高等数学第七章课后习题解答

合集下载

高等数学第七章 习题答案

高等数学第七章 习题答案

习题7-11. 下列向量的终点各构成什么图形?(1)空间中一切单位向量归结为共同的始点;(2)平行于同一平面的一切单位向量归结为共同的始点;(3)平行于同一直线的所有单位向量归结为同一始点;(4)平行于同一直线的所有向量归结为同一始点。

答:(1)单位球面 (2)单位圆 (3)两个点 (4)直线。

2. 设点O 是正六边形ABCDEF 的中心,在向量,,,,,,,,OA OB OC OD OE OF AB BC ,,,CD DE EF FA 中,哪些向量是相等的? 答:,OA EF =,OB FA =,OC AB =,OD BC =,OE CD =.OF DE =3.平面四边形,ABCD 点,,,K L M N 分别是,,,AB BC CD DA 的中点,证明:.KL NM =当四边形ABCD 是空间四边形时,上等式是否仍然成立?证明:连结AC, 则在∆BAC 中,21AC. 与方向相同;在∆DAC 中,21AC. NM 与AC 方向相同,从而KL =NM 且KL 与NM 方向相同,所以KL =NM .当四边形ABCD 是空间四边形时,上等式仍然成立。

4. 解下列各题:(1)化简()()()()2332;x y x y -+-+-a b a b(2)已知12312323,322,=+-=-+a e e e b e e e 求,,32+--a b a b a b.解:(1)()()()()2332x y x y -+-+-a b a b()()()()23322332x y x y x y x y =--++-++⎡⎤⎡⎤⎣⎦⎣⎦a b()()55x y x y --+-=a b;(2)()()123123123233225;+=+-+-+=++a b e e e e e e e e e()()12312312323322;-=+---+=-+a b e e e e e e e +e e()()()()123123123123323232322693644-=+---+=+---+a b e e e e e e e e e e e e 235.=+e e5.四边形ABCD 中,2,568AB CD =-=+-a c a b c,对角线,AC BD 的中点分别是,,E F 求.EF 解:()()111156823352222EF CD AB =+=+-+-=+-a b c a c a b c.6. 设ABC ∆的三条边,,AB BC CA 的中点分别为,,,L M N 另O 为任意一点,证明: .OA OB OC OL OM ON ++=++证明:(1)如果O 在ABC ∆内部(如图1),则O 把ABC ∆分成三个三角形OAB,OAC,OBC 。

江苏省专转本高等数学第七章矢量与解析几何核心知识点例题讲解(含答案)

江苏省专转本高等数学第七章矢量与解析几何核心知识点例题讲解(含答案)

第七章 矢量与空间解析几何本章主要知识点● 矢量运算 ● 平面 ● 直线方程● 主要的几个立体图形及方法一、矢量运算着重掌握矢量的内积、叉积运算,并深刻理解这两种运算在研究线线、线面、面面之间位置关系时的作用;掌握以矢量为主要线索来建立直线和平面方程的方法和实质。

1.矢量的内积(1)cos a b a b θ⋅⋅⋅ ,其中θ为,a b的夹角(2)若{}{}321321,,,,,b b b b a a a a ==,332211b a b a b a ++=⋅ 且a = (3)0=⋅⇔⊥b a b a (b a ,为非零矢量)例7.1.{}{}3,0,1,2,1,1-==,求a b ⋅。

解:()5320111=⨯+⨯+-⨯=⋅b a 。

例7.2.如果{}{}3,,2,,2,1a b λλ=-=-,且b a ⊥,求λ。

解:0=⋅ 得:3220λλ++= 得:25λ=-。

2.矢量的叉积a b ⨯如图所示,如果不平行于,则⨯同时垂直与又垂直于,或者等价地,⨯=垂直于由,确定的一平面。

它在后面研究平面与直线中起相当重要的作用。

如果{}{}321321,,,,,b b b b a a a a ==那么321321b b b a a a k j ib a =⨯, 利用第一行代数余子式展开计算。

若,非零,//2121210c c b b a a ==⇔=⨯⇔ 例7.3.{}{}3,2,1,1,1,1=-=,求⨯解:{}3,2,5325211131113211321111--=+--=-+--=-=⨯k j i kjik j i例7.4.如果{}1,,1,a λ= {}2,3,2b = ,//a b 求λ解:11232λ==,解得:32λ=。

3.单位向量0aa a= 为矢量a 的方向上的单位矢量。

aba b ⨯图示7.14.矢量b 在a 上的投影()aproj b()2aa b proj b a a⋅=二、平面方程1.平面方程的基本形式(点法式)平面π过点()0,000,z y x M ,法矢量为{}C B A ,,=那么平面方程为()()()000000n MM A x x B y y C z z ⋅=⇔-+-+-=(1)点法式有两个基本要素:点0M 和法向量n 。

高等数学上第七章教材答案

高等数学上第七章教材答案

高等数学上第七章教材答案首先,我们需要明确在高等数学第七章教材中涉及的主要内容和问题。

第七章通常是关于多元函数的导数和微分学的学习。

在本文中,将提供一些关于多元函数导数和微分的例题和详细解答。

1. 多元函数的导数第七章首先介绍了多元函数的导数的定义和性质。

多元函数的导数可以通过偏导数求解,即固定其它变量,只对某个变量求导。

举例来说,如果给出一个多元函数 f(x, y),其中 x 和 y 是变量,我们可以通过求解∂f/∂x 和∂f/∂y 来得到该函数的偏导数。

例题 1:考虑函数 f(x, y) = x^2 + 3xy + y^2,求该函数的偏导数∂f/∂x 和∂f/∂y。

解答 1:对于∂f/∂x,将 y 视为常数,则有∂f/∂x = 2x + 3y。

对于∂f/∂y,将 x 视为常数,则有∂f/∂y = 3x + 2y。

2. 多元函数的微分在第七章的后半部分,我们学习了多元函数的微分。

微分是导数的线性逼近,可以用于估计函数值的变化。

多变量函数的微分可以通过求出各个偏导数的和来得到。

例题 2:给定函数 g(x, y) = x^3 + 2xy^2 - y^3,求该函数在点 (1, 2) 处的微分dg。

解答 2:首先计算各个偏导数:∂g/∂x = 3x^2 + 2y^2,∂g/∂y = 4xy - 3y^2。

然后带入点 (1, 2) 得到∂g/∂x = 7,∂g/∂y = -8。

因此,在点 (1, 2) 处的微分dg = ∂g/∂x · dx + ∂g/∂y · dy = 7dx - 8dy。

3. 高阶偏导数和混合偏导数在处理多元函数时,我们还需要了解高阶偏导数和混合偏导数的概念。

高阶偏导数指的是多次对同一变量求导的结果,而混合偏导数则是对多个变量进行求导后的结果。

例题 3:考虑函数 h(x, y) = x^3 + x^2y + xy^2 + y^3,求该函数的二阶偏导数∂^2h/∂x^2。

高等数学第七章向量代数与空间解析几何习题

高等数学第七章向量代数与空间解析几何习题
2
解 ∵ a + b = AC = 2MC = −2MA ,
D
C
b
M
b − a = BD = 2MD = −2MB ,

MA
=

1 2
(a
+
b),
MB
=

1 2
(b

A a ),
a
B
图 7.2
MC
=
1 2
(a
+
b),
MD
=
1 2
(b

a ).
10. 用向量的方法证明: 连接三角形两边中点的线段(中位线)平行且等于第三

a⋅b =
a

b

cos(a,
b)
=
10
×
cos
π 3
=5,
所以
r 2 = 100 − 60 + 36 = 76 ,
故 r = 76 .
3. 已知 a + b + c = 0 , 求证 a × b = b × c = c × a
证 法1
∵a + b + c = 0 ,
所以
c = −(a + b) ,
解 因 a = m − 2n + 3 p = (8i + 5 j + 8k) − 2(2i − 4 j + 7k) + 3(i + j − k) = 7i + 16 j − 9k ,
故沿 x 轴方向的分向量为 axi = 7i ; 沿 y 轴方向的分向量为 ay j = 16 j .
16. 若线段 AB 被点 C(2, 0, 2)和D(5, −2, 0) 三等分, 试求向量 AB 、点 A 及点 B 的

高等数学第七章习题详细解答

高等数学第七章习题详细解答

第七章习题答案习题7.01.下列各种情形中,P 为E 的什么点?(1)如果存在点P 的某一邻域()U P ,使得()⊂c U P E (c E 为E 的余集); (2)如果对点P 的任意邻域()U P ,都有, ()(),C U P E U P E φφ≠≠; (3)如果对点P 的任意邻域()U P ,都有. 解 (1)P 为E 的外点;(2)P 为E 的边界点;(3)P 为E 的聚点。

2.判定下列平面点集的特征(说明是开集、闭集、区域、还是有界集、无界集等?)并分别求出它们的导集和边界.(1) (){},0≠x y y ;(2) (){}22,620≤+≤x y x y ; (3) (){}2,≤x y y x ;(4) ()(){}()(){}2222,11,24+-≥⋂+-≤x y x y x y x y .解 (1) 是开集,是半开半闭区域,是无界集,导集为2R ,边界集为(){},0=x y y ;(2)既不是开集也不是闭集,是半开半闭区域,是有界集,导集为(){}22,620≤+≤x y x y ,边界集为(){}2222,=6=20++,x y x y x y ;(3) 是闭集,是半开半闭区域,是无界集,导集为集合本身,边界集为(){}2,=x y y x ;是闭集,是闭区域,是有界集,导集为集合本身,边界集为()()(){}2222,11,24+-=+-=x y x y x y习题7.11. 设求1. 解 令,=-=yu x y v x,解得,11==--u uv x y v v,故()22,11⎛⎫⎛⎫=- ⎪ ⎪--⎝⎭⎝⎭u uv f u v v v ,即()()21+,1=-u v f u v v ,所以,()()21+y ,1=-x f x y y φ≠-}){()(P E P U 22,,y f x y x y x ⎛⎫-=- ⎪⎝⎭(,).f x y2.已知函数()22,cot =+-x f x y x y xy y,试求(),f tx ty .2. 解 因为()22,cot =+-y f x y x y xy x,所以,()2222,cot ,=+-t y f tx ty tx ty txty t x即()()222,cot =+-y f tx ty t x y t xy x.3.求下列各函数的定义域 (1) 25)1(=-+z ln y xy ;(2) =z ;(3) =z(4) )0;=>>u R r(5) =u3. 解 (1)(){}2,510-+>x y yxy ;(2)(){},0->x y x y ;(3)(){}2,≥x y x y ;(4)(){}22222,<++≤x y r x y z R ;(5)(){}222,≤+x y z x y4. 求下列各极限:(1) ()()233,0,31lim →-+x y x yx y ;(2)()(,1,1ln lim→+x x y y e(3)()(,0,0lim→x y(4)()(,0,0lim→x y ;(5)()()(),0,2sin lim→x y xy x ;(6)()()()()222222,0,01cos lim→-++x y x y x y xy e.4. 解 (1)()()2333,0,31101lim 0327→--==++x y x y x y ;(2)()(()1,1,1ln ln 11lim2→+++===x x y y e e e (3)()()()(,0,0,0,0limlim→→=x y x y ()(,0,01lim4→==x y (4)()(()()),0,0,0,01limlim→→=x y x y xy xy()()),0,0=lim1=2→+x y(5)()()()()()(),0,2,0,2sin sin limlim 122→→=⋅=⋅=x y x y xy xy y x xy(6)()()()()()()()()()222222222222222,0,0,0,01cos 1cos limlim→→-+-++=⋅++x y x y x y x y x y x y xy xy eex y()()()()()()()2222222022,0,0,0,01cos 10limlim=02→→-++=⋅⋅=+x y x y x y x y xy e exy5.证明下列极限不存在: (1)()(),0,0lim→-+x y x yx y ;(2)()(),0,0lim→+-x y xyxy x y .5. (1) 解 令=y kx ,有()(),0,001limlim 1→→---==+++x y x x y x kx kx y x kx k ,k 取不同值,极限不同,故()(),0,0lim→-+x y x yx y 不存在.(2) 解令=x y()()22,0,00lim lim 1→→==+-x y x xy x xy x yx ;令2=x y()()()()22,0,02,0,0022lim lim lim 0221→→→===+-++x y y y y xy y y xy x y y y y ;01≠,故()(),0,0lim→+-x y xyxy x y不存在.6.函数=y z a 为常数)在何处间断?6. 解 因为=y z 是二元初等函数,且函数只在点集(){,x y y 上无定义,故函数在点集(){,x y y 上间断.7.用 εδ- 语言证明()(,0,0lim0→=x y .7. 证明 对0∀>ε,要使220-=≤=<ε2<ε,取=2δε<δ0-<ε,所以()(,0,0lim 0→=x y习题7.21. 设()(),sin 1arctan ,π==+-xy xz f x y e y x y 试求()1,1x f 及()1,1y f1. 解()221,sin arctan 1=+++xy x x yf x y ye y xx yyπ22=sin arctan+++xy x xy ye y y x y π.()()222,sin cos 11-=++-+xy xyy x y f x y xe y e y x x yπππ 222sin cos -=+++xyxyx x xe y e y x y πππ()()1,1,1,1∴=-=-x y f e f e2.设(),ln 2⎛⎫=+ ⎪⎝⎭y f x y x x ,求()1,0'x f ,()1,0'y f .2. 解()()222122,22--==++x yx y x f x y y x x y x x()2112,22==++y x f x y yx y x x()()11,011,02∴==,x y f f . 3.求下列函数的偏导数(1) 332=++z x y xy ,(2) ()1=+xz xy , (3) ()222ln =+z y x y ,(4) ln tan=y z x, (5) ()222ln =+z x x y ;(6)=z (7) ()sec =z xy ;(8) ()1=+yz xy ;(9) ()arctan =-zy x y ;(10) .⎛⎫=⎪⎝⎭zx u y 3. 解 (1)2232,32z z x y y x x y ∂∂=+=+∂∂(2)因为 ()ln 1,x xy z e+=所以()()()()ln 1ln 11ln 111x x xy z xy xy e xy xy xy x xy xy +⎛⎫⎛⎫∂=++=+++ ⎪ ⎪∂++⎝⎭⎝⎭()()22ln 1111x x xy z x x e xy y xy xy +⎛⎫⎛⎫∂==+ ⎪ ⎪∂++⎝⎭⎝⎭(3)()2322222222,2ln z xy z y y x y x x y y x y ∂∂==++∂+∂+(4)222222sec sec 111sec ,sec tan tan tantan y yy z y y z y x x y y y y x x x y x x x x x x x x∂∂⎛⎫⎛⎫=-=-== ⎪ ⎪∂∂⎝⎭⎝⎭ (5)()32222222222ln ,z x z x y x x y x x y y x y ∂∂=++=∂+∂+(6)z z x y ∂∂====∂∂(7)()()()()sec tan ,sec tan z z y xy xy x xy xy x y ∂∂==∂∂(8)()()22ln 1111y y xy z y y e xy x xy xy +⎛⎫⎛⎫∂==+ ⎪ ⎪∂++⎝⎭⎝⎭()()()()ln 1ln 11ln 111y y xy z xy xy e xy xy xy y xy xy +⎛⎫⎛⎫∂=++=+++ ⎪ ⎪∂++⎝⎭⎝⎭ (9)()()()()()()()11222ln ,,111z z zz z z z x y z x y x y x y u u u x y z x y x y x y ------∂∂∂==-=∂∂∂+-+-+-(10)因为 ln,x z yu e=所以ln ln ln 21,,ln zzx x x z z z y y y u z x z u z x x z u x e e e x x xy y x y y y y z y y y⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫∂∂∂=⋅==⋅-=-= ⎪ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭4.设ln=z ,求证: 12∂∂+=∂∂z z xy x y . 4.证明 因为ln,z =所以z zx y∂∂====∂∂从而有12 z zx yx y∂∂+=+=+=∂∂5.求下列函数的二阶偏函数:(1)已知33sin sin=+z x y y x,求2∂∂∂zx y;(2)已知ln=xz y,求2∂∂∂zx y;(3)已知(ln=z x,求22∂∂z x和2∂∂∂z x y;(4)arctan=yzx求22222,,∂∂∂∂∂∂∂z z zx y x y和2∂∂∂zy x.5. 解(1)3323sin sin,3sin coszz x y y x x y y xx∂=+∴=+∂从而有223cos3coszx y y xx y∂=+∂∂(2)ln ln1,lnx xzz y y yx x∂⎛⎫=∴= ⎪∂⎝⎭从而有()()()ln1ln1ln11ln ln ln ln1xx xz yxy y y x yx y x y x--⎛⎫∂=+⋅=+⎪∂∂⎝⎭(3)(()1222 ln,zz x x yx-∂=∴===+∂从而有()()3322222222122zx y x x x yx--∂=-+=-+∂()()332222222122z x y y y x y x y --∂=-+=-+∂∂ (4)22221arctan,1y z y y z x xx x y y x ∂⎛⎫=∴=⋅-=- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭ 222111z x yx x y y x ∂⎛⎫=⋅= ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭从而有()()()()2222222222222222222,x y y z xy z y x x x y x y x y x y -++∂∂-===∂∂∂+++ ()()2222222222222222,z xy z x y xy x y y y x x y x y x y ⎛⎫∂-∂+--=== ⎪∂∂∂+⎝⎭++ 6. 设()ln =z y xy ,求2∂∂∂z x y 及22∂∂zy .6. 解 因为()ln ,z y xy =所以()(),ln ln 1z y y z x y xy y xy x xy x y xy∂∂===+=+∂∂从而有22211,.z z x y x y y∂∂==∂∂∂ 习题7.31. 求下列函数的全微分.(1) 2222+=-s t u s t ;(2) ()2222+=+x y xyz x y e;(3) ()arcsin0=>xz y y;(4) ⎛⎫-+ ⎪⎝⎭=y x x y z e ;1.解 (1)()()222232322222222()()22222∂--+⋅---==∂--u s s t s t s s st s t s s s t s t()()222223232222222()()22222u t s t s t t ts t ts s t s t s t ∂--+---==∂-- ()()2322222244u u st t dz ds dt ds dt s t s t s t ∂∂-∴=+=-∂∂--(2)()()()222222222222++++∂=++⋅∂x y x y xyxyx y x y yzxe x y exxy()2222222244222222+++⎛⎫--=++⋅=+ ⎪⎝⎭x y x y x y xyxyxyx y x y xe x y e x e x y x y()()()22222222222-2+++∂=++⋅∂x y x y xy xyy x x y xzye x y eyxy()()2222222222442222+++-+⎛⎫-=+⋅=+ ⎪⎝⎭x y x y x y xyxyxyy x x y y x yeey e xy xy2244442222x y xyz z x y y x dz dx dy x edx y dy x y x y xy +⎛⎫⎛⎫∂∂--∴=+=+++ ⎪ ⎪∂∂⎝⎭⎝⎭ (3)2222211∂=⋅==∂--⎛⎫yzxyyy x y x x22⎛⎫⎛⎫∂=-=-= ⎪ ⎪∂⎝⎭⎝⎭z x x yy y z zdz dx dy x y∂∂∴=+=∂∂(4)22221y x y x x y x y z y y x e e x x y x y ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫∂-=-= ⎪∂⎝⎭ 22221y x y x x y x y z x x y e e y x y xy ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫∂-=-+= ⎪∂⎝⎭222222y x y x x y x y z z z y x x y dz dx dy e dx e dy x y y x y xy⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭∂∂∂--∴=+==+∂∂∂ 2. 求函数2arctan1=+xz y 在1,1==x y 处的全微分.2.解()()()()()()()22222222222222222211111111111++∂++=⋅=⋅=∂++++++++y y z y y x xy y x y y xy()()()()()()22222222222222211222111111+∂-⋅--=⋅=⋅=∂++++++++y z x y xy xyx yy y x y y xy()()21,11125111z x ∂+∴==∂++ , ()()21,12125111∂-⋅==-∂++z y ()1,12255dz dx dy ∴=- 3. 求函数22=-xyz x y 当2,1,0.02,0.01==∆=∆=x y x y 时的全微分和全增量,并求两者之差.3.解 ()()()(),, 2.02,1.011,1z z x x y y z x y z z ∆=+∆+∆-=-()()22222.02 1.0121 2.0420.6670.667021 4.08 1.0232.02 1.01⨯⨯=-=-=-=--- ()()()2223222222222--⋅∂--===-∂---y x y xy x z x y y y x x y x y x y ()()()()22322222222--⋅-∂+==∂--x x y xy y z x xy y x y x y ()2,111413z x ∂∴=-=-∂- ,()()22,182110941z y ∂+⨯==∂- ()2,11100.020.010.070.0110.00439dz ∴=-⨯+⨯=-+=00.0040.004z dz ∴∆-=-=-.*4讨论函数()()()()(),0,0,0,,0,0⎧≠⎪=⎨⎪=⎩xy x y f x y x y 在()0,0点的连续性、可导性、可微性以及其偏导函数在()0,0的连续性.4.解()()()()()(),0,0,0,0lim,lim 00,0x y x y f x y xy f →→===(),f x y ∴在()0,0点连续 又()()()00,00,0000,0limlim 0x x x f x f f x x∆→∆→∆--===∆∆ ()()()000,0,0000,0limlim 0y y y f y f f y y∆→∆→∆--===∆∆ ()()0,00,0,00x y f f ∴==.()(()(,0,0,0,0,0,00limlim limx y x y f x yf z dzρρ→∆∆→∆∆→∆∆--∆-==()()()0,0,0x y<∆∆→∆lim0z dzρρ→∆-∴=故函数(),f x y 在()0,0点可微. 由()(),0,0x y ≠时(),=-x f x yy xy()23222sinx yy xy=-+(),=-y f x y x xy ()23222xy x xy=-+()(),0,0lim 0x y y →= ,()()()()23,0,0222lim→=+x y x yy kx xy()()()33323222=lim11→==+⋅+x kx ky kx k xk ,k 不同值不同()()()23,0,0222lim→∴+x y xy xy 不存在,故()()(),0,0lim ,xx y f x y →不存在.(),x f x y ∴在()0,0点不连续,同理可证(),y f x y 在点()0,0不连续.*5.计算()2.050.99的近似值.5.解 令00,1,2,0.01,0.05yz x x y x y ===∆=∆= 则1,ln y y z z yx x x x y-∂∂==∂∂ ()()1,21,22,0z zx y ∂∂∴==∂∂ ()()()2.0521,21,20.991120.0100.0510.02 1.02∂∂∴≈+∆+∆=+⨯+⨯=+=∂∂z zx y x y*6.设有厚度为,内高为,内半径为的无盖圆柱形容器,求容器外壳体积的近似值(设容器的壁和底的厚度相同).6.解 设容器底面积半径为r ,高为h则容器体积2V r h π=22,V Vrh r r hππ∂∂==∂∂ 22∴=+dV rhdr r dh ππ002,10,0.1,0.1r cm h cm r cm h cm ==∆=∆=()()22,102,1020.10.1400.140.1 4.4∴∆≈=⋅+⋅=⨯+⨯=V dV rh r πππππ*7. 测得直角三角形两直角边的长分别为7±0.1cm 和24±0.1cm ,试求利用上述二值来计算斜边长度时的绝对误差和相对误差.0.1cm 10cm 2cm7.解 设直角三角形的直角边长分别为,x y ,则斜边z =,zz xy∂∂==∂∂由题意007,24,0.1,0.1x y x y δδ====z ∴的绝对误差为()()7,247,247240.10.10.242525∂∂=+=⨯+⨯=∂∂z x y z z x y δδδz 的相对误差()7,240.240.009625=≈zz δ 习题7.41.设,,,求. 1.解 ()3222sin 22cos 23cos 6---∂∂=⋅+⋅=⋅-⋅=-∂∂x y x y t t du z dx z dy e t e t e t t dt x dt y dt2.设,而,,求. 2.解2123∂∂=⋅+⋅=+∂∂dz z dy z dV x dx u dx V dx2341-=x3.设,,,求,. 3.解 ()()222cos 2sin ∂∂∂∂∂=⋅+⋅=-+-∂∂∂∂∂z z u z v uv v y u uv y x u x v x()()2222222cos sin sin cos cos 2cos sin sin x y y x y y x y x y y y =-+-()23sin cos cos sin x y y y y =-()()()222sin 2cos z z u z v uv v x y u uv x y y u y v y∂∂∂∂∂=+=--+-∂∂∂∂∂ ()()()2222222cos sin sin sin cos 2cos sin cos x y y x y x y x y x y y x y =--+-()()3333cos sin 2cos sin sin cos x y y x y y y y =+-+2e x y u -=sin x t =3y t =d d u tarccos()z u v =-34u x =3v x =d d zx22z u v uv =-cos u x y =sin v x y =zx ∂∂z y∂∂4.设,而,,求,. 4.解 222ln 3∂∂∂∂∂⎛⎫=⋅+⋅=⋅+- ⎪∂∂∂∂∂⎝⎭z z u z v u y u v x u x v x v x()()()2322632ln 326ln 3x y y y y x y x y x x x x +⎛⎫=+-=+-- ⎪⎝⎭5.设求5.解 ()()1wf x xy xyz y yz x ∂'=++++∂()()()()1wf x xy xyz x xz x z f x xy xyz y∂''=+++=+++∂ ()()wf x xy xyz xy xyf x xy xyz z ∂''=++=++∂6.求下列函数的一阶偏导数(其中具有一阶连续偏导数):(1);(2);(3);(4).6.解 (1)()()222222∂''=-⋅=-∂z f x y x xf x y x()()()222222∂''=-⋅-=--∂zf x y y yf x y y(2)121110∂'''=+⋅=∂u f f f x y y12122211u x x f f f f y y z y z ⎛⎫∂⎛⎫''''=-+=-+ ⎪ ⎪∂⎝⎭⎝⎭122220∂⎛⎫'''=⋅+-=- ⎪∂⎝⎭u y y f f f z z z (3)1231231∂''''''=⋅+⋅+⋅=++∂uf f y f yz f yf yzf x123230∂'''''=⋅+⋅+⋅=+∂uf f x f xz xf xzf y2ln z u v =32u x y =+y v x =zx ∂∂z y∂∂(),w f x xy xyz =++,,.w w wx y z∂∂∂∂∂∂f 22()z f x y =-,x y u f y z ⎛⎫= ⎪⎝⎭(,,)u f x xy xyz =22(,e ,ln )xy u f x y x =-123300∂''''=⋅+⋅+⋅=∂uf f f xy xyf z (4)1231231122∂''''''=⋅+⋅⋅+⋅=++∂xy xyu f x f e y f xf ye f f x x x()12312202∂'''''=⋅-+⋅+⋅=-+∂xy xy uf y f e x f yf xe f y7.求下列函数的二阶偏导数,,(其中具有二阶连续偏导数):(1),(2). 7.解(1)22121222∂''''=⋅+⋅=+∂zf xy f y xyf y f x22121222∂''''=⋅+⋅=+∂zf x f xy x f xyf y()()222211112212222222∂'''''''''∴=+⋅+⋅+⋅+⋅∂zyf xy f xy f y y f xy f y x233341111221222422yf x y f xy f xy f y f '''''''''=++++ 23341111222244yf x y f xy f y f '''''''=+++()()2222111122212222222∂''''''''''=+⋅+⋅++⋅+⋅∂∂zxf xy f x f xy yf y f x f xy x y322223111122212222422xf x yf x y f yf x y f xy f ''''''''''=+++++ 32231111222222522xf x yf x y f yf xy f ''''''''=++++()2222211122212222222∂'''''''''=+++⋅+⋅∂zx f x x f xy xf xy f x f xy y43221112222424x f x yf xf x y f '''''''=+++(2)()()222222∂''=+⋅=+∂zf x y x xf x y x()()222222∂''=+⋅=+∂zf x y y yf x y y22zx∂∂2z x y ∂∂∂22z y ∂∂f 22(,)z f x y xy =22()z f x y =+()()()()2222222222222224∂''''''∴=+++⋅=+++∂zf x y xf x y x f x y x f x y x()()22222224∂'''=+⋅=+∂∂z xf x y y xyf x y x y()()()()2222222222222224∂''''''=+++⋅=+++∂zf x y yf x y y f x y y f x y y8.设其中F 是可微函数,证明8.解()()()cos sin sin cos cos cos sin sin ux F y x x x xF y x x∂''=+--=--∂ ()sin sin cos uF y x y y∂'=-∂ ()()cos cos cos cos sin sin cos cos sin sin cos u uy x x xF y x y yF y x x x y∂∂''∴+=--+-⎡⎤⎣⎦∂∂ ()()cos cos cos cos sin sin cos cos sin sin cos cos x y x yF y x x yF y x x y ''=--+-=.习题7.51.设,φ⎛⎫= ⎪⎝⎭x y z z 其中为可微函数,求∂∂+∂∂z z x y x y . 1.解 z是,x y函数由方程xx z y φ⎛⎫= ⎪⎝⎭确定。

