方程组应用(2)一元一次不等式应用解答题三23函数小综合(一次函数、二次函数、锐角三角函数)函数小综合(反比例函数、一次函数、二次函数)反比例函数与一次函数(最短路径问题)24(1)圆切线的性质、圆的基本性质、角平分线(2)切线的性质、平行和等腰三角形(3)全等、相似的证明和性质、求弧长(1)相似证明(2)三角形的性质(3)圆的切线的证明(1)角(圆的垂径定理)(2)特殊四边形的证明(3)垂直25图形变换,动态的问题、数形结合(1)求点的坐标(2)等腰三角形存在性讨论(3)二次函数、分类讨论、数形结合等求面积的最小值图形变换,动态的问题、数形结合(1)平行四边形的判定(2)全等三角形的性质和判定(3)二次函数、分类讨论、数形结合等求面积的最大值动点问题,数形结合(1)几何基本计算(2)三角函数计算边长(3)积,解直角三角形应用,二次函数求最值,二次根式计算。
广州市中考数学考纲考点

• 三角形的相似与全等:相似三角形的性质、判定和 全等三角形的性质和判定。
三角形与四边形
四边形的性质与判定
平行四边形、矩形、菱形、正方形的性质和判定。
四边形的面积计算
根据四边形的性质计算面积。
四边形的相似
相似四边形的性质和判定。
圆
圆的基本性质
包括圆心、半径、直径的性质。
圆周角定理及其推论
圆周角定理及其相关推论的应用。
03
实数的运算
实数可以进行加、减、乘、除等基本运算,运算规则符 合交换律、结合律和分配律。
代数式与方程
01
代数式的定义与表示
代数式是由数字、字母通过有限次四则运算得到的数学式子。它可以表
示数量关系和变化规律。
02 03
方程的概念与分类
方程是含有未知数的等式,通过方程可以描述数学问题中的等量关系。 方程可以根据不同的标准进行分类,如一元方程、多元方程,线性方程 和非线性方程等。
圆
• 弦、弧、弦心距之间的关系:根据弦、弧、弦心距之间的 关系进行证明和计算。
圆
相切关系
包括内切和外切的判定和性质。
相交和相离关系
相交和相离的判定和性质。
03 统计与概率部分
数据的收集与整理
总结词:掌握数据收集和整理的基本 方法,包括分类、排序、计数、分组
等。
01
详细描述
02
掌握数据分类的方法,能够根据不同的 标准对数据进行分类整理。
详细描述
在中考数学中,常见的数学思想方法包括分类讨论、化归与转化、函数与方程、数形结合等。这些思 想方法在解题过程中有着广泛的应用,能够帮助学生深入理解数学知识的本质,提高解题效率。
谢谢聆听
详细描述
广州大附属中学2024届中考数学仿真试卷含解析

广州大附属中学2024届中考数学仿真试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.二次函数y=ax1+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:(1)4a+b=0;(1)9a+c>﹣3b;(3)7a﹣3b+1c>0;(4)若点A(﹣3,y1)、点B(﹣12,y1)、点C(7,y3)在该函数图象上,则y1<y3<y1;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<5<x1.其中正确的结论有()A.1个B.3个C.4个D.5个2.如图是二次函数y=ax2+bx+c的图象,对于下列说法:①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤当x>0时,y随x的增大而减小,其中正确的是()A.①②③B.①②④C.②③④D.③④⑤3.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF 的面积之比为()A .3:4B .9:16C .9:1D .3:14.如图,在▱ABCD 中,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,若△CED 的周长为6,则▱ABCD 的周长为( )A .6B .12C .18D .245.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( ) A .23(2)3y x =++ B .23(2)3y x =-+ C .23(2)3y x =+- D .23(2)3y x =-- 6.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( ) A .B .C .D .7.如图,菱形ABCD 的对角线相交于点O ,过点D 作DE ∥AC , 且DE=12AC ,连接CE 、OE ,连接AE ,交OD 于点F ,若AB=2,∠ABC=60°,则AE 的长为( )A .3B .5C .7D .228.如图,把一个矩形纸片ABCD 沿EF 折叠后,点D 、C 分别落在D′、C′的位置,若∠EFB=65°,则∠AED′为( )。
广东中考数学归纳总结

广东中考数学归纳总结在广东中考数学中,归纳总结是很重要的一部分。
通过归纳总结,我们可以总结出解题的规律和方法,以便在考试中更加高效地解决问题。
本文将从不同知识点出发,对广东中考数学进行归纳总结。
一、代数与函数代数与函数是广东中考数学中的重要内容。
代数是数学中的一门重要分支,主要涉及方程、不等式、函数等概念。
我们需要通过归纳总结的方式,将代数中的常见题型和解题方法整理出来。
例题1:已知方程2x - 5 = 3x + 2,求x的值。
解题思路:将未知数移项后,整理方程,得到x的值。
这是一种常见的代数方程题型,通过归纳总结,我们可以将其归纳为移项求解法。
例题2:已知函数y = x + 2,求其图像的斜率。
解题思路:斜率表示函数图像上两点之间的斜率,通过归纳总结我们可以知道,对于一次函数来说,其斜率是固定的,即函数的斜率为1。
二、几何与三角学几何与三角学也是广东中考数学中的重要知识点。
几何涉及到图形的性质、面积与体积计算等内容;三角学则涉及到角度、三角函数等概念。
通过归纳总结,我们可以总结出解决几何与三角学中常见问题的方法。
例题3:已知△ABC中,AB = AC,∠B = 40°,求∠ACB的度数。
解题思路:由题可知,∠B = ∠C,且∠B + ∠C + ∠A = 180°。
通过归纳总结我们可以发现,对于等腰三角形来说,其底角和顶角相等,即∠ACB = 70°。
