高等数学-上海交通大学出版社-第三版-习题10解答
高等数学(本科少学时类型)同济第三版课后习题答案选解1

高等数学(本科少学时类型)同济第三、四版课后习题答案选解1第一章函数与极限1.1函数P.17习题1.11..005.0:01.0;05.0:1.0,222,1),,1(<=<=<<-<-∈δεδεεδδδx x U x 1..3.下列函数是否为同一函数?为什么?(1)2()2ln ()ln f x x x x j ==与;(2)()f x =()x x j =;(2)(3)()f x =与()g x x =;(4)()f x =与()sin g x x =;解:(1)否;因为定义域不同;(2)否;因为对应关系不同;(2)否;因为函数的定义域不同;(3)是;因为定义域和对应关系及值域都相同;(4)否;因为对应关系及值域都相同;4.求下列函数的定义域:(1)1y x =(2)2232x y x x =-+;(3)arcsin(3)y x =-;(4)1arctan y x =;(5)ln(1)y x =+;(6)1x y e =;解:(1)要使1y x=有意义,需使20,10x x ¹-³故函数的定义域为[-1,0)[(0,1].(2)要使2232x y x x =-+有意义,需使2320x x -+¹故函数的定义域为(-,-2)(-2,1)[1,+.) (3)要使arcsin(3)y x =-有意义,需使31x -£故函数的定义域为[2,4].(4)要使1arctan y x=有意义,需使30,0x x ->¹故函数的定义域为(-,0)(0,3].¥(5)要使ln(1)y x =+有意义,需使10x +>故函数的定义域为+).(1,-¥(6)要使1xy e =有意义,需使0x ≠故定义域为(,0)(0,)-∞+∞ .5.6.7.8.9.10.下列函数中哪些是偶函数,哪些是奇函数,哪些是非奇函数又非偶函数?(1)22(1)y x x =-;(2)233y x x =-;(3)(1)(1)y x x x =-+;(4)2x xa a y -+=;(5)2x xa a y --=;(6)sin cos 1y x x =-+;解:(1)按运算:偶函数与偶函数的和差积仍是偶函数;也可以按定义判定;(2)定义域对称,但()();()()f x f x f x f x -¹-¹-所以是非奇非偶函数;(3)按运算:奇函数与奇函数的积是偶函数;奇函数与偶函数的积是奇函数;所以是奇函数;也可以按定义判定;(4)定义域对称,()()f x f x -=所以函数是偶函数;(5)定义域对称,()()f x f x -=-所以函数是奇函数;(6)定义域对称,但()();()()f x f x f x f x -¹-¹-所以是非奇非偶函数;11.设下面所考虑的函数都是定义在对称区间(,)l l -内的,证明:(1)两个偶函数的和是偶函数;两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数与奇函数的乘积是奇函数。
高等数学课后习题解答 上海交通大学出版社 第三版 习题10解答

第10章 曲线积分与曲面积分1.计算下列对弧长的曲线积分:(1) sin d C x y s ⎰,其中C 为3x ty t =⎧⎨=⎩,(0≤t ≤1);(2)22()d Cx y s +⎰Ñ,其中C 为圆周cos sin x a t y a t =⎧⎨=⎩,(0≤t ≤2π); (3) 2d Cy s ⎰,其中C 为摆线(sin )(1cos )x a t t y a t =-⎧⎨=-⎩的第一拱(0≤t ≤2π); (4) d Cy s ⎰,其中C 为抛物线y 2=2x 上由点(0,0)到点(2,2)之间的一段弧; (5) ()d Cx y s +⎰,其中C 为以O (0,0),A (1,0),B (0,1)为顶点的三角形的边界;(6)s ⎰,其中C 为圆周x 2+y 2=ax (a >0);(7) d Cz s ⎰,其中C 为圆锥螺线cos sin x t t y t t z t =⎧⎪=⎨⎪=⎩从t =0到t =1的一段;(8) 2d Cx s ⎰,其中C为圆周2224x y z z ⎧++=⎪⎨=⎪⎩解答:(1)1111sin d 3sin sin cos cos )Cx y s t t tdt t t tdt ===-+⎰⎰⎰(s i n 1c o s 1)=-;(2) 2223()d 2Cx y s a a ππ+==⎰⎰Ñ;(3)22223500d (1cos )16sin 2Cty s a t a dt ππ=-=⎰⎰⎰353025632sin 15a d a πθθ==⎰;(4)3222211d (1)1)33Cy s yy ==+=⎰⎰; (5) C 可以分割为三条直线:0(01)OA y x =≤≤,:0(01)O B xy =≤≤,:1(01)BA y x x =-≤≤()d Cx y s +⎰=()d OAx y s +⎰+()d OBx y s +⎰+()d ABx y s +⎰111(1xdx ydy x x =+++-⎰⎰⎰1=;(6) C 为圆周x 2+y 2=ax (a >0);化为参数方程cos 22sin 2a a x t a y t ⎧=+⎪⎪⎨⎪=⎪⎩,(0≤t ≤2π),2222200coscos 22222a a t ts dt dt a dt a πππ====⎰⎰⎰⎰;(7)1d Cz s =⎰⎰31212011(2)33t ==+=⎰; (8) C可以表示为参数方程[]cos sin ;0,2x y z θθθπ⎧=⎪=∈⎨⎪=⎩2220d cos Cx s πθπ==⎰⎰.所属章节:第十章第一节 难度:一级2.已知半圆形状铁丝cos sin x a ty a t =⎧⎨=⎩(0≤t ≤π)其上每一点的线密度等于该点的纵坐标,求此铁丝的质量解答:20d sin 2Cm y s a a π===⎰⎰所属章节:第十章第一节难度:一级3.已知螺旋线cos sin x a t y a t z bt =⎧⎪=⎨⎪=⎩(b >0)上各点的线密度等于该点到原点的距离的平方,试求t 从0到2π一段弧的质量解答:222222223208()d (ππ)3C m x y z s a b t a b π=++=+=+⎰⎰所属章节:第十章第一节 难度:二级4.求摆线(sin )(1cos )x a t t y a t =-⎧⎨=-⎩的第一拱(0≤t ≤2π)关于Ox 轴的转动惯量(设其上各点的密度与该点到x 轴的距离成正比,比例系数为k )解答:722332d (1cos )(1cos )CI ky s k t t dt ππ==-=-⎰⎰⎰23740102464sin 235t kadt ka π==⎰ 所属章节:第十章第一节 难度:二级5.计算下列对坐标的曲线积分:(1) d d C y x x y +⎰,其中C 为圆弧cos π,(0)sin 4x a t t y a t =⎧≤≤⎨=⎩,依参数t 增加方向绕行;(2) (2)d ()d Ca y x a y y ---⎰,其中C 为摆线(sin )(1cos )x a t t y a t =-⎧⎨=-⎩自原点起的第一拱; (3) d Cx y ⎰,其中C 为x +y =5上由点A (0,5)到点B (5,0)的一直线段;(4)Cxydx ⎰Ñ,其中C 为圆周222()(0)x a y a a -+=>及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行) 解答:(1)()22440d d sin (cos )cos sin cos 22Ca y x x y a td a t a td a t atdt ππ+=+==⎡⎤⎣⎦⎰⎰⎰(2)(2)d ()d Ca y x a y y ---⎰220[(2cos )(sin )(cos )((1cos ))a a a t d at a t a a a t d a t a ππ=-+---+-=⎰(3)525d (5)2Cx y xd x =-=-⎰⎰ (4) C 分成两部分在2122()(0):x a y a a C -+=>在x 轴的上部逆时针方向,2C 是从原点指向(2,0)a ,则1202320π02aCC C a xydx xydx xydx x dx a =+=+⋅=-⎰⎰⎰⎰⎰蜒? 所属章节:第十章第二节 难度:一级6.计算22()d d OAx y x xy y -+⎰,其中O 为坐标原点,点A 的坐标为(1,1):(1) OA 为直线段y =x ; (2) OA 为抛物线段y =x 2; (3) OA 为y =0,x =1的折线段解答:(1)122201()d d 3OA x y x xy y x dx -+==⎰⎰;(2)()122243208()d d ()15OA x y x xy y x x dx x d x ⎡⎤-+=--=⎣⎦⎰⎰; (3) 设点B 的坐标为(1,0),则OA 分为两段1122205()d d 6OAOBBAx y x xy y x dx ydy -+=+=+=⎰⎰⎰⎰⎰. 所属章节:第十章第二节 难度:一级7.计算22d d ABxy x x y +⎰,其中点A 、B 的坐标分别为A (0,0),B (1,1):(1) AB 为直线段y =x ; (2) AB 为抛物线段y =x 2; (3) AB 为y =0,x =1的折线段 解答:(1) 122202d d (2)1ABxy x x y x dx x dx +=+=⎰⎰;(2)1232202d d [2()]1ABxy x x y x dx x d x +=+=⎰⎰;(3) 设点C 的坐标为(1,0),则AB 分为两段1122d d 011ABACCBxy x x y dx dy +=+=+=⎰⎰⎰⎰⎰.所属章节:第十章第二节 难度:一级8.计算下列曲线积分:(1) 222()d 2d d Ly z x yz y x y -+-⎰,其中L 依参数增加方向绕行的曲线段23x t y t z t =⎧⎪=⎨⎪=⎩(0≤t ≤1);(2)d d (1)d Lx x y y x y z +++-⎰,L 为从点A (1,1,1)到点B (2,3,4)的一直线段;解答:(1)1222466401()d 2d d (43)35Ly z x yz y x z t t t t dt -+-=-+-=⎰⎰; (2)此时L 写作参数方程12 1 (01)31x t y t t z t =+⎧⎪=+≤≤⎨⎪=+⎩1d d (1)d (14293)13Lx x y y x y z t t t dt +++-=+++++=⎰⎰.所属章节:第十章第二节 难度:一级9.一力场由沿横轴正方向的常力F 所构成。
高等数学 高等教育出版社 第三版 上册 课后答案(童裕孙 金路 张万国 於崇华 著)

1 x2 2. (1) 3 ln 3 ; (2) 2 x arcsin x ; x ln 3 1 x2
x
1 e x ln x x 2 shx (3) e x arcsin x ; (4) arccos x(2 x chx) ; x 1 x2 1 x2
1 1 n(n 1) ; (4)6; (5) ; (6) 。 2 2 2 x
4. (1)
m n2 m2 ; (2)1; (3) sin x ; (4) ; (5) x ; n 2
3 1 (7) ; (8) 。 (6) 1 ; 5 2
5. lim f ( x) , lim f ( x )
1 x x (2) y log a ,0 x 1; 11. (1) y arcsin , 2 x 2 ; 3 2 1 x x (3) y log a ( x x 2 1) , x ; (4) y cos , 0 x 2 。 4
3. (1)3; (2)2; (3)1; (4)0; (5)
4. (1){a n bn } 必发散;{a n bn } 不一定发散; (2){a n bn } 和 {a n bn } 均不一定发 散。
2 5.提示: a n
1 3 3 5 (2n 1)(2n 1) 1 1 2 。 2 2 2n 1 2n 1 2 4 ( 2 n)
§ 3 微分运算
1. (1) (sin 2 x 2 x cos 2 x)dx ; (2)
dx (1 x 2 )
3 2
ln x 2 2x
3 2
dx ;
(3)
; (4) e 2 x (3 x 2 2 x 3 )dx ;
【交大】高等数学习题及详细解答