高等数学课后答案 第七章 习题详细解答

高等数学课后答案 第七章 习题详细解答

习题7-11.判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并指出集合的边界.(1){}(,)0,0x y x y ≠≠;(2){}22(,)14x y x y <+≤;(3){}2(,)x y y x >;(4){}2222(,)(1)1(2)4x y x y x y +-≥+-≤且.解 (1)集合是开集,无界集;边界为{(,)0x y x =或0}y =. (2)集合既非开集,又非闭集,是有界集;边界为2222{(,)1}{(,)4}x y x y x y x y +=+= .(3)集合是开集,区域,无界集;边界为2{(,)}x y y x =. (4)集合是闭集,有界集;边界为2222{(,)(1)1}{(,)(2)4}x y x y x y x y +-=+-=2.已知函数(,)v f u v u =,试求(,)f xy x y +. 解 ()()(,)x y f xy x y xy ++=.3.设(,)2f x y xy =,证明:2(,)(,)f tx ty t f x y =.解)222(,)222f tx ty t xy t t xy t xy ===2(,)t f x y =.4.设y f x ⎛⎫=⎪⎝⎭(0)x >,求()f x . 解由于y f x ⎛⎫==⎪⎝⎭,则()f x =5.求下列各函数的定义域:(1)2222x y z x y+=-; (2)ln()arcsin y z y x x =-+;(3)ln()z xy =; (4)z =;(5)z =(6)u =.解 (1)定义域为{}(,)x y y x ≠±; (2)定义域为{}(,)x y x y x <≤-;(3)定义域为{}(,)0x y xy >,即第一、三象限(不含坐标轴);(4)定义域为2222(,)1x y x y a b ⎧⎫+≤⎨⎬⎩⎭; (5)定义域为{}2(,)0,0,x y x y x y ≥≥≥;(6)定义域为{}22222(,,)0,0x y z x y z x y +-≥+≠.6.求下列各极限:(1)22(,)(2,0)lim x y x xy y x y →+++; (2)(,)(0,0)lim x y →; (3)22(,)(0,0)1lim ()sinx y x y xy →+; (4)(,)(2,0)sin()lim x y xy y→;(5)1(,)(0,1)lim (1)xx y xy →+; (6)22(,)(,)lim()x y x y x y e --→+∞+∞+.解:(1)22(,)(2,0)4lim (2,0)22x y x xy y f x y →++===+;(2)(,)(0,0)00112lim lim 2x y u u u u →→→===;(3)因为22(,)(0,0)lim ()0x y x y →+=,且1s i n1xy≤有界,故22(,)(0,0)1lim ()sin 0x y x y xy →+=; (4)(,)(2,0)(,)(2,0)sin()sin()limlim 212x y x y xy xy x y xy →→==⋅=;(5)111(,)(0,1)(,)(0,1)lim (1)lim (1)y xyxx y x y xy xy e e ⋅→→+=+==;(6)当0x N >>,0y N >>时,有222()()0x y x yx y x y e e ++++<<,而()22(,)(,)22limlim lim lim 0x yu u u x y u u u x y u u e e e e+→+∞+∞→+∞→+∞→+∞+==== 按夹逼定理得22(,)(,)lim()0.x y x y x y e --→+∞+∞+=7.证明下列极限不存在: (1)(,)(0,0)limx y x yx y →+-;(2)设2224222,0,(,)0,0,x yx y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩(,)(0,0)lim (,)x y f x y →.证明 (1)当(,)x y 沿直线y kx =趋于(0,0)时极限(,)(0,0)01limlim 1x y x y kxx y x kx kx y x kx k →→=+++==--- 与k 有关,上述极限不存在.(2)当(,)x y 沿直线y x =和曲线2y x =趋于(0,0)有2242422(,)(0,0)00lim lim lim 01x y x x y x y xx y x x x x y x x x →→→=====+++, 2222442444(,)(0,0)001lim lim lim 22x y x x y xy xx y x x x x y x x x →→→=====++, 故函数(,)f x y 在点(0,0)处二重极限不存在.8.指出下列函数在何处间断:(1)22ln()z x y =+; (2)212z y x=-. 解(1)函数在(0,0)处无定义,故该点为函数22ln()z x y =+的间断点; (2)函数在抛物线22y x =上无定义,故22y x =上的点均为函数212z y x=-的间断点.9.用二重极限定义证明:(,)lim0x y →=.证22102ρ=≤=(,)P x y ,其中||OP ρ==,于是,0ε∀>,20δε∃=>;当0ρδ<<时,0ε-<成立,由二重极限定义知(,)lim0x y →=.10.设(,)sin f x y x =,证明(,)f x y 是2R 上的连续函数.证 设2000(,)P x y ∈R .0ε∀>,由于sin x 在0x 处连续,故0δ∃>,当0||x x δ-<时,有0|sin sin |x x ε-<.以上述δ作0P 的δ邻域0(,)U P δ,则当0(,)(,)P x y U P δ∈时,显然 00||(,)x x P P ρδ-<<,从而000|(,)(,)||sin sin |f x y f x y x x ε-=-<,即(,)sin f x y x =在点000(,)P x y 连续.由0P 的任意性知,sin x 作为x 、y 的二元函数在2R 上连续.习题7-21.设(,)z f x y =在00(,)x y 处的偏导数分别为00(,)x f x y A =,00(,)y f x y B =,问下列极限是什么?(1)00000(,)(,)limh f x h y f x y h →+-; (2)00000(,)(,)lim h f x y f x y h h→--;(3)00000(,2)(,)lim h f x y h f x y h →+-; (4)00000(,)(,)lim h f x h y f x h y h→+--.解 (1)0000000(,)(,)lim(,)x h f x h y f x y z x y A h→+-==; (2)000000000000(,)(,)(,)(,)limlim (,)y h h f x y f x y h f x y h f x y z x y B h h→→----===-; (3)0000000000(,2)(,)(,2)(,)limlim 222h h f x y h f x y f x y h f x y B h h→→+-+-=⋅=;(4)00000(,)(,)limh f x h y f x h y h→+--[][]0000000000000000000000000000(,)(,)(,)(,)lim(,)(,)(,)(,)lim (,)(,)(,)(,)lim lim 2.h h h h f x h y f x y f x y f x h y hf x h y f x y f x h y f x y h f x h y f x y f x h y f x y h h A A A →→→→+-+--=+----=+---=+-=+= 2.求下列函数的一阶偏导数: (1)x z xy y=+; (2)ln tan x z y =;(3)e xyz =; (4)22x y z xy+=;(5)222ln()z x x y =+; (6)z = (7)sec()z xy =; (8)(1)y z xy =+;(9)arctan()z u x y =- (10)zx u y ⎛⎫= ⎪⎝⎭.解(1)1z y x y ∂=+∂,2z x x y y∂=-∂; (2)12211tan sec cot sec z x x x x x y y y y y y -⎛⎫⎛⎫∂=⋅⋅= ⎪ ⎪∂⎝⎭⎝⎭, 12222tan sec cot sec z x x x x x x y y y y y y y-⎛⎫⎛⎫⎛⎫∂=⋅⋅-=- ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭; (3)xy xy z e y ye x ∂=⋅=∂,xy xy ze x xe y∂=⋅=∂; (4)()2222222222()2()1z x xy x y y x y x y y y x x y y x xy ∂⋅-+⋅-+⋅===-∂, ()2222222222()2()1z y xy x y x xy x y x x y x y x y xy ∂⋅-+⋅-+⋅===-∂;(5)232222222222ln()22ln()z x x x x y x x x y x x y x y ∂=++⋅=++∂++, 22222222z x x yy y x y x y∂=⋅=∂++; (6)1z y x xy ∂=⋅=∂1z x y xy ∂=⋅=∂ (7)tan()sec()tan()sec()zxy xy y y xy xy x∂=⋅=∂, tan()sec()tan()sec()zxy xy x x xy xy y∂=⋅=∂; (8)121(1)(1)y y zy xy y y xy x--∂=+⋅=+∂, ln(1)(1)ln(1)1y xy z xy e y xy xy y y xy +⎡⎤∂∂⎡⎤==+⋅++⎢⎥⎣⎦∂∂+⎣⎦; (9)11221()()1()1()z z z zu z x y z x y x x y x y --∂-=⋅-=∂+-+-, 11221()()(1)1()1()z z z zu z x y z x y y x y x y --∂-=⋅-⋅-=-∂+-+-, 221()ln()()ln()1()1()z zz zu x y x y x y x y z x y x y ∂--=⋅-⋅-=∂+-+-; (10)111z z ux z x z x y y y y --⎛⎫⎛⎫∂=⋅= ⎪ ⎪∂⎝⎭⎝⎭,12z zux x z x z y y y y y -⎛⎫⎛⎫⎛⎫∂=⋅-=- ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭, ln z u x x y y y⎛⎫∂=⋅ ⎪∂⎝⎭. 3.设(,)ln 2y f x y x x ⎛⎫=+⎪⎝⎭,求(1,0)x f ,(1,0)y f . 解法一 由于(,0)ln f x x =,所以1(,0)x f x x=,(1,0)1x f =; 由于(1,)ln 12y f y ⎛⎫=+⎪⎝⎭,所以11(1,)212yf y y =⋅+,1(1,0)2y f =.解法二 21(,)122x y f x y y x x x ⎛⎫=⋅- ⎪⎝⎭+,11(,)22y f x y y x x x=⋅+, 10(1,0)110212x f ⎛⎫=⋅-= ⎪⎝⎭+,111(1,0)02212y f =⋅=+. 4.设(,)(f x y x y =+-(,1)x f x . 解法一由于(,1)(11)arcsinf x x x =+-,(,1)()1x f x x '==. 解法二1(,)1x f x y y =,(,1)1x f x =. 5.设2(,)xt yf x y e dt -=⎰,求(,)x f x y ,(,)y f x y .解 2(,)x x f x y e -=,2(,)y f x y e -=-. 6.设yxz xy xe =+,证明z zxy xy z x y∂∂+=+∂∂. 解 由于21y y yx x x z y y y e xe y e x x x ⎛⎫∂⎛⎫=+-⋅=+-⎪ ⎪∂⎝⎭⎝⎭, 1y y x x z x xe x e y x∂=+⋅=+∂, 所以1()yy y yx x x xz z y x y x y e y x e xy e x y xy ye x y x ⎡⎤⎛⎫∂∂⎛⎫+=+-++=+-++ ⎪⎢⎥ ⎪∂∂⎝⎭⎣⎦⎝⎭yxxy xe xy xy z =++=+.7.(1)22,44x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与x 轴正向所成的倾角是多少? (2)1z x ⎧=⎪⎨=⎪⎩在点(1,1处的切线与y 轴正向所成的倾角是多少?解 (1)按偏导数的几何意义,(2,4)x z 就是曲线在点(2,4,5)处的切线对于x 轴正向所成倾角的斜率,而21(2,4)12x x z x ===,即tan 1k α==,于是倾角4πα=. (2)按偏导数的几何意义,(1,1)y z就是曲线在点(1,1处的切线对于y 轴正向所成倾角的斜率,而11(1,1)3y z ===,即1tan 3k α==,于是倾角6πα=.8.求下列函数的二阶偏函数:(1)已知33sin sin z x y y x =+,求2z x y ∂∂∂; (2)已知ln xz y =,求2z x y∂∂∂;(3)已知ln(z x =+,求22z x ∂∂和2zx y∂∂∂;(4)arctan y z x =求22z x ∂∂、22z y ∂∂、2z x y ∂∂∂和2zy x∂∂∂.解(1)233sin cos z x y y x x ∂=+∂,2223cos 3cos z x y y x x y∂=+∂∂; (2)ln ln 1ln ln x x z y y y y x x x∂=⋅=∂, 2ln ln 1ln 1111ln ln (1ln ln )xx x z y y x y y x y x y x y x--⎛⎫∂=+⋅⋅=+ ⎪∂∂⎝⎭; (3)1z x ⎛⎫∂==∂==,()232222zxx xy∂-==∂+,()23222z yx y xy∂-==∂∂+;(4)222211z y y xx x y y x ∂⎛⎫=⋅-=- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭,222111z x y x x y y x ∂=⋅=∂+⎛⎫+ ⎪⎝⎭, ()222222z xy x x y ∂=∂+,()222222z xyy x y ∂-=∂+,()()2222222222222z x y y y x x y x y x y ∂+--=-=∂∂++,()()2222222222222z x y x y x y x x y x y ∂+--==∂∂++. 9.设222(,,)f x y z xy yz zx =++,求(0,0,1xx f ,(1,0,2)xz f ,(0,1,0)yz f -及(2,0,1)zzx f .解 因为22x f y xz =+,2xx f z =,2xz f x =, 22y f xy z =+,2yz f z =,22z f yz x =+,2zz f y =,0zzx f =,所以(0,0,1)2xx f =,(1,0,2)2xz f =,(0,1,0)0yz f -=,(2,0,1)0zzx f =.10.验证: (1)2esin kn ty nx -=满足22y yk t x∂∂=∂∂;(2)r =2222222r r r x y z r∂∂∂++=∂∂∂.证 (1)因为22e sin kn t y kn nx t -∂=-∂,2e cos kn t y n nx x -∂=∂,2222e sin kn ty n nx x-∂=-∂ 所以()2222e sin kn ty y k n nx k t x-∂∂=-=∂∂; (2)因为r x x r ∂==∂,2222231r x x x r x x x r r r r r ∂∂-⎛⎫==-⋅= ⎪∂∂⎝⎭, 由函数关于自变量的对称性,得22223r r y y r ∂-=∂,22223r r z z r ∂-=∂, 所以 2222222222223332r r r r x r y r z x y z r r r r∂∂∂---++=++=∂∂∂. 习题7-31.求下列函数的全微分:(1)2222s tu s t+=-; (2)2222()e x y xyz x y +=+;(3)arcsin(0)xz y y=>; (4)ey x x y z ⎛⎫-+ ⎪⎝⎭=;(5)222ln()u x y z =++; (6)yzu x =.解 (1)()()222222222222()2()4u s s t s s t st s s t s t ∂--+==-∂--, ()()222222222222()2()4u t s t t s t s tt s t s t ∂-++==∂--, ()()()22222222222444d d d (d d )st s tstu s t t s s t ststst=-+=-----;(2)22222222244222222()2()2x y x y x y xyxyxyzx y x y yx y xe x y eex xx y x y +++⎛⎫∂-+-=++=+ ⎪∂⎝⎭,由函数关于自变量的对称性可得224422x y xyzy x e y yxy +⎛⎫∂-=+ ⎪∂⎝⎭, 22444422d 2d 2d x y xyx y y x z ex x y y x y xy +⎡⎤⎛⎫⎛⎫--=+++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦; (3)21d d arcsind d x x x z x y y yy y ⎛⎫⎫===- ⎪⎪⎝⎭⎭)d d y x x y =-;(4)d d d y x y x x y x y y x z e e x y ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭⎡⎤⎛⎫⎢⎥==-⋅+ ⎪⎢⎥⎝⎭⎣⎦2211d d y x x y y x ex y y x x y ⎛⎫-+ ⎪⎝⎭⎡⎤⎛⎫⎛⎫=--+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦;(5)()2222222221d d ln()d u x y z x y zx y z ⎡⎤=++=++⎣⎦++2222222d 2d 2d 2(d d d )x x y y z z x x y y z z x y z x y z++==++++++; (6)()1d d d ln d ln d yz yz yz yzu x yzx x x z x y x y x z -==++()1d ln d ln d yz x yz x xz x y xy x z -=++.2.求下列函数的全微分:(1)22ln(1)z x y =++在1x =,2y =处的全微分; (2)2arctan 1xz y=+在1x =,1y =处的全微分. 解 (1)因为2222222211d d ln(1)d(1)(2d 2d )11z x y x y x x y y x y x y ⎡⎤=++=++=+⎣⎦++++ 所以12112d (2d 4d )d d 633x y z x y x y ===+=+; (2)因为22221d d arctand 1111x x z y y x y ⎛⎫⎛⎫== ⎪ ⎪++⎛⎫⎝⎭⎝⎭+ ⎪+⎝⎭()22222222211212d d d d 11111y xy xy x y x y y x y y x y y ⎡⎤⎛⎫+⎢⎥=-=- ⎪⎢⎥++++++⎝⎭+⎣⎦ 所以()1222111121d d d d d 113x y x y xy z x y x y y x y ====⎛⎫=-=- ⎪+++⎝⎭. 3. 求函数23z x y =当2x =,1y =-,0.02x ∆=,0.01y ∆=-时的全微分.解 因为()23322322d d 2d 3d 23z x y xy x x y y xy x x y y ==+=∆+∆所以当2x =,1y =-,0.02x ∆=,0.01y ∆=-时全微分为d 4120.080.120.2z x y =-∆+∆=--=-.4.求函数22xyz x y=-当2x =,1y =,0.01x ∆=,0.03y ∆=时的全微分和全增量,并求两者之差.解 因为()()222222222d()d()d d x y xy xy x y xy z x y x y ---⎛⎫== ⎪-⎝⎭- ()()()()()222332222222(d d )(2d 2d )d d x y y x+x y xy x x y y x y y x+x +xy y xyx y -----==-- 所以当2x =,1y =,0.01x ∆=,0.03y ∆=时全微分的值为()()()2332222(,)(2,1)0.01,0.030.25d 0.0277779x y x y x y y x+x +xy yz x y =∆=∆=--∆∆==≈-, 而当2x =,1y =,0.01x ∆=,0.03y ∆=时的全增量为()()()()2222(,)(2,1)0.010.030.028252x y x y x x y y xy z x y x x y y =∆=∆=⎡⎤+∆+∆∆=-≈⎢⎥-+∆-+∆⎢⎥⎣⎦, 全增量与全微分之差为d 0.0282520.0277770.000475z z ∆-≈-=.习题7-41.设2e x yu -=,sin x t =,3y t =,求d d u t. 解3222sin 22d d d cos 23(cos 6)d d d x y x y t t u u x u ye t e t e t t t x t y t---∂∂=+=-⋅=-∂∂. 2.设arccos()z u v =-,而34u x =,3v x =,求d d z x. 解2d d d 123d d d z z u z v x x u x v x ∂∂=+=+∂∂2314x -=3.设22z u v uv =-,cos u x y =,sin v x y =,求z x ∂∂,z y∂∂. 解()()222cos 2sin z z u z v uv v y u uv y x u x v x∂∂∂∂∂=⋅+⋅=-⋅+-⋅∂∂∂∂∂ 23sin cos (cos sin )x y y y y =-,()()()222sin 2cos z z u z v uv v x y u uv x y y u y v y∂∂∂∂∂=⋅+⋅=-⋅-+-⋅∂∂∂∂∂ 33232(sin 2sin cos cos 2cos sin )x y y y y y y =-+-.4.设2ln z u v =,而32u x y =+,y v x =,求z x ∂∂,z y∂∂. 解 222ln 3z z u z v u y u v x u x v x v x ∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅- ⎪∂∂∂∂∂⎝⎭216(32)ln(32)y x y x y x x=+-+, 22112ln 24(32)ln (32)z z u z v u y u v x y x y y u y v y v x x y∂∂∂∂∂=⋅+⋅=⋅+⋅=+++∂∂∂∂∂. 5. 设2(,,)ln(sin )z f u x y u y x ==+,ex yu +=,求z x ∂∂,zy∂∂. 解22112cos sin sin x y z z u f u e y x x u x x u y x u y x+∂∂∂∂=⋅+=⋅⋅+⋅∂∂∂∂++ ()()222cos sin x y x y e y xe y x+++=+, 22112sin sin sin x y z z u f u e x y u y y u y x u y x+∂∂∂∂=⋅+=⋅⋅+⋅∂∂∂∂++ ()()222sin sin x y x y e xe y x+++=+. 6.设222sin()u x y z =++,x r s t =++,y rs st tr =++,z rst =,求u r ∂∂,us∂∂,ut∂∂. 解[]22222()2cos()u u x u y u z x y s t zst x y z r x r y r z r∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()cos ()()()r s t rs st tr s t rs t r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦,[]22222()2cos()u u x u y u zx y r t zrt x y z s x s y s z s∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()cos ()()()r s t rs st tr r t r st r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦,[]22222()2cos()u u x u y u z x y s r zrs x y z t x t y t z t∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()cos ()()()r s t rs st tr r s r s t r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦.7.设arctanxz y=,x u v =+,y u v =-,求z u ∂∂,z v ∂∂,并验证:22z z u vu v u v∂∂-+=∂∂+.