高数下册_第七章_微分方程习题课_(一)(二).
高等数学课件--D7习题课(2)
利用物理规律
利用几何关系 初始条件 边界条件 可能还有衔接条件
确定定解条件 ( 个性 )
2 . 解微分方程问题 3 . 分析解所包含的实际意义
2012-10-12 同济版高等数学课件
目录 上页 下页 返回 结束
例4. 欲向宇宙发射一颗人造卫星, 为使其摆脱地球
目录 上页 下页 返回 结束
y
dx dy
d x dy
y
2
2
( y ) 0
2
dx dy
2
d x dy
2
2
( y )
y ( y )
3
代入原微分方程得
y y sin x
①
x
(2) 方程①的对应齐次方程的通解为
Y C1 e C2 e
d x dx
目录 上页 下页 返回 结束
练习题 从船上向海中沉放某种探测仪器, 按探测
要求, 需确定仪器的下沉深度 y 与下沉速度 v 之间的函 数关系. 设仪器在重力作用下从海平面由静止开始下沉, 在下沉过程中还受到阻力和浮力作用, 设仪器质量为 m, 体积为B , 海水比重为 , 仪器所受阻力与下沉速度成正 比 , 比例系数为 k ( k > 0 ) , 试建立 y 与 v 所满足的微分 方程, 并求出函数关系式 y = y (v) . (1995考研 ) 提示: 建立坐标系如图. 由牛顿第二定律
处的衔接条件可知,
y 4 y 0
解满足
其通解: y C1 sin 2 x C2 cos 2 x 定解问题的解: y 1 sin 2 x (1 ) cos 2 x, x 2 2 2 故所求解为
高数第七章题库微分方程
第十二章 微分方程答案一、选择题1.以下不是全微分方程的是C1A. (x 2 y)dx ( x 2 y)dy 0B.( y 3x 2 )dx (4 y x)dyC. 3(2x 33xy 2 ) dx 2(2 x 2 y y 2 )dy0 D.2x( ye x 2 1)dxe x 2dy2. 若 y 3 是二阶非齐次线性方程 (1):y P(x) y Q (x) f ( x) 的一个特解, y 1, y 2 是对应的齐次线性方程 (2) 的两个线性没关的特解,那么以下说法错误的选项是(c 1 , c 2 ,c 3 为随意常数)C 2A. c 1 y 1 c 2 y 2 是 (2) 的通解B.c 1 y 1 y 3 是 (1) 的解C. c 1 y 1c 2 y 2 c 3 y 3 是 (1) 的通解D.y 2 y 3 是(1) 的解3.以下是方程 xdx ydyx 2y2dx 的积分因子的是 D2A. x 2y 2B.1 y 2C.x 2 y 2D.1y 2x 2x 2d 3 yxd 2 y 2 x1 的通解应包括得独立常数的个数为( B ) .14.方程e dx 2edx 3(A) 2(B) 3(C) 4 (D) 05.已知方程 y ' p(x) y 0 的一个特解 y cos 2x ,则该方程知足初始特解y(0) 2 的特解为( C ) .2(A)y cos 2x2 (B) y cos 2x 1 (C) y 2cos 2 x (D)y 2cos x6.方程 d 3 ye x d 2 ye 2 x1 的通解应包括得独立常数的个数为( B ) . 1dx 3dx 2(A) 2(B) 3(C) 4 (D) 07.设线性没关的函数 y 1 , y 2 , y 3 都是微分方程 y '' p(x) y ' q( x) y f ( x) 的解,则该方程的通解为 ( D ) .2(A)y c1 y1c2 y2y3(B)y c1 y1c2 y2(c1c2 ) y3 (C)y c1 y1c2 y2(1c1c2 ) y3(D)y c1 y1c2 y2(1c1 c2 ) y38.设方程y '' 2 y '3y f ( x) 有特解y *,则其通解为(B).1(A)c1e x c2 e3 x(B)c1e x c2e3x y *(C)c1xe x c2xe3x y *(D)c1e x c2e 3 x y * 9.微分方程y 'y cot x0 的通解为(A).1(A)y c sin x (B)yc(C)y c cosx(D)c sin xycosx10.方程y cos x的通解为 ( C)1(A)ysin x c1 x c2(B)y sin x c1x c2(C)y cosx c1x c2(D)y cos xc1x c211.y e x的通解为(C)1(A) e x(B) e x(C) e x c1 x c2(D) e x c1 x c2y 2y312.微分方程y x y4的阶是 (B)1(A)1(B)2(C)3(D)413.以下微分方程中,属于可分别变量方程的是(C)1(A)xsin xy dx ydy0(B)y ln x ydy xsin y y 1 y e x y2(C)dx(D)x14. 方程y 2 y0 的通解是(C)1A.y sin 2x;B.y4e2 x;C.y ce2x;D.y e x c 。
新的第七章微分方程答案
2016~2017学年第二学期科目: 高等数学(二) 第七章微分方程 单元测试题答案命题教师:吴淦洲 使用班级:全校16级理工本科一. 单项选择题(每小题2分,共16分)1. 选B 。
由二阶常系数微分方程可以知道其特征方程为2123201,2r r r r -+=⇒== 故B 是正确的。
2.选择B 由特征方程2210++=r r 解得特征根121==-r r ,所以对应齐次方程的通解为12()x Y c c x e -=+3.选C 。
该特征方程为:220rω+= ,故r i ω=±,所以xc x c y ωωsin cos 21+=正确。
4.选A 。
该方程是齐次方程,令y u x=,该方程可化为:du u x u dx +=,分离变量可以知道,故结论2y=(ln x +C)x y=0和正确。
5.选D 。
根据三阶微分方程的通解的定义,必含有三个独立的任意常数,用排除法即可知D 选项成立。
6.选B 。
该方程属于齐次方程,因为'ln y y y x x=。
7.选D 。
应该特征方程为:210r -=,所以1r =± ,右端中1λ=是特征方程的一个单根,且有个常数1,所以可设特解为x axe b +8.选B 。
由方程阶的定义可以知道B 正确。
9. 选C 该特征方程为:220r r --= 122,1r r ==-,故-1是特征方程的一个单根,所以x e B Ax x y -*+=)(是正确的 10. 选A 。
方程是可分离变量类型,分离变量后dy dx y=-⎰,积分可知A 正确。
11.选D. 特征方程是220rr +=,122,0r r =-=,0是该方程的一个单根,故特解可以设为y ax *= 二. 填空题(每小题2分,共14分,请把答案填在横线上)1.()()(())P x dx P x dx e Q x e dx c -⎰⎰+⎰由一阶线性微分方程的公式法可以写出答案,注意公式中的符号。
高数下册 第七章 微分方程习题课 (一)(二)
dy y (3) = dx 2( ln y − x) 提示: 提示 可化为关于 x 的一阶线性方程 dy (4) + x y − x3 y3 = 0 dx z = y−2 提示: 提示 为贝努里方程 , 令 y dy − x dy 微分倒推公式 (5) xdx + ydy + =0 x2 + y2 提示: 提示 为全微分方程 , 通解
B = −417
原方程通解为 y = e−x (C1 cos 2x + C2 sin 2x ) 原方程通解为 思考 若 (7) 中非齐次项改为 提示: 提示 特解设法有何变化 ?