1. 利用定积分定义计算由直线y =x +1,直线x =a ,x =b (a<b )及x 轴所围成的图形的面积. 解 因y =x +1在[a,b ]上连续,所以x +1在[a,b ]上可积,从而可特殊地将[a,b ]n 等分,并取,,()()1i i i b a b a b aa i x f a i n n nξξ---=+==++Δ, 于是111()[()1]1()(1)11()[(1)(1)()]2nni i i i ni b a b af x a i n nb a b a a i n n b a n a n b a n ξ===--=++-=-++=-+++-⋅∑∑∑Δ 故面积 2111(1)lim ()()(1)22nbi i an i b a S x x f x b a a b a n ξ→∞=-=+==-+++-∑⎰d Δ 1()(2)2b a a b =-++2. 利用定积分的几何意义求定积分: (1)102d x x ⎰;(2) 0ax ⎰(a >0).解 (1)根据定然积分的几何意义知, 102d x x ⎰表示由直线y =2x ,x =0,x =1及x 轴所围的三角形的面积,而此三角形面积为1,所以12d x x ⎰=1.(2) 根据定积分的几何意义知,0ax ⎰表示由曲线0,y x x a ===及x 轴所围成的14圆的面积,而此14圆面积为214πa ,所以2014πx a =⎰.3. 根据定积分的性质,比较积分值的大小: (1)120d x x ⎰与130d x x ⎰; (2)1e d x x ⎰与1(1)d x x +⎰.解 (1)∵当[0,1]x ∈时,232(1)0x x x x -=-≥,即23x x ≥,又2x3x ,所以11230d d x x x x >⎰⎰.(2)令()1,()1e e x xf x x f x '=--=-,因01x ≤≤,所以()0f x '>, 从而()(0)0f x f ≥=,说明1e xx ≥+,又e x1+x .所以11(1)e d d xx x x >+⎰⎰.4. 估计下列各积分值的范围: (1)421(1)d x x +⎰;(2) arctan d x x ;(3)2e d ax ax --⎰(a >0); (4)22e d xxx -⎰.解 (1)在区间[1,4]上,函数2()1f x x =+是增函数,故在[1,4]上的最大值(4)17M f ==,最小值(1)2m f ==,所以4212(41)(1)17(41)d x x -≤+≤-⎰, 即 4216(1)51d x x ≤+≤⎰.(2)令()arctan f x x x =,则2()arctan 1xf x x x '=++,当x ∈时,()0f x '>,从而()f x在上是增函数,从而f (x )在上的最大值M f ==,最小值πm f ==所以2arctan 93ππππd x x =≤≤= 即2arctan 93ππd x x x ≤≤.(3)令2()e x f x -=,则2()2e x f x x -'=-,令()0f x '=得驻点x =0,又(0)1f =,2()()ea f a f a -=-=,a >0时, 21ea -<,故()f x 在[-a,a ]上的最大值M =1,最小值2ea m -=,所以2222ee d aa x aa x a ---≤≤⎰.(4)令2()e xxf x -=,则2()(21)e xxf x x -'=-,令()0f x '=得驻点12x =,又(0)1,f = 1241(),(2)2e ef f -==,从而()f x 在[0,2]上的最大值2e M =,最小值14e m -=,所以 212242ee d e x x x --≤≤⎰,而2222ed e d x xx x x x --=-⎰⎰,故 21024222e ed ex xx ---≤≤-⎰.5. 设f (x )及g (x )在[a , b ]上连续, 证明:(1)若在[a , b ]上, f (x )≥0, 且0)(=⎰ba dx x f , 则在[a ,b ]上f (x )≡0; (2)若在[a , b ]上, f (x )≥0, 且f (x )≢0, 则0)(>⎰ba dx x f ;(3)若在[a , b ]上, f (x )≤g (x ), 且⎰⎰=b a ba dx x g dx x f )()(, 则在[a ,b ]上f (x )≡g (x ).证明 (1)假如f (x )≢0, 则必有f (x )>0. 根据f (x )在[a , b ]上的连续性, 在[a , b ]上存在一点x 0, 使f (x 0)>0, 且f (x 0)为f (x )在[a , b ]上的最大值.再由连续性, 存在[c , d ]⊂[a , b ], 且x 0∈[c , d ], 使当x ∈[c , d ]时, 2)()(0x f x f >. 于是0)(2)()()()()()(0>-≥≥++=⎰⎰⎰⎰⎰c d x f dx x f dx x f dx x f dx x f dx x f dc bd d c c a b a . 这与条件0)(=⎰ba dx x f 相矛盾. 因此在[a ,b ]上f (x )≡0.(2)证法一 因为f (x )在[a , b ]上连续, 所以在[a , b ]上存在一点x 0, 使f (x 0)>0, 且f (x 0)为f (x )在[a , b ]上的最大值.再由连续性, 存在[c , d ]⊂[a , b ], 且x 0∈[c , d ], 使当x ∈[c , d ]时, 2)()(0x f x f >. 于是⎰⎰>-≥≥badcc d x f dx x f dx x f 0)(2)()()(0. 证法二 因为f (x )≥0, 所以0)(≥⎰ba dx x f . 假如0)(>⎰ba dx x f 不成立. 则只有0)(=⎰ba dx x f , 根据结论(1), f (x )≡0, 矛盾. 因此0)(>⎰ba dx x f .(3)令F (x )=g (x )-f (x ), 则在[a , b ]上F (x )≥0且0)()()]()([)(=-=-=⎰⎰⎰⎰ba b a b a b a dx x f dx x g dx x f x g dx x F ,由结论(1), 在[a , b ]上F (x )≡0, 即f (x )≡g (x ).1. 求下列导数:(1) 20d d x t x ⎰; (2) 53ln 2d e d d x t t t x -⎰;(3) cos 2sin cos()d xxt t '⎡⎤π⎢⎥⎣⎦⎰; (4) 22dsin d d xtt xtπ⎰(x >0). 解220(1)()2d d x t x x'==⎰5353ln 2(2)d e d e d x tx t t x x --=⎰cos cos sin 222sin 00cos sin 220022222(3)cos()cos()cos()cos()cos()cos(cos )(cos )cos(sin )(sin )cos(cos )sin cos(sin )cos cos(sin )sin πd πd πd πd πd πππππx x xx xx t t t t t t t t t tx x x x x x x x x x ''⎡⎤⎡⎤=-⎣⎦⎣⎦''⎡⎤⎡⎤=-⎣⎦⎣⎦''=⋅-⋅=--=-⎰⎰⎰⎰⎰22cos(sin )cos (sin cos )cos(sin )ππx x x x x =-2222sin sin sin (4)cos sin sin cos .ππd d d d d d d d d d xx t t x t t xt x x x t x x x x x x x x x⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭--=-=⎰⎰2. 求下列极限:(1) 02arctan d limxx t t x→⎰; (2) 2030sin 3d lime d x xx tt t t t→-⎰⎰; (3)()22220e d lime d x t xx t t t t→⎰⎰.解 ()002200021arctan arctan arctan 11(1)limlim lim lim 222d d x xx x x x t t t t x x x x x →→→→'⎡⎤--⎣⎦+====-'⎰⎰2220030003300222200sin 3sin 3sin 32(2)lim lim lim 2sin 3sin 3lim lim 663d d e e d e d e e x x x x x x x t xt x xx x t t t t x x x t tt t x x x x-→→→--→→'⎡⎤⋅⎢⎥⎣⎦=='⎡⎤⎣⎦=⋅=⋅⋅=⎰⎰⎰⎰ ()()[]222222222222222200002000022000200022(3)lim lim lim lim 222lim lim lim 2122e d e d e d e e d e e e d e d e d e e e e xxx x t t t x tx x x x x x x t x t x t x x x x x x x t t t t x x t tt t t x x x x →→→→→→→'⎡⎤⋅⎢⎥⎣⎦==='⎡⎤⎣⎦'⎡⎤⎣⎦====+'+⋅⎰⎰⎰⎰⎰⎰⎰ 3. 求由方程e d cos d 0yxt t t t +=⎰⎰所确定的隐函数y =y (x )的导数.解 方程两边对x 求导数得:cos 0e y y x '⋅+=, cos e yxy '∴=-. 又由已知方程有000sin e y xtt +=,即1sin sin 00e y x -+-=即1sin e yx =-,于是有cos cos sin 1e yx xy x '=-=-.4. 当x 为何值时,I (x )=2e d xt t t -⎰有极值?解 2()e x I x x -'=,令()0I x '=得驻点0x =,又22()(12),(0)10e x I x x I -''''=-=>, 所以当x =0时,I (x )有极小值,且极小值为I (0)=0.5. 计算下列定积分:(1)3x ⎰; (2)221d x x x --⎰;(3)()d f x x π⎰,其中,0,2()sin ,2x x f x x x π⎧≤≤⎪⎪=⎨π⎪≤≤π;⎪⎩ (4){}222max 1,d x x -⎰.解433322233222(1)(43)(8333x x ⎛⎫==-=- ⎪⎝⎭⎰21222221101(2)()()()d d d d x x x x x x x x x x x x --=-+-+--⎰⎰⎰⎰012322332101111111116322332x x x x x x -⎛⎫⎛⎫⎛⎫=++=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()22220022(3)()sin 1cos 82ππππππππd d d xf x x x x x x x =+=+=+-⎰⎰⎰(4)由于22221()max{1,}11112x x f x x x x x ⎧-≤<-⎪==-≤<⎨⎪≤≤⎩,于是 21121212223312122111120max{1,}333d d 1d d x x x x x x x x x x -------=++=++=⎰⎰⎰⎰6. 已知f (x )连续,且f (2)=3,求2222()d d lim(2)xt x f u u t x →⎡⎤⎢⎥⎣⎦-⎰⎰.解 []222222222222()()()()limlim lim lim(2)2(2)2(2)(2)x xt t x xx x x x t f u u t f u u f u u f u u x x x x →→→→''⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦===--''-⎡⎤-⎣⎦⎰⎰⎰⎰⎰⎰d d d d d d 22()113lim lim ()(2)2222x x f x f x f →→-==-=-=-.7. 设k 为正整数. 试证下列各题: (1)⎰-=ππ0cos kxdx ;(2)⎰-=ππ0sin kxdx ;(3)⎰-=πππkxdx 2cos ;(4)⎰-=πππkxdx 2sin.证明 (1)⎰--=-=--==ππππππ000)(sin 1sin 1|sin 1cos k kk k kx k kxdx . (2))(cos 1cos 1cos 1sin ππππππ-+-=-=--⎰k kk k x k k kxdx0cos 1cos 1=+-=ππk k k k .(3)πππππππππ=+=+=+=---⎰⎰22|)2sin 21(21)2cos 1(21cos 2kx k x dx kx kxdx . (4)πππππππππ=+=-=-=---⎰⎰22|)2sin 21(21)2cos 1(21sin 2kx k x dx kx kxdx .8. 设k 及l 为正整数, 且k ≠l . 试证下列各题: (1)⎰-=ππ0sin cos lxdx kx ;(2)⎰-=ππ0cos cos lxdx kx ;(3)⎰-=ππ0sin sin lxdx kx .证明 (1)⎰⎰----+=ππππdx x l k x l k lxdx kx ])sin()[sin(21sin cos 0])cos()(21[])cos()(21[=----++-=--ππππx l k l k x l k l k .(2)⎰⎰---++=ππππdx x l k x l k lxdx kx ])cos()[cos(21cos cos 0])sin()(21[])sin()(21[=--+++=--ππππx l k l k x l k l k .(3)⎰⎰----+-=ππππdx x l k x l k lxdx kx ])cos()[cos(21sin sin .0])sin()(21[])sin()(21[=--+++-=--ππππx l k l k x l k l k .9. 设⎩⎨⎧∈∈=]2 ,1[ ]1 ,0[ )(2x x x x x f . 求⎰=x dt t f x 0)()(ϕ在[0, 2]上的表达式, 并讨论ϕ(x )在(0,2)内的连续性.解 当0≤x ≤1时, 302031)()(x dt t dt t f x xx===⎰⎰ϕ; 当1<x ≤2时, 6121212131)()(2211020-=-+=+==⎰⎰⎰x x tdt dt t dt t f x x xϕ.因此 ⎪⎩⎪⎨⎧≤<-≤≤=21 612110 31)(23x x x x x ϕ.因为31)1(=ϕ, 3131lim )(lim 30101==-→-→x x x x ϕ,316121)6121(lim )(lim 20101=-=-=+→+→x x x x ϕ,所以ϕ(x )在x =1处连续, 从而在(0, 2)内连续.10. 设⎪⎩⎪⎨⎧><≤≤=ππx x x x x f 或0 00 sin 21)(. 求⎰=x dt t f x 0)()(ϕ在(-∞, +∞)内的表达式.解 当x <0时, 00)()(0===⎰⎰xxdt dt t f x ϕ;当0≤x ≤π时, 21cos 21|cos 21sin 21)()(00+-=-===⎰⎰x t tdt dt t f x xxxϕ; 当x >π时, πππϕ00|cos 210sin 21)()(t dt tdt dt t f x x x-=+==⎰⎰⎰10cos 21cos 21=+-=π. 因此 ⎪⎩⎪⎨⎧≥≤≤-<=ππϕx x x x x 10 )cos 1(210 0)(.11. 设f (x )在[a , b ]上连续, 在(a , b )内可导且f '(x )≤0, ⎰-=xa dt t f ax x F )(1)(. 证明在(a , b )内有F '(x )≤0.证明 根据积分中值定理, 存在ξ∈[a , x ], 使))(()(a x f dt t f xa-=⎰ξ. 于是有)(1)()(1)(2x f ax dt t f a x x F xa-+--='⎰))(()(1)(12a x f a x x f a x ----=ξ)]()([1ξf x f ax --=. 由f '(x )≤0可知f (x )在[a , b ]上是单调减少的, 而a ≤ξ≤x , 所以f (x )-f (ξ)≤0. 又在(a , b )内,x -a >0, 所以在(a , b )内 0)]()([1)(≤--='ξf x f ax x F .。
大学所有课程课后答案