解222221111111z z x z y x y xu x u y uy y x y x x y y ⎛⎫∂∂∂∂∂-=⋅+⋅=⋅⋅+⋅-⋅= ⎪∂∂∂∂∂+⎛⎫⎛⎫⎝⎭++ ⎪ ⎪⎝⎭⎝⎭, ()222221111111z z x z yx y xv x v y vy y x y x x y y ⎛⎫∂∂∂∂∂+=⋅+⋅=⋅⋅+⋅-⋅-= ⎪∂∂∂∂∂+⎛⎫⎛⎫⎝⎭++ ⎪ ⎪⎝⎭⎝⎭, 则222222222()()()z z y x y x u v u vu v x y x y u v u v u v ∂∂-+--+=+==∂∂++++-+. 8.设22(,,)z f x y t x y t ==-+,sin x t =,cos y t =,求d d z t. 解d d d 2cos 2(sin )12sin 21d d d z z x z y f x t y t t t x t y t t∂∂∂=⋅+⋅+=--+=+∂∂∂. 9.求下列函数的一阶偏导数(其中f 具有一阶连续偏导数): (1)22()z f x y =-; (2),x y u f y z ⎛⎫=⎪⎝⎭; (3)(,,)u f x xy xyz =; (4)22(,,ln )xy u f x y e x =-. 解(1)222()z xf x y x ∂'=-∂,222()zyf x y y∂'=--∂; (2)111f u f x y y '∂'=⋅=∂,12122211u x x f f f f y y z y z ⎛⎫∂''''=⋅-+⋅=-+ ⎪∂⎝⎭, 2222u y y f f z z z ∂⎛⎫''=⋅-=- ⎪∂⎝⎭; (3)123u f yf yzf x ∂'''=++∂,23uxf xzf y ∂''=+∂,3u xyf z ∂'=∂; (4)12312xy u xf ye f f x x ∂'''=++∂,122xy u yf xe f y∂''=-+∂. 10.设()z xy xF u =+,而yu x=,()F u 为可导函数,证明: z zxy z xy x y∂∂+=+∂∂.证 ()()()z z u u xy x y F u xF u y x xF u x y x y ⎡⎤∂∂∂∂⎡⎤''+=++++⎢⎥⎢⎥∂∂∂∂⎣⎦⎣⎦ []()()()yx y F u F u y x F u x ⎡⎤''=+-++⎢⎥⎣⎦()xy xF u xy z xy =++=+. 11.设[cos()]z y x y ϕ=-,试证:z z zx y y∂∂+=∂∂. 证sin()[cos()]sin()z z y x y x y y x y x yϕϕϕ∂∂''+=--+-+-∂∂ [cos()]z x y yϕ=-=. 12.设,kz y u x F x x ⎛⎫=⎪⎝⎭,且函数,z y F x x ⎛⎫⎪⎝⎭具有一阶连续偏导数,试证: u u uxy z ku x y z∂∂∂++=∂∂∂. 证11222k k u z y kx F x F F x x x -∂⎡⎤⎛⎫⎛⎫''=+-+- ⎪ ⎪⎢⎥∂⎝⎭⎝⎭⎣⎦,1221k k ux F x F y x -∂''=⋅=∂, 1111k k u x F x F z x-∂''=⋅=∂, 11111111k k k k k u u u xy z kx F x zF x yF x yF x zF ku x y z----∂∂∂''''++=--++=∂∂∂. 13.设sin (sin sin )z y f x y =+-,试证:sec sec 1z zxy x y∂∂+=∂∂. 证cos z f x x ∂'=∂,cos (cos )zy y f y∂'=+-∂, sec sec sec cos sec cos sec (cos )1z zxy x xf y y y y f x y∂∂''+=++-=∂∂. 14.求下列函数的二阶偏导数22z x ∂∂,2z x y ∂∂∂,22zy ∂∂(其中f 具有二阶连续偏导数):(1)(,)z f xy y =; (2)22()z f x y =+;(3)22(,)z f x y xy =; (4)(sin ,cos ,)x y z f x y e +=. 解 (1)令s xy =,t y =,则(,)z f xy y =,s 和t 是中间变量.11z s f yf x x ∂∂''=⋅=∂∂,1212d d z s tf f xf f y y y∂∂''''=⋅+⋅=+∂∂. 因为(,)f s t 是s 和t 的函数,所以1f '和2f '也是s 和t 的函数,从而1f '和2f '是以s 和t 为中间变量的x 和y 的函数.故()22111112z z s yf yf y f x x x x x∂∂∂∂∂⎛⎫'''''===⋅= ⎪∂∂∂∂∂⎝⎭, ()211111211112d d z z s t yf f y f f f xyf yf x y y x y y y ⎛⎫∂∂∂∂∂⎛⎫'''''''''''===+⋅+⋅=++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭,()212111221222d d d d z z s t s t xf f x f f f f y y y y yy y y ⎛⎫⎛⎫∂∂∂∂∂∂''''''''''==+=+++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭ 21112222x f xf f ''''''=++. (2)令22s x y =+,则22()z f x y =+是以s 为中间变量的x 和y 的函数.2z s f xf x x ∂∂''=⋅=∂∂,2z sf yf y y∂∂''=⋅=∂∂. 因为()f s 是s 的函数,所以f '也是s 的函数,从而f '是以s 中间变量的x 和y 的函数.故()()222222224z z xf f xf x f x f x x x x∂∂∂∂⎛⎫'''''''===+⋅=+ ⎪∂∂∂∂⎝⎭, ()()22224z z xf xf y xyf x y y x y∂∂∂∂⎛⎫'''''===⋅= ⎪∂∂∂∂∂⎝⎭, ()()222222224z z yf f yf y f y f y y y y⎛⎫∂∂∂∂'''''''===+⋅=+ ⎪∂∂∂∂⎝⎭. (3)令2s xy =2t x y =,则212122z s t f f y f xyf x x x ∂∂∂''''=⋅+⋅=+∂∂∂,212122z s tf f xyf x f y y y∂∂∂''''=⋅+⋅=+∂∂∂. ()221222z z y f xyf x x x x∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂⎝⎭211122212222s t s t y f f yf xy f f x x x x ∂∂∂∂⎛⎫⎛⎫'''''''''=⋅+⋅++⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭()()2221112221222222y y f xyf yf xy y f xyf '''''''''=++++ 43222111222244yf y f xy f x y f '''''''=+++, ()22122z z y f xyf x y y x y∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂∂⎝⎭ 21111222122222s t s t yf y f f xf xy f f y y y y ⎛⎫⎛⎫∂∂∂∂''''''''''=+⋅+⋅++⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭ ()()222111122212222222yf y xyf x f xf xy xyf x f ''''''''''=+++++ 32231211122222252yf xf xy f x y f x yf ''''''''=++++, ()221222z z xyf x f y y y y⎛⎫∂∂∂∂''==+ ⎪∂∂∂∂⎝⎭ 211112212222s t s t xf xy f f x f f y y y y ⎛⎫⎛⎫∂∂∂∂'''''''''=+⋅+⋅+⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭ ()()2221111221222222xf xy xyf x f x xyf x f '''''''''=++++ 22341111222244xf x y f x yf x f '''''''=+++. (4)令sin u x =,cos v y =,x yw e +=,则1313d cos d x y z u w f f xf e f x x x +∂∂''''=+=+∂∂,2323d sin d x y z v w f f yf e f y y y+∂∂''''=+=-+∂∂. ()2132cos x y z z xf e f x x x x+∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂⎝⎭ 1111333133d d sin cos d d x y x y u w u w xf x f f e f e f f x x xx ++∂∂⎛⎫⎛⎫''''''''''=-+++++ ⎪ ⎪∂∂⎝⎭⎝⎭()()1111333133sin cos cos cos x yx y x y x y xf x xf e f e f e xf e f ++++''''''''''=-+++++ ()2231111333sin cos 2cos x y x yx y ef xf xf e xf e f +++''''''''=-+++, ()213cos x y z z xf e f x y y x y+∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂∂⎝⎭121333233d d cos d d x y x y v w v w x f f e f e f f y y yy ++⎛⎫⎛⎫∂∂'''''''''=++++ ⎪ ⎪∂∂⎝⎭⎝⎭()()121333233cos sin sin x yx y x y x y x yf e f e f e yf e f ++++'''''''''=-+++-+ ()2312133233cos sin cos sin x y x yx y x y ef x yf e xf e yf e f ++++'''''''''=-+-+, ()2232sin x y z z yf e f y y y y+⎛⎫∂∂∂∂''==-+ ⎪∂∂∂∂⎝⎭ 2222333233d d cos sin d d x y x y v w v w yf y f f e f e f f y y yy ++⎛⎫⎛⎫∂∂''''''''''=--++++ ⎪ ⎪∂∂⎝⎭⎝⎭ ()()2222333233cos sin sin sin x yx y x y x y yf y yf e f e f e yf e f ++++''''''''''=---+++-+ ()2232222333cos sin 2sin x y x yx y e f yf yf e yf e f +++''''''''=-+-+.习题7-51.设2cos e 0x y x y +-=,求d d yx. 解 设2(,)cos e x F x y y x y =+-,则22d e 2e 2d sin sin x x x y F y xy xyx F y x y x --=-=-=--+. 2.设ln ln 1xy y x ++=,求1d d x yx =. 解 设(,)ln ln 1F x y xy y x =++-,则221d 1d x y y F y xy y x x F x y x x y++=-=-=-++. 当1x =时,由ln ln 1xy y x ++=知1y =,所以1d 1d x yx ==-. 3.设arctany x =,求d d y x. 解设(,)ln arctan y F x y x=,则2222222222211d11d1xyyx x yyFy x yx y x yxy xx F x yx x y x yyx⎛⎫-⋅- ⎪⎝⎭⎛⎫++ ⎪+++⎝⎭=-=-=-=--⋅-++⎛⎫+ ⎪⎝⎭.4.设222cos cos cos1x y z++=,求zx∂∂,zy∂∂.解设222(,,)cos cos cos1F x y z x y z=++-,则2cos sin sin22cos sin sin2xzFz x x xx F z z z∂-=-=-=-∂-,2cos sin sin22cos sin sin2yzFz y y yy F z z z∂-=-=-=-∂-.5.设方程(,)0F x y z xy yz zx++++=确定了函数(,)z z x y=,其中F存在偏导函数,求zx∂∂,zy∂∂.解1212()()xzF F y z Fzx F F y x F''++∂=-=-∂''++,1212()()yzF F x z Fzy F F y x F''++∂=-=-∂''++.6.设由方程(,,)0F x y z=分别可确定具有连续偏导数的函数(,)x x y z=,(,)y y x z=,(,)z z x y=,证明:1x y zy z x∂∂∂⋅⋅=-∂∂∂.证因为yxFxy F∂=-∂,zyFyz F∂=-∂,xzFzx F∂=-∂,所以1y xzx y zF FFx y zy z x F F F⎛⎫⎛⎫⎛⎫∂∂∂⋅⋅=-⋅-⋅-=-⎪⎪ ⎪⎪∂∂∂⎝⎭⎝⎭⎝⎭.7.设(,)u vϕ具有连续偏导数,证明由方程(,)0cx az cy bzϕ--=所确定的函数(,)z f x y=满足z za b cx y∂∂+=∂∂.证令u cx az=-,v cy bz=-,则x u u u c x ϕϕϕ∂=⋅=∂,y v v vc yϕϕϕ∂=⋅=∂,z u v u v u v a b z z ϕϕϕϕϕ∂∂=⋅+⋅=--∂∂. x u z u v c z x a b ϕϕϕϕϕ∂=-=∂+,y v z u vc zy a b ϕϕϕϕϕ∂=-=∂+. 于是 u v u v u vc c z zab a bc x y a b a b ϕϕϕϕϕϕ∂∂+=⋅+⋅=∂∂++. 8.设0ze xyz -=,求22zx∂∂.解 设(,,)zF x y z e xyz =-,则x F yz =-,z z F e xy =-. 于是x zz F z yzx F e xy ∂=-=∂-, ()222()z z zz z ye xy yz e y z z x x x x x e xy ∂∂⎛⎫--- ⎪∂∂∂∂∂⎛⎫⎝⎭== ⎪∂∂∂⎝⎭-()22z z zyzy z yz e y e xy e xy ⎛⎫-⋅- ⎪-⎝⎭=-()2322322z zzy ze xy z y z e exy --=-.9.设(,)z z x y =是由方程2e 0zxz y --=所确定的隐函数,求2(0,1)zx y∂∂∂.解 设2(,,)e z F x y z xz y =--,则x F z =-,e z z F x =-,2y F y =-. 于是x z z F z z x F e x ∂=-=∂-,2y zz F z yy F e x∂=-=∂-, ()()22z z zz z e x z e z z y yx y y x ex ∂∂--⋅⋅∂∂∂∂∂⎛⎫== ⎪∂∂∂∂⎝⎭-()()222z zz zz y y e x ze e x e x e x ----=-()()322z zzy e x yze ex --=-.由20ze xz y --=,知(0,1)0z =,得2(0,1)2zx y∂=∂∂.10.求由方程xyz +=(,)z z x y =在点(1,0,1)-处的全微分d z .解设(,,)F x y z xyz =x z F zx F xy ∂=-==∂+,y z F zy F xy ∂=-==∂+,d d d z zz x y x y x y ∂∂=+=∂∂,(1,0,1)d d z x y -=.11.求由下列方程组所确定的函数的导数或偏导数:(1)设22222,2320,z x y x y z ⎧=+⎪⎨++=⎪⎩求d d y x ,d d z x; (2)设0,1,xu yv yu xv -=⎧⎨+=⎩求u x ∂∂,u y ∂∂,v x ∂∂,vy ∂∂; (3)设sin ,cos ,uux e u v y e u v ⎧=+⎪⎨=-⎪⎩求u x ∂∂,u y ∂∂,v x ∂∂,vy∂∂. 解 (1)分别在两个方程两端对x 求导,得d d 22,d d d d 2460.d d zy x y x xy z x y z x x ⎧=+⎪⎪⎨⎪++=⎪⎩称项,得d d 22,d d d d 23.d d y z y x x xy z y z x xx ⎧-=-⎪⎪⎨⎪+=-⎪⎩ 在 2162023y D yz y y z-==+≠的条件下,解方程组得213d 6(61)d 622(31)x x z yxz x x z x D yz y y z ------+===++. 222d 2d 6231y xy x z xy xx D yz y z --===++. (2)此方程组确定两个二元隐函数(,)u u x y =,(,)v v x y =,将所给方程的两边对x 求导并移项,得,.uv x y u x xu v y x v xx ∂∂⎧-=-⎪⎪∂∂⎨∂∂⎪+=-⎪∂∂⎩ 在220x yJ x y y x-==+≠的条件下,22u y v x u xu yvx y x x y y x ---∂+==--∂+, 22x uy v v yu xvx y x x yy x--∂-==-∂+. 将所给方程的两边对y 求导,用同样方法在220J x y =+≠的条件下可得22u xv yu y x y∂-=∂+,22v xu yv y x y ∂+=-∂+. (3)此方程组确定两个二元隐函数(,)u u x y =,(,)v v x y =是已知函数的反函数,令(,,,)sin u F x y u v x e u v =--,(,,,)cos u G x y u v y e u v =-+.则 1x F =,0y F =,sin u u F e v =--,cos v F u v =-, 0x G =,1y G =,cos u u G e v =-+,sin v G u v =-.在sin cos (,)(sin cos )0(,)cos sin u u u e v u v F G J ue v v u u v e v u v---∂===-+≠∂-+-的条件下,解方程组得1cos 1(,)1sin 0sin (,)(sin cos )1uu v u F G vu v x J x v J e v v -∂∂=-=-=-∂∂-+, 0cos 1(,)1cos 1sin (,)(sin cos )1uu v u F G vu v y J y v J e v v -∂∂-=-=-=-∂∂-+, sin 11(,)1cos (,)[(sin cos )1]cos 0u uu ue v v F G v e x J u x J u e v v e v --∂∂-=-=-=∂∂-+-+, sin 01(,)1sin (,)[(sin cos )1]cos 1u uu u e v v F G v e x J u x J u e v v e v --∂∂+=-=-=∂∂-+-+.习题7-61.求下列曲线在指定点处的切线方程和法平面方程: (1)2x t =,1y t =-,3z t =在(1,0,1)处; (2)1t x t =+,1t y t+=,2z t =在1t =的对应点处;(3)sin x t t =-,1cos y t =-,4sin2t z =在点2π⎛- ⎝处; (4)2222100,100,x y y z ⎧+-=⎪⎨+-=⎪⎩在点(1,1,3)处. 解 (1)因为2t x t '=,1t y '=-,23t z t '=,而点(1,0,1)所对应的参数1t =,所以(2,1,3)=-T .于是,切线方程为11213x y z --==-. 法平面方程为2(1)3(1)0x y z --+-=,即 2350x y z -+-=.(2)因为2211(1)(1)t t t x t t +-'==++,22(1)1t t t y t t -+'==-,2t z t '=,1t =对应着点1,2,12⎛⎫⎪⎝⎭,所以 1,1,24⎛⎫=- ⎪⎝⎭T .于是,切线方程为 1212148x y z ---==-. 法平面方程为 281610x y z -+-=.(3)因为1cos t x t '=-,sin t y t '=,2cos 2t t z '=,点1,12π⎛- ⎝对应在的参数为2t π=,所以(=T .于是,切线方程为112x y π-+=-=. 法平面方程为402x y π++--=. (4)将2222100,100,x y y z ⎧+-=⎪⎨+-=⎪⎩的两边对x 求导并移项,得 d 22,d d d 220,d d yy x xy z y z xx ⎧=-⎪⎪⎨⎪+=⎪⎩ 由此得 2002d 420d 422x z y xz x y x yz y y z --===-,2220d 420d 422y x y z xy xy x yz z y z-===.(1,1,3)d 1d y x =-,(1,1,3)d 1d 3z x =.从而 1,1,3=- ⎪⎝⎭T . 故所求切线方程为113331x y z ---==-. 法平面方程为 3330x y z -+-=.2.在曲线x t =,2y t =,3z t =上求一点,使此点的切线平行于平面24x y z ++=.解 因为1t x '=,2t y t '=,23t z t '=,设所求点对应的参数为0t ,于是曲线在该点处的切向量可取为200(1,2,3)t t =T .已知平面的法向量为(1,2,1)=n ,由切线与平面平行,得0⋅=T n ,即2001430t t ++=,解得01t =-和13-.于是所求点为(1,1,1)--或111,,3927⎛⎫-- ⎪⎝⎭. 3.求下列曲面在指定点处的切平面和法线方程: (1)222327x y z +-=在点(3,1,1)处; (2)22ln(12)z x y =++在点(1,1,ln 4)处; (3)arctany z x =在点1,1,4π⎛⎫ ⎪⎝⎭处. 解(1)222(,,)327F x y z x y z =+--,(,,)(6,2,2)x y z F F F x y z ==-n ,(3,1,1)(18,2,2)=-n .所以在点(3,1,1)处的切平面方程为9(3)(1)(1)0x y z -+---=,即 9270x y z +--=. 法线方程为311911x y z ---==-. (2)22(,,)ln(12)F x y z x y z =++-,222224(,,),,11212x y z x yF F F x y x y ⎛⎫==- ⎪++++⎝⎭n ,(1,1,ln 4),1,12=- ⎪⎝⎭n .所以在点(1,1,ln 4)处的切平面方程为2234ln 20x y z +--+=.法线方程为 12ln 2122y z x ---==-. (3)(,,)arctanyF x y z z x=-, 2222(,,),,1x y z y xF F F x y x y ⎛⎫-==- ⎪++⎝⎭n , 1,1,411,,122π⎛⎫ ⎪⎝⎭⎛⎫=-- ⎪⎝⎭n . 所以在点1,1,4π⎛⎫⎪⎝⎭处的切平面方程为 202x y z π-+-=. 法线方程为 114112z x y π---==-. 4.求曲面2222321x y z ++=上平行于平面460x y z ++=的切平面方程.解 设222(,,)2321F x y z x y z =++-,则曲面在点(,,)x y z 处的一个法向量(,,)(2,4,6)x y z n F F F x y z ==.已知平面的法向量为(1,4,6),由已知平面与所求切平面平行,得246146x y z ==,即12x z =,y z =. 代入曲面方程得 22223214z z z ++=. 解得 1z =±,则12x =±,1y =±. 所以切点为 1,1,12⎛⎫±±± ⎪⎝⎭. 所求切平面方程为 21462x y z ++=±5.证明:曲面(,)0F x az y bz --=上任意点处的切平面与直线x yz a b==平行(a ,b 为常数,函数(,)F u v 可微).证 曲面(,)0F x az y bz --=的法向量为1212(,,)F F aF bF ''''=--n ,而直线的方向向量(,,1)a b =s ,由0⋅=n s 知⊥n s ,即曲面0F =上任意点的切平面与已知直线x yz a b==平行. 6.求旋转椭球面222316x y z ++=上点(1,2,3)--处的切平面与xOy 面的夹角的余弦.解 令222(,,)316F x y z x y z =++-,曲面的法向量为(,,)(6,2,2)x y z F F F x y z ==n ,曲面在点(1,2,3)--处的法向量为1(1,2,3)(6,4,6)--==--n n ,xOy 面的法向量2(0,0,1)=n ,记1n 与2n 的夹角为θ,则所求的余弦值为1212cos θ⋅===n n n n . 7.证明曲面3xyz a =(0a >,为常数)的任一切平面与三个坐标面所围成的四面体的体积为常数.证 设3(,,)F x y z xyz a =-,曲面上任一点(,,)x y z 的法向量为(,,)n yz xz xy =,该点的切平面方程为()()()0yz X x xz Y y xy Z z -+-+-=,即 33yzX xzY xyZ a ++=.这样,切平面与三个坐标面所围成的四面体体积为33331333962a a a V a yz xz xy =⋅⋅⋅=.习题7-71.求函数22z x y =+在点(1,2)处沿从点(1,2)到点(2,2的方向的方向导数.。