例题4:已知△ABC中,AB = 3,AC = 4,BC = 5,求△ABC的面积。
解题思路:可以利用海伦公式求解。
根据海伦公式,可以通过三边的长度计算出三角形的面积。
三、统计与概率统计与概率在广东中考数学中也是一大考点。
统计主要涉及到数据的收集、整理和分析;概率则涉及到事件发生的可能性。
通过归纳总结,我们可以将统计与概率中常见的题型和解题方法整理出来。
例题5:某班级有60名学生,其中35人喜欢足球,30人喜欢篮球,10人同时喜欢足球和篮球,问学生中至少喜欢足球或篮球的人数是多少?解题思路:通过归纳总结我们可以知道,至少喜欢足球或篮球的人数等于喜欢足球的人数加上喜欢篮球的人数再减去同时喜欢足球和篮球的人数。
广州数学中考考点解析

广州数学中考考点解析16世纪的文艺复兴时期,笛卡尔创建了解析几何,将当时完全分开的代数和几何学联系到了一起。
从那以后,我们终于可以用运算证明几何学的定理。
今天作者在这给大家整理了一些广州数学中考考点解析,我们一起来看看吧!广州数学中考考点解析考点1:圆心角、弦、弦心距的概念考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判定。
考点2:圆心角、弧、弦、弦心距之间的关系考核要求:认清圆心角、弧、弦、弦心距之间的关系,在知道有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何运算和几何证明。
考点3:垂径定理及其推论垂径定理及其推论是圆这一板块中最重要的知识点之一。
考点4:直线与圆、圆与圆的位置关系及其相应的数量关系直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反应。
在圆与圆的位置关系中,常需要分类讨论求解。
考点5:正多边形的有关概念和基本性质考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和运算,在正多边形的运算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的运算问题转化为直角三角形的运算问题。
考点6:画正三、四、六边形。
考核要求:能用基本作图工具,正确作出正三、四、六边形。
数学中考考点解析一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式没有加减运算的整式叫做单项式。
(数字与字母的积—包括单独的一个数或字母) 几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区分开;根据整式中有否加减运算,把单项式、多项式区分开。
广东各市2022年中考数学分类解析-专项6函数的图像与性质

广东各市2022年中考数学分类解析-专项6函数的图像与性质专题6:函数的图象与性质一、选择题1. (2020广东广州3分)如图,正比例函数y 1=k 1x 和反比例函数22k y =x的图象交于A (﹣1,2)、B (1,﹣2)两点,若y 1<y 2,则x 的取值范畴是【 】A .x <﹣1或x >1B .x <﹣1或0<x <1C .﹣1<x <0或0<x <1D .﹣1<x <0或x >1 【答案】D 。
【考点】反比例函数与一次函数的交点问题。
【分析】依照图象找出直线在双曲线下方的x 的取值范畴:由图象可得,﹣1<x <0或x >1时,y 1<y 2。
故选D 。
2.(2020广东梅州3分)在同一直角坐标系下,直线y=x+1与双曲线1y=x的交点的个数为【 】A .0个B .1个C .2个D .不能确定 【答案】C 。
【考点】反比例函数与一次函数的交点问题。
【分析】依照一次函数与反比例函数图象的性质作答:∵直线y=x+1的图象通过一、二、三象限,双曲线1y=x的图象通过一、三象限,∴直线y=x+1与双曲线1y=x有两个交点。
故选C 。
二、填空题1. (2020广东佛山3分)若A (x 1,y 1)和B (x 2,y 2)在反比例函数2y x=的图象上,且0<x 1<x 2,则y 1与y 2的大小关系是y 1 ▲ y 2; 【答案】>。
【考点】反比例函数图象上点的坐标特点。
【分析】∵反比例函数2y x=中,k=2>0,∴此函数图象的两个分支在一、三象限。
∵0<x 1<x 2,∴A 、B 两点在第一象限。
∵在第一象限内y 的值随x 的增大而减小,∴y 1>y 2。
2. (2020广东深圳3分)二次函数622+-=x x y 的最小值是 ▲ . 【答案】5。
【考点】二次函数的性质。
【分析】∵()2226=1+5y x x x =-+-,∴当=1x 时,函数有最小值5。
3. (2020广东深圳3分)如图,双曲线ky (k 0)x=>与⊙O 在第一象限内交于P 、Q 两点,分别过P 、Q 两点向x 轴和y 轴作垂线,已知点P 坐标为(1,3),则图中阴影部分的面积为 ▲ .【答案】4。
广东省各市中考数学分类解析 专题10:四边形

广东中考数学试题分类解析汇编专题10:四边形一、选择题1. (广东佛山3分)依次连接任意四边形各边的中点,得到一个特殊图形(可认为是一般四边形的性质),则这个图形一定是【】A.平行四边形B.矩形C.菱形D.梯形【答案】 A。
【考点】三角形中位线定理,平行四边形的判定。
【分析】根据题意画出图形,如右图所示:连接AC,∵四边形ABCD各边中点是E、F、G、H,∴HG∥AC,HG=12AC,EF∥AC,EF=12AC。
∴EF=GH,EF∥GH。
∴四边形EFGH是平行四边形。
由于四边形EFGH是平行四边形,它就不可能是梯形;同时由于是任意四边形,所以AC=BD或AC⊥BD不一定成立,从而得不到矩形或菱形的判断。
故选A。
2.(广东广州3分)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是【】A.26B.25C.21D.20【答案】C。
【考点】等腰梯形的性质,平行四边形的判定和性质。
【分析】∵BC∥AD,DE∥AB,∴四边形ABED是平行四边形。
∴BE=AD=5。
∵EC=3,∴BC=BE+EC=8。
∵四边形ABCD是等腰梯形,∴AB=DC=4。
∴梯形ABCD的周长为:AB+BC+CD+AD=4+8+4+5=21。
故选C。