我为大家收集了大学所有课程的课后答案,这里只列出了一部分,要想找到更多的答案,请到查找。
资料打开方法:按住 Ctrl键,在你需要的资料上用鼠标左键单击资料搜索方法:Ctrl+F 输入关键词查找你要的资料【数学】∙01-08数值分析清华大学出版社第四版课后答案∙01-08微分几何第三版梅向明黄敬之主编课后答案∙01-07高等代数与解析几何陈志杰主编第二版课后答案∙01-07高等代数第三版北京大学数学系主编高等教育出版社出版课后答案∙01-07数学分析陈纪修主编第二版课后答案∙01-07数学分析华东师大第三版课后答案∙12-27高等数学同济大学出版社第五版课后答案∙12-08积分变换(第四版)东南大学数学系张元林编高等教育出版社课后答案∙11-30微积分复旦大学出版社曹定华主编课后答案∙11-21人大-吴赣昌-高等数学/微积分(经管类)课后答案∙11-09概率统计简明教程同济版课后答案∙11-09复变函数钟玉泉课后答案∙11-09微积分范培华章学诚刘西垣中国商业出版社课后答案∙11-09线性代数同济大学第四版课后答案∙11-08概率论与数理统计浙大版盛骤谢式千课后答案∙11-08复变函数西安交通大学第四版高等教育出版社课后答案∙11-07离散数学教程肖新攀编著课后习题答案∙11-07离散数学(第三版)清华大学出版社(耿素云,屈婉玲,张立昂)课后习题答案∙11-04高等数学同济大学出版社第六版课后答案∙10-27高等数学北大版课后答案∙【通信/电子/电气/自动化】∙01-08信号与线性系统分析吴大正第4版课后答案∙01-08信号与系统刘泉主编课后答案∙01-08信号与系统奥本海姆英文版课后答案∙01-08数字信号处理吴镇扬高等教育出版社课后答案∙01-08通信原理樊昌信第六版国防大学出版社课后答案∙01-08通信原理北京邮电大学课后答案∙12-10数字逻辑第四版(毛法尧著) 高等教育出版社∙12-10数字逻辑第二版(毛法尧著) 高等教育出版社课后答案∙12-08电路第五版邱关源罗先觉高等教育出版社课后答案∙12-03数字信号处理教程(程佩青第二版) 清华大学出版社课后答案∙12-02数字信号处理教程程佩青(第三版)清华大学出版社课后答案∙11-09模拟电子技术基础童诗白第三版习题答案∙11-09数字电子技术基础阎石第五版课后答案∙11-06信号与系统郑君里主编第二版课后答案∙11-06信号与系统哈工大课后答案∙10-31模拟电子技术基础(第四版童诗白、华成英主编)习题答案∙10-29模拟电路康华光【计算机/网络/信息】∙01-08数据结构(C语言版) 李春葆主编课后答案∙12-05计算机网络教程第五版谢希仁电子工业出版社课后答案∙11-09c程序设计谭浩强主编清华大学出版社习题答案及上机指导∙10-26C语言程序设计教程习题参考答案∙10-26MATLAB程序设计与应用(第二版)刘卫国主编实验答案【经济/金融/营销/管理/电子商务】∙01-06现代西方经济学(宏观)尹伯平主编课后答案∙01-06现代西方经济学(微观经济学) 宋承先主编第3版笔记和课后习题详解∙01-06微观经济学:现代观点范里安主编第5版课后答案∙01-05微观经济学平狄克主编第4和5版笔记和课后习题详解∙01-05宏观经济学曼昆主编第五版课后答案∙01-05宏观经济学多恩布什主编课后习题答案∙01-05企业会计学赵惠芳主编课后答案∙12-05市场调研与预测习题与实例陈启杰上海财经大学出版社课后答案∙11-28西方经济学高鸿业第四版(微观宏观)课后答案∙11-10中级财务会计刘兵初宜红山东人民出版社课后答案∙11-09经济法概论课后答案∙11-08中级财务会计(第二版)刘永泽东北财经大学课后答案【物理/光学/声学/热学/力学】∙01-19机电传动控制华中科技大学出版社邓星钟主编课后答案∙01-05量子力学张永德主编课后答案∙01-04量子力学导论曾谨言著第二版课后答案∙01-04量子力学曾谨言著高等教育出版社第三版第一卷课后答案∙01-04量子力学教程周世勋著高等教育出版社课后答案∙01-04量子力学教程曾谨言著课后答案∙01-04电动力学郭硕鸿主编第三版课后答案∙01-04理论力学卢圣治著课后答案∙01-03理论力学周衍柏著第二版课后答案∙11-09普通物理学程守洙江之咏第五版习题分析与解答∙11-09物理学马文蔚(第五版) 习题分析与解答∙11-09大学基础物理学.2版.清华.张三慧习题答案∙11-06大学物理学赵近芳主编第二版课后答案【土建/机械/车辆/制造/材料】∙01-08机械设计基础(第五版) 高等教育出版社课后答案∙01-07材料力学单辉祖主编课后答案∙01-06材料力学刘鸿文主编哈工大第四版课后答案∙11-11机械原理第六版课后答案【化学/环境/生物/医学/制药】∙01-03高分子化学潘祖仁著第四版课后答案∙01-03物理化学辅导与习题详解第五版傅献彩著∙01-02物理化学南开大学第五版课后答案∙01-02物理化学周亚平天津大学第四版课后答案∙01-02分析化学武汉大学第四版思考题答案∙01-02分析化学武汉大学第四版课后答案∙01-02基础有机化学邢其毅著课后答案∙01-01有机化学莫里森著课后答案∙12-31有机化学(第四版)高鸿宾著课后答案∙12-31有机化学(汪小兰著) 课后答案∙12-31无机化学第三版武汉大学吉林大学编高等教育出版社课后答案∙12-31中级无机化学(朱文祥著) 高等教育出版社课后答案∙12-31无机化学第三版(宋天佑著) 高等教育出版社课后答案∙12-30生物化学解题指导与测验张楚富高等教育出版社课后答案∙12-30生物化学简明教程第四版(张丽萍著) 高等教育出版社课后答案∙12-30生物化学原理(张洪渊著) 科学出版社课后答案∙12-30生物化学第三版(沈同王镜岩著) 高等教育出版社课后答案∙10-31有机化学第三版(胡宏纹著) 高等教育出版社课后答案∙10-29有机化学第四版答案曾昭琼主编高等教育出版社【法学/哲学/心理学/政治学】∙12-29实验心理学杨治良版练习题及答案07年心理学考研∙12-29《心理学》考试题库及答案程素萍浙江大学出版社∙12-29教育心理学第三版(皮连生著) 上海教育出版社课后答案∙12-04毛邓三(2007 华中科技大学版)(毛邓三编写组著) 高等教育出版社课后答案∙11-07毛邓三课后简答题答案∙10-29逻辑学参考答案∙10-26思想道德修养与法律基础罗国杰主编高教版课后答案∙10-26毛泽东思想和中国特色社会主义理论体系概论(吴树青等著) 高等教育出版社课后答案∙10-25马克思主义基本原理概论左伟清华南理工大学出版社课后答案∙10-25毛邓三思考题课后答案【英语/文学/史学/外语/教育】∙01-30step_by_step 2000 第四册听力答案课后答案∙01-30step_by_step 2000 第三册听力答案课后答案∙01-30step_by_step 2000 第二册听力答案课后答案∙01-30step_by_step 2000 第一册听力答案课后答案∙01-09大学体验英语综合教程第四册课后答案及课文翻译∙01-09大学体验英语综合教程第三册课后答案及课文翻译∙01-09大学体验英语综合教程第二册课后答案及课文翻译∙01-09大学体验英语综合教程第一册课后答案及课文翻译∙01-09新视野大学英语第五册课后答案∙01-09新视野大学英语第四册课后答案及课文翻译∙01-09新视野大学英语第三册课后答案及课文翻译∙01-09新视野大学英语第二册课后答案及课文翻译∙01-09新视野大学英语第一册课后答案及课文翻译∙01-05文学理论童庆炳主编修订二版课后答案∙01-05语言学教程胡壮麟主编课后答案[适合背诵]∙11-08中国近代史纲要沙健孙高等教育出版社课后答案∙11-07全新版大学英语综合教程第四册课后答案及课文翻译∙11-07全新版大学英语综合教程第三册课后答案及课文翻译∙11-06全新版大学英语综合教程第二册课后答案及课文翻译∙11-06全新版大学英语综合教程第一册课后答案及课文翻译∙11-06新世纪大学英语综合教程3 课后答案∙11-06新世纪大学英语综合教程2 课后答案∙11-06新世纪大学英语综合教程1 课后答案∙10-25新编大学英语(第一册)习题答案第二版∙10-25新编大学英语(第二册)习题答案∙10-25新编大学英语(第三册)习题答案10-25新编大学英语(第四册)课文翻译及课后习题答案。
《高数》第1章

复合函数也可以由两个以上的函数复合而成.例 2 y 如: = ln 2 + x ,是由 y = ln u , u = v , v = 2 + x 2 三 个函数复合而成的. 个函数复合而成的. 指出下列函数的复合过程。 指出下列函数的复合过程。 y = cos x 2 , (2) = ln 2 sin x, (3) = e arctan y y ) (1) ) ) 解 (1) y = cos x 2由 y = cos u , u = x 2 复合而成 复合而成. 例2
在图形上,单调增加的函数的图象是随着x的增大而呈上升的 在图形上 , 单调增加的函数的图象是随着 的增大而呈上升的 曲线, 单调减少的函数, 其图象是随着x的增大而下降的曲 曲线 , 单调减少的函数 , 其图象是随着 的增大而下降的曲 线.
的定义域为D, (3)奇偶性:设f(x)的定义域为 ,对 ∀x ∈ D,如果 )奇偶性: 的定义域为 ( i) f ( − x ) = − f ( x ) ,则称该函数为奇函数; 则称该函数为奇函数; (ii) f ( − x ) = f ( x ) ,则称该函数为偶函数. 则称该函数为偶函数. 在图形上, 奇函数的图象关于原点对称 , 偶函数的 在图形上 , 奇函数的图象关于原点对称, 图象关于y 轴对称. 图象关于 轴对称.
21世纪高职高专精品教材 世纪高职高专精品教材
高等数学
上海交通大学出版社
第1章 函数、极限与连续 章 函数、
1.1 函数
1.1.1 1.1.2 1.1.3 1.1.4 一元函数 复合函数与反函数 基本初等函数 初等函数
1.1 函数
1.1.1 一元函数 1.一元函数的概念 定义1 是一个非空的实数集合, 定义1 设 D 是一个非空的实数集合,如果存在某种对 y 应规律 f , 使得对 ∀x ∈ D , 都有唯一的实数y 与之 对应, 对应,就称 f 确定了一个一元函数 f : D → f ( D ) ,通常 为自变量, 为函数(因变量) 记为 y = f ( x ) .称 x 为自变量, y 为函数(因变量), 为定义域, 称为值域. 为定义域,函数值的集合 f ( D ) 称为值域. D 如果对于确定的x 如果对于确定的 0 ∈ D ,通过对应规律 f ,函数 f (x) 有唯一确定的值 y0 与之对应,称 y0 为函数 与之对应, y = f (x) 在 x0 处的函数值,记为 处的函数值,
大学所有课程课后答案