同济大学数学系《高等数学》(第7版)(上册)-课后习题(含考研真题)详解-第七章 微分方程【圣才出品

同济大学数学系《高等数学》(第7版)(上册)-课后习题(含考研真题)详解-第七章 微分方程【圣才出品



所以 y=3sinx-4cosx 是所给微分方程的解. (3)根据 y=x2ex,得
进而得

所以 y=x2ex 不是所给微分方程的解.
(4)根据
,得
,进而得

所以
是所给微分方程的解.
3.在下列各题中,验证所给二元方程所确定的函数为所给微分方程的解:
2 / 126
圣才电子书
十万种考研考证电子书、题库视频学习平


解:(1)在方程 x2-xy+y2=C 两端对 x 求导,得

所以所给二元方程所确定的函数是微分方程的解.
(2)在方程 y=ln(xy)两端对 x 求导,得
即(xy-x)y′-y=0,再在上式两端对 x 求导,得
即 给微分方程的解.
.所以所给二元方程所确定的函数是所
,即 tany·tanx=±C1,所以原方程的通解为
tany·tanx=C
(6)原方程分离变量,得 10-ydy=10xdx,两端积分得
可写成 (7)原方程为
. 分离变量得
两端积分得
或写成
,即

所以原方程的通解为
(ex+1)(ey-1)=C
(8)原方程分离变量,得
两端积分得
即 ln|sinysinx|=lnC1,或写成 sinysinx=±C1,所以原方程的通解为 sinysinx=C. (9)原方程分离变量,得(y+1)2dy=-x3dx.两端积分得
圣才电子书

十万种考研考证电子书、题库视频学习平 台
第七章 微分方程
7.2 课后习题详解
习题 7-1 微分方程的基本概念
1.试说出下列各微分方程的阶数:
解:(1)一阶;(2)二阶;(3)三阶;(4)一阶;(5)二阶;(6)一阶. 2.指出下列各题中的函数是否为所给微分方程的解:

高等数学-第七章空间解析几何与向量代数习题课

高等数学-第七章空间解析几何与向量代数习题课

A12

B12

C
2 1
A22

B
2 2

C
2 2
(3)直线与平面相交(夹角)
设直线 L 的方向向量为 s (m, n, p) , 平面 的法向量为
n ( A, B,C), 则它们的交角: Am Bn Cp
sin
A2 B2 C 2 m2 n2 p2
(4)线、面之间的平行与垂直
3 3

a 15 , b 5 a 25
17
3
17
于是
p ( 15 17 , 25 17, 0 )
【例8】已知向量 a (4, 3, 2),u 轴与三坐标轴正向构成 相等锐角,求 a 在 u 轴上的投影。
分析:先求出 u 轴上的单位向量,再利用向量投影公式。
解:设 u 轴的方向余弦分别为 cos,cos ,cos ,
解:M1M2 (1, 2,1)
| M1M2 | 2
方向余弦为
cos 1
2
, cos

2 2
, cos
1 2
方向角为 2 , 3 , 1
3
4
3
【例2】确定 , , 的值,使向量i 3 j ( 1)k 与向量
( 3)i ( ) j 3k 相等。并求此时向量的模与方向余弦。
分析: 向量相等的定义是向量坐标对应相等。
解: 由已知条件得
3

3




1 3
易得
1



4
1
即当 1, 4, 1 时两向量相等。 此时向量为

高等数学教材第七章答案

高等数学教材第七章答案

高等数学教材第七章答案第七章:多元函数微分学1. 习题一答案:1.1 题目:求函数 $z = 2x^3 + 3y^2 - 6xy$ 在点 $(1, 2)$ 处的偏导数$\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$。

解答:首先计算 $\frac{\partial z}{\partial x}$。

根据偏导数的定义,我们将 $y$ 视为常数,对 $z$ 对 $x$ 进行求偏导数:$$\frac{\partial z}{\partial x} = 6x^2 - 6y$$接下来计算 $\frac{\partial z}{\partial y}$。

同样,我们将 $x$ 视为常数,对 $z$ 对 $y$ 进行求偏导数:$$\frac{\partial z}{\partial y} = 6y - 6x$$所以,函数 $z = 2x^3 + 3y^2 - 6xy$ 在点 $(1, 2)$ 处的偏导数为$\frac{\partial z}{\partial x} = 6x^2 - 6y$ 和 $\frac{\partial z}{\partial y} = 6y - 6x$。

1.2 题目:计算函数 $f(x, y) = x^3 + y^3$ 在点 $(1, 1)$ 处的全微分。

解答:根据全微分的定义,我们有:$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$$首先计算 $\frac{\partial f}{\partial x}$ 和 $\frac{\partial f}{\partial y}$。

对 $f(x, y) = x^3 + y^3$ 分别对 $x$ 和 $y$ 求偏导数:$$\frac{\partial f}{\partial x} = 3x^2, \quad \frac{\partial f}{\partial y} =3y^2$$代入点 $(1, 1)$,得到 $\frac{\partial f}{\partial x} = 3$ 和$\frac{\partial f}{\partial y} = 3$。