故 y * = Acos 2x + Bsin 2x + D
24
′′ − a y′2 = 0 y P327 题4(2) 求解 y x=0 = 0 , y′ x=0 = −1
y 方法 1 这是一个齐次方程 . 令 u = x 方法 2 化为微分形式
( 6x3 + 3x y2 )dx + ( 3x2 y + 2y3 )dy = 0
∂P ∂Q Q = 6x y = ∂y ∂x
故这是一个全微分方程 故这是一个全微分方程 .
7
求下列方程的通解: 例2. 求下列方程的通解 (1) x y′ + y = y( ln x + ln y )
dp dp = f ( x, p) dx
21
2. 二阶线性微分方程的解法 齐次 代数法 • 常系数情形 非齐次 • 欧拉方程 x2 y′′ + px y′ + qy = f (x) d t 令 x = e ,D= dt [D(D −1) + pD+ q] y = f (et ) 练习题: P327 题 2 练习题
(完整版)高等数学第七章微分方程试题及答案,推荐文档
一.变量可分离方程及其推广 1.变量可分离的方程
(1)方程形式: dy PxQy
dx
Qy
0
通解
dy
Qy
Pxdx
C
(注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任 意常数另外再加)
(2)方程形式: M1xN1ydx M 2 xN2 ydy 0
通解
M M
1 2
x xdx
由此可见,常系数齐次线性方程的通解完全被其特征方程的根所决定,但是
2
三次及三次以上代数方程的根不一定容易求得,因此只能讨论某些容易求特征方 程的根所对应的高阶常系数齐次线性方程的通解。
六、二阶常系数非齐次线性方程
方程: y py qy f x 其中 p, q 为常数 通解: y y C1 y1x C2 y2 x 其中 C1 y1 x C2 y2 x为对应二阶常系数齐次线性方程的通解上面已经讨论。
1.若 y1 x, y2 x为二阶齐次线性方程的两个特解,则它们的线性组合 C1 y1 x C2 y2 x( C1 , C2 为任意常数)仍为同方程的解,特别地,当 y1 x y2 x( 为常数),也即 y1 x与 y2 x线性无关时,则方程的通解 为 y C1 y1x C2 y2 x 2.若 y1 x, y2 x为二阶非齐次线性方程的两个特解,则 y1 x y2 x为
dx
数) 2.一阶线性非齐次方程
dy Pxy Qx 用常数变易法可求出通解公式
dx
令 y C x e Pxdx 代入方程求出 Cx则得
y e Pxdx Q x e Pxdx dx C
3.伯努利方程
dy Pxy Qxy 0,1
dx
令 z y1 把原方程化为 dz 1 Pxz 1 Qx
高等数学微分方程第七章练习题答案
第七章 练习题一、填空: 第一节1、微分方程()1y x 2='+'y 的阶 一 __.2、0)()67(=++-dy y x dx y x 是 一 阶常微分方程. 3、01"=+xy 是 二 阶常微分方程. 4、微分方程2'=y x 的通解为 c x y +=2 。
5、 153'+=+x y xy 是 1 阶常微分方程 6、与积分方程()dx y x f y x x ⎰=0,等价的微分方程初值问题是0|),,(0'===x x y y x f y7、223421xy x y x y x ''''++=+是 3 阶微分方程。
8、方程222(1)1xxd ye e dx+⋅+=的通解中应包含的任意常数的个数为 29、微分方程()1/22///=+y x y 的通解中含有任意常数的个数是 310、方程()01///=+--y xy y x 的通解中含有 2 个任意常数 11、 微分方程03322=+dx x dy y 的阶是 1 第二节 1、微分方程x dye dx=满足初始条件(0)2y =的解为1x y e =+. 2、微分方程y x e y -=2/的通解是 C e e xy +=221 3、微分方程2dyxy dx=的通解是 2x y Ce = 4、一阶线性微分方程23=+y dx dy的通解为 323x Ce -+5、微分方程0=+'y y 的通解为 x ce y -=6、 微分方程323y y ='的一个特解是 ()32+=x y第三节1、tan dy y ydx x x=+通解为arcsin()y x Cx =.第五节1、微分方程x x y cos "+=的通解为213cos 6C x C x x y ++-= 2、微分方程01=+''y 的通解是( 21221C x C x y ++-= )3、 微分方程044=+'+''y y y 的通解是( x e C x C y 221)(-+= )4、微分方程032=-'+''y y y 的通解是( x x e C e C y 231+=- )5、 方程x x y sin +=''的通解是=y 213sin 61C x C x x ++-第六节1、 一阶线性微分方程x e y dxdy-=+的通解为 ()C x e y x +=- 2、已知1=y 、x y =、2x y =是某二阶非齐次线性微分方程的三个解,则该方程的通解为)1(21221c c x c x c y --++=或1)1()1(221+-+-=x c x c y第七节1、 微分方程230y y y '''--=的通解为x x e C e C y 321+=-.2、 分方程2220d xx dtω+=的通解是 12cos sin C t C t ωω+3、微分方程02=+'-''y y y 的通解为 12()x y c c x e =+第八节1、设二阶常系数线性微分方程'''x y y y e αβγ++=的一个特解为2(1)x x y e x e =++,则,,αβγ的值是3,2,1αβγ=-==-2、微分方程2563x y y y xe -'''++=的特解可设为=*y *201()x y x b x b e -=+二、选择 第一节1、方程222(1)1xxd ye e dx+⋅+=的通解中应包含的任意常数的个数为( A )(A ) 2 (B ) 4 (C ) 3 (D ) 02、方程422421x xd y d ye e dx dx+⋅+=的通解中应包含的任意常数的个数为( B )(A ) 2 (B ) 4 (C ) 3 (D ) 03、微分方程()1/22///=+y x y 的通解中含有任意常数的个数是( C )A 、1B 、2C 、3D 、54、微分方程1243/2///+=++x y x y x xy 的通解中含有任意常数的个数是( C ) A 、1 B 、2 C 、3 D 、55、微分方程34()0'''-=x y yy 的阶数为(B ) (A) 1 (B) 2 (C) 3 (D) 46、下列说法中错误的是( B )(A) 方程022=+''+'''y x y y x 是三阶微分方程; (B) 方程220()x y yy x ''-+=是二阶微分方程;(C) 方程0)3()2(22232=+++dy y x y dx xy x 是全微分方程; (D) 方程()()dyf xg y dx=是可分离变量的微分方程. 7、方程()01///=+--y xy y x 的通解中含有( B )个任意常数A 、1B 、2C 、3D 、4 8、 微分方程3447()5()0y y y x '''+-+=的阶数为( B ) A .1 B . 2 C .3 D .49、微分方程()043='-'+''y y y x y xy 的阶数是( A ).A. 2B. 4C. 5D. 310、 微分方程03322=+dx x dy y 的阶是( A ). A. 1 B. 2 C. 3 D. 0 11、 微分方程323y y ='的一个特解是( B )A. 13+=x yB. ()32+=x y C. ()3C x y += D. ()31+=x C y12、 方程322321x xd y d ye e dx dx+⋅+=的通解中应包含的任意常数的个数为( C )(A ) 2 (B ) 4 (C ) 3 (D ) 0第二节1、微分方程20y y '-=的通解为(B )A .sin 2y c x =B .2x y ce =C .24x y e =D .x y e =2、微分方程0ydx xdy -=不是 ( B )A. 线性方程B. 非齐次线性方程C. 可分离变量方程D. 