天天learn为大家收集了大学所有课程的课后答案,这里只列出了一部分,要想找到更多的答案,请到 查找。
资料打开方法:按住 Ctrl键,在你需要的资料上用鼠标左键单击资料搜索方法:Ctrl+F 输入关键词查找你要的资料【数学】∙01-08数值分析清华大学出版社第四版课后答案∙01-08微分几何第三版梅向明黄敬之主编课后答案∙01-07高等代数与解析几何陈志杰主编第二版课后答案∙01-07高等代数第三版北京大学数学系主编高等教育出版社出版课后答案∙01-07数学分析陈纪修主编第二版课后答案∙01-07数学分析华东师大第三版课后答案∙12-27高等数学同济大学出版社第五版课后答案∙12-08积分变换(第四版)东南大学数学系张元林编高等教育出版社课后答案∙11-30微积分复旦大学出版社曹定华主编课后答案∙11-21人大-吴赣昌-高等数学/微积分(经管类)课后答案∙11-09概率统计简明教程同济版课后答案∙11-09复变函数钟玉泉课后答案∙11-09微积分范培华章学诚刘西垣中国商业出版社课后答案∙11-09线性代数同济大学第四版课后答案∙11-08概率论与数理统计浙大版盛骤谢式千课后答案∙11-08复变函数西安交通大学第四版高等教育出版社课后答案∙11-07离散数学教程肖新攀编著课后习题答案∙11-07离散数学(第三版)清华大学出版社(耿素云,屈婉玲,张立昂)课后习题答案∙11-04高等数学同济大学出版社第六版课后答案∙10-27高等数学北大版课后答案∙【通信/电子/电气/自动化】∙01-08信号与线性系统分析吴大正第4版课后答案∙01-08信号与系统刘泉主编课后答案∙01-08信号与系统奥本海姆英文版课后答案∙01-08数字信号处理吴镇扬高等教育出版社课后答案∙01-08通信原理樊昌信第六版国防大学出版社课后答案∙01-08通信原理北京邮电大学课后答案∙12-10数字逻辑第四版(毛法尧著) 高等教育出版社∙12-10数字逻辑第二版(毛法尧著) 高等教育出版社课后答案∙12-08电路第五版邱关源罗先觉高等教育出版社课后答案∙12-03数字信号处理教程(程佩青第二版) 清华大学出版社课后答案∙12-02数字信号处理教程程佩青(第三版)清华大学出版社课后答案∙11-09模拟电子技术基础童诗白第三版习题答案∙11-09数字电子技术基础阎石第五版课后答案∙11-06信号与系统郑君里主编第二版课后答案∙11-06信号与系统哈工大课后答案∙10-31模拟电子技术基础(第四版童诗白、华成英主编)习题答案∙10-29模拟电路康华光【计算机/网络/信息】∙01-08数据结构(C语言版) 李春葆主编课后答案∙12-05计算机网络教程第五版谢希仁电子工业出版社课后答案∙11-09c程序设计谭浩强主编清华大学出版社习题答案及上机指导∙10-26C语言程序设计教程习题参考答案∙10-26MATLAB程序设计与应用(第二版)刘卫国主编实验答案【经济/金融/营销/管理/电子商务】∙01-06现代西方经济学(宏观)尹伯平主编课后答案∙01-06现代西方经济学(微观经济学) 宋承先主编第3版笔记和课后习题详解∙01-06微观经济学:现代观点范里安主编第5版课后答案∙01-05微观经济学平狄克主编第4和5版笔记和课后习题详解∙01-05宏观经济学曼昆主编第五版课后答案∙01-05宏观经济学多恩布什主编课后习题答案∙01-05企业会计学赵惠芳主编课后答案∙12-05市场调研与预测习题与实例陈启杰上海财经大学出版社课后答案∙11-28西方经济学高鸿业第四版(微观宏观)课后答案∙11-10中级财务会计刘兵初宜红山东人民出版社课后答案∙11-09经济法概论课后答案∙11-08中级财务会计(第二版)刘永泽东北财经大学课后答案【物理/光学/声学/热学/力学】∙01-19机电传动控制华中科技大学出版社邓星钟主编课后答案∙01-05量子力学张永德主编课后答案∙01-04量子力学导论曾谨言著第二版课后答案∙01-04量子力学曾谨言著高等教育出版社第三版第一卷课后答案∙01-04量子力学教程周世勋著高等教育出版社课后答案∙01-04量子力学教程曾谨言著课后答案∙01-04电动力学郭硕鸿主编第三版课后答案∙01-04理论力学卢圣治著课后答案∙01-03理论力学周衍柏著第二版课后答案∙11-09普通物理学程守洙江之咏第五版习题分析与解答∙11-09物理学马文蔚(第五版) 习题分析与解答∙11-09大学基础物理学.2版.清华.张三慧习题答案∙11-06大学物理学赵近芳主编第二版课后答案【土建/机械/车辆/制造/材料】∙01-08机械设计基础(第五版) 高等教育出版社课后答案∙01-07材料力学单辉祖主编课后答案∙01-06材料力学刘鸿文主编哈工大第四版课后答案∙11-11机械原理第六版课后答案【化学/环境/生物/医学/制药】∙01-03高分子化学潘祖仁著第四版课后答案∙01-03物理化学辅导与习题详解第五版傅献彩著∙01-02物理化学南开大学第五版课后答案∙01-02物理化学周亚平天津大学第四版课后答案∙01-02分析化学武汉大学第四版思考题答案∙01-02分析化学武汉大学第四版课后答案∙01-02基础有机化学邢其毅著课后答案∙01-01有机化学莫里森著课后答案∙12-31有机化学(第四版)高鸿宾著课后答案∙12-31有机化学(汪小兰著) 课后答案∙12-31无机化学第三版武汉大学吉林大学编高等教育出版社课后答案∙12-31中级无机化学(朱文祥著) 高等教育出版社课后答案∙12-31无机化学第三版(宋天佑著) 高等教育出版社课后答案∙12-30生物化学解题指导与测验张楚富高等教育出版社课后答案∙12-30生物化学简明教程第四版(张丽萍著) 高等教育出版社课后答案∙12-30生物化学原理(张洪渊著) 科学出版社课后答案∙12-30生物化学第三版(沈同王镜岩著) 高等教育出版社课后答案∙10-31有机化学第三版(胡宏纹著) 高等教育出版社课后答案∙10-29有机化学第四版答案曾昭琼主编高等教育出版社【法学/哲学/心理学/政治学】∙12-29实验心理学杨治良版练习题及答案07年心理学考研∙12-29《心理学》考试题库及答案程素萍浙江大学出版社∙12-29教育心理学第三版(皮连生著) 上海教育出版社课后答案∙12-04毛邓三(2007 华中科技大学版)(毛邓三编写组著) 高等教育出版社课后答案∙11-07毛邓三课后简答题答案∙10-29逻辑学参考答案∙10-26思想道德修养与法律基础罗国杰主编高教版课后答案∙10-26毛泽东思想和中国特色社会主义理论体系概论(吴树青等著) 高等教育出版社课后答案∙10-25马克思主义基本原理概论左伟清华南理工大学出版社课后答案∙10-25毛邓三思考题课后答案【英语/文学/史学/外语/教育】∙01-30step_by_step 2000 第四册听力答案课后答案∙01-30step_by_step 2000 第三册听力答案课后答案∙01-30step_by_step 2000 第二册听力答案课后答案∙01-30step_by_step 2000 第一册听力答案课后答案∙01-09大学体验英语综合教程第四册课后答案及课文翻译∙01-09大学体验英语综合教程第三册课后答案及课文翻译∙01-09大学体验英语综合教程第二册课后答案及课文翻译∙01-09大学体验英语综合教程第一册课后答案及课文翻译∙01-09新视野大学英语第五册课后答案∙01-09新视野大学英语第四册课后答案及课文翻译∙01-09新视野大学英语第三册课后答案及课文翻译∙01-09新视野大学英语第二册课后答案及课文翻译∙01-09新视野大学英语第一册课后答案及课文翻译∙01-05文学理论童庆炳主编修订二版课后答案∙01-05语言学教程胡壮麟主编课后答案[适合背诵]∙11-08中国近代史纲要沙健孙高等教育出版社课后答案∙11-07全新版大学英语综合教程第四册课后答案及课文翻译∙11-07全新版大学英语综合教程第三册课后答案及课文翻译∙11-06全新版大学英语综合教程第二册课后答案及课文翻译∙11-06全新版大学英语综合教程第一册课后答案及课文翻译∙11-06新世纪大学英语综合教程3 课后答案∙11-06新世纪大学英语综合教程2 课后答案∙11-06新世纪大学英语综合教程1 课后答案∙10-25新编大学英语(第一册)习题答案第二版∙10-25新编大学英语(第二册)习题答案∙10-25新编大学英语(第三册)习题答案∙10-25新编大学英语(第四册)课文翻译及课后习题答案。
高等数学课后习题解答 上海交通大学出版社 第三版 习题8解答

第八章 多元函数的定义1.求下列函数的定义域,并作图表示:(1)arcsin 3xz =+ (2)()2ln 48;z y x =-+(3)z x = (4)z =(5))0;z R r =>>(6)z =解答: 本题图略(1)30,03,0,0;x x y y -≤≤≤≤⎧⎧⎨⎨≤≥⎩⎩ (2)()242y x >-;(3),0x y <+∞≤<+∞;(4)x ≥且0y ≥;(5)2222r x y R <+≤; (6) 1.xy >所属章节:第八章第一节 难度:一级2.试用不等式表示由抛物线2y x =和2y x =所围成的区域(含边界)。
解答:201,x x y ≤≤≤≤ 所属章节:第八章第一节 难度:一级3.设(),,x f x y xy y=+求1,32f ⎛⎫⎪⎝⎭及()1,1.f - 解答:()15,3,1,1 2.23f f ⎛⎫=-=- ⎪⎝⎭所属章节:第八章第一节 难度:一级4.设()22,tan ,xf x y x y xy y=+-求(),.f tx ty解答:()()2,,.f tx ty t f x y = 所属章节:第八章第一节 难度:一级5.设22,,x f x y x y y ⎛⎫+=- ⎪⎝⎭求(),.f x y解答: 令11uv u x y x v xv u y y v ⎧=+⎧=⎪⎪⎪+⇒⎨⎨=⎪⎪=⎩⎪+⎩,代入原式得 222(1)(,)()()111uv u u v f u v v v v -=-=+++,即2(1)(,)1x y f x y y -=+注:如果题目是“设22,,y f x y x x y ⎛⎫=⎪⎭-+ ⎝求(),.f x y ”则答案为令11u u x y x v yuv v y x v ⎧=+=⎧⎪⎪⎪+⇒⎨⎨=⎪⎪=⎩⎪+⎩ ,代入原式得 222(1)(,)()()111u uv u v f u v v v v -=-=+++,即2(1)(,)1x y f x y y -=+。
高等数学_及其教学软件.上册(上海交通大学,集美大学编)PPT模板

第二章函数极 限与连续
2.1极限
2.1.1数列 的极限
01
2.1.2函数
习题2.1
06
的极限
02
2 . 1 . 5 极 05 限的运算
法则
04
2.1.4极限 的性质
2.1.3函
03
数的左极 限与右极
限
第二章函数极限与连续
2.2两个重要极限
习题2.2
第二章函数 极限与连续
2.3无穷小量与无穷大 量
习题3.5
第
和 导 数 的 应 用
四 章 微 分 中 值 定
理
理第 和四 导章 数微 的分 应中 用值
定
0 1
4.1微分中值 定理
0 4
4.4极值与优 化
0 2
4.2洛必达法 则
0 5
4.5不等式的 证明
0 3
4.3函数的单 调性与凸性
0 6
4.6变化率问 题
第四章微分中值定理和导数的应用
必达法则
第四章微分中值定理和导数的应用
4.3函数的单调性与凸性
4.3.1函数单调性及 其判别法
4.3.2函数的凸性与 曲线的拐点
习题4.3
第四章微分中值定理和导数的应用
4.4极值与优化
4.4.1函数的极 值
4.4.3最优化问 题
4.4.2函数的最 大、最小值
习题4.4
第四章微分中值定理和导数的应用
4.7导数在经济学中的应用 4.8演示与实验
第四章微分中值定理和导数的应用
4.1微分中值定理
4.1.1罗尔中值定理
4.1.3柯西中值定理
4.1.2拉格朗日中值 定理
习题4.1
高等数学复旦大学出版第三版课后答案