3. (广东广州3分)在平面中,下列命题为真命题的是【】A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形【答案】C。
【考点】命题与定理,正方形的判定,菱形的判定,矩形的判定,平行四边形的判定。
【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案,不是真命题的可以举出反例排除:A、四边相等的四边形不一定是正方形,例如菱形,故此选项错误;B、对角线相等的四边形不是菱形,例如矩形,等腰梯形,故此选项错误;C、四个角相等的四边形是矩形,故此选项正确;D、对角线互相垂直的四边形不一定是平行四边形,如铮形(如图),故此选项错误。
精品解析:2024年广东省广州市中考数学试题(解析版)

2024年广州市初中学业水平考试数学试卷共8页,25小题,满分120分.考试用时120分钟.注意事项:1.答题前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的圆珠笔或钢笔填写自己的考生号、姓名;将自己的条形码粘贴在答题卡的“条形码粘贴处”.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试卷上.3.非选择题答案必须用黑色字迹的圆珠笔或钢笔写在答题卡各题目指定区域内的相应位置上,涉及作图的题目,用2B铅笔画图;如需改动,先划掉原来的答案,然后再写上新的答案,改动后的答案也不能超出指定的区域;不准使用铅笔(作图除外)、涂改液和修正带.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)−,1−,0,10中,最小的数是()1. 四个数10− B. 1− C. 0 D. 10A. 10【答案】A【解析】【分析】本题考查了有理数的大小比较,解题关键是掌握有理数大小比较法则:正数大于零,负数小于零,正数大于一切负数;两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.−<−<<,【详解】解:101010∴最小的数是10−,故选:A.2. 下列图案中,点O为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O 对称的是()A. B. C. D.【答案】C【解析】【分析】本题考查了图形关于某点对称,掌握中心对称图形的性质是解题关键.根据对应点连线是否过点O 判断即可.【详解】解:由图形可知,阴影部分的两个三角形关于点O对称的是C,故选:C.3. 若0a≠,则下列运算正确的是()A.235a a a+= B. 325a a a⋅=C.235a a a⋅= D. 321a a÷=【答案】B【解析】【分析】本题考查了分式的乘法,同底数幂乘法与除法,掌握相关运算法则是解题关键.通分后变为同分母分数相加,可判断A 选项;根据同底数幂相乘,底数不变,指数相加,可判断B选项;根据分式乘法法则计算,可判断C选项;根据同底数幂除法,底数不变,指数相减,可判断D 选项.【详解】解:A、32523666a a a a a+=+=,原计算错误,不符合题意;B、325a a a⋅=,原计算正确,符合题意;C、2236a a a⋅=,原计算错误,不符合题意;D、32a a a÷=,原计算错误,不符合题意;故选:B.4. 若a b<,则()A. 33a b+>+ B. 22a b−>− C. a b−<− D. 22a b<【答案】D【解析】【分析】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.根据不等式的基本性质逐项判断即可得.【详解】解:A .∵a b <,∴33a b +<+,则此项错误,不符题意; B .∵a b <,∴22a b −<−,则此项错误,不符题意; C .∵a b <,∴a b −>−,则此项错误,不符合题意; D .∵a b <,∴22a b <,则此项正确,符合题意; 故选:D .5. 为了解公园用地面积x (单位:公顷)的基本情况,某地随机调查了本地50个公园的用地面积,按照04x <≤,48x <≤,812x <≤,1216x <≤,1620x <≤的分组绘制了如图所示的频数分布直方图,下列说法正确的是( )A. a 的值为20B. 用地面积在812x <≤这一组的公园个数最多C. 用地面积在48x <≤这一组的公园个数最少D. 这50个公园中有一半以上的公园用地面积超过12公顷 【答案】B 【解析】【分析】本题考查的是从频数分布直方图获取信息,根基图形信息直接可得答案. 【详解】解:由题意可得:5041612810a =−−−−=,故A 不符合题意; 用地面积在812x <≤这一组的公园个数有16个,数量最多,故B 符合题意;用地面积在04x <≤这一组的公园个数最少,故C 不符合题意;这50个公园中有20个公园用地面积超过12公顷,不到一半,故D 不符合题意; 故选B6. 某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆.设该车企去年5月交付新车x 辆,根据题意,可列方程为( ) A. 1.2110035060x += B. 1.2110035060x −= C. 1.2(1100)35060x += D. 110035060 1.2x −=⨯【答案】A 【解析】【分析】本题考查了一元一次方程的应用,找出题目中的数量关系是解题关键.设该车企去年5月交付新车x 辆,根据“今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆”列出方程即可.【详解】解:设该车企去年5月交付新车x 辆, 根据题意得:1.2110035060x +=, 故选:A .7. 如图,在ABC 中,90A ∠=︒,6AB AC ==,D 为边BC 的中点,点E ,F 分别在边AB ,AC 上,AE CF =,则四边形AEDF 的面积为( )A. 18B.C. 9D.【答案】C 【解析】【分析】本题考查等腰直角三角形的性质以及三角形全等的性质与判定,掌握相关的线段与角度的转化是解题关键.连接AD ,根据等腰直角三角形的性质以及AE CF =得出ADE CDF V V ≌,将四边形AEDF 的面积转化为三角形ADC 的面积再进行求解.