齐次方程 3、微分方程0=+'y y 的通解为( D )A .x y e =B . x ce y -=C . x e y -=D . x ce y -=4、一阶常微分方程e yx dxdy -=2满足初始条件00==x y 的特解为( D ) A x ce y = B x ce y 2= C 1212+=x y e e D ()1212+=x y e e5、微分方程02=+'y y 的通解为( D )A .x e y 2-=B .x y 2sin =C .x ce y 2=D .x ce y 2-= 6、 微分方程 ydy x xdx y ln ln =满足11==x y 的特解是( C )A. 0ln ln 22=+y xB. 1ln ln 22=+y xC. y x 22ln ln =D. 1ln ln 22+=y x第五节1、 微分方程2(1)0y dx x dy --=是( C )微分方程.A .一阶线性齐次B .一阶线性非齐次C .可分离变量D .二阶线性齐次第六节1、已知x y cos =,xe y =,x y sin =是方程()()()xf y x Q dx dyx P dxy d =++22的三个解,则通解为 ( C )A x c e c x c y x sin cos 321++=B ()()x x e x c e x c y -+-=sin cos 21C ()x c x c e c c y x sin cos 12121--++=D ()x c x c e c c y x sin cos 12121++++=第七节1、微分方程02=+'-''y y y 的通解为( D )A .12x x y c e c e -=+;B .12()x y c c x e -=+;C .12cos sin y c x c x =+;D .12()x y c c x e =+ 2、下面哪个不是微分方程''5'60y y y +-=的解( D ) (A )65x x e e -+ (B )x e (C )6x e - (D )6x x e e -+3、 已知2,sin ,1x y x y y ===是某二阶非齐次常微分方程的三个解,则该方程的通解为( D ) A .221sin 1x C x C y ++=B .2321sin xC x C C y ++=C .21221sin C C x C x C y --+=D .212211sin C C x C x C y --++= 4、已知x y x y y cos ,sin ,1===是某二阶非齐次常微分方程的三个解,则该方程的通解为( D )A .x C x C C y cos sin 321++=B .xC x C C y cos sin 321++= C .2121sin cos C C x C C y --+=D .21211cos sin C C x C x C y --++= 5、微分方程0y y ''+=的通解为( C )(A) 12x x y c e c e -=+; (B) 12()x y c c x e -=+; (C) 12cos sin y c x c x =+; (D) 12()x y c c x e =+6、已知1=y ,x y =,2x y =是某二阶非齐次线性微分方程的三个解,则方程的通解为( C ) A 2321x C x C C ++ B 21221C C x C x C --+ C )1(21221C C x C x C --++ D ()()2122111C C x C x C ++-+-7、已知x y y x 4='+''的一个特解为2x ,对应齐次方程0='+''y y x 有一个特解为x ln ,则原方程的通解为 ( A )A 、221ln x c x c ++ B 、221ln x x c x c ++ C 、221ln x e c x c x ++ D 、221ln x e c x c x ++- 8、微分方程04=+''y y 的通解为( A )A .x c x c y 2sin 2cos 21-= ;B .x e x c c y 221)(-+=C x x e c e c y 2221-+=;D .x e x c c y 221)(+=9、 分方程2220d xx dtω+=的通解是( A );A .12cos sin C t C t ωω+B .cos t ωC .sin t ωD .cos sin t t ωω+第八节1、微分方程x e y dxyd =-22的一个特解应具有的形式为 DA ()x e b ax +B ()x e bx ax +2C x aeD x axe2、设二阶常系数线性微分方程'''x y y y e αβγ++=的一个特解为2(1)x x y e x e =++,则,,αβγ的值是( C )(A )3,2,1αβγ===- (B )3,2,1αβγ==-=- (C )3,2,1αβγ=-==- (D )3,2,1αβγ=-=-= 三、计算第二节1、求微分方程0ln '=-y y xy 的通解 解:分离变量xdxy y dy =ln ...........2分 两边积分可得 1ln ln ln C x y += ..........4分 整理可得Cx e y = .........6分 5、计算一阶微分方程ln 0x x y y '⋅-=的通解。
高等数学第7章练习题
第七章微分方程一、填空题1、曲线上点(,)x y 处的切线斜率为该点纵坐标的平方,则此曲线的方程是_____y x C=-+1。
2、曲线上任一点处的切线斜率恒为该点的横坐标与纵坐标之比,则此曲线的方程是______ x y C 22-=。
3、一质点沿直线运动,已知在时间t 时加速度为t 21-,开始时()t =0速度为13,则速度与时间t 的函数关系式是________ V t t =-+13133。
4、曲线上任一点(,)x y 处的切线斜率为该点横坐标的平方,则此曲线的方程是 y x C =+133。
5、一曲线过原点,其上任一点(,)x y 处的切线斜率为2x y +,则曲线方程是______ y e x x=--21()。
6、微分方程e y ax "=1(a 是非零常数)的通解是 ______y ae C x C a x =++-1212。
7、若某个二阶常系数线性齐次微分方程的通解为y C C x =+12,其中C C 12,为独立的任意常数,则该方程为⎽⎽⎽⎽ ''=y 0。
8、若某个二阶常系数线性齐次微分方程的通解为y C e C x =+12,其中C C 12,为独立的任意常数,则该方程为⎽⎽⎽⎽ ''-'=y y 0。
9、若某个二阶常系数线性齐次微分方程的通解为12cos sin =+y C kx C kx ,其中C C 12,为独立的任意常数,k 为常数,则该方程为⎽⎽⎽⎽ ''+=y k y 20。
10、若某个二阶常系数线性齐次微分方程的通解为y C e C e x x =+-12,其中C C 12,为独立的任意常数,则该方程为⎽⎽⎽⎽ ''-=y y 0。
11、若某个二阶常系数线性齐次微分方程的通解为y C C x e x=+()12,其中C C 12,为独立的任意常数,则该方程为⎽⎽⎽⎽ ''-'+=y y y 20。
高等数学第07章(微分方程习题).
习题三一、1、yc1 sin xc 2 cos x 3、yc1c2 xe2 x 5、y2 y5 y0 7、abxe x 9、p2, q2, fxx1二、1、yc1e xc2 e2 x 3、yc1c 2 xe 5、yc1c2 e 4 x三、1、yc1exc 2 e4 x3、yc1c 2 e 5x 2 2x 2、ye 2c1 cos 7 xc 2 sin 7 x1 x 4、yc1e xc 2 e 6 x 6、yc1e 3 xc 2 e 4 x 8、yc1e xxc 2exxx 10、y1xy 2x2、yc1 cos xc 2 sin x 4、yc1c 2 e x 2 6、ye3 xc1 cos 2 xc 2 sin 2 x11 1x 8 2 2、yc1c 2 xe 3 xx x213xx1e 231 3 7x3x2x 3 5 25 4、yc1e 2c2 exe x四、1、y4e x2e 3 x 3、ycos 5 xsin 5 x五、1、ye xexxe xx12、y5e xe 2 x1 3 7 2 5 2 1 3 2、y3e2 x sin 5 x 4、y2xex 2 3、ycos xsin xsin 2 x习题四一、1、yc1e xc 2 e 2 x 4、xy2 y0二、1、D 8、C 2、C 2、e2 xa cos xb sin x5、sin 3、A ycx x 3、3 6、tan yln cx x 4、A 5、A 6、C 7、B
微分习题课ppt课件
y p y q y f(x ) 二阶常系数非齐次线性方程 解法 待定系数法.