(完整版)高等数学第七章微分方程试题及答案

(完整版)高等数学第七章微分方程试题及答案

解:特征根为
i ,齐次方程的通解为: y c1 cos x c2 sin x
y' ' y x , y ? c1 c2 x c1 0, c2 1 y ? x
?
0x
y' ' y 3sin 2 x , y x e c1 cos x c2 sin x c1 sin 2x c2 cos 2x
待入原式得出: c1 1, c2 0 ,所以 y ? sin 2 x
Байду номын сангаас
解:变形得: dx x y 4 即 dx 1 x y3 ,是一阶线性方程
dy
y
dy y
P( y)
1
3
,Q ( y) y
y
1 dy
x ey
1 dy
y3e y dy C
1 y 4 Cy 3
三、伯努力方程 xy ' y x 3y 6
解: xy 6 y' y 5 x 3 ,
dy y 6 y 5 x 2 ,
dx
dx
du
du
u y , 所以 u y
dy
dy
dy
yu .( 将 y 看成自变量 )
eu (u 1)
u
1e
du ueu eu
y
u
u
dy 1 e
u eu
u
1e
1 eu u eu du
dy
d (u eu )
,
y
u eu
dy
u eu
, ln
y
c
1 ln y ln
y
1 u eu
,
yc
c y u eu
二、一阶线形微分方程
2

《高等数学》(下)习题参考答案

《高等数学》(下)习题参考答案

《高等数学》(下)习题参考答案第七章 空间解析几何与矢量代数习题一、 1.(,,),(,,),(,,)x y z x y z x y z ------; 2.k j i 573--;3.2y z +=或210x y z +-=; 4.圆, 圆柱面; 5.2340x y z --+=. 二、 1. 2. 3. 4. 5.B C B A C三、1.u =11232.cos cos cos 22343πππαβγαβγ=-=====;3.4-;4.32550x y z +-+=;5.3πθ=; 6.P r j βα=;7.2OABS ∆= 2228.9x y z ++=; 222289.0x x y z ⎧-+=⎨=⎩; 10.⎪⎭⎫ ⎝⎛--8343,8356,83273; 11.0x y z -+=. 第八章 多元函数微分学习题一 一、 1、yyx +-112; 2、},0,0|),{(2y x y x y x ≥≥≥; 3、1,2; 4、⎪⎪⎭⎫ ⎝⎛++++xy xy xy xy x 1)1ln()1(,12)1(-+x xy x ; 5、22812y x -,22812x y -,xy 16-. 二、1. 2. 3. 4. 5.D D B B A三、 111ln ln ln z z z z y y z y z uuuy x x y z x x y x y xyz--∂∂∂===∂∂∂、 2、)ln (1z x y z y x x u x z y +=∂∂-,)ln (1z x y z y x yux z y +=∂∂-,)ln (1y z x z y x z u x z y +=∂∂-2222222222222222223z xy z xy x x y y x y z y x x y x y ∂∂==-∂+∂+∂-=∂∂+、()()()4、xdz yx xdy zx dx yzx du yz yz yz ln ln 1++=-5、dy dx 3231+习题二 一、1、)()(y x f xy y x yf +'++,)()()()(y x f xy y x f y x y x f +''++'+++;2、2242232f y x f y x ''+'; 3、dy f f dx f f ⎪⎪⎭⎫ ⎝⎛+''-''-12121; 4、y x y x -+; 5、x y z z z -ln ln ,yyz xy z ln 2-二、1、C ;2、A ;3、C ;4、B ;5、C 三、 1、321f yz f y f x u '+'+'=∂∂,32f xz f x yu '+'=∂∂,3f xy z u '=∂∂ 3、212f x f y x z '+'=∂∂,22122211124)(2f xy f y x f xy f yx z''-''-+''+'=∂∂∂ 6、)()(1)](1)[(v g u f v g u f x z ''+'+'=∂∂,)()(1)](1)[(v g u f v g u f y z ''+'+'-=∂∂ 7、2222111133332sin cos 2cos x y x y x y zf x f x e f x f e e f x+++∂''''''''=-⋅+⋅+⋅+⋅+∂; 332232313122sin cos sin cos f e f y e f e f x e y x f y x zy x y x y x y x ''+''⋅-'+''⋅+''-=∂∂∂++++ 8、2222222222222222222221213394133u u u u u u u x x u u u u u u u y y u u u u x y ζηζζηηζηζζηηζζηη∂∂∂∂∂∂∂=+=++∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=--=++∂∂∂∂∂∂∂∂∂∂∂∂=---∂∂∂∂∂∂ 习题三 一、12121281610148x y z x y z ---==-+-=-2、042=-+y x ,2112zy x =-=-3.1+4.326i j k --5.(3,2)大 36二、1. 2. 3. 4. 5.B D A C C 三、(1,2)2zl∂=∂、13(,1)2-、极小值2e-2433p p 、22222222221212121251122022020x y zx y z x y z z x y x y z F x y z x y z z x y x y z F x x F y y F z x λλλλλλλλ=++=+++==+++--+++-=-+=⎧⎪=-+=⎨⎪=++=⎩2、设椭圆上点为(x,y,z),则原点到椭圆上这点的距离平方为d ,其中,,满足和令(,,)()()==11求解方程,最长距离为d d 6、在点)1,1(-处有极小值:-2;极大值:6.第九章 重积分 习题一一、1.()2aba b + 2、⎰⎰e ey dx y x f dy ),(10;3、)1(214--e ;4、1210cos sin (cos ,sin )d f d πθθθρθρθρρ+⎰⎰;5、⎰⎰-+--2211111),(x x dy y x f dx二、1. 2. 3. 4. 5.C A B D C三、1.[36,100]ππ; 62.55; 3.49; 4.e e 2183-; 5.2643π;6.38; 7.π6; 8.)0(32f 'π. 习题二 一、1、⎰⎰⎰+----111112222),,(y x x xdz z y x f dy dx ; 2、π32; 3、θϕϕd drd r dv sin 2=;4、⎰⎰⎰adr r f r d d 0224020)(sin ππϕϕθ; 5、dxdy y z x z dS 221⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+= 二、1. B ;2.B ;3.D ;4.C ;5.B三、1.)852(ln 21-; 2.481; 3.467a π; 4.6π; 5.)22(162-π; 3232001()6.()2[()],lim (0)33t t F t F t r h h f r dr h hf t πππ+→=+=+⎰; 27.2()a a π-.第十章 习题一 一、填空题 1、23202(2sin 2cos 2)sin 2ta t t t t dt π--+⎰; 2、2; 3、34/3;4、⎰; 5、π2二、选择题1、(B);2、(A);3、(C );4、(A );5、(A );6、(C )三、计算题1、242-⎪⎭⎫ ⎝⎛+a e a π; 2、9四(略)五1、π2-;2、1/2 六、⎰++Lds xxQP 2412七、⎰Γ++++ds yx yRxQ P 2294132习题二一、选择题 1、(B ); 2、(D ); 3、(B ); 4、(D ); 5、(C ) 二、8 三、1、42R π-;2、241π;3、281a m π四、3cos 42cos 9+ 五、y x y x u 2),(=六、283a π七、八(略) 习题三一、填空题1、π8;2、321; 3、π8-; 4、dS R Q P ⎰⎰∑++53223; 5、22a π 二、选择题1、(D );2、(B );3、(C );4、(C ) 三、计算题 1、427-; 2、π221+ 四、 1、π23; 2、81五、552a π六、π32第十一章 习题一 一、判断题1、√;2、×;3、√;4、×;5、√;6、× 二、填空题1、0;2、1>p 且.const p =;3、1>p ,10≤<p ,0≤p ;4、 ,2,1,1=≥+n u u n n 且0lim =∞→n n u三、选择题 1、(C ); 2、(A ); 3、(C ); 4、(A ); 5、(C ) 四(略) 五、1、发散;2、收敛 六、1、发散;2、收敛 七、1、发散;2、收敛八、当b a >时,收敛;当b a <时,发散;当b a =时,可能收敛,也可能发散. 九、1、收敛;2、收敛 十(略) 习题二一、判断题1、×;2、√;3、√;4、×;5、√ 二、填空题1、⎪⎭⎫⎢⎣⎡-21,21; 2、)5,1[-; 3、)1,1[-,)1ln(x --; 4、22,2)1(1)1(2ln 011≤<-⋅+-+∑∞=++x x n n n n n; 5、26,)4(3121011-<<-+⎪⎭⎫ ⎝⎛-∑∞=++x x n nn n三、选择题1、(D );2、(B );3、(B );4、(C );5、(C ) 四、1、)3,3[-;2、)3,1[;3、]1,1[- 五、 1、)1,1(,)1(1)(2-∈-=x x x s ;2、)1,1(,arctan 21)]1ln()1[ln(41)(-∈+--+=x x x x x s六、2(1)(),(1,1](1)n nn f x x x x n n ∞=-=+∈--∑七、)1,1(,)1(2131)(01-∈⎪⎭⎫⎝⎛-+=∑∞=+x x x f nn n n八、)1,1(,)1ln(arctan 21222-∈+-++x x x x xx 第十二章 习题一 一、判断题1、×;2、√;3、√;4、×;5、× 二、填空题1、2)(ln 21)(x x f =;2、x cxe y -=;3、x y 2=;4、x x x y 91ln 31-=;5、yP x Q ∂∂=∂∂ 三、1、C y x =⋅tan tan ;2、C e e y x =-⋅+)1()1( 四、22sec )1(=⋅+y e x 五、s cm /3.269 六、1、Cx y x =-332;2、223x y y -= 七、)ln 41(x x y -= 八、 1、)(sin C x ey x+=-; 2、322Cy y x +=; 3、)cos 1(1x y --=ππ 九、⎪⎪⎭⎫ ⎝⎛-+=-t m ke k m k t k k v 2122121 十、xx x f 3132)(+=十一、)1,1[,)1ln()(1-∈--=∑∞=x x e x f x n n习题二一、选择题 1、(C ); 2、(B ); 3、(D ); 4、(C ); 5、(B ); 6、(A ); 7、(D ) 二、填空题1、3221)3(C x C x C e x y x +++-=;2、22121C x x e C y x +--=; 3、)1ln(1+-=ax ay三、1、x x e C e C y 221-+=;2、x C x C y sin cos 21+=;3、x C x C e C e C y x x sin cos 4321+++=-;4、4x x y e e -=- 四、⎪⎭⎫ ⎝⎛-+=+-++-tk k tk k k eek k v x 1221222424122014五、)sin (cos 21)(x e x x x ++=ϕ 六、u u f ln )(= 七、1)(21)(++=-x xe e x s。

高数答案第七章

高数答案第七章

第七章空间解析几何与向量代数§向量及其线性运算必作题:P300 —301 :1, 3, 4, 5, 6, 7, 8, 9, 12, 13, 15, 18, 19. 必交题:1. 求点(aM分别关于⑴各坐标而:⑵"坐标轴:⑶坐标原点的对称点的坐标.解:(1) xoy 而(a,b, ? c)理oz 面(? a,b , c) , xoz 面(a 广bQ ;(2) ox 轴(a A brc) z oy 轴(? ab? c) , oz 轴(? a,-b,c);(2)关于原点(? a,-b? c)a3、坐标而上的点与坐标轴上的点的坐标各有什么特征,指出下列各点的位置A(3,4,0), 3(0,4,3), C(3,0,0), £ >(0-1,0).解: xoy 而:z=0, yoz 而:x=0> xoz 而:y=0 ?ox 轴:y=O,z=O. oy 轴:x=0,z=0, oz 轴:x=0z y=0tA在xoy而上,B在yoz而上,C在x轴上,D在y轴匕4、在z 轴上求与点AM, 1,7) 和点B(3,5,-2) 等距离的点的坐标.14 14 解:设 C (0, 0, z),有|AC| = |BC|,解得:z=—,所求点为(0Q —).9 95、设“ =a-b + 2c.v = -a + 3b-c, 试用a.b.c 表示2u-3v? 解:2M一3” = 5a —1 仍+ 7c5、已知两点和M,3,0.2), 求向的模,方向余弦和方向角.解:={-1-72,1} , = 2 ,方向余弦为cos a =~~方向角汀上疗= cos y =—"辛: :P = ---- t Y ——4 3解:设0 "戯的模厨 i 方向余弦= = = 求2={5},贝2 2* = x/J * “ = {o 丄苗}7、设有向疑片A , kR| = 2,它与x 轴、y 轴的夹角分别为彳和?如果已知人(1,0,3),求g 的坐标.解:设巴的坐标为(x,y,z ) ?叶马={x-l,y,乙一 3},-八一! ■= cos —=—,所以x = 2 :I = cos-=八,所以 y = V2 ,又障可=2,,所以 J1 + 2 + (Z _3)2 =2,解得 z = 2 或 z =4,所以人的坐标为(2,72,2)或者(2,72,4).& 求平行于向疑方={6,7, — 6}的单位向量. ){6,7,-6},即必作题: P309-310 : 1, 2, 3, 4, 6, 7, 8, 9. 必交题:1、已知向量“ ={1, 一 2,2}与/? = {2,3,几}垂直,向 M c = {1,1,-2}与2={22平行,求兄和“的值解:? =736 + 49 + 36 = 11,与N 平行的单位向疑为土丄 数量积向量积混合积2、已知向Sa = 2i-3j + k9b = i-j + 3k 9c = i-2j A 别计算以下各式⑴(a A B)c-(a A c)b; (2) (a + b)x(b + c) ; (3) (axb A c.解:(1) - (a ? c)b = 8c - 8b = -8 了 - 24 斤(2) (A+b)x(b+c) = (A -4j+4k)x(2i-3j+3k) = -j-k2 一 31⑶(“ xb)0= 1-1 3=2 1 -2 0OAxOB : 解:-37-3j3、已知 OA=l+3k,OB = J + 3k f 求 AABO 的而积. AABO 的而积 S = A \OA X OB\ =.§曲面及其方程必作题;必交P318-319 : 1、2、5、6、7、8、9、10.1、一动点与两従点 A(2,3,l)和B(4,5,6)等距离,求该动点的轨迹方程解:设动点因为网=阿所以(x-2)2+(y-3) 2+(z-l) 2=(x-4) 2+(y-5)2 + (z-6)2,解得动点的轨 迹方程为 2x + 2y + 5z.2、指出下列方程在平而解析几何和空间解析几何中分别表示什么图形2 2解:(DxOy 坐标而上椭圆一+ — = 1绕6轴旋转形成,或者妝力坐标而上椭圆一+ A - 4 =1绕6轴旋转形成。

高等数学第7章(第8节)

高等数学第7章(第8节)
原方程通解为
y C 1 e x C 2 e x x e x
x e
k x
i x i x
第四步 分析 y 的特点
y y1 y1 k x

x e

~ Rm cos x Rm sin x
y1 y1
y

y1 y1

y1 y1
y*
~ 所以 y 本质上为实函数 , 因此 Rm , Rm 均为 m 次实
因此特解为 y* x ( 1 x 1) e 2 x . 2
所求通解为
1 ( 2
x 2 x ) e2 x .
y 3 y 2 y 1 例3. 求解初值问题 y (0) y (0) y (0) 0
解: 本题 0 , 特征方程为
y* e x [ Q ( x) Q ( x) ] y* e x [ 2 Q ( x) 2 Q ( x) Q ( x) ]
代入原方程 , 得
(1) 若 不是特征方程的根, 则取 x e为[ m 次待定系数多项式 ( x) (2 p q ) Q ( x) ] Q ( x) ( 2 p ) Q Q (x) 从而得到特解
x
i 为特征方程的 k (=0, 1 )重根, 则设特解为
y* x e
k x
~ [ Rm ( x) cos x Rm ( x) sin x]
3. 上述结论也可推广到高阶方程的情形.
思考与练习
1 . (填空) 设
时可设特解为
y* x (a x b) cos x (cx d )sin x
y p y q y Pm ( x) e( i ) x

高等数学课后习题答案--第七章

高等数学课后习题答案--第七章
135
11、证明:函数 u ( x, t ) =
1 2a πt
e

( x −b ) 2 4 a 2t
满足热传导方程
∂u ∂ 2u = a2 2 。 ∂t ∂x
【解】
− ∂u ( x, t ) 1 =− e ∂t 8a 3 πt 5
( x −b ) 2 4 a 2t
(− x 2 + 2bx + 2a 2 t − b 2 )
x ⎧ ⎪u = e cos y, (1) ⎨ x ⎪ ⎩v = e sin y;
⎛ e x cos y − e x sin y ⎞ ⎟ 【答案】 (1) J = ⎜ ⎜ e x sin y e x cos y ⎟ ; ⎝ ⎠
⎧u = ln x 2 + y 2 , ⎪ (2) ⎨ y ⎪v = arctan . x ⎩ x y ⎞ ⎛ ⎜ 2 ⎟ 2 2 x +y x + y2 ⎟ ⎜ . (2) J = y x ⎟ ⎜ − ⎜ x2 + y2 x2 + y 2 ⎟ ⎝ ⎠
(1) u = sin(ax − by ); (2) u = e ax cos bx; (3) u = ye xy ; (4) u = x ln y . 【答案】 (1) a 2 sin( −ax + by ) , − ab sin(− ax + by ) , b 2 sin(− ax + by ) ; (2) a 2e ax cos(by ) , − abe ax sin(by ) , − b 2e ax cos(by ) ; (3) y 3e xy , ( xy 2 + 2 y )e xy , ( x 2 y + 2 x)e xy ;