206习题十1. 根据二重积分性质,比较ln()d D x y σ+⎰⎰与2[ln()]d D x y σ+⎰⎰的大小,其中:(1)D 表示以(0,1),(1,0),(1,1)为顶点的三角形; (2)D 表示矩形区域{(,)|35,02}x y x y ≤≤≤≤.解:(1)区域D 如图10-1所示,由于区域D 夹在直线x +y =1与x +y =2之间,显然有图10-112x y ≤+≤从而 0l n ()x y ≤+<故有2l n ()[l n ()]x y x y+≥+ 所以 2l n ()d [l n ()]dD Dx yx y σσ+≥+⎰⎰⎰⎰(2)区域D 如图10-2所示.显然,当(,)x y D ∈时,有3x y +≥.图10-2从而 ln(x +y )>1 故有2l n ()[l n ()]x y x y+<+207所以 2l n ()d [l n ()]dD Dx yx y σσ+<+⎰⎰⎰⎰2. 根据二重积分性质,估计下列积分的值: (1),{(,)|02,02}I D x y x y σ==≤≤≤≤⎰⎰;(2)22sin sin d ,{(,)|0π,0π}D I x y D x y x y σ==≤≤≤≤⎰⎰; (3)2222(49)d ,{(,)|4}D I x y D x y x y σ=++=+≤⎰⎰. 解:(1)因为当(,)x y D ∈时,有02x ≤≤, 02y ≤≤因而 04xy ≤≤.从而22≤故2d D D σσσ≤≤⎰⎰⎰⎰⎰⎰即2d d DDσσσ≤≤⎰⎰⎰⎰而 d D σσ=⎰⎰ (σ为区域D 的面积),由σ=4 得8σ≤≤⎰⎰(2) 因为220sin 1,0sin 1x y ≤≤≤≤,从而220sin sin 1x y ≤≤故 220d sin sin d 1d D D D x y σσσ≤≤⎰⎰⎰⎰⎰⎰ 即220sin sin d d D D x y σσσ≤≤=⎰⎰⎰⎰ 而2πσ=所以2220sin sin d πD x y σ≤≤⎰⎰(3)因为当(,)x y D ∈时,2204x y ≤+≤所以22229494()925x y x y ≤++≤++≤故 229d (49)d 25d D D D x y σσσ≤++≤⎰⎰⎰⎰⎰⎰ 即229(49)d 25Dx y σσσ≤++≤⎰⎰208而2π24πσ=⋅=所以2236π(49)d 100πDx y σ≤++≤⎰⎰3. 根据二重积分的几何意义,确定下列积分的值: (1)222(,{(,)|};D a D x y x y a σ=+≤⎰⎰(2)222,{(,)|}.D x y x y a σ=+≤⎰⎰解:(1)(,D a σ⎰⎰在几何上表示以D 为底,以z 轴为轴,以(0,0,a )为顶点的圆锥的体积,所以31(π3Da a σ=⎰⎰ (2)σ⎰⎰在几何上表示以原点(0,0,0)为圆心,以a为半径的上半球的体积,故32π.3a σ=⎰⎰ 4.设f (x ,y )为连续函数,求2220021lim(,)d ,{(,)|()()}πDr f x y D x y x x y y r r σ→=-+-≤⎰⎰.解:因为f (x ,y )为连续函数,由二重积分的中值定理得,(,),D ξη∃∈使得2(,)d (,)π(,)Df x y f r f σξησξη=⋅=⋅⎰⎰又由于D 是以(x 0,y 0)为圆心,r 为半径的圆盘,所以当0r →时,00(,)(,),x y ξη→ 于是:0022200000(,)(,)11lim(,)d limπ(,)lim (,)ππlim (,)(,)Dr r r x y f x y r f f r r f f x y ξησξηξηξη→→→→=⋅===⎰⎰5. 画出积分区域,把(,)d D f x y σ⎰⎰化为累次积分: (1) {(,)|1,1,0}D x y x y y x y =+≤-≤≥;(2)2{(,)|2,}D x y y x x y =≥-≥209(3)2{(,)|,2,2}D x y y y x x x=≥≤≤解:(1)区域D 如图10-3所示,D 亦可表示为11,01y x y y -≤≤-≤≤.所以1101(,)d d (,)d yD y f x y y f x y x σ--=⎰⎰⎰⎰(2) 区域D 如图10-4所示,直线y =x -2与抛物线x =y 2的交点为(1,-1),(4,2),区域D 可表示为22,12y x y y ≤≤+-≤≤.图10-3 图10-4所以2221(,)d d (,)d y D yf x y y f x y x σ+-=⎰⎰⎰⎰(3)区域D 如图10-5所示,直线y =2x 与曲线2y x=的交点(1,2),与x =2的交点为(2,4),曲线2y x=与x =2的交点为(2,1),区域D 可表示为22,1 2.y x x x≤≤≤≤图10-5210所以2221(,)d d (,)d xD xf x y x f x y y σ=⎰⎰⎰⎰.6. 画出积分区域,改变累次积分的积分次序: (1) 2220d (,)d yyy f x y x⎰⎰; (2)e ln 1d (,)d xx f x y y ⎰⎰;(3) 1320d (,)d yy f x y x-⎰; (4)πsin 0sin2d (,)d xx x f x y y -⎰⎰;(5) 1233001d (,)d d (,)d yyy f x y y y f x y x -+⎰⎰⎰⎰.解:(1)相应二重保健的积分区域为D :202,2.y y x y ≤≤≤≤如图10-6所示.图10-6D 亦可表示为:04,.2xx y ≤≤≤所以2224002d (,)d d (,)d .yx yy f x y x x f x y y =⎰⎰⎰⎰(2) 相应二重积分的积分区域D :1e,0ln .x y x ≤≤≤≤如图10-7所示.图10-7D 亦可表示为:01,e e,y y x ≤≤≤≤211所以e ln 1e10ed (,)d d (,)d y xx f x y y y f x y x =⎰⎰⎰⎰(3) 相应二重积分的积分区域D为:01,32,y x y ≤≤≤≤-如图10-8所示.图10-8D 亦可看成D 1与D 2的和,其中 D 1:201,0,x y x ≤≤≤≤D 2:113,0(3).2x y x ≤≤≤≤-所以2113213(3)2001d (,)d d (,)d d (,)d yx x y f x y x x f x y y x f x y y --=+⎰⎰⎰⎰⎰.(4) 相应二重积分的积分区域D 为:0π,sinsin .2xx y x ≤≤-≤≤如图10-9所示.图10-9D 亦可看成由D 1与D 2两部分之和,其中 D 1:10,2arcsin π;y y x -≤≤-≤≤ D 2:01,arcsin πarcsin .y y x y ≤≤≤≤-所以πsin 0π1πarcsin 0sin 12arcsin 0arcsin 2d (,)d d (,)d d (,)d xyx y yx f x y y y f x y x y f x y x ----=+⎰⎰⎰⎰⎰⎰(5) 相应二重积分的积分区域D 由D 1与D 2两部分组成,其212中 D 1:01,02,y x y ≤≤≤≤D 2:13,03.y x y ≤≤≤≤-如图10-10所示.图10-10D 亦可表示为:02,3;2xx y x ≤≤≤≤- 所以()1233230012d ,d d (,)d d (,)d yyxxy f x y x y f x y x x f x y y --+=⎰⎰⎰⎰⎰⎰7.解:因为(,)Df x y d σ⎰⎰为一常数,不妨设(,)Df x y C =⎰⎰则有(,)x y f xy C =+从而有(,)()x y Df xy f uv C dudv =++⎰⎰而{}2(,)0 1.0D x y x y x =≤≤≤≤21(,)00()u x y f xy uv C dv du ⎡⎤∴=+⎰⎰+⎣⎦2120012u xy uv cv du ⎡⎤=+⎰+⎢⎥⎣⎦ 152012xy u cu du ⎡⎤=+⎰+⎢⎥⎣⎦163011123xy u cu ⎡⎤=++⎢⎥⎣⎦11123xy C =++18C ∴=故(,)18x y f xy ∴=+8. 计算下列二重积分:213(1) 221d d ,:12,;Dx x y D x y x y x≤≤≤≤⎰⎰ (2) e d d ,x yD x y ⎰⎰D由抛物线y 2 = x ,直线x =0与y =1所围;(3) d ,x y ⎰⎰D 是以O (0,0),A (1,-1),B (1,1)为顶点的三角形; (4) cos()d d ,{(,)|0π,π}D x y x y D x y x x y +=≤≤≤≤⎰⎰.解:(1)()22222231221111d d d d d d xx D x x x x x x y x y x x x x y yy ==-=-⎰⎰⎰⎰⎰⎰2421119.424x x ⎡⎤=-=⎢⎥⎣⎦(2) 积分区域D 如图10-12所示.图10-12D 可表示为:201,0.y x y ≤≤≤≤所示22110000ed d de d d e d()xx x y y yyyD xx y y x y y y==⎰⎰⎰⎰⎰⎰ 2111100ed (e 1)d e d d y x y y yy y y y y y y y ==-=-⎰⎰⎰⎰1111120000011de d e e d .22yy yy y y y y y =-=--=⎰⎰⎰ (3) 积分区域D 如图10-13所示.214图10-13D 可表示为:01,.x x y x ≤≤-≤≤所以2110d d arcsin d 2xxxx y x y x y x x --⎡==+⎢⎣⎰⎰⎰⎰⎰ 112300ππ1πd .2236x x x ==⋅=⎰ ππππ0πππ0(4)cos()d d d cos()d [sin()]d [sin(π)sin 2]d (sin sin 2)d 11.cos cos 222x Dxx y x y x x y y x y xx x x x x x x x +=+=+=+-=--⎡⎤==+⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰9. 计算下列二次积分:10112111224(1)d d ;(2)d e d d e d .yy y xxyxy x xy x y x +⎰⎰⎰⎰解:(1)因为sin d x x x⎰求不出来,故应改变积分次序。
线性代数第3版习题全解(上海交通大学)

高等数学课后习题答案3_上海交大版

解答: lim
f (x)
= lim
f (x) − x
f (0)
=
lim
x→0
f (x) − x
f (0)
=
f ′(0)
。
x→0 ϕ(x) x→0 ϕ(x) −ϕ(0) lim ϕ(x) −ϕ(0) ϕ′(0)
x
x→0
x
所属章节:第三章第二节
难度:二级
11.设 f ′(x) 存在,试证:对常数α、β ,有
∆x→0
∆x
∆x→0
∆x
所以由导数定义, (cos x)′ = − sin x 。
所属章节:第三章第一节 难度:一级
7.按定义求下列函数的导数: (1) y = x2 + 3x −1 ;
(2) y = eax ;
(3) y = cos(ax + b) ;
(4) y = x sin x .
解答:(1)由于 lim
4.假定 f (x) 可导,观察下列极限,指出 A 表示什么?
(1) lim x − x0 = A ; x→x0 f (x) − f (x0 )
(2) lim f (x0 − 2∆x) − f (x0 ) = A ;
∆x →0
∆x
(3) lim f (3) − f (3 − h) = A ;
h→0
h
x→0 x
x→0
x
所属章节:第三章第一节
难度:一级
5.指出下列极限是什么函数在哪一点的导数?
(1) lim ax −1 ; x→0 x
(2) lim (1 + x)m −1 ;
x→0
x
高等数学习题解答上海交大习题解答

第11章 级数1.写出下列级数的前5项:(1) 11(1)3n nn -∞=-∑;(2) 113(21)242n n n ∞=⨯-⨯∑;(3) 21(ln )nn n ∞=∑;(4) 1!n n n n ∞=∑ 解答:(1)23451111133333-+-+-; (2) 1131351357135792242462468246810••••••••••+++++••••••••••;(3) 2345611111(ln 2)(ln 3)(ln 4)(ln 5)(ln 6)+++++; (4)234511212312341234512345••••••••••+++++。
所属章节:第十一章第一节 难度:一级2.写出下列级数的通项:(1) 2341357++++;(2)2-+;(3)2242468x x ++++⨯⨯⨯⨯解答:(1) 21nn -; (2) 1(1)(1)n n n --+;(3)2242n xn•。
所属章节:第十一章第一节 难度:一级3.已知级数的部分和S n ,写出该级数,并求和:(1) 1n n S n+=;(2) 212n n n S -=;解答:(1) 一般项为111121u S +===,111,2,3,1(1)n n n n n u S S n n n n n -+-=-=-==--,故该级数为212(1)n n n∞=--∑,该级数的和为1lim lim 1n n n n S n →∞→∞+==;(2) 一般项为1112u S ==,11121211,2,3,222n n n n n n n n u S S n -----=-=-==,故该级数为112n n ∞=∑,该级数的和为21lim lim 12n n n n n S →∞→∞-== 。
所属章节:第十一章第一节难度:一级4.根据定义求出下列级数的和:(1) 1326n nnn ∞=+∑;(2) 11(2)n n n ∞=+∑;(3) 1(1)(2)(3)n nn n n ∞=+++∑;(4) 1n ∞=∑解答:(1) 111113211332()()1162321123nnn n n n n n ∞∞∞===+=+=+=--∑∑∑; (2) 1111111111113()(1)(2)222324354n n n n nn ∞∞===-=-+-+-+=++∑∑; (3) 111123111111[()]()()2(1)(2)(3)2122322334n n nn n n n n n∞∞===-+-⋅=-++⨯=++++++∑∑; (4)11n n∞∞===-∑∑1n ∞==∑1==-所属章节:第十一章第一节难度:一级5.证明下列级数发散: (1)121n nn ∞=+∑;(2) 12nn n ∞=∑;(3) 11nn n n ∞=⎛⎫⎪+⎝⎭∑;(4)111n nnn nn n +∞=⎛⎫+ ⎪⎝⎭∑解答:(1) 由于10212n n u n =→≠+,所以级数121n n n ∞=+∑发散;(2) 由于20nn u n =→+∞≠,所以级数12n n n∞=∑发散;(3) 由于1()01n n n u n e =→≠+,所以级数11nn n n ∞=⎛⎫⎪+⎝⎭∑发散; (4) 由于1111011(1)()(1)n n nn nn n n n nn n u n e n n n ++=≥=→≠+++,所以级数111n nn n n n n +∞=⎛⎫+ ⎪⎝⎭∑发散。
大学教材课后习题答案大全