(1 ) f(x ) e xP m (x )型
0 设 y x k e x Q m (x ), k 1
2
不是根 是单根 , 是重根
2021精选ppt
22
( 2 )f ( x ) e x [ P l ( x ) cx o P n ( x ) s sx i ] 型 n
x x x2
所求通解为 xycosy C. x
2021精选ppt
27
例2. 求下列方程的通解
(1)yy12ey3x 0; (3) y2x1y2 ;
(2 )xyx2y2y; (4) y36xx23y3x2yy23.
提示: (1) 因 ey3xey3ex,故为分离变量方程:
y2ey3dyexdx
通解
1ey3 ex C 3
系 数
法 f(x)的形式及其 特解形式
可降阶方程
线性方程 解的结构
定理1;定理2 定理3;定理4
欧拉方程
2021精选ppt
2
微分方程解题思路
一阶方程
作降 变阶 换
高阶方程
作变换
分离变量法
非非
全微分方程
变全 量微
积分因子 可 分
常数变易法
分方
离程
特征方程法
幂级数解法 待定系数法
2021精选ppt
3
1、基本概念
微分方程 凡含有未知函数的导数或微分的方程 叫微分方程. 微分方程的阶 微分方程中出现的未知函数的最 高阶导数的阶数称为微分方程的阶.
微分方程的解 代入微分方程能使方程成为恒等 式的函数称为微分方程的解.
2021精选ppt
同济第五版高数下第七章课件
验证不定积分的计算结果
03
通过与积分表中的结果进行比对,可以验证自己计算
的不定积分是否正确。
06
定积分
定积分的概念与性质
定义
定积分是积分的一种,是函数在某个区间上的积 分和的极限。
几何意义
定积分的值等于曲线与x轴所夹的面积,即曲线 下方的面积。
性质
定积分具有线性性质、可加性、区间可加性、积 分第二基本定理等性质。
分部积分法
通过将两个函数的乘积进行微分,将一个函数的不定积分转化为另一个函数的 不定积分。
积分表的使用
查询基本初等函数的不定积分
01
积分表列出了常用基本初等函数的不定积分,方便查
询。
简化复杂函数的不定积分
02 对于一些复杂函数,可以通过积分表查询类似函数的
已知不定积分,进而求得该复杂函数的不定积分。
05
不定积分
不定积分的概念与性质
不定积分的定义
不定积分是微分的逆运算,即求一个函数的原函数或不定原函数。
不定积分的性质
不定积分具有线性性质、积分常数性质和积分区间可加性。
不定积分的计算方法
直接积分法
利用不定积分的性质和基本初等函数的积分公 式,直接求出不定积分。
换元积分法
通过引入中间变量进行换元,将复杂函数的不 定积分转化为简单函数的不定积分。
02
复合函数的导数
03
隐函数的导数
如果一个函数是由多个基本初等 函数复合而成,可以通过链式法 则计算其导数。
对于由方程确定的隐函数,可以 通过对方程两边求导来得到其导 数。
微分的概念与运算
微分的定义
微分是函数在某一点附近的小增 量,它描述了函数值随自变量微 小变化时的近似变化量。
高等数学教材第七章答案
高等数学教材第七章答案第七章:多元函数微分学1. 习题一答案:1.1 题目:求函数 $z = 2x^3 + 3y^2 - 6xy$ 在点 $(1, 2)$ 处的偏导数$\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$。
解答:首先计算 $\frac{\partial z}{\partial x}$。
根据偏导数的定义,我们将 $y$ 视为常数,对 $z$ 对 $x$ 进行求偏导数:$$\frac{\partial z}{\partial x} = 6x^2 - 6y$$接下来计算 $\frac{\partial z}{\partial y}$。
同样,我们将 $x$ 视为常数,对 $z$ 对 $y$ 进行求偏导数:$$\frac{\partial z}{\partial y} = 6y - 6x$$所以,函数 $z = 2x^3 + 3y^2 - 6xy$ 在点 $(1, 2)$ 处的偏导数为$\frac{\partial z}{\partial x} = 6x^2 - 6y$ 和 $\frac{\partial z}{\partial y} = 6y - 6x$。
1.2 题目:计算函数 $f(x, y) = x^3 + y^3$ 在点 $(1, 1)$ 处的全微分。
解答:根据全微分的定义,我们有:$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$$首先计算 $\frac{\partial f}{\partial x}$ 和 $\frac{\partial f}{\partial y}$。
对 $f(x, y) = x^3 + y^3$ 分别对 $x$ 和 $y$ 求偏导数:$$\frac{\partial f}{\partial x} = 3x^2, \quad \frac{\partial f}{\partial y} =3y^2$$代入点 $(1, 1)$,得到 $\frac{\partial f}{\partial x} = 3$ 和$\frac{\partial f}{\partial y} = 3$。
高等数学下册第七章习题答案详解
高等数学下册第七章习题答案详解1. 在空间直角坐标系中,定出下列各点的位置:()123A ,,;()2,3,4B -; 2,3,4C --(); D 3,4,0();()0,4,3E ;3,0,0F (). 解:点A 在第Ⅰ卦限;点B 在第Ⅱ卦限;点C 在第Ⅷ卦限; 点D 在xOy 面上;点E 在yOz 面上;点F 在x 轴上.2. xOy 坐标面上的点的坐标有什么特点?yOz 面上的呢?zOx 面上的呢? 答: 在xOy 面上的点,z =0;在yOz 面上的点,x =0; 在zOx 面上的点,y =0.3. 对于x 轴上的点,其坐标有什么特点?y 轴上的点呢?z 轴上的点呢? 答:x 轴上的点,y =z =0;y 轴上的点,x =z =0; z 轴上的点,x =y =0.4. 求下列各对点之间的距离: (1) (000),,,(234),,; (2) (000),,,(23,4)--,; (3) (2,3,4)--,() 1,0,3; (4) (4,2,3)-,(2,1,3)-.解:(1)22223429s =++=(2) 2222(3)(4)29s =+-+-=(3) 222(12)(03)(34)67s =++-++=(4) 222(24)(12)(33)35s =--+++-=5. 求点(4,3,5)-到坐标原点和各坐标轴间的距离.解:点(4,-3,5)到x 轴,y 轴,z 轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5). 故 22204(3)552s =+-+=222(44)(30)(50)34x s =-+--+-=2224(33)541y s =+-++=2224(3)(55)5z s =+-+-=.6. 在z 轴上求一点,使该点与两点(4,1,7)A -和(3,5,2)B -等距离. 解:设此点为M (0,0,z ),则222222(4)1(7)35(2)z z -++-=++--解得 149z =即所求点为M (0,0,149). 7. 试证:以三点(4,1,9)A ,(10,1,6)B -,(2,4,3)C 为顶点的三角形是等腰直角三角形. 证明:因为|AB |=|AC |=7.且有 |AC |2+|AB |2=49+49=98=|BC |2. 故△ABC 为等腰直角三角形.习题7-21. 验证:()()++=++a b c a b c . 证明:利用三角形法则得证.见图7-1图12. 设2,3=-+=-+-u a b c v a b c .试用a,b,c 表示23-u v . 解:232(2)3(3)2243935117-=-+--+-=-++-+=-+u v a b c a b c a b c a b c a b c3.把ABC ∆的BC 边五等分,设分点依次为1234,,,D D D D ,再把各分点与A 连接,试以,AB BC ==c a 表示向量123,,A D A D A D 和4D A .