高等数学,课后习题答案,第七章,高分必备

高等数学,课后习题答案,第七章,高分必备

⾼等数学,课后习题答案,第七章,⾼分必备⾼等数学,课后习题答案,第七章,⾼分必备习题七1. 在空间直⾓坐标系中,定出下列各点的位置:A(1,2,3); B(-2,3,4); C(2,-3,-4);D(3,4,0); E(0,4,3); F(3,0,0).解:点A在第Ⅰ卦限;点B在第Ⅱ卦限;点C在第Ⅷ卦限;点D在xOy⾯上;点E在yOz⾯上;点F在x轴上.2. xOy坐标⾯上的点的坐标有什么特点?yOz⾯上的呢?zOx⾯上的呢?答: 在xOy⾯上的点,z=0;在yOz⾯上的点,x=0;在zOx⾯上的点,y=0.3. x轴上的点的坐标有什么特点?y轴上的点呢?z轴上的点呢?答:x轴上的点,y=z=0;y轴上的点,x=z=0;z轴上的点,x=y=0.4. 求下列各对点之间的距离:(1)(0,0,0),(2,3,4);(2)(0,0,0),(2,-3,-4);(3)(-2,3,-4),(1,0,3);(4)(4,-2,3),(-2,1,3).解:(1)s=(2)s==(3)s==(4)s==5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.解:点(4,-3,5)到x轴,y轴,z轴的垂⾜分别为(4,0,0),(0,-3,0),(0,0,5).故2s=xs==ys==5zs==.6. 在z轴上,求与两点A(-4,1,7)和B(3,5,-2)等距离的点. 解:设此点为M(0,0,z),则222222(4)1(7)35(2)z z-++-=++--解得149 z=即所求点为M(0,0,14 9).7. 试证:以三点A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三⾓形是等腰直⾓三⾓形. 证明:因为|AB|=|AC|=7.且有|AC|2+|AB|2=49+49=98=|BC|2.故△ABC为等腰直⾓三⾓形.8. 验证:()() ++=++a b c a b c.证明:利⽤三⾓形法则得证.见图7-1图7-19. 设2, 3.u v =-+=-+-a b c a b c 试⽤a , b , c 表⽰23.u v -解:232(2)3(3)2243935117u v -=-+--+-=-++-+=-+a b c a b c a b c a b c a b c10. 把△ABC 的BC 边分成五等份,设分点依次为D 1,D 2,D 3,D 4,再把各分点与A 连接,试以AB =c ,BC =a 表⽰向量1D A ,2D A ,3D A 和4D A .解:1115D A BA BD =-=--c a2225D A BA BD =-=--c a3335D A BA BD =-=--c a444.5D A BA BD =-=--c a11. 设向量OM 的模是4,它与投影轴的夹⾓是60°,求这向量在该轴上的投影.解:设M 的投影为M ',则1Pr j cos 604 2.2u OM OM =?=?=12. ⼀向量的终点为点B (2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A 的坐标.解:设此向量的起点A 的坐标A (x , y , z ),则{4,4,7}{2,1,7}AB x y z =-=----解得x =-2, y =3, z =0故A 的坐标为A (-2, 3, 0).13. ⼀向量的起点是P 1(4,0,5),终点是P 2(7,1,3),试求:(1) 12PP 在各坐标轴上的投影;(2) 12PP 的模;(3)12PP 的⽅向余弦;(4) 12PP ⽅向的单位向量.解:(1)12Pr j 3,x x a PP == 12Pr j 1,y y a PP ==12Pr j 2.z z a PP ==-(2)12(7PP ==(3)12cos 14x a PP α==12cos 14y a PP β==12cos 14z a PP γ==.(4) 12012{14PP PP===e i j .14. 三个⼒F 1=(1,2,3), F 2=(-2,3,-4), F 3=(3,-4,5)同时作⽤于⼀点. 求合⼒R 的⼤⼩和⽅向余弦. 解:R =(1-2+3,2+3-4,3-4+5)=(2,1,4)||=R cos cos cos αβγ===15. 求出向量a = i +j +k , b =2i -3j +5k和c =-2i -j +2k 的模,并分别⽤单位向量,,a b c e e e 来表达向量a, b , c .解:||==a ||==b ||3==c, , 3. a b c ===a b c e16. 设m =3i +5j +8k , n =2i -4j -7k , p =5i +j -4k ,求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量. 解:a =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k 在x 轴上的投影a x =13,在y 轴上分向量为7j .17. 向量r 与三坐标轴交成相等的锐⾓,求这向量的单位向量e r . 解:因αβγ==,故23cos1 α=,cos , cos αα==(舍去)则{cos ,cos ,cos }{})3333r αβγ===++e i j k .18. 已知两点M 1(2,5,-3),M 2(3,-2,5),点M 在线段M 1M 2上,且123M M MM =,求向径OM的坐标.解:设向径OM ={x , y , z }12{2,5,3}{3,2,5}M M x y z MM x y z =--+=----因为,123M MMM =所以,11423(3)153(2) 433(5)3x x x y y y z z z ?=?-=-??-=--?=-??+=-?=故OM ={111,,344-}. 19. 已知点P 到点A (0,0,12)的距离是7,OP 的⽅向余弦是236,,777,求点P 的坐标.解:设P 的坐标为(x , y , z ),2222||(12)49PA x y z =++-=得2229524x y z z ++=-+126570cos 6, 749z z γ==?==⼜122190cos 2, 749x x α==?==123285cos 3, 749y y β==?==故点P 的坐标为P (2,3,6)或P (190285570 ,,494949).20. 已知a , b 的夹⾓2π3?=,且3,4a b ==,计算: (1) a ·b ; (2) (3a -2b )·(a + 2b ).解:(1)a ·b =2π1cos ||||cos3434632=??=-??=-a b(2) (32)(2)3624-?+=?+?-?-?a b a b a a a b b a b b 2223||44||334(6)41661.=+?-=?+?--?=-a a b b21. 已知a =(4,-2, 4), b =(6,-3, 2),计算:(1)a ·b ; (2) (2a -3b )·(a + b );(3)2||-a b解:(1)46(2)(3)4238?=?+-?-+?=a b (2)(23)()2233-?+=?+?-?-?a b a b a a a b a b b b222222222||3||2[4(2)4]383[6(3)2]23638349113=-?-=?+-+--+-+=?--?=-a a b b(3) 222||()()2||2||-=-?-=?-?+?=-?+a b a b a b a a a b b b a a b b 36238499=-?+=22. 已知四点A (1,-2,3),B (4,-4,-3),C (2,4,3),D (8,6,6),求向量AB 在向量CD 上的投影. 解:AB ={3,-2,-6},CD ={6,2,3}Pr j CD AB CD AB CD=4.7==-23. 设重量为100kg 1M 2(1,4,2),计算重⼒所作的功(长度单位为m ).解:取重⼒⽅向为z 轴负⽅向,依题意有f ={0,0, -100×9.8}s = 12M M ={-2, 3,-6}故W = f ·s ={0, 0,-980}·{-2, 3,-6}=5880 (J)24. 若向量a +3b 垂直于向量7a -5b ,向量a -4b 垂直于向量7a -2b ,求a 和b 的夹⾓. 解: (a +3b )·(7a -5b ) =227||1615||0+?-=a a b b ①(a -4b )·(7a -2b ) =227||308||0-?+=a a b b ②由①及②可得:222221()1||||2||||4==?=a b a b a b a b a b ⼜21||02?=>a b b ,所以1cos ||||2θ?==a b a b , 故1πarccos 23θ==. 25. ⼀动点与M 0(1,1,1)连成的向量与向量n =(2,3,-4)垂直,求动点的轨迹⽅程.解:设动点为M (x , y , z )0{1,1,1}M M x y z =---因0M M n ⊥,故00M M n ?=. 即2(x -1)+3(y -1)-4(z -1)=0整理得:2x +3y -4z -1=0即为动点M 的轨迹⽅程.26. 设a =(-2,7,6),b =(4, -3, -8),证明:以a 与b 为邻边的平⾏四边形的两条对⾓线互相垂直. 证明:以a ,b 为邻边的平⾏四边形的两条对⾓线分别为a +b ,a -b ,且 a +b ={2,4, -2} a -b ={-6,10,14}⼜(a +b )·(a -b )= 2×(-6)+4×10+(-2)×14=0 故(a +b )⊥(a -b ).27. 已知a =3i +2j -k , b =i -j +2k ,求: (1) a ×b ; (2) 2a ×7b ; (3) 7b ×2a ; (4) a ×a .解:(1) 211332375122111--?=++=----a b i j k i j k(2) 2714()429870?=?=--a b a b i j k(3) 7214()14()429870?=?=-?=-++b a b a a b i j k(4)0?=a a .28. 已知向量a 和b 互相垂直,且||3, ||4==a b .计算:(1) |(a +b )×(a -b )|; (2) |(3a +b )×(a -2b )|.(1)|()()|||2()|+?-=?-?+?-?=-?a b a b a a a b b a b b a bπ2||||sin242=??=a b(2) |(3)(2)||362||7()|+?-=?-?+?-?=?a b a b a a a b b a b b b aπ734sin842==29. 求垂直于向量3i -4j -k 和2i -j +k 的单位向量,并求上述两向量夹⾓的正弦.解:411334555111221----?=++=--+--a b i j k i j k与?a b平⾏的单位向量)||?==--+?a b e i j k a b||sin ||||26θ?===a b a b .30. ⼀平⾏四边形以向量a =(2,1,-1)和b =(1,-2,1)为邻边,求其对⾓线夹⾓的正弦. 解:两对⾓线向量为13=+=-l a b i j ,232=-=+-l a b i j k因为12|||2610|?=++l l i j k12||||=l l所以1212||sin 1||||θ?===l l l l .即为所求对⾓线间夹⾓的正弦.31. 已知三点A (2,-1,5), B (0,3,-2), C (-2,3,1),点M ,N ,P 分别是AB ,BC ,CA 的中点,证明:1()4MN MP AC BC ?=.证明:中点M ,N ,P 的坐标分别为31(1,1,), (1,3,), (0,1,3)22M N P --{2,2,2}MN =--3{1,0,}2MP =-{4,4,4}AC =--{2,0,3}BC =-22222235233100122MN MP ----?=++=++--i j k i j k44444412208033220AC BC ---?=++=++--i j k i j k故 1()4MN MP AC BC ?=?.32. 求同时垂直于向量a =(2,3,4)和横轴的单位向量.解:设横轴向量为b =(x ,0,0) 则同时垂直于a ,b 的向量为3442230000x x ?=++a b i j k =4x j -3x k故同时垂直于a ,b 的单位向量为1(43)||5?=±=±-?a b e j k a b .33. 四⾯体的顶点在(1,1,1),(1,2,3),(1,1,2)和(3,-1,2)求四⾯体的表⾯积.解:设四顶点依次取为A , B , C , D . {0,1,2}, {2,2,1}AB AD ==-则由A ,B ,D 三点所确定三⾓形的⾯积为111|||542|22S AB AD ==+-=ij k .同理可求其他三个三⾓形的⾯积依次为12故四⾯体的表⾯积12S =+.34. 已知三点A (2,4,1), B (3,7,5), C (4,10,9),证:此三点共线. 证明:{1,3,4}AB =,{2,6,8}AC =显然2AC AB =则22()0AB AC AB AB AB AB ?=?=?= 故A ,B ,C 三点共线.35. 求过点(4,1,-2)且与平⾯3x -2y +6z =11平⾏的平⾯⽅程. 解:所求平⾯与平⾯3x -2y +6z =11平⾏故n ={3,-2,6},⼜过点(4,1,-2)故所求平⾯⽅程为:3(x -4)-2(y -1)+6(z +2)=0 即3x -2y +6z +2=0.36. 求过点M 0(1,7,-3),且与连接坐标原点到点M 0的线段OM 0垂直的平⾯⽅程.解:所求平⾯的法向量可取为0{1,7,3}OM ==-n 故平⾯⽅程为:x -1+7(y -7)-3(z +3)=0 即x +7y -3z -59=037. 设平⾯过点(1,2,-1),⽽在x 轴和z 轴上的截距都等于在y 轴上的截距的两倍,求此平⾯⽅程. 解:设平⾯在y 轴上的截距为b 则平⾯⽅程可定为122x y z b b b ++=⼜(1,2,-1)在平⾯上,则有121122b b b -++=得b =2.故所求平⾯⽅程为1424x y z++=38. 求过(1,1,-1),(-2,-2,2)和(1,-1,2)三点的平⾯⽅程. 解:由平⾯的三点式⽅程知1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 代⼊三已知点,有1112121210111121x y z --+----+=---+ 化简得x -3y -2z =0即为所求平⾯⽅程.39. 指出下列各平⾯的特殊位置,并画出其图形: (1) y =0; (2) 3x -1=0; (3) 2x -3y -6=0; (4) x – y =0; (5) 2x -3y +4z =0.解:(1) y =0表⽰xOz 坐标⾯(如图7-2) (2) 3x -1=0表⽰垂直于x 轴的平⾯.(如图7-3)图7-2 图7-3(3) 2x -3y -6=0表⽰平⾏于z 轴且在x 轴及y 轴上的截距分别为x =3和y =-2的平⾯.(如图7-4)(4) x–y=0表⽰过z轴的平⾯(如图7-5)(5) 2x-3y+4z=0表⽰过原点的平⾯(如图7-6).图7-4 图7-5 图7-6 40. 通过两点(1,1,1,)和(2,2,2)作垂直于平⾯x+y-z=0的平⾯. 解:设平⾯⽅程为Ax+By+Cz+D=0则其法向量为n={A,B,C}已知平⾯法向量为n1={1,1,-1}过已知两点的向量l={1,1,1}由题知n·n1=0, n·l=0即0,.A B CC A B A B C+-===-++=所求平⾯⽅程变为Ax-Ay+D=0⼜点(1,1,1)在平⾯上,所以有D=0故平⾯⽅程为x-y=0.41. 决定参数k的值,使平⾯x+ky-2z=9适合下列条件:(1)经过点(5,-4,6);(2)与平⾯2x-3y+z=0成π4的⾓.解:(1)因平⾯过点(5,-4,6)故有5-4k-2×6=9得k=-4.(2)两平⾯的法向量分别为n1={1,k,-2} n2={2,-3,1}且1212πcos cos||||42θ====n nn n解得k=42. 确定下列⽅程中的l和m:(1) 平⾯2x+ly+3z-5=0和平⾯mx-6y-z+2=0平⾏;(2) 平⾯3x-5y+lz-3=0和平⾯x+3y+2z+5=0垂直.解:(1)n1={2,l,3}, n2={m,-6,-1}12232,18613lm lm===-=--n n(2) n1={3, -5, l }, n2={1,3,2}12315320 6.l l⊥??-?+?=?=n n43. 通过点(1,-1,1)作垂直于两平⾯x-y+z-1=0和2x+y+z+1=0的平⾯. 解:设所求平⾯⽅程为Ax+By+Cz+D=0其法向量n={A,B,C}n1={1,-1,1}, n2={2,1,1}12203203A CA B CA B C CB=-⊥?-+=?⊥?++=?=n nn n⼜(1,-1,1)在所求平⾯上,故A-B+C+D=0,得D=0故所求平⾯⽅程为2033CCx y Cz -++=即2x -y -3z =044. 求平⾏于平⾯3x -y +7z =5,且垂直于向量i -j +2k 的单位向量. 解:n 1={3,-1,7}, n 2={1,-1,2}.12,⊥⊥n n n n 故1217733152122111--=?=++=+---n n n i j k i j k则2).n =+-e i j k45. 求通过下列两已知点的直线⽅程:(1)(1,-2,1),(3,1,-1);(2)(3,-1,0),(1,0,-3). 解:(1)两点所确⽴的⼀个向量为s ={3-1,1+2,-1-1}={2,3,-2}故直线的标准⽅程为:121232x y z -+-==- 或 311232x y z --+==-(2)直线⽅向向量可取为s ={1-3,0+1,-3-0}={-2,1,-3}故直线的标准⽅程为:31213x y z -+==-- 或 13213x y z -+==--46. 求直线234035210x y z x y z +--=??-++=?的标准式⽅程和参数⽅程.解:所给直线的⽅向向量为12311223719522335--=?=++=----s n n i j k i j k另取x 0=0代⼊直线⼀般⽅程可解得y 0=7,z 0=17 于是直线过点(0,7,17),因此直线的标准⽅程为: 7171719x y z --==--且直线的参数⽅程为:771719x t y t z t =??=-??=-?47. 求下列直线与平⾯的交点:(1)11126x y z -+==-, 2x +3y +z -1=0; (2)213232x y z +--==, x +2y -2z +6=0.解:(1)直线参数⽅程为1126x ty t z t=+??=--??=?代⼊平⾯⽅程得t =1 故交点为(2,-3,6).(2)直线参数⽅程为221332x t y t z t=-+??=+??=+?代⼊平⾯⽅程解得t =0. 故交点为(-2,1,3). 48. 求下列直线的夹⾓:(1)533903210x y z x y z -+-=??-+-=?和 2223038180x y z x y z +-+=??++-=?;(2)2314123x y z ---==- 和 38121y z x --?=?--??=?解:(1)两直线的⽅向向量分别为:s 1={5, -3,3}×{3, -2,1}=533321i j k--={3,4, -1}s 2={2,2, -1}×{3,8,1}=221381i j k -={10, -5,10}由s 1·s 2=3×10+4×(-5)+( -1) ×10=0知s 1⊥s 2从⽽两直线垂直,夹⾓为π2.(2) 直线2314123x y z ---==-的⽅向向量为s 1={4, -12,3},直线38121y z x --?=?--??=?的⽅程可变为22010y z x -+=??-=?,可求得其⽅向向量s 2={0,2, -1}×{1,0,0}={0, -1, -2},于是1212cos 0.2064785θθ?==≈?'≈?s s s s49. 求满⾜下列各组条件的直线⽅程:(1)经过点(2,-3,4),且与平⾯3x -y +2z -4=0垂直;(2)过点(0,2,4),且与两平⾯x +2z =1和y -3z =2平⾏;(3)过点(-1,2,1),且与直线31213x y z --==-平⾏. 解:(1)可取直线的⽅向向量为s ={3,-1,2}故过点(2,-3,4)的直线⽅程为234312x y z -+-==-(2)所求直线平⾏两已知平⾯,且两平⾯的法向量n 1与n 2不平⾏,故所求直线平⾏于两平⾯的交线,于是直线⽅向向量12102{2,3,1}013=?==--i j ks n n故过点(0,2,4)的直线⽅程为24231x y z --==-(3)所求直线与已知直线平⾏,故其⽅向向量可取为 s ={2,-1,3}故过点(-1,2,1)的直线⽅程为121213x y z +--==-.50. 试定出下列各题中直线与平⾯间的位置关系:(1)34273x y z++==--和4x -2y -2z =3; (2)327x y z ==-和3x -2y +7z =8; (3)223314x y z -+-==-和x +y +z =3. 解:平⾏⽽不包含. 因为直线的⽅向向量为s ={-2,-7,3}平⾯的法向量n ={4,-2,-2},所以 (2)4(7)(2)3(2)0?=-?+-?-+?-=s n于是直线与平⾯平⾏.⼜因为直线上的点M 0(-3,-4,0)代⼊平⾯⽅程有4(3)2(4)2043?--?--?=-≠.故直线不在平⾯上.(2) 因直线⽅向向量s 等于平⾯的法向量,故直线垂直于平⾯.(3) 直线在平⾯上,因为3111(4)10?+?+-?=,⽽直线上的点(2,-2,3)在平⾯上. 51. 求过点(1,-2,1),且垂直于直线23030x y z x y z -+-=??