大学教材课后习题答案大全▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆《新视野大学英语读写教程(第二版)第三册》课后答案http:新视野大学英语读写教程(第二版)第一册》课后答案http:《马·克思主·义基本原理概论》新版完整答案http:《毛·泽东思想和中国特色社会主·义理论体系概论》习题答案(2008年修订版的)http:21世纪大学实用英语综合教程(第一册)课后答案及课文翻译http:西方经济学(高鸿业版)教材详细答案http:《新视野大学英语读写教程(第二版)第二册》课后答案http:思想道德修养与法律基础课后习题答案http:《中国近代史纲要》完整课后答案(高教版)http:《全新版大学英语综合教程》(第三册)练习答案及课文译文http:《全新版大学英语综合教程》(第一册)练习答案及课文译文http:《会计学原理》同步练习题答案http:《微观经济学》课后答案(高鸿业版)http:《统计学》课后答案(第二版,贾俊平版)http:《西方经济学》习题答案(第三版,高鸿业)可直接打印http:毛邓三全部课后思考题答案(高教版)/毛邓三课后答案http:新视野大学英语听说教程1听力原文及答案下载http:西方宏观经济高鸿业第四版课后答案http:《管理学》经典笔记(周三多,第二版)http:《中国近代史纲要》课后习题答案http:《理论力学》课后习题答案http:《线性代数》(同济第四版)课后习题答案(完整版)http:高等数学(同济第五版)课后答案(PDF格式,共527页)http:中国近现代史纲要课后题答案http:曼昆《经济学原理》课后习题解答http:21世纪大学英语读写教程(第三册)参考答案http:谢希仁《计算机网络教程》(第五版)习题参考答案(共48页)http:《概率论与数理统计》习题答案http:《模拟电子技术基础》详细习题答案(童诗白,华成英版,高教版)http:《机械设计》课后习题答案(高教版,第八版,西北工业大学)http:《大学物理》完整习题答案http:《管理学》课后答案(周三多)http:机械设计基础(第五版)习题答案[杨可桢等主编]http:程守洙、江之永主编《普通物理学》(第五版)详细解答及辅导http:新视野大学英语课本详解(四册全)http:21世纪大学英语读写教程(第四册)课后答案http:新视野大学英语读写教程3册的课后习题答案http:新视野大学英语第四册答案(第二版)http:《中国近现代史》选择题全集(共含250道题目和答案)http:《电工学》课后习题答案(第六版,上册,秦曾煌主编)http:完整的英文原版曼昆宏观、微观经济学答案http:《数字电子技术基础》习题答案(阎石,第五版)http:《电路》习题答案上(邱关源,第五版)http:《电工学》习题答案(第六版,秦曾煌)http:21世纪大学英语读写教程(第三册)课文翻译http:《生物化学》复习资料大全(3套试卷及答案+各章习题集)http:《模拟电子技术基础》课后习题答案(共10章)http:《概率论与数理统计及其应用》课后答案(浙江大学盛骤谢式千编著)http:《理论力学》课后习题答案(赫桐生,高教版)http:《全新版大学英语综合教程》(第四册)练习答案及课文译文http:《化工原理答案》课后习题答案(高教出版社,王志魁主编,第三版)http:《国际贸易》课后习题答案(海闻P.林德特王新奎)http:大学英语综合教程1-4册练习答案http:《流体力学》习题答案http:《传热学》课后习题答案(第四版)http:高等数学习题答案及提示http:《高分子化学》课后习题答案(第四版,潘祖仁主编)http:马·克思主·义基本原理概论答案http:《计算机网络》课后习题解答(谢希仁,第五版)http:《概率论与数理统计》优秀学习资料http:《离散数学》习题答案(高等教育出版社)http:《模拟电子技术基础简明教程》课后习题答案(杨素行第三版)http:《信号与线性系统分析》习题答案及辅导参考(吴大正版)http:《教育心理学》课后习题答案(皮连生版)http:《理论力学》习题答案(动力学和静力学)http:选修课《中国现当代文学》资料包http:机械设计课程设计——二级斜齿圆柱齿轮减速器(WORD+原图)http:《成本会计》配套习题集参考答案http:《概率论与数理统计》8套习题及习题答案(自学推荐)http:《现代西方经济学(微观经济学)》笔记与课后习题详解(第3版,宋承先)http:《计算机操作系统》习题答案(汤子瀛版,完整版)http:《毛·泽东思想和中国特色社会主·义理论体系概论》有史以来最全面的复习资料!!!http:《线性代数》9套习题+9套相应答案(自学,复习推荐)http:《管理理论与实务》课后题答案(手写版,中央财经大学,赵丽芬)http:统计学原理作业及参考答案http:机械设计课程设计——带式运输机的传动装置的设计http:《物理学》习题分析与解答(马文蔚主编,清·华大学,第五版)http:《新编大学英语》课后答案(第三册)http:《通信原理》课后习题答案及每章总结(樊昌信,国防工业出版社,第五版)http:《c语言程序与设计》习题答案(谭浩强,第三版)http:《微生物学》课后习题答案(周德庆版)http:新视野第二版全四册听说教程答案http:《宏观经济学》课后答案(曼昆,中文版)http:《电力电子技术》习题答案(第四版,王兆安,王俊主编)http:《土力学》习题解答/课后答案http:《公司法》课后练习及参考答案http:《全新版大学英语综合教程》(第二册)练习答案及课文译文http:新视野大学英语视听说第三册答案http:《工程力学》课后习题答案(梅凤翔主编)http:《理论力学》详细习题答案(第六版,哈工大出版社)http:《成本会计》习题及答案(自学推荐,23页)http:《自动控制原理》课后题答案(胡寿松,第四版)http:《复变函数》习题答案(第四版)http:《信号与系统》习题答案(第四版,吴大正)http:《有机化学》课后答案(第二版,高教版,徐寿昌主编)http:《电工学——电子技术》习题答案(下册)http:《财务管理学》章后练习参考答案(人大出版,第四版)http:现代汉语题库(语法部分)及答案http:《概率论与数理统计》习题详解(浙大二、"三版通用)http:《有机化学》习题答案(汪小兰主编)http:《微机原理及应用》习题答案http:《管理运筹学》第二版习题答案(韩伯棠教授)http:《古代汉语》习题集(附习题答案)福建人民出版社http:《金融市场学》课后习题答案(张亦春,郑振龙,第二版)http:《公共关系学》习题及参考答案(复习必备)http:现代汉语通论(邵敬敏版)词汇语法课后练习答案http:《国际经济学》教师手册及课后习题答案(克鲁格曼,第六版)http:《教育技术》课后习题答案参考(北师大)http:《金融市场学》课后答案(郑振龙版)http:《组织行为学》习题集答案(参考下,还是蛮好的)http:《分析化学》课后习题答案(第五版,高教版)http:大学英语精读第3册答案(外教社)http:《国际经济学》习题答案(萨尔瓦多,英文版)http:《复变函数与积分变换》习题答案http:《信息论与编码》辅导PPT及部分习题答案(曹雪虹,张宗橙,北京邮电大学出版社)http:《宏观经济学》习题答案(第七版,多恩布什)http:《物理化学》习题解答(天津大学,第四版,106张)http:新视野大学英语视听说教程第一册http:《机械制造技术》习题集与答案解析http:新视野大学英语听说教程2册听力原文及答案下载http:管理学试题(附答案)http:《材料力学》详细辅导及课后答案(PDF格式,共642页)http:六级词汇注解http:《大学基础物理学》课后答案(共16个单元)http:《管理学——原理与方法》课后习题答案http:新视野2版第三册(大2上学期用)http:曼昆《经济学原理》中文第四版.课后习题答案-清晰图片版http:《数据库系统概论》课后习题(第四版)http:大学数学基础教程课后答案(微积分)http:《投资学》课后习题答案(博迪,第四版)http:流体力学课后答案(高教版,张也影,第二版)http:《语言学概论》习题答案(自考,新版教材)http:《统计学》各章练习题答案http:《数字电子技术基础》课后习题答案(完整答案版)http:《积分变换》习题答案(配套东南大学张元林编的)http:《中级财务会计》习题答案(第二版,刘永泽)http:《计算机网络》课后习题答案(第5版和第4版)http:《单片机原理及应用》课后习题答案(张毅刚主编,高教版)http:《金融工程》课后题答案(郑振龙版)http:《液压传动》第2版思考题和习题解答(共36页)http:《动物学》习题集与答案(资料相当丰富)http:《高频电子线路》习题参考答案(第四版)http:《国际经济法》课后参考答案http:大学英语四级十年真题+听力http:《信号与系统》习题详解(奥本海姆版)http:《电路分析》课后答案及学习指导(第二版,胡翔骏,高教版)http:《C语言设计》(谭浩强,第三版)227页http:新视野大学英语课后习题答案1-4册全集http:《数字电路与逻辑设计》课后习题答案,讲解详细http:《电路》第五版课后答案http:《材料力学》详细习题答案及辅导(第四版,刘鸿文)http:《传播学教程》课后答案(郭庆光主编,完整版)http:《物理化学》习题答案与课件集合(南大)http:《金融市场学》电子书(张亦春,郑振龙,第二版)http:毛邓三95%考点http:高等教育出版社《毛·泽东思想和中国特色社会主·义道路》(09版,原毛邓三)课后题答案http:《线性代数》课后习题答案(陈维新,科学出版社)http:自动控制原理习题集(自学辅导推荐)http:《现代通信原理》习题答案(曹志刚版)http:高等数学上下《习题PPT》http:《数据结构习题集》答案(C版,清·华大学,严蔚敏)http:《大学物理学》习题解答http:《物理化学》习题答案(南大,第五版)http:《机械原理》复习精要与习题精解(第7版,西北大学)http:《宏观经济学》答案(曼昆,第五版,英文版)pdf格式http:《化工热力学》习题与习题答案(含各种版本)http:《材料力学》习题答案http:教育统计与测量管理心理学(自考必备资料,牛逼打印版)http:离散数学习题解答(第四版)清·华大学出版社http:货币银行学http:《技术经济学概论》(第二版)习题答案http:《毛·泽东思想和社会主·义建设理论题概论》精炼考试题目,耐心整理http:《数字信号处理》课后答案及详细辅导(丁美玉,第二版)http:《语言学概论练习题》答案http:《会计电算化》教材习题答案(09年)http:《数据库系统概论》习题答案(第四版)http:《微观经济学》课后答案(平狄克版)http:《控制工程基础》课后习题解答(清·华版)http:《高分子化学》习题答案(第四版)http:《电机与拖动基础》课后习题答案(第四版,机械工业出版社,顾绳谷主编)http:《机械工程测试技术基础》(第三版,熊诗波等主编)课后答案http:《宏观经济学》课后答案(布兰查德版)http:《机械原理》习题答案和超多例题(西北工业大学,第六版)http:《大学物理基础教程》课后习题答案(第二版,等教育出版社)http:简明乐谱基础知识http:《语言学教程》课后答案http:《公司理财》课后答案(英文版,第六版)http:《信息论与编码》学习辅导及习题详解(傅祖芸版)http:《遗传学》课后习题答案(朱军主编,完整版)http:现代人心理实战700题处世韬略http:《自动控制原理》习题答案http:《普通动物学》完整课后答案(刘凌云,郑光美版)http:《微机原理》作业答案(李继灿版)http:尼尔·波兹曼《娱乐至死》http:《电力电子技术》习题答案(第4版,西安交通大学)http:大学英语四级(CET-4)历年真题大全[89-07年39套](精品级)753页wordhttp:《通信原理》习题答案http:《普通化学(第五版)》习题详解(配套浙大编的)http:经济法课后复习及思考答案http:《结构化学基础》习题答案(周公度,北大版)http:财务管理学课后答案荆新王化成http:《C++程序设计》课后习题答案(第2版,吴乃陵,高教版)http:药用植物的两份习题(自己感觉比较有用)http:《数学物理方法》习题解答案详细版(梁昆淼,第二版)http:《机械制图》习题册答案(近机类、非机类,清·华大学出版社)http:《控制工程基础》习题答案(第二版,燕山大学)http:《画法几何》资料包(含习题答案,自学辅导课件)http:《畜禽解剖学与组织胚胎学》习题答案参考http:《统计学》课后习题答案(周恒彤编)http:《西方经济学简明教程》课后习题全解(尹伯成,上海人民出版社)http:《汽车理论》课后答案详细解答(余志生,机械工业出版社)http:《数学物理方法》(第三版)习题答案http:新视野听力原文及课后答案http:新编大学英语4(外研版)课后练习答案http:《材料力学》习题答案(单辉祖,北京航空航天大学)http:大学英语精读第3册课文及课后答案http:《自动控制原理》课后习题答案———胡寿松,第五版http:《数据库系统原理与设计》课后答案(第四版,王珊,萨师煊)http:《数字电子技术基础》详细习题答案(阎石第四版)http:财经应用文笔记http:《管理学》课后习题答案(罗宾斯,人大版,第7版)http:《概率论与数理统计》习题答案(复旦大学出版社)http:《数字信号处理——基于计算机的方法》习题答案(第二版)http:《传热学》课后答案(杨世铭,陶文铨主编,高教版)http:C语言资料大全(有课后答案,自学资料,C程序等)http:毛邓三重点归纳http:《电力拖动自动控制系统》习题答案http:逄锦聚《政治经济学》(第3版)笔记和课后习题详解http:《概率论与数理统计》课后习题解答(东南大学出版社)http:《有机化学》课后习题答案(胡宏纹,第三版)http:《常微分方程》习题解答(王高雄版)http:▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆【因为太多了,没办法再粘贴到这里了,更多答案,直接进入下面这个搜索就好】http:。
高数(第三版)课后习题九详细答案

194习题九1. 求下曲线在给定点的切线和法平面方程: (1)x =a sin 2t ,y =b sin t cos t ,z =c cos 2t ,点π4t =; (2)x 2+y 2+z 2=6,x +y +z =0,点M 0(1,-2,1); (3)y 2=2mx ,z 2=m -x ,点M 0(x 0,y 0,z 0).解:2sin cos ,cos 2,2cos sin x a t t y b t z c t t '''===- 曲线在点π4t =的切向量为 {}πππ,,,0,444T x y z a c ⎧⎫⎛⎫⎛⎫⎛⎫'''==-⎨⎬ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎩⎭当π4t =时, ,,222a b c x y z ===切线方程为2220a b c x y z a c---==-. 法平面方程为0()0.222a b c a c x y z ⎛⎫⎛⎫⎛⎫++-=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭即 22022a c ax cz --+=. (2)联立方程组22260x y z x y z ⎧++=⎨++=⎩它确定了函数y =y (x ),z =z (x ),方程组两边对x 求导,得d d 2220d d d d 10d d y z x y z x xy z x x⎧+⋅+⋅=⎪⎪⎨⎪++=⎪⎩ 解得d d ,,d d y z x z x yx y z x y z--==--195在点M 0(1,-2,1)处,00d d 0,1d d M M y zx x ==- 所以切向量为{1,0,-1}. 故切线方程为121101x y z -+-==- 法平面方程为1(x -1)+0(y +2)-1(z -1)=0即x -z =0.(3)将方程y 2=2mx ,z 2=m -x 两边分别对x 求导,得d d 22,21d d y z ym z x x==- 于是d d 1,d d 2y m z x y x z==- 曲线在点(x 0,y 0,z 0)处的切向量为0011,,2my z ⎧⎫-⎨⎬⎩⎭,故切线方程为 00000,112x x y y z z m y z ---==-法平面方程为000001()()()02m x x y y z z y z -+---=. 2. t (0 < t < 2π)为何值时,曲线L :x = t -sin t , y =1-cos t , z = 4sin2t在相应点的切线垂直于平面0x y +=,并求相应的切线和法平面方程。
大学高等数学期末考试试题与答案