解:1115D A BA BD =-=--c a 2225D A BA BD =-=--c a3335D A BA BD =-=--c a444.5D A BA BD =-=--c a4. 设向量OM 的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影. 解:设M 的投影为M ',则1Pr j cos604 2.2u OM OM =︒=⨯=5. 一向量的终点为点(2,1,7)B -,它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A 的坐标.解:设此向量的起点A 的坐标A (x , y , z ),则{4,4,7}{2,1,7}AB x y z =-=----解得x =-2, y =3, z =0故A 的坐标为A (-2, 3, 0). 6. 一向量的起点是1(4,0,5)P ,终点是2(7,1,3)P ,试求: (1) 12P P 在各坐标轴上的投影; (2) 12P P 的模;(3) 12P P 的方向余弦; (4) 12P P 方向的单位向量.解:(1)12Pr j 3,x x a PP == 12Pr j 1,y y a PP == 12Pr j 2.z z a PP ==- (2) 22212(74)(10)(35)14PP =-+-+-=(3) 123cos 14x a PP α==121cos 14y a PP β==122cos 14z a PP γ-==(4) 120123{}141414141414PP PP ===-e j . 7. 三个力123(1,2,3),(2,3,4),(3,4,5)=---F F F 同时作用于一点,求合力R 的大小和方向余弦. 解:R =(1-2+3,2+3-4,3-4+5)=(2,1,4)222||21421=++=R cos cos cos 212121αβγ=== 8. 求出向量,235=++=-+a i j k b i j k 和22=--+c i j k 的模,并分别用单位向量,,a b c e e e 来表达向量,,a b c .解:222||1113=++=a222||2(3)538=+-+=b222||(2)(1)23=-+-+=c3, 38, 3. a b c ===a e b e c e9. 设358,247,54,=++=--=+-m i j k n i j k p i j k 求向量43=+-a m n p 在x 轴上的投影及在y 轴上的分向量.解:a =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k 在x 轴上的投影a x =13,在y 轴上分向量为7j . 10. 已知单位向量a 与x 轴正向夹角为π3,与其在xOy 平面上的投影向量的夹角为π4.试求向量a .22223===34411cos cos cos 1cos ,cos ,42112112,,.222222a πππαγγαβγββ++===±⎧⎧⎪⎪±-±⎨⎨⎪⎪⎪⎪⎩⎭⎩⎭由已知得单位向量的分向量:,或由知从而所求向量为,,或11. 已知两点12(2,5,3),(3,2,5)M M --,点M 在线段12M M 上,且123M M MM =,求向径OM 的坐标.解:设向径OM ={x , y , z }12{2,5,3}{3,2,5}M M x y z MM x y z =--+=----因为,123M M MM =所以,11423(3)153(2) 433(5)3x x x y y y z z z ⎧=⎪-=-⎧⎪⎪⎪-=--⇒=-⎨⎨⎪⎪+=-⎩=⎪⎪⎩故OM ={111,,344-}. 12. 已知点P 到点(0012)A ,,的距离是7,OP 的方向余弦是236,,777,求点P 的坐标.解:设P 的坐标为(x , y , z ), 2222||(12)49PA x y z =++-=得2229524x y z z ++=-+122226570cos 6, 749z z z x y z γ==⇒==++ 又122222190cos 2, 749xx x x y z α==⇒==++ 122223285cos 3, 749y y y x y z β==⇒==++ 故点P 的坐标为P (2,3,6)或P (190285570,,494949). 13. 已知,a b 的夹角2π3ϕ=,且3=a , 4=b ,计算: (1) ⋅a b ;(2) (32)(2)-⋅+a b a b .解:(1)a ·b =2π1cos ||||cos3434632ϕ⋅⋅=⨯⨯=-⨯⨯=-a b (2) (32)(2)3624-⋅+=⋅+⋅-⋅-⋅a b a b a a a b b a b b2223||44||334(6)41661.=+⋅-=⨯+⨯--⨯=-a a b b14. 已知(4,2,4),(6,3,2)=-=-a b ,计算:(1) ⋅a b ; (2) (23)()-⋅+a b a b ;(3) 2-a b .解:(1)46(2)(3)4238⋅=⨯+-⨯-+⨯=a b (2) (23)()2233-⋅+=⋅+⋅-⋅-⋅a b a b a a a b a b b b222222222||3||2[4(2)4]383[6(3)2]23638349113=-⋅-=⨯+-+--+-+=⨯--⨯=-a a b b(3) 222||()()2||2||-=-⋅-=⋅-⋅+⋅=-⋅+a b a b a b a a a b b b a a b b36238499=-⨯+=15. 已知32,2=+-=-+a i j k b i j k , 求: (1) ⨯a b ; (2) 27⨯a b ;(3) 72⨯b a ; (4) ⨯a a .解:(1) 211332375122111--⨯=++=----a b i j k i j k(2) 2714()429870⨯=⨯=--a b a b i j k(3) 7214()14()429870⨯=⨯=-⨯=-++b a b a a b i j k (4) 0⨯=a a .16 已知向量a 和b 互相垂直,且3,4==a b , 计算: (1) ()()+⨯-a b a b ;(2) (3)(2)+⨯-a b a b .解:(1)|()()|||2()|+⨯-=⨯-⨯+⨯-⨯=-⨯a b a b a a a b b a b b a bπ2||||sin242=⋅⋅=a b (2) |(3)(2)||362||7()|+⨯-=⨯-⨯+⨯-⨯=⨯a b a b a a a b b a b b b aπ734sin842=⨯⨯⨯= 习题7-31. 求过点(41,2),-,且与平面32611x y z -+=平行的平面方程.解:所求平面与平面3x -2y +6z =11平行 故n ={3,-2,6},又过点(4,1,-2)故所求平面方程为:3(x -4)-2(y -1)+6(z +2)=0 即3x -2y +6z +2=0.2. 求过点0(1,7,3)M -,且与连接坐标原点到点0M 的线段0OM 垂直的平面方程. 解:所求平面的法向量可取为0{1,7,3}OM ==-n故平面方程为:x -1+7(y -7)-3(z +3)=0 即x +7y -3z -59=03. 设平面过点(1,2,-1),而在x 轴和z 轴上的截距都等于在y 轴上的截距的两倍,求此平面方程.解:设平面在y 轴上的截距为b 则平面方程可定为122x y z b b b++= 又(1,2,-1)在平面上,则有121122b b b-++= 得b =2.故所求平面方程为1424x y z ++= 4. 求过(1,1,-1),(2,-2,2)-和(1,-1,2)三点的平面方程. 解:由平面的三点式方程知1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 代入三已知点,有1112121210111121x y z --+----+=---+化简得x -3y -2z =0即为所求平面方程.5. 指出下列各平面的特殊位置,并画出其图形: (1) 0y =; (2) 310x -=; (3) 2360x y --=; (4) 0x y -=; (5) 2340x y z -+=.