【详解】解:连接AD ,如图:∵90BAC ∠=︒,6AB AC ==,点D 是BC 中点,AE CF = ∴45,BAD B C AD BD DC ∠=∠=∠=︒== ∴ADE CDF V V ≌,∴12AED ADF CFD ADF ADC ABC AEDF S S S S S S S =+=+==四边形△△△△△△ 又∵166182ABCS=⨯⨯= ∴1=92ABCAEDF S S =四边形故选:C8. 函数21y ax bx c =++与2ky x=的图象如图所示,当( )时,1y ,2y 均随着x 的增大而减小.A. 1x <−B. 10x −<<C. 02x <<D. 1x >【答案】D 【解析】【分析】本题考查了二次函数以及反比例函数的图象和性质,利用数形结合的思想解决问题是关键.由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于在一、三象限内,且2y 均随着x 的增大而减小,据此即可得到答案.【详解】解:由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于一、三象限内,且在每一象限内2y 均随着x 的增大而减小,∴当1x >时,1y ,2y 均随着x 的增大而减小,故选:D .9. 如图,O 中,弦AB 的长为C 在O 上,OC AB ⊥,30ABC ∠=︒.O 所在的平面内有一点P ,若5OP =,则点P 与O 的位置关系是( )A. 点P 在O 上B. 点P 在O 内C. 点P 在O 外D. 无法确定【答案】C 【解析】【分析】本题考查了垂径定理,圆周角定理,点与圆的位置关系,锐角三角函数,掌握圆的相关性质是解题关键.由垂径定理可得AD =由圆周角定理可得60AOC ∠=︒,再结合特殊角的正弦值,求出O 的半径,即可得到答案.【详解】解:如图,令OC 与AB 的交点为D ,OC 为半径,AB 为弦,且OC AB ⊥,12AD AB ∴==,30ABC =︒∠260AOC ABC ∴∠=∠=︒,在ADO △中,90ADO ∠=︒,60AOD ∠=︒,AD = sin ADAOD OA∠=,4sin 60AD OA ∴===︒,即O 的半径为4,54OP =>,∴点P 在O 外,故选:C .10. 如图,圆锥的侧面展开图是一个圆心角为72︒的扇形,若扇形的半径l 是5,则该圆锥的体积是( )A.π8B.π8C.D.【答案】D 【解析】【分析】本题考查了弧长公式,圆锥的体积公式,勾股定理,理解圆锥的底面周长与侧面展开图扇形的弧长相等是解题关键,设圆锥的半径为r ,则圆锥的底面周长为2r π,根据弧长公式得出侧面展开图的弧长为2π=,进而得出1r =,再利用勾股定理,求出圆锥的高,再代入体积公式求解即可.【详解】解:设圆锥的半径为r ,则圆锥的底面周长为2r π,圆锥的侧面展开图是一个圆心角为72︒的扇形,且扇形的半径l 是5,∴扇形的弧长为7252180ππ⨯=, 圆锥的底面周长与侧面展开图扇形的弧长相等,22r ππ∴=,1r ∴=,∴=,∴圆锥的体积为2113π⨯⨯,故选:D .第二部分 非选择题(共90分)二、填空题(本大题共6小题,每小题3分,满分18分.)11. 如图,直线l 分别与直线a ,b 相交,ab ,若171∠=︒,则2∠的度数为______.【答案】109︒ 【解析】【分析】本题考查的是平行线的性质,邻补角的含义,先证明1371∠=∠=︒,再利用邻补角的含义可得答案.【详解】解:如图,∵a b ,171∠=︒,∴1371∠=∠=︒, ∴21803109∠=︒−∠=︒; 故答案为:109︒12. 如图,把1R ,2R ,3R 三个电阻串联起来,线路AB 上的电流为I ,电压为U ,则123U IR IR IR =++.当120.3R =,231.9R =,347.8R =, 2.2I =时,U 的值为______.【答案】220 【解析】【分析】本题考查了代数式求值,乘法运算律,掌握相关运算法则,正确计算是解题关键.根据123U IR IR IR =++,将数值代入计算即可.【详解】解:123U IR IR IR =++,当120.3R =,231.9R =,347.8R =, 2.2I =时,()20.3 2.231.9 2.247.8 2.220.331.947.8 2.2220U =⨯+⨯+⨯=++⨯=, 故答案为:220.13. 如图,ABCD Y 中,2BC =,点E 在DA 的延长线上,3BE =,若BA 平分EBC ∠,则DE =______.【答案】5 【解析】【分析】本题考查了平行四边形的性质,等腰三角形的判定和性质,掌握平行四边形的性质是解题关键.由平行四边形的性质可知,2AD BC ==,BC AD ∥,进而得出BAE EBA ∠=∠,再由等角对等边的性质,得到3BE AE ==,即可求出DE 的长. 【详解】解:在ABCD Y 中,2BC =,2AD BC ∴==,BC AD ∥,CBA BAE ∴∠=∠,BA 平分EBC ∠,CBA EBA ∴∠=∠, BAE EBA ∴∠=∠,3BE AE ∴==,235DE AD AE ∴=+=+=,故答案为:5.14. 若2250a a −−=,则2241a a −+=______. 【答案】11 【解析】【分析】本题考查了因式分解,提取公因式,得出条件的等价形式是解题关键.由2250a a −−=,得225a a −=,根据提公因式法分解因式得()22241221a a a a −+=−+,代入可得答案. 【详解】解:2250a a −−=,225a a ∴−=,()2224122125111a a a a ∴−+=−+=⨯+=,故答案为:11.15. 定义新运算:()()200a b a a b a b a ⎧−≤⎪⊗=⎨−+>⎪⎩例如:224(2)40−⊗=−−=,23231⊗=−+=.若314x ⊗=−,则x 的值为______.【答案】12−或74【解析】【分析】本题考查了一元二次方程的应用,一元一次方程的应用,解题的关键是明确新运算的定义.根据新定义运算法则列出方程求解即可.【详解】解:∵()()200a b a a b a b a ⎧−≤⎪⊗=⎨−+>⎪⎩, 而314x ⊗=−, ∴①当0x ≤时,则有2314x −=−, 解得,12x =−; ②当0x >时,314x −+=−, 解得,74x =综上所述,x 的值是12−或74, 故答案为:12−或74. 