大学高等数学期末考试试题与答案下列哪个公式不是牛顿-莱布尼茨公式的应用?B) (4x3 + 5x2 + 6x + 7)′D) (e2x + 3y)′答案:D) (e2x + 3y)′填空题(每题3分,共18分)略解答题(每题10分,共60分)略综合题(每题15分,共30分)略当谈论数学时,大家可能会想到那些复杂的公式和令人头疼的问题。
然而,数学在我们的日常生活中无处不在,它不仅是一门学科,更是一种思维方式。
在吉林大学,高等数学课程一直受到高度重视。
本文将通过学生们的期末试题来展示数学的魅力和应用。
试题是数学学习的重要组成部分。
通过做题,学生不仅可以巩固所学知识,还可以培养解决问题的能力和举一反三的思维方式。
以下是一道吉林大学高等数学的期末试题:求函数 y=x^3-3x^2+2在区间 [0,4]上的最大值和最小值。
这道题目的答案是:最大值为28,最小值为-16。
要解决这个问题,我们需要对函数进行求导,并确定函数的极值点。
然后,我们可以在给定的区间内找到函数的最大值和最小值。
除了在高等数学中学习数学基础知识,我们还可以将这些知识应用到实际生活中。
例如,在经济学的课程中,学生们可以使用数学模型来分析股票市场的波动;在工程学中,可以使用数学方法来设计桥梁和建筑的结构等。
数学是人类文化的重要组成部分,它为我们的日常生活提供了很多帮助。
通过学习高等数学,我们可以更好地理解数学的应用价值,提高我们的思维能力和解决问题的能力。
在未来的学习和工作中,这些能力将是我们不可或缺的竞争优势。
吉林大学高等数学期末试题不仅考察了学生的数学知识,还体现了数学在生活中的应用价值。
通过学习数学,我们可以培养举一反三的思维方式,提高解决问题的能力和竞争力。
让我们一起感受数学的魅力吧!下列哪个选项是高等数学中“极限”的概念? ( )下列哪个选项是高等数学中“导数”的概念?( )下列哪个选项是高等数学中“积分”的概念?( )积分在高等数学中是一个非常广泛的概念,它涉及到面积、体积、平均值等多个方面,但不能简单地说积分就是求面积或体积或平均值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第10章 曲线积分与曲面积分1.计算下列对弧长的曲线积分:(1) sin d C x y s ⎰,其中C 为3x ty t =⎧⎨=⎩,(0≤t ≤1);(2)22()d Cx y s +⎰Ñ,其中C 为圆周cos sin x a t y a t =⎧⎨=⎩,(0≤t ≤2π); (3)2d C y s ⎰,其中C 为摆线(sin )(1cos )x a t t y a t =-⎧⎨=-⎩的第一拱(0≤t ≤2π);(4)d Cy s ⎰,其中C 为抛物线y 2=2x 上由点(0,0)到点(2,2)之间的一段弧;(5)()d Cx y s +⎰,其中C 为以O (0,0),A (1,0),B (0,1)为顶点的三角形的边界;(6)s ⎰,其中C 为圆周x 2+y 2=ax (a >0);(7)d Cz s ⎰,其中C 为圆锥螺线cos sin x t ty t t z t =⎧⎪=⎨⎪=⎩从t =0到t =1的一段;(8)2d Cx s ⎰,其中C为圆周2224x y z z ⎧++=⎪⎨=⎪⎩解答:(1)1111sin d 3sin sin cos cos )Cx y s t t tdt t t tdt ===-+⎰⎰⎰cos1)=-;(2)22230()d 2Cx y s a a ππ+==⎰⎰Ñ;(3)22223500d (1cos )16sin 2Cty s a t a dt ππ=-=⎰⎰⎰353025632sin 15a d a πθθ==⎰;(4)3222211d (1)1)33Cy s yy ==+=⎰⎰; (5)C 可以分割为三条直线:0(01)OA y x =≤≤,:0(01)OB x y =≤≤,:1(01)BA y x x =-≤≤()d Cx y s +⎰=()d OAx y s +⎰+()d OBx y s +⎰+()d ABx y s +⎰111(1xdx ydy x x =+++-⎰⎰⎰1=;(6)C 为圆周x 2+y 2=ax (a >0);化为参数方程cos 22sin 2a a x t a y t ⎧=+⎪⎪⎨⎪=⎪⎩,(0≤t ≤2π),2222200coscos 22222a a t ts dt dt a dt a πππ====⎰⎰⎰⎰;(7)1d Cz s =⎰⎰31212011(2)33t ==+=⎰; (8)C可以表示为参数方程[]cos sin ;0,2x y z θθθπ⎧=⎪=∈⎨⎪=⎩2220d cos Cx s πθπ==⎰⎰.所属章节:第十章第一节 难度:一级2.已知半圆形状铁丝cos sin x a ty a t =⎧⎨=⎩(0≤t ≤π)其上每一点的线密度等于该点的纵坐标,求此铁丝的质量解答:20d sin 2Cm y s a a π===⎰⎰所属章节:第十章第一节难度:一级3.已知螺旋线cos sin x a t y a t z bt =⎧⎪=⎨⎪=⎩(b >0)上各点的线密度等于该点到原点的距离的平方,试求t 从0到2π一段弧的质量解答:222222223208()d (ππ)3C m x y z s a b t a b π=++=+=+⎰⎰ 所属章节:第十章第一节 难度:二级4.求摆线(sin )(1cos )x a t t y a t =-⎧⎨=-⎩的第一拱(0≤t ≤2π)关于Ox 轴的转动惯量(设其上各点的密度与该点到x 轴的距离成正比,比例系数为k )解答:722332d (1cos )(1cos )CI ky s k t t dt ππ==-=-⎰⎰⎰23740102464sin 235t kadt ka π==⎰ 所属章节:第十章第一节 难度:二级5.计算下列对坐标的曲线积分:(1)d d C y x x y +⎰,其中C 为圆弧cos π,(0)sin 4x a t t y a t =⎧≤≤⎨=⎩,依参数t 增加方向绕行;(2)(2)d ()d Ca y x a y y ---⎰,其中C 为摆线(sin )(1cos )x a t t y a t =-⎧⎨=-⎩自原点起的第一拱;(3)d Cx y ⎰,其中C 为x +y =5上由点A (0,5)到点B (5,0)的一直线段;(4)Cxydx ⎰Ñ,其中C 为圆周222()(0)x a y a a -+=>及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行)解答:(1)()22440d d sin (cos )cos sin cos 22Ca y x x y a td a t a td a t a tdt ππ+=+==⎡⎤⎣⎦⎰⎰⎰(2)(2)d ()d Ca y x a y y ---⎰220[(2cos )(sin )(cos )((1cos ))a a a t d at a t a a a t d a t a ππ=-+---+-=⎰(3)525d (5)2Cx y xd x =-=-⎰⎰ (4)C 分成两部分在2122()(0):x a y a a C -+=>在x 轴的上部逆时针方向,2C 是从原点指向(2,0)a ,则1202320π02aCC C a xydx xydx xydx x dx a =+=+⋅=-⎰⎰⎰⎰⎰蜒? 所属章节:第十章第二节 难度:一级6.计算22()d d OAx y x xy y -+⎰,其中O 为坐标原点,点A 的坐标为(1,1):(1) OA 为直线段y =x ; (2) OA 为抛物线段y =x 2; (3) OA 为y =0,x =1的折线段解答:(1)122201()d d 3OA x y x xy y x dx -+==⎰⎰;(2)()122243208()d d ()15OA x y x xy y x x dx x d x ⎡⎤-+=--=⎣⎦⎰⎰; (3)设点B 的坐标为(1,0),则OA 分为两段1122205()d d 6OAOBBAx y x xy y x dx ydy -+=+=+=⎰⎰⎰⎰⎰. 所属章节:第十章第二节 难度:一级7.计算22d d ABxy x x y +⎰,其中点A 、B 的坐标分别为A (0,0),B (1,1):(1) AB 为直线段y =x ; (2) AB 为抛物线段y =x 2; (3) AB 为y =0,x =1的折线段 解答:(1)122202d d (2)1ABxy x x y x dx x dx +=+=⎰⎰;(2)1232202d d [2()]1ABxy x x y x dx x d x +=+=⎰⎰;(3) 设点C 的坐标为(1,0),则AB 分为两段11202d d 011ABACCBxy x x y dx dy +=+=+=⎰⎰⎰⎰⎰.所属章节:第十章第二节 难度:一级8.计算下列曲线积分:(1)222()d 2d d Ly z x yz y x y -+-⎰,其中L 依参数增加方向绕行的曲线段23x t y t z t =⎧⎪=⎨⎪=⎩(0≤t ≤1);(2)d d (1)d Lx x y y x y z +++-⎰,L 为从点A (1,1,1)到点B (2,3,4)的一直线段;解答:(1)1222466401()d 2d d (43)35Ly z x yz y x z t t t t dt -+-=-+-=⎰⎰; (2)此时L 写作参数方程12 1 (01)31x t y t t z t =+⎧⎪=+≤≤⎨⎪=+⎩1d d (1)d (14293)13Lx x y y x y z t t t dt +++-=+++++=⎰⎰.所属章节:第十章第二节 难度:一级9.一力场由沿横轴正方向的常力F 所构成。
试求当一质量为m 的质点沿圆周x 2+y 2=a 2(a >0)按逆时针方向移过位于第一象限那一段圆弧时场力所作的功解答:20d cos Lx da t a π==-⎰⎰F F F .所属章节:第十章第二节 难度:一级10.设有力场的力,其大小与作用点到Oz 轴的距离成反比(比例系数为k ),方向垂直且朝着Oz 轴,试求当一质点沿圆周cos 1sin x t y z t =⎧⎪=⎨⎪=⎩从点(1,1,0)到点(0,1,1)时力所作的功.注:本题已改动,否则点不在圆周上. 解答:由题目可知F =.当一质点沿圆周cos 1sin x ty z t=⎧⎪=⎨⎪=⎩从点(1,1,0)到点(0,1,1)时,y 为常数,0dy =,此时力所作的功为:020212201cos 11cos ln(1)ln 21cos 122k t kt x d t dt k t k t t π==-=-+=++⎰⎰⎰. 所属章节:第十章第二节难度:三级11.把对坐标的曲线积分(,)d (,)d CP x y x Q x y y +⎰化成对弧长的曲线积分,其中C 为:(1) 在xOy 平面内沿直线y =x 从点(0,0)到点(1,1); (2) 在xOy 平面内沿抛物线y =x 2从点(0,0)到点(1,1);解答:(1)(,)d (,)d CCP x y x Q x y y ds +=⋅⎰⎰F n ,n 为y =x的单位法向量,=n ,(,)d (,)d (,)(,))ds CCP x y x Q x y y ds P x y Q x y +=⋅=+⎰⎰⎰F n ; (2)n 为2y x =的单位法向量,=n ,(,)d (,)d CCCP x y x Q x y y ds +=⋅=⎰⎰⎰F n .所属章节:第十章第二节 难度:二级12.设L 为曲线23x t y t z t =⎧⎪=⎨⎪=⎩上相应于t 从0到1的曲线段,试把对坐标的曲线积分d d d LP x Q y R z++⎰化成对弧长的曲线积分解答:n 为曲线L 23x t y t z t =⎧⎪=⎨⎪=⎩的单位法向量,2==n Ld d d LP x Q y R z ds S ++=⋅=⎰⎰⎰F n .所属章节:第十章第二节 难度:二级13.设闭曲线C 为正向圆周x 2+y 2=4,试就函数P =2x –y ,Q =x +3y 验证格林公式的正确性 解答:格林公式(,)d (,)d ()CDQ PP x y x Q x y y dxdy x y∂∂+=-∂∂⎰⎰⎰, 由于220(2(4cos 2sin )(2-)cos 2(2cos 6sin )sin 3)Cdx dy d y d x x y ππθθθθθθ+=-+-+⎰⎰⎰202(210sin cos )8d πθθθπ=-=⎰,()28DDQ Pdxdy dxdy x y π∂∂-==∂∂⎰⎰⎰⎰, 所以格林公式正确.所属章节:第十章第三节 难度:一级14.试利用格林公式计算下列曲线积分:(1)231(2)3Cx y y dx x x dy ⎛⎫-+- ⎪⎝⎭⎰Ñ,其中C 以x =1、y =x 及y =2x 为边的三角形正向边界; (2)22Cxy dy x ydx -⎰Ñ,C 为正向圆周x 2+y 2=a 2;(注:本题已改动,否则结果为0)(3) ()d ()d C x y x x y y +--⎰ ,C 为椭圆周22221x y a b +=,取正向解答:(1)231111(2)12113222C Dx y y dx x x dy dxdy ⎛⎫-+-==⨯⨯-⨯⨯= ⎪⎝⎭⎰⎰⎰Ñ,D 为C 所围区域; (2)22222341()π2aCDxy dy x ydx x y dxdy d d a πθρρ-=+==⎰⎰⎰⎰⎰Ñ,D 为C 所围区域; (3)()d ()d 22CDx y x x y y dxdy ab π+--=-=-⎰⎰⎰Ñ,D 为C 所围区域.所属章节:第十章第三节难度:一级15.