解:(1) y =0表示xOz 坐标面(如图2) (2) 3x -1=0表示垂直于x 轴的平面.(如图3)图2 图3(3) 2x -3y -6=0表示平行于z 轴且在x 轴及y 轴上的截距分别为x =3和y =-2的平面.(如图4) (4) x –y =0表示过z 轴的平面(如图5)(5) 2x -3y +4z =0表示过原点的平面(如图6).图4 图5 图66. 通过两点(1,1,1)和(2,2,2)作垂直于平面0x y z +-=的平面. 解:设平面方程为Ax +By +Cz +D =0 则其法向量为n ={A ,B ,C }已知平面法向量为n 1={1,1,-1} 过已知两点的向量l ={1,1,1} 由题知n ·n 1=0, n ·l =0 即00, .0A B C C A B A B C +-=⎧⇒==-⎨++=⎩所求平面方程变为Ax -Ay +D =0又点(1,1,1)在平面上,所以有D =0 故平面方程为x -y =0.7. 求通过下列两已知点的直线方程: (1)()1,2,1,(3,1,1)--;(2) (3,1,0),(1,0,3)--.解:(1)两点所确立的一个向量为s ={3-1,1+2,-1-1}={2,3,-2}故直线的标准方程为:121232x y z -+-==- 或 311232x y z --+==- (2)直线方向向量可取为s ={1-3,0+1,-3-0}={-2,1,-3}故直线的标准方程为:31213x y z -+==-- 或 13213x y z -+==-- 8. 求直线234035210x x z x y z +--=⎧⎨-++=⎩的标准式方程和参数式方程.解:所给直线的方向向量为 12311223719522335--=⨯=++=----s n n i j k i j k另取x 0=0代入直线一般方程可解得y 0=7,z 0=17于是直线过点(0,7,17),因此直线的标准方程为:7171719x y z --==-- 且直线的参数方程为:771719x t y t z t =⎧⎪=-⎨⎪=-⎩9. 决定参数k 的值,使平面29x ky z +-=适合下列条件: (1) 经过点(5,4,6)-;(2) 与平面230x y z -+=成π4的角. 解:(1) 因平面过点(5,-4,6) 故有 5-4k -2×6=9 得k =-4.(2) 两平面的法向量分别为 n 1={1,k ,-2} n 2={2,-3,1} 且122123π2cos cos ||||42514k k θ⋅-====+⋅n n n n 解得70k =±10. 确定下列方程中的l 和m :(1) 平面2350x ly z ++-=和平面620mx y z --+=平行; (2) 平面3530x y lz -+-=和平面3250x y z +++=垂直. 解:(1)n 1={2,l ,3}, n 2={m ,-6,-1}12232,18613l m l m ⇒==⇒=-=--n n (2) n 1={3, -5, l }, n 2={1,3,2}12315320 6.l l ⊥⇒⨯-⨯+⨯=⇒=n n11. 通过点(11,1),-作垂直于两平面10x y z -+-=和210x y z +++=的平面. 解:设所求平面方程为Ax +By +Cz +D =0其法向量n ={A ,B ,C }n 1={1,-1,1}, n 2={2,1,1}12203203A C A B C A B C CB ⎧=-⎪⊥⇒-+=⎪⇒⎨⊥⇒++=⎪=⎪⎩n n n n又(1,-1,1)在所求平面上,故A -B +C +D =0,得D =0故所求平面方程为2033CCx y Cz -++= 即2x -y -3z =012. 求平行于平面375x y z -+=,且垂直于向量2i j k -+的单位向量. 解:n 1={3,-1,7}, n 2={1,-1,2}.12,⊥⊥n n n n故1217733152122111--=⨯=++=+---n n n i j k i j k则1(52).30n =±+-e i j k 13. 求下列直线的夹角: (1) 533903210x y z x y z -+-=⎧⎨-+-=⎩和2223038180x y z x y z +-+=⎧⎨++-=⎩;(2) 2314123x y z ---==-和38121y z x --⎧=⎪--⎨⎪=⎩.解:(1)两直线的方向向量分别为:s 1={5, -3,3}×{3, -2,1}=533321ij k--={3,4, -1}s 2={2,2, -1}×{3,8,1}=221381i j k-={10, -5,10}由s 1·s 2=3×10+4×(-5)+( -1) ×10=0知s 1⊥s 2 从而两直线垂直,夹角为π2. (2) 直线2314123x y z ---==-的方向向量为s 1={4, -12,3},直线38121y z x --⎧=⎪--⎨⎪=⎩的方程可变为22010y z x -+=⎧⎨-=⎩,可求得其方向向量s 2={0,2, -1}×{1,0,0}={0, -1, -2},于是 12126cos 0.2064135785θθ⋅==≈⋅'≈︒s s s s 14. 求下列直线与平面的交点: (1) 11,2310126x y zx y z -+==++-=-;(2)213,2260232x y z x y z +--==+-+= 解:(1)直线参数方程为1126x ty t z t =+⎧⎪=--⎨⎪=⎩代入平面方程得t =1 故交点为(2,-3,6).(2) 直线参数方程为221332x t y t z t =-+⎧⎪=+⎨⎪=+⎩代入平面方程解得t =0. 故交点为(-2,1,3). 15. 求点(121),,到平面22100x y z ++-=的距离.解:过点(1,2,1)作垂直于已知平面的直线,直线的方向向量为s =n ={1,2,2}所以垂线的参数方程为12212x ty t z t =+⎧⎪=+⎨⎪=+⎩将其代入平面方程得13t =.故垂足为485(,,)333,且与点(1,2,1)的距离为222122()()()1333d =++= 即为点到平面的距离.习题7-41. 建立以点(13-2),,为中心,且通过坐标原点的球面方程. 解:球的半径为22213(2)14.R =++-=设(x ,y ,z )为球面上任一点,则(x -1)2+(y -3)2+(z +2)2=14即x 2+y 2+z 2-2x -6y +4z =0为所求球面方程. 2. 一动点离点(20-3),,的距离与离点(4-6,6),的距离之比为3,求此动点的轨迹方程. 解:设该动点为M (x ,y ,z ),由题意知222222(2)(0)(3) 3.(4)(6)(6)x y z x y z -+-++=-+++-化简得:8x 2+8y 2+8z 2-68x +108y -114z +779=0 即为动点的轨迹方程.3. 指出下列方程所表示的是什么曲面,并画出其图形:(1)2222a a x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭; (a 为正常数)(2)22149x y -+=;(3)22194x z +=;(4)20y z -=; (5)220x y -=;(6)220x y +=.解:(1)母线平行于z 轴的抛物柱面,如图7. (2)母线平行于z 轴的双曲柱面,如图8.图7 图8 (3)母线平行于y 轴的椭圆柱面,如图9. (4)母线平行于x 轴的抛物柱面,如图10.图9 图10 (5)母线平行于z轴的两平面,如图11.(6)z轴,如图12.图11 图124. 指出下列方程表示怎样的曲面,并作出图形:(1)222149y zx++=;(2)22369436x y z+-=;(3)222149y zx--=;(4)2221149y zx+-=;(5)22209zx y+-=.解:(1)半轴分别为1,2,3的椭球面,如图13.(2) 顶点在(0,0,-9)的椭圆抛物面,如图14.图13 图14(3) 以x轴为中心轴的双叶双曲面,如图15.(4) 单叶双曲面,如图16.图15 图16(5) 顶点在坐标原点的圆锥面,其中心轴是z 轴,如图17.