16. 如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数(0)ky x x=>的图象上,(1,0)A ,(0,2)C .将线段AB 沿x 轴正方向平移得线段A B ''(点A 平移后的对应点为A '),A B ''交函数(0)ky x x=>的图象于点D ,过点D 作DE y ⊥轴于点E ,则下列结论:①2k =;②OBD 的面积等于四边形ABDA '的面积;③A E ' ④B BD BB O ''∠=∠.其中正确的结论有______.(填写所有正确结论的序号) 【答案】①②④ 【解析】【分析】由()1,2B ,可得122k =⨯=,故①符合题意;如图,连接OB ,OD ,BD ,OD 与AB 的交点为K ,利用k 的几何意义可得OBD 的面积等于四边形ABDA '的面积;故②符合题意;如图,连接A E ',证明四边形A DEO '为矩形,可得当OD 最小,则A E '最小,设()2,0D x x x ⎛⎫> ⎪⎝⎭,可得A E '的最小值为2,故③不符合题意;如图,设平移距离为n ,可得()1,2B n '+,证明B BD A OB '''∽,可得B BD B OA '''∠=∠,再进一步可得答案.【详解】解:∵(1,0)A ,(0,2)C ,四边形OABC 是矩形; ∴()1,2B ,∴122k =⨯=,故①符合题意;如图,连接OB ,OD ,BD ,OD 与AB 的交点为K ,∵1212AOBA ODS S'==⨯=, ∴BOKAKDA S S '=四边形, ∴BOKBKDBKDAKDA SSS S'+=+四边形,∴OBD 的面积等于四边形ABDA '的面积;故②符合题意; 如图,连接A E ',∵DE y ⊥轴,90DA O EOA ''∠=∠=︒, ∴四边形A DEO '为矩形, ∴A E OD '=,∴当OD 最小,则A E '最小, 设()2,0D x x x ⎛⎫> ⎪⎝⎭, ∴2224224OD x x x x=+≥⋅⋅=, ∴2OD ≥,∴A E '的最小值为2,故③不符合题意; 如图,设平移距离为n , ∴()1,2B n '+, ∵反比例函数为2y x=,四边形A B CO ''为矩形, ∴90BB D OA B '''∠=∠=︒,21,1D n n ⎛⎫+ ⎪+⎝⎭, ∴BB n '=,1OA n '=+,22211n B D n n '=−=++,2A B ''=, ∴2112n BB n B D n OA n A B ''+==='''+,∴B BD A OB '''∽, ∴B BD B OA '''∠=∠, ∵B C A O ''∥, ∴CB O A OB '''∠=∠,∴B BD BB O ''∠=∠,故④符合题意; 故答案为:①②④【点睛】本题考查的是反比例函数的图象与性质,平移的性质,矩形的判定与性质,相似三角形的判定与性质,勾股定理的应用,作出合适的辅助线是解本题的关键.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17. 解方程:1325x x=−.【答案】3x = 【解析】【分析】本题考查的是解分式方程,掌握分式方程的解法是解题关键,注意检验.依次去分母、去括号、移项、合并同类项求解,检验后即可得到答案. 【详解】解:1325x x=−,去分母得:()325x x =−, 去括号得:615x x =−, 移项得:615x x −=−, 合并同类项得:515x −=−, 解得:3x =,经检验,3x =是原方程的解,∴该分式方程的解为3x =.18. 如图,点E ,F 分别在正方形ABCD 的边BC ,CD 上,3BE =,6EC =,2CF =.求证:ABE ECF △△∽.【答案】见解析 【解析】【分析】本题考查了正方形的性质,相似三角形的判定,掌握相似三角形的判定定理是解题关键.根据正方形的性质,得出90B C ∠=∠=︒,9AB CB ==,进而得出AB BEEC CF=,根据两边成比例且夹角相等的两个三角形相似即可证明. 【详解】解:3BE =,6EC =,9BC ∴=,四边形ABCD 是正方形, 9AB CB ∴==,90B C ∠=∠=︒,9362AB EC ==,32BE CF =, AB BEEC CF∴= 又90B C ∠=∠=︒,ABE ECF ∴∽.19. 如图,Rt ABC △中,90B??.(1)尺规作图:作AC 边上的中线BO (保留作图痕迹,不写作法);(2)在(1)所作的图中,将中线BO 绕点O 逆时针旋转180︒得到DO ,连接AD ,CD .求证:四边形ABCD 是矩形.【答案】(1)作图见解析 (2)证明见解析 【解析】【分析】本题考查的是作线段的垂直平分线,矩形的判定,平行四边形的判定与性质,旋转的性质;(1)作出线段AC 的垂直平分线EF ,交AC 于点O ,连接BO ,则线段BO 即为所求; (2)先证明四边形ABCD 为平行四边形,再结合矩形判定可得结论. 【小问1详解】解:如图,线段BO 即为所求;【小问2详解】证明:如图,∵由作图可得:AO CO =,由旋转可得:BO DO =, ∴四边形ABCD 为平行四边形, ∵90ABC ∠=︒, ∴四边形ABCD 为矩形.20. 关于x 的方程2240x x m −+−=有两个不等的实数根. (1)求m 的取值范围;(2)化简:2113|3|21m m m m m −−−÷⋅−+.【答案】(1)3m > (2)2− 【解析】【分析】本题考查的是一元二次方程根的判别式,分式的混合运算,掌握相应的基础知识是解本题的关键; (1)根据一元二次方程根的判别式建立不等式解题即可;(2)根据(1)的结论化简绝对值,再计算分式的乘除混合运算即可. 【小问1详解】解:∵关于x 的方程2240x x m −+−=有两个不等的实数根. ∴()()224140m ∆=−−⨯⨯−>, 解得:3m >;的【小问2详解】解:∵3m>,∴2113|3|21m m mm m−−−÷⋅−+()()1123311 m m mm m m−+−−=⋅⋅−−+2=−;21. 善于提问是应用人工智能解决问题的重要因素之一.