+-+=?的平⾯⽅程.解:直线的⽅向向量为12123111-=++-ijki j k ,取平⾯法向量为{1,2,3},故所求平⾯⽅程为1(1)2(2)3(1)0x y z ?-+++-=即x +2y +3z =0.52. 求过点(1,-2,3)和两平⾯2x -3y +z =3, x +3y +2z +1=0的交线的平⾯⽅程. 解:设过两平⾯的交线的平⾯束⽅程为233(321)0x y z x y z λ-+-++++= 其中λ为待定常数,⼜因为所求平⾯过点(1,-2,3)故213(2)33(13(2)231)0λ?-?-+-++?-+?+= 解得λ=-4.故所求平⾯⽅程为2x +15y +7z +7=053. 求点(-1,2,0)在平⾯x +2y -z +1=0上的投影.解:过点(-1,2,0)作垂直于已知平⾯的直线,则该直线的⽅向向量即为已知平⾯的法向量,即s =n ={1,2,-1}所以垂线的参数⽅程为122 x t y t z t=-+?=+?=-将其代⼊平⾯⽅程可得(-1+t)+2(2+2t)-(-t)+1=0得23 t=-于是所求点(-1,2,0)到平⾯的投影就是此平⾯与垂线的交点522 (,,)333 -54. 求点(1,2,1)到平⾯x+2y+2z-10=0距离.解:过点(1,2,1)作垂直于已知平⾯的直线,直线的⽅向向量为s=n={1,2,2}所以垂线的参数⽅程为12212 x t y t z t=+?=+?=+将其代⼊平⾯⽅程得13 t=.故垂⾜为485(,,)333,且与点(1,2,1)的距离为1d==即为点到平⾯的距离.55. 求点(3,-1,2)到直线10240x y zx y z+-+=-+-=的距离.解:过点(3,-1,2)作垂直于已知直线的平⾯,平⾯的法向量可取为直线的⽅向向量即11133211==-=---i j kn s j k故过已知点的平⾯⽅程为y+z=1.联⽴⽅程组10 2401x y zx y zy z+-+=-+-=?+=解得13 1,,.22 x y z==-=即13(1,,)22-为平⾯与直线的垂⾜于是点到直线的距离为d==56. 建⽴以点(1,3,-2)为中⼼,且通过坐标原点的球⾯⽅程.解:球的半径为R==设(x,y,z)为球⾯上任⼀点,则(x-1)2+(y-3)2+(z+2)2=14即x2+y2+z2-2x-6y+4z=0为所求球⾯⽅程.57. ⼀动点离点(2,0,-3)的距离与离点(4,-6,6)的距离之⽐为3,求此动点的轨迹⽅程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题1.在空间直角坐标系中,指出下列各点位置的特点.()0,5,0-A ;()0,3,3-B ;()3,0,6-C ;()0,0,4D ;()7,5,0-E ;()9,0,0F .【解】A 点在y 轴上;B 点在xoy 坐标面上;C 点在zox 坐标面上;D 点在x 轴上;E 点在yoz 坐标面上;F 点在z 轴上. 2.指出下列各点所在的卦限.()1,3,2-A ;()2,1,7--B ;()1,3,2---C ;()3,2,1--D .【解】A 点在第五卦限;B 点在第三卦限;C 点在第七卦限;D 点在第六卦限. 3.自点()2,3,1--M 分别作xoy 、yoz 、zox 坐标面和x 、y 、z 坐标轴的垂线,写出各垂足的坐标,并求出点M 到上述坐标面和坐标轴的距离.【解】()2,3,1--M 在xoy 坐标面上的垂足为()0,3,1-、在yoz 坐标面上的垂足为()2,3,0-、在zox 坐标面上的垂足为()2,0,1--;()2,3,1--M 在x 轴的垂足为()0,0,1-、在y 轴的垂足为()0,3,0、在z 轴的垂足为()2,0,0-;()2,3,1--M 到x 轴的距离为()132322=-+;()2,3,1--M 到y 轴的距离为()()52122=-+-;()2,3,1--M 到z 轴的距离为()103122=+-.3.已经点()2,1,3--M .求:(1)点M 关于各坐标面对称点的坐标;(2)点M 关于各坐标轴对称点的坐标;(3)点M 关于坐标原点的对称点的坐标. 【解】(1)()2,1,3--M 关于xoy 面对称点的坐标是(),2,1,3-; ()2,1,3--M 关于yoz 面对称点的坐标是(),2,1,3---;()2,1,3--M 关于zox 面对称点的坐标是(),2,1,3-.(2)()2,1,3--M 关于x 轴对称点的坐标是(),2,1,3;()2,1,3--M 关于y 轴对称点的坐标是(),2,1,3--;()2,1,3--M 关于z 轴对称点的坐标是(),2,1,3--.(3)()2,1,3--M 关于坐标原点的对称点的坐标是(),2,1,3-. 5.求点()5,3,4-A 到坐标原点和各坐标轴的距离.【解】 ()5,3,4-A 到坐标原点距离为()25534222=+-+;()5,3,4-A 到x 轴的距离为()345322=+-;()5,3,4-A 到y 轴的距离为415422=+; ()5,3,4-A 到z 轴的距离为()53422=-+.6.在y 轴上求与点()7,2,3-A 和()7,1,3-B 等距离的点. 【解】设所求点为()0,,0y C .据题意,有 BC AC =,即()()()()=-+-+--22270230y ()()()()22270130--+-+-y解得 23=y .所以,所求之点为.0,23,0⎪⎭⎫ ⎝⎛C 7.已知三角形ABC 的顶点坐标分别为()3,2,1A 、()3,10,7B 和()1,3,1-C ,试证明 ∠BAC 为钝角. 【解】AB 边长()()()103321017222=-+-+-==AB c ;AC 边长()()()()3312311222=-+-+--=b ; BC 边长()()()()1173110371222=-+-+--=a .由余弦定理知cos ∠BAC ()010321171032222222<⨯⨯-+=-+=bc a c b ,所以,∠BAC 为钝角.8.试在xoy 面上求一点,使它到()5,1,1-A 、()4,4,3B 和()1,6,4C 各点的距离相等.【解】设所求点为()0,,y x D .据题意,有 CD BD AD ==,即()()()()=-+--+-2225011y x ()()()222443-+-+-z y x()()()222164-+-+-=z y x解得 5,16-==y x .所以,所求之点为().0,5,16-D习题1.设平行四边形ABCD 的对角线向量b BD a AC ==,,试用a ,b 表示DA CD BC AB ,,,.【解】记平行四边形ABCD 的对角线的交点为O .()b a b a BD AC OD OC DC AB -=-=-=-==2121212121; 同理可求出,()b a a b OC BO BC +=+=+=212121;()a b AB CD -=-=21;()b a BC DA +-=-=21.2.已知向量n m a 23-=,n m a +=.试用向量n m ,表示b a 32-. 【解】b a 32-()()n m n m n m 733232-=+--=.3.设c b a u 2-+=,c b a v +--=3.试用向量c b a ,,表示v u 32-. 【解】v u 32-()()c b a c b a c b a 71153322-+=+----+=. 4.设ABCDEF 是一个正六边形,AF b AB a ==,,试用a ,b 表示EF DE CD BC ,,,.【解】记六边形ABCDEF 的对角线的交点为O .则四边形ABOF 、CDEO 、DEFO 及ABCO 均为平行四边形.由向量加法的平行四边形法则知,b a AF AB AO BC +=+==; b AF CD ==;a BA BA AO DE -=-===;().b a BC EF +-=-=5.设向量k a j a i a a z y x ++=,,若它满足下列条件之一:(1)a 垂直于z 轴;(2)a 垂直于xoy 面;(3)a 平行于yoz 面.那么它的坐标有什么有何特征? 【解】(1)因为a 垂直于z 轴,故0.=k a ,即0=z a ;(2)因为a 垂直于xoy 面,故a 平行于z 轴,从而a ∥{}1,0,0=k ,所以,0==y x a a .(3)a 平行于yoz 面,故垂直于x 轴,从而.a 0=i ,所以,0=x a . 6.已知向量{}7,4,4-=AB ,它的终点坐标为()7,1,2-B ,求它的起点坐标. 【解】设起点()z y x A ,,,则{}z y x AB ----=7,1,2,根据已知条件,有77,41,42=--=--=-z y x ,解得 .0,3,2==-=z y x 所以,起点坐标为 ()0,3,2-A .7.已知向量{}1,1,6-=a ,{}0,2,1=b .求 (1)向量b a c 2-=; (2)向量c 的方向余弦; (3)向量c 的单位向量. 【解】(1)c {}{}{}{}{}{}1,3,401,41,260,4,21,1,60,2,121,1,6--=----=--=--=.(2()()26134222=-+-+=.故,⎭⎬⎫⎩⎨⎧--==261,263,2640c c ,所以,向量c 的方向余弦为.261cos ,263cos ,264cos -=-==γβα(3).向量c 的单位向量为⎭⎬⎫⎩⎨⎧--±261,263,264.8.试确定m 和n 的值,使向量k n j i a ++-=32和k j i m b 26+-=平行. 【解】因为a ∥b ,所以2632nm =-=-,解得 .1,4-==n m9.已知向量{}12,9,8-=b 及点()7,1,2-=A ,由点A 作向量AM 34=, 且AM 与b 的方向相同.求向量AM 的坐标表达式及点M 的坐标.【解】设()z y x M ,,,则{}7,1,2-+-=z y x AM .据题意知AM ∥b 且与b 同向,因此有λ=--=+=-1279182z y x ,① 且 0>λ. ② 由①式得 λλλ127,91,82=-++=-z y x .又已知34=,故有 ()()()341298222=++λλλ. ③③式化简得4115628922=⇒=λλ,解得 2=λ或2-=λ(舍).所以,.17,17,18-===z y x因此AM {}24,18,16-=,()17,17,18-=M .10.已知点()4,2,1--A 和点()z B ,2,6-9=,求z 的值.【解】()(){}{}4,4,74,22,16+-=------=z z AB .9=,得()()9447222=++-+z ,化简得082=+z z ,解之,得 0=z 或.8-=z11.已知点()1,2,41M 和点()2,0,32M ,计算向量21M M 的模、方向余弦和方向角. 【解】{}{}1,2,112,20,4321--=---=M M ;()()2121222=+-+-=.因为{}⎭⎬⎫⎩⎨⎧--=--==21,22,211,2,12121021M M M M .所以21M M 的方向余弦是.21cos ,22cos ,21cos =-=-=γβα 方向角为.3cos ,43,32πγπβπα===12.求与下列向量a 同方向的单位向量0a . (1){}1,4,2-=a ;(2)k j i a ++-=32. 【解】(1()21142222=+-+=,所以{}⎭⎬⎫⎩⎨⎧-=-==211,214,2121,4,22110a a .(2()14132222=++-=,所以.141,143,1421410⎭⎬⎫⎩⎨⎧-==a a 习题1.设向量k j i a 23--=,k j i b -+=2.求:(1)b a .;(2)b a ⨯;(3)()()b a 32⨯-;(4)()b a 2⨯;(5)向量b a ,的夹角. 【解】(1)()()()3122113.=-⨯-+⨯-+⨯=b a ;(2)k j i j b a 7521++=-=⨯;(3)()()()1836.63.2-=⨯-=-=-b a b a ;(4)()()k j i b a b a 1421022++=⨯=⨯;(5)()()14213222=-+-+=()6121222=-++=,故21236143.,cos =⨯==⎪⎪⎭⎫ ⎝⎛∧b a b a ,所以向量b a ,的夹角为.2123arccos ,=⎪⎪⎭⎫ ⎝⎛∧b a2.设向量a ,b ,c 为单位向量,且满足0=++c b a ①.求:a c c b b a ...++. 【解】由①式得()0.=++c b a a ;()0.=++c b a b ; ()0.=++c b a c .即0..=++c a b a ; ②0..=+c b a b ; ③0..=++b c a c ; ④ 将②、③、④相加得()03...2=+++a c c b b a所以,.23...-=++a c c b b a3.已知点()2,1,1-A ,()2,6,5-B ,()1,3,1-C 求: (1)同时与AB 及AC 垂直的单位向量; (2)ABC ∆的面积. 【解】(1)AB AC⨯{}16,12,151612153405=++=--=k j i kj .25161215222=++=. 所以,同时与AB 及AC 垂直的单位向量为{}⎭⎬⎫⎩⎨⎧±=±=⨯±2516,2512,25116,12,15251AC AB .(2)ABC ∆的面积225==. 4.设{}2,5,3-=a ,{}4,1,2=b ,则当实数λ与μ有什么关系时,能使b a μλ+与z 轴垂直?【解】{}μλμλμλμλ42,5,23+-++=+b a .要使b a μλ+与z 轴垂直,只须b a μλ+与{}1,0,0=k 垂直,于是有()042.=+-=+μλμλk b a ,即 .2μλ=5.设质量为100kg 的物体从点()8,1,31M 沿直线移动到点()2,4,1M ,计算重力所做的功.【解】{}6,3,21--==M M s ,{}{}980,0,01008.9,0,0=⨯-=F .所以,{}{}58806,3,2.980,0,0.=---==s F W (焦耳).6.已知{}3,2,1-=a ,{}1,4,2-=b ,{}0,2,4=c ,b a ⨯是否与c 平行?【解】{}0,5,1005104221--=+--=--=⨯k j i j i b a ;因为c b a 52-=⨯,所以,b a ⨯与c 平行.7.求一个单位向量使其同时垂直向量{}0,1,1=a 和{}1,1,0=b .【解】{}1,1,111-=+-==⨯k j i j b a .()3111222=+-+=. 所以同时垂直向量a 和b 向量的单位向量为 {}1,1,131-±=⨯±b .习题1.求过点()1,0,3-且与平面012573=-+-z y x 平行的平面方程.【解】已经平面的法向量为{}5,7,3-=n .据题意知,所求平面的法向量可也取作n .所以据平面的点法式方程,所求平面即为 ()()()()0150733=--+---z y x . 化简得 04573=-+-z y x .2.求过点()6,9,20-M 且与连接坐标原点O 及0M 的线段0OM 垂直的平面方程. 【解】据题意知,所求平面的法向量可也取作{}6,9,20-==OM n .所以据平面的点法式方程,所求平面即为 ()()()()0669922=----+-z y x . 化简得 0121692=--+z y x .3.求过点()1,1,1-、()2,2,2--和()2,1,1-三点的平面方程. 【解】据平面的三点式方程,所求平面为()()()0121111121212111=---------------z y x . 即 ()()()0161913=++-+--z y x . 化简得 023=--z y x .4.求平面0522:=++-z y x π与坐标面xoy 、yoz 及zox 的夹角的余弦. 【解】平面π的法向量为{}1,2,2-=n ;xoy 面的法向量为{}1,0,0=k . 由公式,平面π与xoy31=;同理, 平面π与yoz32=; 平面π与zox32-=.5.求点()1,2,1平面01022:=-++z y x π的距离. 【解】12211012221222=++-⨯+⨯+=d .6.求两平行平面0:11=+++D Cz By Ax π与0:22=+++D Cz By Ax π之间的距离.【解】在1π上任取一点()1111,,z y x M ,则1M 到2π的距离d 就是所求1π与2π之间的距离.由点到平面的距离公式得 2222111CB A D Cz By Ax d +++++=. ①又11π∈M ,故有 0:11111=+++D Cz By Ax π,即1D Cz By Ax -=++. ②将②代入①,立得 22212CB A D D d ++-=.7.一平面通过()1,1,11M 和()11,02-M 两点,且垂直于平面0=++z y x .求该平面方程.【解】已知平面0=++z y x 的法向量为{}1,1,1=n ,{}2,0,121--=M M .据题意,可取所求平面的法向量为{}1,1,2211120121--=--=--=⨯k j i kj in M M . 所以,所求平面方程为()()()011.11.2=-----z y x ,即 02=--z y x .8.求满足下列条件的平面方程:(1)过点()2,1,3--和z 轴;(2)过点()2,0,4-及()7,1,5且平行于x 轴;(3)过点()3,5,2-,且平行于zox 面;(4)过点()1,0,1-且同时平行于向量k j i a ++=2,j i b -=.【解】(1)根据题意,可设所求平面的一般式方程为0:=+By Ax π. ①又将点()2,1,3--的坐标代入①,得03=+-B A ,即 A B 3=.因此,所求平面π为.03=+Ay Ax ②注意到0≠A (否则π的法向量为零向量),所以②两边除以A ,得到 03:=+y x π.(2)根据题意,可设所求平面的一般式方程为0:=++D Cz By π. ①又将点()2,0,4-及()7,1,5的坐标分别代入①,得⎩⎨⎧=++=+-.07,02D C B D C ,故 ⎩⎨⎧-==.9,2C B C D .因此,所求平面π为.029=++-C Cz Cy ②注意到0≠C (否则π的法向量为零向量),所以②两边除以C ,得到 029:=++-z y π.(3)根据题意,可设所求平面的一般式方程为0:=+D By π. ①又将点()3,5,2-的坐标代入①,得05=+-D B ,即 B D 5=.因此,所求平面π为.05=+B By ②注意到0≠B (否则π的法向量为零向量),所以②两边除以B ,得到 05:=+y π.(4)根据题意,可设所求平面的一般式方程为0:=+++D Cz By Ax π. ① 其法向量为{}C B A n ,,=.将点()1,0,1-的坐标代入①,得0=+-D C A . ② 又因为π同时平行于向量k j i a ++=2,j i b -=,故n 同时垂直于向量k j i a ++=2,j i b -=,于是有.02=++C B A ③ .0=-B A ④ ②、③、④联立得到A D A C AB 4,3,-=-==因此①成为043:=--+A Az Ay Ax π . ⑤ 注意到0≠A (否则π的法向量为零向量),所以⑤两边除以A ,得到 043:=--+z y x π.9.平面在y 、z 轴上的截距分别为30,10,且与{}3,1,2=r 平行,求该平面方程.【解】根据题意,可设所求平面的一般式方程为0:=+++D Cz By Ax π. ① 其法向量为{}C B A n ,,=.因为π在y 、z 轴上的截距分别为30,10,故π过点()0,30,0及(),10,0,0.将此两点坐标代入①得030=+D B . ②及 010=+D C . ③又已知π与{}3,1,2=r 平行,故n 垂直于向量r ,于是有032=++C B A . ④②、③、④联立得到B A BC BD 5,3,30-==-=.因此①成为03035:=-++-B Bz By Bx π. ⑤注意到0≠B (否则π的法向量为零向量),所以⑤两边除以B ,得到 03035:=-++-z y x π.10.指出下列各平面的特殊位置,并画出各平面.(1)013=-x ;(2)012=-+z y ;(3)02=+z x ;(4)135=-+z y x .【解】(1)因方程中z y ,前面的系数为零,故平面013=-x 平行于yoz 面;(2)因方程中x 前面的系数为零,故平面012=-+z y 平行于x 轴;(3)因方程中没有常数项,且y 前面的系数为零,故平面02=+z x 通过y 轴;012=-+z y 02=+z x ;(4)135=-+z y x 可化为113151=-++z y x ,故135=-+z y x 是在x 轴、y 轴、z 轴上的截距分别为51、31和1-的平面. 习题1.用点向式方程及参数式方程表示直线⎩⎨⎧=++=+-.42,1:z y x z y x L 【解】任取方程组的一组解⎪⎩⎪⎨⎧===.1,1,1z y x 则有,L 过点()1,,1,10M .可取直线的方向为{}3,1,232121121-=++-=-=⨯k j i j in n . 所以,所求直线L 的点向式方程为 311121-=-=--z y x . 进一步,L 的参数式方程为⎪⎩⎪⎨⎧+=+=-=.31,1,21t z t y t x2.求过()1,2,31-P 、()2,0,12-P 两点的直线方程.【解】可取直线的方向为 {}1,2,421-==P P s . 故所求直线为.112243-=+=--z y x 3.求过点()3,1,4-且平行于直线51123-==-z y x 的直线方程.【解】根据题意知,可取所求直线的方向为{}5,1,2=s .故所求直线为 .531124-=+=-z y x 4.求过()1,32-且垂直于平面0132=+++z y x 的直线方程.【解】可取直线的方向为 {}1,3,2=s .故所求直线为.113322-=+=-z y x 5.求过点()2,1,00M 且与直线21111z y x =--=-垂直相交的直线方程. 