图175. 作出下列曲面所围成的立体的图形: (1)2222x y z a ++=与()0,02az z a ==>为常数; (2)4x y z =++,0,1,0,2x x y y ====及0z =; (3)24,0,0,0z x x y z =-===及24x y +=; (4)226,0,0,0z x y x y z =-+===()及1x y +=. 解:(1)(2)(3)(4)分别如图18,19,20, 1所示.图18 图19图20 图216. 求下列曲面和直线的交点:(1)222181369x y z ++=与342364x y z --+==-; (2)22211694x y z +-=与2434x y z +==-. 解:(1)直线的参数方程为334624x t y t z t =+⎧⎪=-⎨⎪=-+⎩代入曲面方程解得t =0,t =1. 得交点坐标为(3,4,-2),(6,-2,2). (2) 直线的参数方程为4324x t y tz t =⎧⎪=-⎨⎪=-+⎩代入曲面方程可解得t =1, 得交点坐标为(4,-3,2).7. 设有一圆,它的中心在z 轴上、半径为3,且位于距离xOy 平面5个单位的平面上,试建立这个圆的方程.解:设(x ,y ,z )为圆上任一点,依题意有2295x y z ⎧+=⎨=±⎩ 即为所求圆的方程.8. 试考察曲面22219254x y z -+=在下列各平面上的截痕的形状,并写出其方程.(1) 平面2x =; (2) 平面0y =; (3) 平面5y =; (4) 平面2z =.解:(1)截线方程为2212x ⎧=⎪⎪⎨⎪⎪=⎩ 其形状为x =2平面上的双曲线.(2)截线方程为221940x z y ⎧+=⎪⎨⎪=⎩为xOz 面上的一个椭圆.(3)截线方程为2215y ⎧==⎩为平面y =5上的一个椭圆.(4) 截线方程为2209252x y z ⎧-=⎪⎨⎪=⎩为平面z =2上的两条直线.9. 求曲线2222222,x y z a x y z ++=+=在xOy 面上的投影曲线. 解:以曲线为准线,母线平行于z 轴的柱面方程为2222a x y +=故曲线在xOy 面上的投影曲线方程为22220a x y z ⎧+=⎪⎨⎪=⎩10. 建立曲线22,1x y z z x +==+在xOy 平面上的投影方程. 以曲线为准线,母线平行于z 轴的柱面方程为x 2+y 2=x +1即2215()24x y -+=. 故曲线在xOy 平面上的投影方程为2215()240x y z ⎧-+=⎪⎨⎪=⎩习题七1.填空题:(1)过(0,1,0)且与平面1x y z -+=平行的平面方程为1x y z -+=-(2)点(2,1,0)到平面3450x y z ++=的距离(3)原点关于平面6291210x y z +-+=的对称点是 (-12,-4,18) 。
高数第七章-习题课
A( t1 , 2t1 , t1 1) , B( t2 , 3t2 4, 2t2 1).
M 0 (1,1,1) 与 A, B 三点共线, 故 M0 A // M0 B
A(0,0, 1), B( 2, 2, 3) 取 s M0 A ( 1, 1, 2), 故 L 的方程为
设所求直线 L 与 L1 , L2 的交点分别为
A( t1 , 2t1 , t1 1) , B( t2 , 3t2 4, 2t2 1).
y 2x , 例2 求过点 M 0 (1,1,1) 且与两直线 L1 : z x 1 y 3x 4 L2 : 都相交的直线 L. z 2 x 1
10、下列方程中所示曲面是双叶旋转双曲面的是 ( ). (A) x 2 y 2 z 2 1 ; (B)x 2 y 2 4 z ; y2 x2 y2 z2 2 2 z 1 ; (D) 1 . (C) x 4 9 16
二、已知向量a , b 的夹角等于 ,且 a 2 , b 5 ,求 3
(D)cos(a , b ) .
a b 2、向量 a b 与二向量 及 的位置关系是( (A) 共面; (B)共线; (C) 垂直; (D)斜交 .
).
3、设向量Q 与三轴正向夹角依次为 , , ,当 cos 0 时,有( )
( A) Q‖ xoy面; (C ) Q‖ xoz面;
2
9、已知球面经过( 0 ,3 , 1 ) 且与xoy 面交成圆周 x 2 y 2 16 ,则此球面的方程是( ). z 0 (A) x 2 y 2 z 2 6 z 16 0 ; (B) x 2 y 2 z 2 16z 0 ; 2 2 2 (C) x y z 6 z 16 0 ; 2 2 2 (D) x y z 6 z 16 0 .
高等数学课后习题答案--第七章
−( x+ y )
;
x2 − y2 (6) 2 ; x + y2
(8)
(7)
1 − cos( x 2 + y 2 ) ; x2 + y2
x2 . x2 + y2 − x
【答案】 (1) 0; (2) 2; (3) 0; (4) 不存在; (5) 0 ; (6) 不存在; (7) 0; (8) 不存在.
(2) z ′ x = −
y 1 + , x2 y
z ′y =
1 y , z ′y = , (4) y y y y 2 x cos sin x sin cos x x x x xy xy +1 ′ z′ ln x . x = x y (ln x + 1) , z y = x
1 x − ,(3) z ′ x = − x y2
14. 计算下列映射的导数: ⎛x+ y ⎞ ⎟ (1) f ( x, y ) = ⎜ ⎜ x 2 + y 2 ⎟; ⎝ ⎠
⎛ u cos v ⎞ ⎟ ⎜ (2) g (u , v) = ⎜ u sin v ⎟. ⎟ ⎜v ⎠ ⎝
⎛ dx ⎞ ⎛ dx + dy ⎞ ⎛1 1⎞ ⎜ ⎟ ⎟ df = J , 【解】 (1) J = ⎜ ⎜ dy ⎟ ⎟=⎜ ⎜ ⎜ 2x 2 y ⎟ ⎟; ⎝ ⎠ ⎝ 2 xdx + 2 ydy ⎠ ⎝ ⎠
⎡ (4) u = sin 2 x + sin ⎢( y − 1) ln tan ⎣
【解】(1)
x ⎤ ⎛π ⎞ ⎥ 在 ⎜ , 1⎟ 处的 u ′ x。 y⎦ ⎝4 ⎠
6 1 12 6 6 ,− ; ; (2) − ,− , 12 36 18 36 3
高数下册第七章微分方程一、二、三节
通过适当的变量代换,将伯努利方程化为可分离变量或一阶线性微分方程进行求解。例如,当 $n > 0$ 时,可作变换 $z = y^{1-n}$,将方程化为关于 $z$ 的一阶线性微分方程。
03 二阶常系数线性微分方程 求解
二阶常系数齐次线性微分方程通解结构
方程形式
$y'' + py' + qy = 0$,其中$p, q$为常数。
注意事项
在求解共振情况下的特解时,需要 注意避免与齐次方程的通解形式重 复,否则会导致求解错误。
应用举例:弹簧振子模型分析
01
02
03
04
弹簧振子模型
弹簧振子是一个经典的 物理模型,其运动方程 可以表示为二阶常系数 线性微分方程。
求解方法
通过求解弹簧振子的运 动方程,可以得到其运 动规律,如振幅、周期
、频率等。
应用场景
弹簧振子模型在机械振 动、电磁振荡等领域有 广泛的应用,是工程技 术和科学研究中不可或
缺的重要工具。
注意事项
在分析弹簧振子模型时 ,需要注意选择合适的 坐标系和初始条件,以 确保求解结果的正确性 和有效性。同时,还需 要考虑阻尼、外力等因 素对振子运动的影响。
04 高阶微分方程及降阶法简 介
缺x型降阶法
对于形如$y''=f(y,y')$的方程,同样令$y'=p$,则$y''=frac{dp}{dy}p'$,将原方程化为关于 p的一阶微分方程。注意此时自变量为y。
y*型降阶法
对于形如$y''=f(y',y/x)$的方程,令$y'=p$,则$y''=pfrac{dp}{dy}$,将原方程化为关于p 的一阶微分方程。注意此时自变量为y/x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xu 1 u2
x 0 时,y 1 y 2 y
xx
xu 1 u2
(3)
y
2x
1
y2
调换自变量与因变量的地位 , 化为 dx 2x y2, dy
用线性方程通解公式求解 .