为了解同学们的提问水平,对A,B两组同学进行问卷调查,并根据结果对每名同学的提问水平进行评分,得分情况如下(单位:分):(1)求A组同学得分的中位数和众数;(2)现从A、B两组得分超过90分的4名同学中随机抽取2名同学参与访谈,求这2名同学恰好来自同一组的概率.【答案】(1)A组同学得分的中位数为85分,众数为82分;(2)1 3【解析】【分析】本题考查了中位数与众数,列表法或树状图法求概率,掌握相关知识点是解题关键.(1)根据中位数和众数的定义求解即可;(2)由题意可知,A、B两组得分超过90分同学各有2名,画树状图法求出概率即可.【小问1详解】解:由题意可知,每组学生人数为10人,∴中位数为第5、6名同学得分的平均数,∴A组同学得分的中位数为8486852+=分,82分出现了两次,次数最多,∴众数为82分;【小问2详解】的解:由题意可知,A 、B 两组得分超过90分的同学各有2名, 令A 组的2名同学为1A 、2A ,B 组的2名同学为1B 、2B , 画树状图如下:由树状图可知,共有12种等可能的情况,其中这2名同学恰好来自同一组的情况有4种,∴这2名同学恰好来自同一组的概率41123=. 22. 2024年6月2日,嫦娥六号着陆器和上升器组合体(简称为“着上组合体”)成功着陆在月球背面.某校综合实践小组制作了一个“着上组合体”的模拟装置,在一次试验中,如图,该模拟装置在缓速下降阶段从A 点垂直下降到B 点,再垂直下降到着陆点C ,从B 点测得地面D 点的俯角为36.87︒,17AD =米,10BD =米.(1)求CD 的长;(2)若模拟装置从A 点以每秒2米的速度匀速下降到B 点,求模拟装置从A 点下降到B 点的时间.(参考数据:sin36.870.60︒≈,cos36.870.80︒≈,tan36.870.75︒≈) 【答案】(1)CD 的长约为8米;(2)模拟装置从A 点下降到B 点的时间为4.5秒. 【解析】【分析】本题考查了解直角三角形的应用——仰俯角问题,灵活运用锐角三角函数求边长是解题关键. (1)过点B 作BE CD ∥交AD 于点E ,根据余弦值求出CD 的长即可;(2)先由勾股定理,求出AC 的长,再利用正弦值求出BC 的长,进而得到AB 的长,然后除以速度,即可求出下降时间.【小问1详解】解:如图,过点B 作BE CD ∥交AD 于点E , 由题意可知,36.87DBE ∠=︒, 36.87BDC ∴∠=︒,在BCD △中,90C ∠=︒,10BD =米,cos CDBDC BD∠=, cos36.87100.808CD BD ∴=⋅︒≈⨯≈米,即CD 的长约为8米;【小问2详解】解:17AD =Q 米,8CD =米,15AC ∴==米,在BCD △中,90C ∠=︒,10BD =米, sin BCBDC BD∠=, sin36.87100.606BC BD ∴=⋅︒≈⨯≈米, 1569AB AC BC ∴=−=−=米,模拟装置从A 点以每秒2米的速度匀速下降到B 点,∴模拟装置从A 点下降到B 点的时间为92 4.5÷=秒,即模拟装置从A 点下降到B 点的时间为4.5秒.23. 一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y 和脚长x 之间近似存在一个函数关系,部分数据如下表:(1)在图1中描出表中数据对应的点(,)x y ; (2)根据表中数据,从(0)y ax b a =+≠和(0)ky k x=≠中选择一个函数模型,使它能近似地反映身高和脚长函数关系,并求出这个函数的解析式(不要求写出x 的取值范围);(3)如图2,某场所发现了一个人的脚印,脚长约为25.8cm ,请根据(2)中求出的函数解析式,估计这个人的身高.【答案】(1)见解析 (2)75y x =− (3)175.6cm 【解析】【分析】本题考查了函数的实际应用,正确理解题意,选择合适的函数模型是解题关键. (1)根据表格数据即可描点;(2)选择函数(0)y ax b a =+≠近似地反映身高和脚长的函数关系,将点()()23,156,24,163代入即可求解;(3)将25.8cm 代入75y x =−代入即可求解; 【小问1详解】 解:如图所示:的【小问2详解】解:由图可知:y 随着x 的增大而增大,因此选择函数(0)y ax b a =+≠近似地反映身高和脚长的函数关系, 将点()()23,156,24,163代入得:1562316324a ba b=+⎧⎨=+⎩, 解得:75a b =⎧⎨=−⎩∴75y x =− 【小问3详解】解:将25.8cm 代入75y x =−得:725.85175.6cm y =⨯−=∴估计这个人身高175.6cm24. 如图,在菱形ABCD 中,120C ∠=︒.点E 在射线BC 上运动(不与点B ,点C 重合),AEB △关于AE 的轴对称图形为AEF △.(1)当30BAF ∠=︒时,试判断线段AF 和线段AD 的数量和位置关系,并说明理由;(2)若6AB =+O 为AEF △的外接圆,设O 的半径为r .①求r 的取值范围; ②连接FD ,直线FD 能否与O 相切?如果能,求BE 的长度;如果不能,请说明理由.【答案】(1)AF AD =,AF AD ⊥(2)①3r ≥+;②12 【解析】【分析】(1)由菱形的性质可得120BAD C ∠=∠=︒,AB AD =,再结合轴对称的性质可得结论; (2)①如图,设AEF △的外接圆为O ,连接AC 交BD 于H .连接OA ,OE ,OF ,OC ,证明ABC 为等边三角形,,,,A E F C 共圆,2120AOE AFE ∠=∠=︒,O 在BD 上,30AEO EAO ∠=∠=︒,过O 作OJ AE ⊥于J ,当AE BC ⊥时,AE 最小,则AO 最小,再进一步可得答案;②如图,以A 为圆心,AC 为半径画圆,可得,,,B C F D 在A 上,延长CA 与A 交于L ,连接DL ,证明18030150CFD ∠=︒−︒=︒,可得60OFC ∠=︒,OCF △为等边三角形,证明1203090BAF ∠=︒−︒=︒,可得:45BAE FAE ∠=∠=︒,BE EF =,过E 作EM AF ⊥于M ,再进一步可得答案. 【小问1详解】解:AF AD =,AF AD ⊥;理由如下: ∵在菱形ABCD 中,120C ∠=︒, ∴120BAD C ∠=∠=︒,AB AD =, ∵30BAF ∠=︒,∴1203090FAD ∠=︒−︒=︒, ∴AF AD ⊥,由对折可得:AB AF =, ∴AF AD =; 【小问2详解】 解:①如图,设AEF△外接圆为O ,连接AC 交BD 于H .