利用曲线积分,求下列曲线所围图形的面积:(1) 星形线33cos sin x a ty a t⎧=⎪⎨=⎪⎩; (2) 椭圆9x 2+16y 2=144;(3) 圆x 2+y 2=2ax解答:(1)222233332220001133d d {cos sin sin cos }sin cos 2228C x y y x a td t td t t tdt a ππππ-=-==⎰⎰⎰⎰Ñ; (2) 椭圆9x 2+16y 2=144化为参数方程4cos 3sin x ty t=⎧⎨=⎩,2220001d d 6{cos sin sin cos }6122C x y y x td t td t dt ππππ-=-==⎰⎰⎰⎰Ñ; (3) 圆x 2+y 2=2ax 化为参数方程cos sin x a t ay a t=+⎧⎨=⎩,222220001d d {(cos )sin sin (cos )}(1cos )222C a a x y y x a t a d t a td a t a t dt a ππππ-=+-+=+=⎰⎰⎰⎰Ñ.所属章节:第十章第三节难度:二级16.验证下列曲线积分在xOy 平面内与路径无关,并计算它们的积分值: (1)(2,2)(1,1)()d ()d x y x x y y ++-⎰;(2)(3,4)2322(1,2)(6)d (63)d xy y x x y xy y -+-⎰; (3)(1,2)423(0,0)(21)d (4)d xy y x x xy y -++-⎰解答:(1)因为1Q Px y∂∂==∂∂,则曲线积分在xOy 平面内与路径无关,此时可选取,[1,2],y x x =∈ (2,2)2(1,1)1()d ()d 23x y x x y y xdx ++-==⎰⎰;(2)因为2123Q Pxy y x y∂∂==-∂∂,则曲线积分在xOy 平面内与路径无关,此时可选取1,[1,2],y x x =+∈ (3,4)223222322(1,2)1(6)d (63)d {6(1)(1)6(1)3(1)}xy y x x y xy y x x x x x x x dx -+-=+-+++-+⎰⎰2221(1){63(1)(1)}236x x x x x dx =+++-+=⎰;(3)因为324Q Px y x y∂∂==-∂∂,则曲线积分在xOy 平面内与路径无关,此时选取2,[0,1],y x x =∈ (1,2)14232424(0,0)(21)d (4)d {4161264}15xy y x x xy y x x x x dx -++-=-++-=-⎰⎰.所属章节:第十章第四节 难度:二级17.利用格林公式计算下列曲线积分:(1)(24)d (356)d Cx y x x y y -+++-⎰ ,其中C 为三顶点分别为(0,0),(3,0),(3,2)三角形正向边界;(2) 32(3e )d sin d 3xC x x y x x y y y ⎛⎫++- ⎪⎝⎭⎰,其中C 是沿摆线sin 1cos x t ty t =-⎧⎨=-⎩从点(0,0)到点(π,2)的一段弧;(3)(e sin )d (e cos )d x x Cy my x y m y -+-⎰,其中C 为上半圆周22x y ax +=,取逆时针方向.注:本小题已加了条件. 解答:(1)D(24)d (356)d 412Cx y x x y y dxdy -+++-==⎰⎰⎰Ñ,D 为C 所围区域;(2) 32(3e )d sin d 3xCx x y x x y y y ⎛⎫++- ⎪⎝⎭⎰113322(3e )d sin d (3e )d sin d 33xxC C C x x x y x x y y y x y x x y y y +⎛⎫⎛⎫=++--++- ⎪ ⎪⎝⎭⎝⎭⎰⎰Ñ, 其中1:,[0,2]2C x y y π=∈方向从点(π,2)到点(0,0),由格林公式前一积分为零,故原积分13332223203(3e )d sin d {()sin }38244x Cx x y x x y y y x e y y dy ππππ⎛⎫=-++-=++- ⎪⎝⎭⎰⎰ π323e (π1)3π2cos 2sin 23=-+++-;(3)(e sin )d (e cos )d x x Cy my x y m y -+-⎰11(e sin )d (e cos )d (e sin )d (e cos )d x x x xC C C y my x y m y y my x y m y +=-+---+-⎰⎰Ñ其中1:0,[0,2]C y x a =∈方向从点[2,0]a 到点(0,0),记D 为1C C +所围区域,则由格林公式原积分220108a Dmdxdy dy m a π=+=⎰⎰⎰.所属章节:第十章第三节 难度:二级18.计算曲线积分22d d C y x x yx y -++⎰:(1) C 为任一按段光滑的、不包含原点的闭曲线;(2) C 为椭圆2214x y +=,取正向;解答:(1)由于当220x y +≠时,2222()()y x y x x y x y ∂-∂=∂∂++,故由格林公式 22d d 00C Dy x x ydxdy x y -+==+⎰⎰⎰Ñ (2)11122222222d d d d d d d d C C C C C y x x yy x x y y x x y y x x yx y x y x y x y +-+-+-+-+=-=-++++⎰⎰⎰⎰蜒蜒,其中2221:C x y ε+=取负向,由于1:cos ,sin C x t y t εε==,所以22d d C y x x yx y -++⎰ 2222220sin cos 2t t dt πεεπε+==⎰. 所属章节:第十章第三节 难度:三级19.验证下列P (x ,y )d x +Q (x ,y )d y 在全平面内是某个函数u (x ,y )的全微分,并求此原函数u (x ,y ):(1)(2)d (2)d x y x x y y +++;(2)2222(2)d (2)d x xy y x x xy y y +-+--; (3)43224(4)d (65)d x xy x x y y y +++;注:本小题已作改动,原来题中43224(4)d (65)d x xy x x y y y ++-,与参考答案523525x x y y C+++不相符.也可以改动答案为523525x x y y C +-+.(4)e cos d e sin d x x y x y y -; 解答:(1)2Q Px y∂∂==∂∂ , P (x ,y )d x +Q (x ,y )d y 在全平面内是u (x ,y )的全微分. 220(,)(2)2(),2()2,()22xx u y u x y x y dx xy y x y x y y C y ϕϕϕ∂'=+=++=+=+=+∂⎰则221(,)()22u x y x y xy C =+++(2)22Q Px y x y∂∂==-∂∂ , P (x ,y )d x +Q (x ,y )d y 在全平面内是u (x ,y )的全微分. 322222220(,)(2)(),2()23xx uu x y x xy y dx x y xy y x xy y x xy y yϕϕ∂'=+-=+-+=-+=--∂⎰,3()3y y C ϕ=-+,则331(,)()()3u x y x y xy x y C =-+-+;(3)212Q Pxy x y∂∂==∂∂ , P (x ,y )d x +Q (x ,y )d y 在全平面内是u (x ,y )的全微分. 543232222450(,)(4)2(),6()65,()5xx uu x y x xy dx x y y x y y x y y y y C yϕϕϕ∂'=+=++=+=+=+∂⎰则5235(,)25x u x y x y y C =+++;(4)sin x Q Pe y x y∂∂==-∂∂ , P (x ,y )d x +Q (x ,y )d y 在全平面内是u (x ,y )的全微分.(,)cos cos (),sin ()sin ,()xx x x x uu x y e ydx e y y e y y e y y C yϕϕϕ∂'==+=-+=-=∂⎰ 则(,)e cos x u x y y C =+.所属章节:第十章第四节 难度:二级20.设有力场F =(x +y 2)i +(2xy –8)j ,证明质点在此力场内移动时,场力所作的功与路径无关,只与起终点有关 解答:由于2Q Py x y∂∂==∂∂,利用格林公式知场力所作的功与路径无关, 只与起终点有关. 所属章节:第十章第四节 难度:二级21.计算下列曲面积分(1)d Sxyz S ⎰⎰,其中S 为平面12zx y ++=在第一卦限的部分; (2)d Sx S ⎰⎰,其中S 为球面2222x y z R ++=在第一卦限的部分;(3)SS ,其中S 为单位球面2221x y z ++=;(4)()22d Sx y S +⎰⎰,其中S为锥面z =及平面z =1所围区域的整个边界曲面;解答:(1)222,2,2,{(,)1,0,0}x y xy z x y z z D x y x y x y =--=-=-=+≤≥≥1101d 3(222)6(1)20xyxSD xyz S xy x y dxdy dx xy x y dy -=--=--=⎰⎰⎰⎰⎰⎰;(2)222{(,),0,0}x y xy z z z D x y x y R x y ====+≤≥≥,2420d 4xyRSD R x S R d ππθρ===⎰⎰⎰⎰⎰⎰;(3)22{(,)1}x y xy z z z D x y x y ====+≤22120022xyS DS dπθρπ===⎰⎰⎰⎰;(3)将S分为两个曲面12,S S.1S为锥面z=22{(,)1}x y xyz z z D x y x y====+≤()()1212222300dxyS Dx y S x y dxdy d dπθρρ+=+==⎰⎰⎰2S为平面z=1,221,0,0,{(,)1}x y xyz z z D x y x y====+≤.()()12122223001d2xyS Dx y S x y dxdy d dπθρρπ+=+==⎰⎰⎰⎰⎰⎰()221d1)π2Sx y S+=⎰⎰.所属章节:第十章第五节难度:二级22.设半径为R的球面上每点的密度等于该点到某一定直径的距离的平方,求此球面的质量解答:将直径设为Z轴, 球心为原点,球的方程为z=x yz z==,球面的质量为()22dSx y S+⎰⎰,()2232224008d22π3xyRS Dx y S R R d Rπθρ+===⎰⎰⎰⎰⎰⎰.所属章节:第十章第五节难度:二级23.求球面z=220x y ax+-=内部的面积解答:x yz z z===22{(,)}xyD x y x y ax=+≤cos222d(2)xyaS DS a d aπθπθρπ-===-⎰⎰⎰⎰⎰⎰.所属章节:第十章第五节 难度:二级24.求旋转抛物面221()2z x y =+被平面z =2所截部分的质心位置,假设其上各点的密度与该点到z 轴的距离平方成正比.解答:由旋转抛物面221()2z x y =+的对称性,质心位置在z 轴,2222221()()2()xyD S z SD k x y k z x y dSM z M k x y dS ++====+⎰⎰⎰⎰⎰⎰%, 其中22:{(,)4}xy D x y x y +≤.所属章节:第十章第五节难度:二级25.计算下列曲面积分(1)2d d Sz x y ⎰⎰,其中S 为平面1x y z ++=位于第一象限部分的上侧;(2)d d d d d d Sx y z y z x z x y ++⎰⎰ ,其中S 为球面2222x y z R ++=的外侧;(3)32()d d 2d d d d Sx yz y z x y z x z x y --+⎰⎰ ,其中S 为柱面222x y R +=(0≤z ≤1)的外侧; (此题的柱面是否封闭?若是,则答案有误,若不是,则题目中积分符号上的圆圈不对;以下按封闭解答) (4)22d d d d d d Sxz y z x y z x y z x y ++⎰⎰ ,其中S 为2222,1,0,0,0z x y x y x y z =++====在第一象限中所围立体的表面的外侧; 解答:(1)1122201d d (1)(1)12xyx SD z x y x y dxdy dx x y dy -=--=--=⎰⎰⎰⎰⎰⎰; (2)由S 的对称性可知,d d d d d d 36SSDx y z y z x z x y zdxdy ++==⎰⎰⎰⎰乙22064d R πθπ==⎰⎰;(3)322()d d 2d d d d (1)Sx yz y z x y z x z x y x dxdydz Ω--+=+⎰⎰⎰⎰⎰Ò2122420π(cos 1)π4R d dr r rdz R R πθθ=+=+⎰⎰⎰;(4)212222220d d d d d d ()()8r Sxz y z x y z x y z x y z x y dxdydz d dr z r dz ππθΩ++=++=+=⎰⎰⎰⎰⎰⎰⎰⎰Ò.所属章节:第十章第六节 难度:二级26.利用高斯公式计算下列曲面积分(1)222d d d d d d Sx y z y z x z x y ++⎰⎰,其中S 是由x =0,y =0,z =0,1x y z ++=所围立体表面的外侧;(2)()d d ()d d Sx y z y z x y x y -+-⎰⎰ ,其中S 为221x y +=,z =0及z =3所围立体表面的外侧;(3)d d d d (1)d d Sx y z y z x x y z x y +++++⎰⎰,其中S为上半球面z =(4)22()d d ()d d 2d d Sx yz y z y zx z x z x y -+-+⎰⎰,其中S为锥面1z =z =0所截部分的上侧.注:(3)(4)两题积分符号上的圆圈已去掉,由于所涉曲面不封闭。