6
(4)
y
6x3 3x2
3x y2 y 2y3
方法 1 这是一个齐次方程 . 令 u y x
方法 2 化为微分形式
系 数
法 f(x)的形式及其 特解形式
可降阶方程
线性方程 解的结构
定理1;定理2 定理3;定理4
欧拉方程
2
微分方程解题思路
一阶方程
作降 变阶 换
高阶方程
作变换
分离变量法
非非
全微分方程
变全 量微
积分因子 可 分
常数变易法
分方
离程
特征方程法
幂级数解法 待定系数法
3
一、一阶微分方程求解
1. 一阶标准类型方程求解 四个标准类型: 可分离变量方程, 齐次方程, 线性方程, 全微分方程 关键: 辨别方程类型 , 掌握求解步骤
2xy 2y (4) y2( x 3 y )dx (1 3 x y2 )d y 0
提示: (1) 原方程化为 令 u = x y , 得 d u u ln u (分离变量方程) dx x
(2) 将方程改写为 d y 1 y y3 (贝努里方程) 令 z y 2 d x 2x ln x 2x
.
提示: (1) 因e y3 x e y3 e x , 故为分离变量方程: y2e y3 d y e x dx
通解
1e y3 ex C 3
5
(2) x y x2 y2 y
方程两边同除以 x 即为齐次方程 , 令 y = u x ,化为分
离变量方程.
y 1 y 2 y
xx
利用共性建立微分方程 , 利用个性确定定解条件.
例4. 设河边点 O 的正对岸为点 A , 河宽 OA = h, 两岸
为平行直线, 水流速度大小为 a , 一鸭子从点 A 游向点
8
(3) y 3x2 y2 6x 3 2xy 2y
化方程为 d y 3( x 1)2 y2 d x 2y ( x 1) 令 t = x – 1 , 则 dy dy dt dy dx dt dx dt d y 3 t 2 y2 (齐次方程) dt 2ty 令y=ut
可分离变量方程求解
提示: 可化为关于 x 的一阶线性方程
(4) d y x y x3 y3 0 dx 提示: 为贝努里方程 , 令 z y2
(5)
xdx
yd y
ydy x2
xdy y2
0
微分倒推公式
提示: 为全微分方程 , 通解
(9) ( y4 3x2 )d y x ydx 0
提示: 可化为贝努里方程 令 z x2
习题课 (一)
第七章
一阶微分方程的
解法及应用
一、一阶微分方程求解 二、解微分方程应用问题
1
一、主要内容
一阶方程
基本概念
高阶方程
类型
1.直接积分法 2.可分离变量 3.齐次方程 4.可化为齐次 方程 5.全微分方程 6.线性方程
7.伯努利方程
二阶常系数线性 方程解的结构
特征方程法
待 特征方程的根 定 及其对应项
(2003考研)
解: (1) F( x) f ( x)g( x) f ( x)g( x)
g2(x) f 2(x)
[g( x) f ( x)]2 2 f ( x)g( x)
(2e x )2 2F ( x)
所以F(x) 满足的一阶线性非齐次微分方程:
11
F( x) 2F ( x) 4e2x
14
(10) y x x2 y
提示: 令 u x2 y x , 即 y 2 x u u2, 则
dy 2u 2x du 2udu
dx
dx dx
原方程化为
x
e
2 u
du
2
e
2 u
du
du
C
1 u2
2 u2
du
C
故原方程通解
15
二、解微分方程应用问题
关键问题是正确建立数学模型, 要点:
(6x3 3xy2)dx (3x2 y 2y3)dy 0
P 6xy Q
y
x
故这是一个全微分方程 .
7
例2. 求下列方程的通解: (1) x y y y(ln x ln y )
(2) 2 x ln x d y y ( y2 ln x 1)dx 0 (3) y 3x2 y2 6x 3
(2) 由一阶线性微分方程解的公式得
F ( x) e 2d x 4e2x e 2d x d x C e2x 4e4x d x C
e2 x Ce2 x 将 F (0) f (0)g(0) 0 代入上式,得 C 1
于是
F(x) e2x e2x
12
练习题: P326 题1,2(1),3(1), (2), (3), (4), (5), (9),
例3. 设F(x)=f (x) g(x), 其中函数 f(x), g(x) 在(-∞,+∞)
内满足以下条件: f ( x) g( x), g( x) f ( x), 且 f (0) 0, f ( x) g( x) 2e x .
(1) 求F(x) 所满足的一阶微分方程 ;
(2) 求出F(x) 的表达式 .
9
(4) y2( x 3 y )dx (1 3 x y2 )d y 0 变方程为 y2 x dx d y 3 y2( ydx xd y) 0
两边乘积分因子 y2
x dx y2 d y 3( ydx xd y) 0 用凑微分法得通解:
1 x2 y13 x y C
2
10
(10)
(题3只考虑方法及步骤)
P326 题2 求以
为通解的微分方程.
提示:
( x C )2 2( x C )
y2 2y
y
1
0
消去CΒιβλιοθήκη 得P327 题3 求下列微分方程的通解:
提示: 令 u = x y , 化成可分离变量方程 :
提示: 这是一阶线性方程 , 其中
13
(3) d y
y
dx 2( ln y x)
2. 一阶非标准类型方程求解 (1) 变量代换法 —— 代换自变量
代换因变量 代换某组合式 (2) 积分因子法 —— 选积分因子, 解全微分方程
4
例1. 求下列方程的通解
(1)
y
1 y2
e y3x
0;
(3)
y
2x
1
y2
;
(2) x y x2 y2 y ;
(4)
y
6x3 3x2
3x y2 y 2y3