连接OA ,OE ,OF ,OC ,∵四边形ABCD 为菱形,120BCD ∠=︒, ∴AC BD ⊥, 60BCA ∠=︒,BA BC =, ∵ABC 为等边三角形,∴60ABC AFE ACB ∠=∠=︒=∠,的∴,,,A E F C 共圆,2120AOE AFE ∠=∠=︒,O 在BD 上, ∵AO OE =,∴30AEO EAO ∠=∠=︒, 过O 作OJ AE ⊥于J ,∴AJ EJ =,3AO AJ =,∴3AO AE =, 当AE BC ⊥时,AE 最小,则AO 最小,∵6AB =+60ABC ∠=︒,∴(sin 6069AE AB =⋅︒=+=,∴)93AO ==+∴r 的取值范围为3r ≥+; ②DF 能为O 的切线,理由如下:如图,以A 为圆心,AC 为半径画圆, ∵AB AC AF AD ===, ∴,,,B C F D A 上,延长CA 与A 交于L ,连接DL ,在同理可得ACD 为等边三角形, ∴60CAD ∠=︒, ∴30CLD ∠=︒,∴18030150CFD ∠=︒−︒=︒, ∵DF 为O 的切线,∴90OFD ∠=︒, ∴60OFC ∠=︒, ∵OC OF =,∴OCF △为等边三角形, ∴60COF ∠=︒, ∴1302CAF COF ∠=∠=︒, ∴603030DAF ︒−︒=︒∠=, ∴1203090BAF ∠=︒−︒=︒,由对折可得:45BAE FAE ∠=∠=︒,BE EF =, 过E 作EM AF ⊥于M , ∴设AMEM x ==,∵60EFM ∠=︒,∴33FM EM x ==,∴63x x +=+解得:x =∴63FM =⨯=, ∴212BE EF FM ===.【点睛】本题考查的是轴对称的性质,菱形的性质,等边三角形的判定与性质,圆周角定理的应用,锐角三角函数的应用,勾股定理的应用,切线的性质,本题难度很大,作出合适的辅助线是解本题的关键. 25. 已知抛物线232:621(0)G y ax ax a a a =−−++>过点()1,2A x 和点()2,2B x ,直线2:l y m x n =+过点(3,1)C ,交线段AB 于点D ,记CDA 的周长为1C ,CDB △的周长为2C ,且122C C =+. (1)求抛物线G 的对称轴; (2)求m 的值;(3)直线l 绕点C 以每秒3︒的速度顺时针旋转t 秒后(045)t ≤<得到直线l ',当l AB '∥时,直线l '交抛物线G 于E ,F 两点. ①求t 的值;②设AEF △的面积为S ,若对于任意的0a >,均有S k ≥成立,求k 的最大值及此时抛物线G 的解析式.【答案】(1)对称轴为直线:3x =; (2)1m =±(3)①15t =,②k的最大值为G 为262y x x =−+; 【解析】【分析】(1)直接利用对称轴公式可得答案;(2)如图,由122C C =+,可得A 在B 的左边,2AD AC CD CD BC BD ++=+++,证明CA CB =,可得2AD BD =+,设(),2D p ,建立1212232x x p x x p +=⨯⎧⎨−=−+⎩,可得:4p =,()4,2D ,再利用待定系数法求解即可;(3)①如图,当l AB '∥时,与抛物线交于,E F ,由直线y x n =+,可得45DCF ∠=︒,可得345t =,从而可得答案;②计算()1122AEFA E SEF y y EF =⋅−=,当1y =时, 可得22620x x a a −−+=,则126x x +=,2122x x a a =−+,可得12EF x x =−==1a =时,EF 的最小值为【小问1详解】解:∵抛物线232:621(0)G y ax ax a a a =−−++>, ∴抛物线对称轴为直线:632ax a−=−=; 【小问2详解】解:∵直线2:l y m x n =+过点(3,1)C , ∴231m n +=, 如图,∵直线2:l y m x n =+过点(3,1)C ,交线段AB 于点D ,记CDA 的周长为1C ,CDB △的周长为2C ,且122C C =+,∴A 在B 的左边,2AD AC CD CD BC BD ++=+++, ∵C 在抛物线的对称轴上, ∴CA CB =, ∴2AD BD =+, 设(),2D p ,∴1212232x x p x x p +=⨯⎧⎨−=−+⎩,解得:4p =, ∴()4,2D ,∴223142m n m n ⎧+=⎨+=⎩, ∴21m =, 解得:1m =±; 【小问3详解】解:①如图,当l AB '∥时,与抛物线交于,E F , ∵直线y x n =+, ∴45DCF ∠=︒,∴345t =, 解得:15t =, ②∵()1122AEFA E SEF y y EF =⋅−=, 当1y =时,2326211ax ax a a −−++=, ∴22620x x a a −−+=,∴126x x +=,2122x x a a =−+,∴12EF x x =−====∵40>,∴当1a =时,EF 的最小值为∴此时12AEFS=⨯= ∵对于任意的0a >,均有S k ≥成立,∴k 的最大值为 ∴抛物线G 为262y x x =−+;【点睛】本题考查的是二次函数的图象与性质,一次函数的性质,坐标与图形面积,一元二次方程根与系数的关系,理解题意,利用数形结合的方法解题是关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广州数学中考考点分析
广州市数学中考比较重视学生对基本方法、基本知识、基本技能的考查,没有偏、怪、难的题目,试题一般有多种解法,大多数题目的解法都能从课本上找到影子。
回归课本,就是要掌握典型例题、习题的通法通则,就是抓纲悟本。
从这三年的中考数学试卷上分析可得到以下结论:
1、试卷满分都是150分,考试时间120分钟;
2、题型的分布都是总共25道题,其中选择题10道(30分),填空题6道(18分),解答题9道(102分);
3、试卷难度不大,基础题占有122分(82%),有难度拔高题占有28分(18%);
4、代数部分考查分数大概是90~100分,几何部分考查分数50~60分(37%);
5、知识点的考查比较有规律,常规题型的变化不大
下面是我对2009~2011年广州市中考数学试卷的分析表,仅供参考:
从表中我们可以清楚的意识到,中考对于函数部分的考查比例非常重,考查的对象主要是:一次函数、反比例函数、二次函数。
主要研究函数的解析式,取值范围,数形结合的思
想,分类讨论的思想在里面体现得很淋漓尽致。
对于必须掌握的一定要复习到位,比如待定系数法求三种函数的解析式,函数与方程的联系与转换,函数与不等式的关系,函数里的最值问题总结与归纳。
Ps:函数部分是代数部分的重点内容,也是难点内容,考查重点在于以下几点:函数解析式的求法,难度较低,熟悉待定系数法等方法即可;三种函数图像的基本性质的应用,难度中等;函数的实际应用,常出现在试卷难度最大的代数综合题、代几综合题中,分值在25分左右。
不等式与方程的复习,要以基础为主,不要只研究难题,要注重过程以及方法的总结。
从试卷这部分考题来看,难度都不大,关键是我们的同学能否有明确的思路,良好的解题过程,正确答案。
因此我们在复习的时候,一定要特别注意。
加强对以下内容的复习:一元一次方程、二元一次方程组、一元一次不等式、不等式组、一元二次方程。
注意整体思想,换元法的训练。
Ps:方程(组)与不等式(组)部分考查方程和方程组的解法及一元二次方程的根的判断还有方程在应用题中的应用。
不等式主要考查不等式的解法及性质。
该部分难度适中,分值在15分左右。
代数式部分,要抓准定义和原理,如:相反数、倒数、绝对值、分母有理化、幂的运算、因式分解、分式的化简。
Ps: 数与式部分考查的重点还是基础知识,基本计算,难度较低。
分值在20分左右。
这部分是所有学生都应该做对的。
统计与概率部分是必考部分,在复习的时候要有针对性。
知识点考查热点如下:扇形统计图、平均数、中位数、众数、极差、方差、标准差、概率的意义极其计算(列表法、树状图法)。
Ps:概率统计部分比重较少,基本为:两道选择、一道解答,约13分。
这部分考查的内容基本为对概念的理解,难度较低,这部分也该成为学生必得分的部分。
几何部分的考查内容主要是:相交线与平行线、全等三角形、相似三角形、等腰三角形、等腰梯形、直角三角形、平行四边形、平移与旋转、圆的有关问题、轴对称、中心对称、三视图、尺规作图)。
具体情况如下:
Ps:三角形部分主要会考查:三角形的角的三线、三角形全等的性质及判定。
分值在15分左右,该部分考题一般较为简单。
四边形部分还会延续对平行四边形、矩形、菱形、正方形判定及性质与应用的考查。
分值为9分左右,难度中等。
圆是必考内容,课本上对圆的内容设置难度较低,所以在中考中出现的试题考查的知识点主要集中在垂径定理、切线判定与性质、面积计算的部分。
分值在13分左右,难度中等。
几何部分的难点在于初中数学中三大变换(平移、旋转、轴对称)与上述三类图形结合的几何综合题,这部分要求学生熟练掌握三大变换的概念和性质,分值一般在8分左右。
在平时的复习中要注重对数学思想的理解,在练习中要有意识地训练我们的数学思维,这样对我们以后的学习是有很大好处的主要包括如下几个数学思想:①分类讨论的思想;如在等腰三角形中对角的讨论,对边的讨论很重要。
②整体思想换元法;③数形结合思想;④配方法;⑤递推思想。
最后谈谈中考数学需要注意的七大问题:
一、重视构建知识网络——宏观把握数学框架
要学会构建知识网络,数学概念是构建知识网络的出发点,也是数学中考考查的重点。
因此,我们要掌握好代数中的数、式、不等式、方程、函数、三角比、统计和几何中的平行线、三角形、四边形、圆的概念、分类,定义、性质和判定,并会应用这些概念去解决一些
问题。
二、重视夯实数学双基——微观掌握知识技能
在复习过程中夯实数学基础,要注意知识的不断深化,注意知识之间的内在联系和关系,将新知识及时纳入已有知识体系,逐步形成和扩充知识结构系统,这样在解题时,就能由题目所提供的信息,从记忆系统中检索出有关信息,选出最佳组合信息,寻找解题途径、优化解题过程。
三、重视强化题组训练——感悟数学思想方法
除了做基础训练题、平面几何每日一题外,还可以做一些综合题,并且养成解题后反思的习惯。
反思自己的思维过程,反思知识点和解题技巧,反思多种解法的优劣,反思各种方法的纵横联系。
而总结出它所用到的数学思想方法,并把思想方法相近的题目编成一组,不断提炼、不断深化,做到举一反三、触类旁通。
逐步学会观察、试验、分析、猜想、归纳、类比、联想等思想方法,主动地发现问题和提出问题。
四、重视建立“病例档案”——做到万无一失
准备一本数学学习“病例卡”,把平时犯的错误记下来,找出“病因”开出“处方”,并且经常地拿出来看看、想想错在哪里,为什么会错,怎么改正,这样到中考时你的数学就没有什么“病例”了。
我们要在教师的指导下做一定数量的数学习题,积累解题经验、总结解题思路、形成解题思想、催生解题灵感、掌握学习方法。
五、重视常用公式技巧——做到思维敏捷
准确对经常使用的数学公式要理解来龙去脉,要进一步了解其推理过程,并对推导过程中产生的一些可能变化自行探究。
对今后继续学习所必须的知识和技能,对生活实际经常用到的常识,也要进行必要的训练。
例如:1-20的平方数;简单的勾股数;正三角形的面积公式以及高和边长的关系;30°、45°直角三角形三边的关系……这样做,一定能更好地掌握公
式并胜过做大量习题,而且往往会有意想不到的效果。
六、重视中考动向要求——勤练解题规范速度
要把握好目前的中考动向,特别是近年来上海的中考越来越注重解题过程的规范和解答过程的完整。
在此特别指出的是,有很多学生认为只要解出题目的答案就万事大吉了,其实只要是有过程的解答题,过程分比最后的答案要重要得多,不要会做而不得分。
七、重视掌握应试规律——提高考试成绩效率
有关专家曾对高考落榜生和高考佼佼者特别是一些地区的高考“状元”进行过研究和调查,结果发现,他们的最大区别不是智力,而是应试中的心理状态。
也有人曾对影响考试成功的因素进行过调查,结果发现,排在第一位的是应试中的心态,第二位的是考前状况,第三位的是学习方法,我们最重视的记忆力却排在第17位。
事实上,侧重对考生素质和能力的考核已经是各类考试改革的大趋势,应试中的心态对应试的成功将日趋重要。
具有良好心理状态的考生,可以较好地预防考试焦虑,较好地运筹时间,减少应试中的心理损伤。
希望我的分析能给大家带来收获,也希望大家认真分析05-10年广州中考数学试卷,做到心中有数,提早做好中考的准备工作,要抓准题型,训练到位,注意总结,尤其是解题方法的总结。
最后衷心地祝福大家考出好成绩!。