【解】 过点()2,1,0且与直线21111z y x =--=-垂直的平面π为 ()()()02210.1:=-+---z y x π.即 032:=-+-z y x π . ① 化直线21111z y x =--=-为参数式得 ⎪⎩⎪⎨⎧=-=+=.2,1,1t z t y t x ②将②代入①,有()()()032211=-+--+t t t . ③ 解得 21=t . 故直线21111z y x =--=-与平面π的交点为⎪⎭⎫ ⎝⎛1,21,231M . 因此所求直线的方向为 ⎭⎬⎫⎩⎨⎧--==1,21,2310M M s ∥{}2,1,3-. 故所求直线为.221130-=-=--z y x6. 过点()0,2,10-M 向平面012=+-+z y x 作垂线,求垂足坐标.【解】 过点()0,2,10-M 且与平面012=+-+z y x 垂直的直线L 为 .102211:--=-=+z y x L ① 化直线L 为参数式得⎪⎩⎪⎨⎧-=+=+-=.,22,1t z t y t x ②将②代入平面012=+-+z y x 方程中,得()()()012221=+--+++-t t t . ③解得 32-=t . 故垂足坐标为⎪⎭⎫ ⎝⎛-32,32,351M . 7.求直线⎩⎨⎧=-+-=-+-,0123,09335:1z y x z y x L 与⎩⎨⎧=-++=+-+.01383,02322:2z y x z y x L 的夹角θ. 【解】1L 的方向为{}1,4,34323351-=-+=--=k j i j is ; 2L 的方向为{}10,5,101051083222-=+-==k j i j is ∥{}2,1,2-. 因为()()0211423.21=⨯-+-⨯+⨯=s s ,所以1L 与2L 垂直,从而2πθ=.8.求直线21121:+=-=-z y x L 与平面02:=+-z y x π的夹角θ. 【解】1L 的方向为{}2,1,2-=s ,平面π的法向量为{}2,1,1-=n . ()()7221112.=⨯+-⨯-+⨯=n s .()3212222=+-+=. ()6211222=+-+=.故637sin ⨯==θ,所以,637arcsin ⨯=θ.9.求过点()2,0,10-M 且垂直于平面032:=+-z y x π的直线方程.【解】根据题意知,所求直线L 的方向向量即为平面π之法向量,即 {}3,12-=s . 所以,由点向式方程知,所求直线为321021:+=--=-z y x L . 10.设平面π过直线130211:1--=-=-z y x L ,且平行于直线11122:2z y x L =-=+,求平面π的方程.【解】显然面π过点()3,,2,10M . 可取面π的法向量为{}1,3,13120121-=+-==⨯=k j i j is s n . 所以,平面π的方程为 ()()()03.12.31.1=-+---z y x .化简得023:=++-z y x π.11.求过点()1,2,10P 和直线⎩⎨⎧=--=-.032,6:z y x z x L 的平面π的方程. 【解】直线L 的参数方程为⎪⎩⎪⎨⎧-=+-==.6,9,:x z x y x x L显然L 过点()6,9,01-P ,且L 的方向为{}1,11-=s .根据题意,可取平面π的法向量为{}6,6,0660117110--=--=--=⨯=k j i j is P P n ∥{}1,1,0. 所以,平面π的方程为 ()()()01.12.11.0=-+-+-z y x .化简得03:=-+z y π.习题1.指出下列方程在平面解析几何与空间解析几何中分别表示何种几何图形.(1)1=-y x ;(2)x y 22=;(3)122=-y x ;(4)1222=+y x . 【解】(1)1=-y x 在平面解析几何中表示一条直线,在空间解析几何中表示一张平行于z 轴的平面;(2)x y 22=在平面解析几何中表示一条抛物线,在空间解析几何中表示一张抛物柱面;(3)122=-y x 在平面解析几何中表示一条双曲线,在空间解析几何中表示一张双曲柱面;(4)1222=+y x 在平面解析几何中表示一条椭圆曲线,在空间解析几何中表示一张椭圆柱面.2.写出下列曲线绕指定坐标轴旋转一周而得到的旋转曲面的方程.(1)zox 面上的抛物线x z 52=绕x 轴旋转一周;(2)xoy 面上的双曲线369422=-y x 绕y 轴旋转一周;(3)yoz 面上的直线0132=+-z y 绕z 轴旋转一周.【解】(1)zox 面上的抛物线x z 52=绕x 轴旋转一周得到的曲面是 ()x z y 5222=+±,即 x z y 522=+.(2)xoy 面上的双曲线369422=-y x 绕y 轴旋转一周得到的曲面是 ()36942222=-+±y z x ,即36494222=+-z y x .(3)yoz 面上的直线0132=+-z y 绕z 轴旋转一周而得到的曲面是 ()013222=+-+±z y x ,即()()222134-=+z y x . 3.说明下列旋转曲面是怎样形成的.(1)1994222=++z y x ;(2)14222=+-z y x ;(3)1222=--z y x ; 【解】(1)1994222=++z y x 由曲线⎪⎩⎪⎨⎧==+,0,19422z y x 绕x 轴旋转一周而形成;或由曲线⎪⎩⎪⎨⎧==+,0,19422y z x 绕x 轴旋转一周而形成. (2)14222=+-z y x 由曲线⎪⎩⎪⎨⎧==-,0,1422z y x 绕y 轴旋转一周而形成;或由曲线⎪⎩⎪⎨⎧==-,0,1422x y z 绕y 轴旋转一周而形成. (3)1222=--z y x 由曲线⎩⎨⎧==-,0,122z y x 绕x 轴旋转一周而形成;或由曲线⎩⎨⎧==-,0,122y z x 绕x 轴旋转一周而形成. 4.指出下列各方程所表示的曲面.(1)14416916222=++z y x ;(2)144944222=+-z y x ;(3)z y x 729422=-;(4)16922=+z y ;(5)22z y x --=;(6)224y z x =+;(7)36249222=++z y x ;(8)444222=-+x y z .【解】(1)原方程可化为()1169222=++y z x . 所以,原方程表示的是旋转椭球面.(2)原方程可化为 1163838222=+-z y x . 所以,原方程表示的是双叶双曲面.(3)原方程可化为81822y x z -= 所以,原方程表示的是双曲抛物面,即马鞍面.(4)原方程可化为 11691622=+z y . 所以,原方程表示的是椭圆柱面.(5)原方程可化为()22z y x +-=.所以,原方程表示的是旋转抛物面.(6)原方程可化为4122z y x -=.所以,原方程表示的是双曲抛物面,即马鞍面. (7)原方程可化为11894222=++z y x . 所以,原方程表示的是椭球面. (8)原方程可化为1141222=-+x z y . 所以,原方程表示的是单叶双曲面.习题1.求球心在()3,2,1,半径为3的球面与平面5=z 的交线方程(写出一般式方程和参数式方程),并求出该曲线绕z 轴旋转一周而成的旋转曲面的方程. 【解】(一)球心在()23,1,半径为3的球面方程为 ()()()9321222=-+-+-z y x .故球面与平面5=z 的交线的一般式方程为()()()⎩⎨⎧==-+-+-Γ.5,9321:222z z y x即()()⎩⎨⎧==-+-Γ.5,521:22z y x化为参数式方程为[]π2,0.5,sin 52,cos 51:∈⎪⎪⎩⎪⎪⎨⎧=+=+=Γt z t y t x .(二)利用公式()()()()()[][]()πθβαθθ2,0,,.,sin ,cos 2222∈∈⎪⎪⎩⎪⎪⎨⎧=+=+=t t z z t y t x y t y t x x .Γ绕z 轴旋转一周而成的旋转曲面的方程为 [][]()πθπθθ2,0,2,0.5,sin sin 54cos 5210,cos sin 54cos 5210∈∈⎪⎪⎩⎪⎪⎨⎧=++=++=t z t t y t t x .2.分别求出母线平行于x 轴、y 轴且通过曲线()()⎪⎩⎪⎨⎧=+-=++Γ2,01,162:222222z y x z y x 的柱面方程. 【解】(一)(1)、(2)联立消去x ,得 16322=-z y .所以,母线平行于x 轴且通过曲线Γ的柱面为16322=-z y . (二)(1)、(2)联立消去y ,得 162322=+z x .所以,母线平行于x 轴且通过曲线Γ的柱面为162322=+z x . 3.指出下列方程所表示的曲线.(1)⎩⎨⎧==++;3,25222x z y x (2)⎩⎨⎧==++;1,3694222y z y x(3)⎩⎨⎧-==+-;3,254222x z y x (4)⎩⎨⎧==+-+.4,08422y x z y【解】(1)表示平面3=x 上的圆周曲线1622=+z y ;(2)表示平面1=y 上的椭圆19323222=+zx ;(3)表示平面3-=x 上的双曲线141622=-y z ; (4)表示平面4=y 上的抛物线642-=x z .4.求()()⎪⎩⎪⎨⎧=++=++Γ2,21,:2222222Rz z y x R z y x 在三个坐标面上的投影曲线. 【解】(一)(1)、(2)联立消去z 得 22243R y x =+. 所以,Γ在xoy 面上的投影曲线为⎪⎩⎪⎨⎧==+.0,43222z R y x (二)(1)、(2)联立消去y 得 R z 21=. 所以,Γ在zox 面上的投影曲线为.23.0,21R x y R z ≤⎪⎩⎪⎨⎧== (三)(1)、(2)联立消去x 得 R z 21=. 所以,Γ在yoz 面上的投影曲线为.23.0,21R y x R z ≤⎪⎩⎪⎨⎧== 5.画出下列各曲面所围立体的图形. (1)0,22==z x y 及1224=++zy x ; (2)0,,222==+=z y x y x z 及1=x . 【解】略.6.求由球面224y x z --= ①和锥面()223y x z += ②所围成的立体在xoy 面上的投影区域.【解】联立①、②消去z 得 122=+y x 故Γ在xoy 面上的投影曲线为⎩⎨⎧==+.0,122z y x所以,球面和锥面所围成的立体在xoy 面上的投影区域为(){}1|,22≤+=y x y x D . 7.写出圆锥面22:y x z S +=的参数方程.【解】().20,0.,sin ,cos πθθθ≤≤+∞<<⎪⎩⎪⎨⎧===r r z r y r x习题1.设向量值函数()k t j t i t t r ++=sin cos ,求()t r t 4lim π→. 【解】()t r t 4lim π→k j i k t j t i t t t t 42222lim sin lim cos lim 444ππππ++=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=→→→. 2.设空间曲线C 的向量函数为(){}t t t t t r 62,34,122--+=,R t ∈.求曲线C 在与20=t 相应的点处的单位切向量.【解】因(){}64,4,2-='t t t r ,故C 相应20=t 的点处的切向量为(){}2,4,42='r .C 相应20=t 的点处的单位切向量为(){}.31,32,322,4,4612⎭⎬⎫⎩⎨⎧±=±='r 3.求曲线32,,:t z t y t x ===Γ在点)1,1,1(0M 处的切线方程和法平面方程. 【解】0M 对应参数1=t .Γ在0M 点处的切线方向为 ()()(){}|1,,='''=t t z t y t x s {}{}3,2,13,2,1|12===t t t .所以,Γ在0M 点处的切线方程为 312111-=-=-z y x . 法平面为()()()01.31.21.1=-+-+-z y x ,即 0632=-++z y x .4.在曲线32,,:t z t y t x ===Γ上求一点,使在该点处的切线平行于平面y x 2:+π4=+z .【解】平面y x 2+4=+z 的法向量为{}1,2,1=n .在Γ上任取一点()0000,,z y x M ,并设0M 对应参数0t t =.Γ在0M 点处的切线方向为()()(){}000,,t z t y t x s '''={}{}20023,2,13,2,1|0t t t t t t ===.由题意,欲使0M 点处的切线与平面π平行,只须s 与n 垂直,为此令200341.0t t n s ++==,即0341200=++t t .解之得, 10-=t 或 310-=t .所以,所求点为()1,1,10---M 或⎪⎭⎫⎝⎛-271,91,310M .5.求曲线⎰=tu udu e x C 0cos :,t t y cos sin 2+=,t e z 31+=在0=t 处的切线方程和法平面方程.【解】参数0=t 对应曲线C 上的点()2,1,00M .C 在0M 点处的切线方向为 ()()(){}|,,='''=t t z t y t x s {}{}3,2,13,sin cos 2,cos |3=-==t tt e t t t e .所以,Γ在0M 点处的切线方程为 322110-=-=-z y x . 法平面为()()()02.31.20.1=-+-+-z y x ,即 0832=-++z y x .6.已知(){}t t t t r 2,1,12-+=表示空间一质点在时刻t 的位置,求质点在时刻t 的速度和加速度向量,并求质点在指定时刻1=t 的速率和运动方向. 【解】(一)时刻t 的速度向量为()()()()(){}2,2,12,1,12t t t t t r t v =⎭⎬⎫⎩⎨⎧''-'+='=; 时刻t 的加速度向量为()()()()(){}{}0,2,02,2,1='''=''=t t r t a .(二)1=t 的速度为(){}2,2,11=v )32211222=++=. 1=t 的速度为(){}2,2,11=v()⎭⎬⎫⎩⎨⎧=32,32,311.复习题71.填空题(1)设b a ,为非零向量,若0.=b a ,则必有a ⊥b .(2)设b a ,为非零向量,若0=⨯b a ,则必有a ∥b .(3)若直线l 的方向向量s 与平面π的法向量n 互相平行,则直线l 与平面π必 垂直.(4)点()1,5,3P 到平面07623=+++z y x 的距离732. (5)若动()z y x M ,,到定点()5,0,0的距离等于它到x 轴的距离,则该动点的轨迹方程为25102-=-z x .(6)直线⎪⎩⎪⎨⎧+=--=+=.31,1,2t z t y t x 与平面0765=-+-z y x 的位置关系是相交但不垂直.【解】直线l 的方向向量为{}3,1,1-=s .平面的法向量为{}6,5,1-=n .因为024.≠=n s ,且s 与n s .的坐标分量不成比例, 所以直线l 与平面π相交. 2.判断题.(1)若c a b a ..=,则必有c b =.(⨯)【解】取i a =,j b =,k c =,即知上述命题是错误的 . (2)若c a b a ⨯=⨯,则必有c b =.(⨯)【解】取i a =,j b =,k c =,即知上述命题是错误的 . (3)若c a b a ..= ① 且c a b a ⨯=⨯ ② ,则必有c b =.(⨯)【解】取0=a ,j b =,k c =,即知上述命题是错误的 .【书后答案有误】. 【注意:如果假定c b a ,,均为非零向量,则上述命题是正确的,其理由如下: 由①式得 ()0.=-c b a ,说明a 与c b -垂直;由②式得 ()0=-⨯c b a ,说明a 与c b -平行. 因为a 为非零向量,故c b -必为零向量,从而c b =. (4)设b a ,为非零向量,则必有a b b a ..=.(√) (5)设b a ,为非零向量,则必有a b b a ⨯=⨯..(⨯)3.已知直线⎩⎨⎧=+--=+++.03102,0123:z y x z y x l 平面024:=+-z y x π,则直线l 与平面π的位置关系为(B )A. 平行于平面π C. 在平面π上B. 垂直于平面π D. 与平面π斜交.【解】在直线l 上任取一点⎪⎭⎫⎝⎛-0,71,7100M .直线l 的方向向量为k j i j i n n s 71428123121-+-=-=⨯=∥{}1,2,4-. 平面的法向量为{}1,2,4-=n .因为s ∥n ,所以直线l 与平面π垂直.4.设c b a u 2+-=,c b a v ---=3,试用c b a ,,表示v u 32-. 【解】v u 32-()c b a 22+-=()c b a ----33c b a 775++=.5.设点C 为线段AB 上一点,且AC CB 2=,O 为AB 外一点,记OA a =,OB b =,OC c =,试用b a ,来表示c .【解】由题意知,a b OA OB AB -=-=,a b AB AC 313131-==. 所以,a b a a b OA AC AO AC c 32313131+=+⎪⎭⎫ ⎝⎛-=+=-=.6.已知k j i a +-=32,k j i b 3+-=,j i c 2-=.计算: (1)()()b c a c b a ..-; (2)()()c b b a +⨯+. 【解】(1)()()8311312.=⨯+-⨯-+⨯=b a ; ()()8302312.=⨯+-⨯-+⨯=c a .所以,()()()()k j k j b c b c b c a c b a 24838888..--=--=-=-=-.(2)k j i j ib a +--=--=⨯581132;k j i j ic a -+=--=⨯22132;k j i j ic b -+=--=⨯362111. 所以,()()c b b b c a b a c b b a ⨯+⨯+⨯+⨯=+⨯+()k j i +--=58 ()k j i -++2 ()k j i -++36 k j --=. 【或者这样做:k j i b a 443+-=+,k j i c b 332+-=+. 所以()()c b b a +⨯+.3243k j j i--=--=】 7.已知{}2,1,2=a ,{}10,1,4-=b ,a b c λ-=,且a ⊥c ,求实数λ. 【解】{}λλλλ210,1,24----=-=a b c .因为a ⊥c ,所以 ()()()λλλ210211242.0-⨯+--⨯+-⨯==c a ,即0927=-λ .解之得 .3=λ8.设{}1,2,3-=a ,{}2,1,1-=b ,求:(1)()()b a 72⨯;(2)i a ⨯. 【解】(1)k j i j i b a 5731123--=-=⨯{}5,7,3--=. 所以,()()b a 72⨯()b a ⨯=14{}{}70,98,425,7,314--=--=.(2){}2,1,020001123--=--=-=⨯k j i kji i a . 9.3=,1=6π=,计算:(1)b a +与b a -之间的夹角;(2)以b a 2+与b a 3-为邻边的平行四边形的面积.【解】232313,.cos .=⨯⨯=⎪⎪⎭⎫ ⎝⎛=∧b a b a . ① (1+()71232322=+⨯+===;-()11232322=+⨯-===; ()()().213 (2)2=-=-=-+b b a a b a b a设b a +与b a -之间的夹角为θ,则有()(72172cos =⨯==b a b a θ,所以72arccos =θ.(2+()1314234322=⨯+⨯+===;-()319236322=⨯+⨯-===; ()()().2916233.6..3.222-=⨯--=--=-+b b b a a a b a b a设b a 2+与b a 3-之间的夹角为θ,则有()(392931329cos -=⨯-==θ,故 2613539291cos 1sin 22=⎪⎪⎭⎫⎝⎛-=-=θθ. 所以由三角形的面积公式知,以b a 2+与b a 3-为邻边的平行四边形的面积为.32526135313sin 2=⨯⨯=⎥⎦⎤⨯-+=θS10.已知点()0,0,1A 及()1,2,0B ,试在z 轴上求一点C ,使ABC ∆的面积最小. 【解】过点()0,0,1A 及()1,2,0B 直线l 的方向即为{}1,2,1-==AB s .l 的方程为 1211:zy x l ==--. 设点()z C,0,0,则{}2,1,22101---=--=⨯z z ji s AC . 点C 距l 的距离为()()()6212222-+-+-==z z d 65245152+⎪⎭⎫ ⎝⎛-=z明显地,当51=z 时,d 取到最小值55254=.所以,ABC ∆的面积最小值为 53055262155221=⨯⨯==∆S ABC . 所求点.51,0,0⎪⎭⎫ ⎝⎛C11.求过点()2,1,3--且与平面01235=-+-z y x 平行的平面方程. 【解】可取所求平面的法向量与已知平面相同,即为{}3,5,1-=n . 所以,所求平面方程为()()()0231.53.1=+++--z y x ,即 .0235=-+-z y x12.求过点()1,2,1且垂直于平面0=+y x 和05=+z y 的平面方程. 【解】可取所求平面的法向量为k j i j in n n 5501121+-==⨯=. 所以,所求平面方程为()()()0152.11.1=-+---z y x ,即 .045=-+-z y x 13.求满足下列条件的平面方程.(1)过点()2,1,1--M 和()1,1,3N 且垂直于平面0532:=-+-z y x π; (2)过点()3,3,2-M 且平行于xoy 面. 【解】(1)可取所求平面的法向量为k j i j is MN n 63122122--=-=⨯=∥{}2,1,4--. 所以,所求平面方程为()()()02.21.11.4=+-+--z y x ,即 .0924=---z y x(2)根据题意,可设所求平面的一般式方程为 .0=+D Cz将点()3,3,2-M 的坐标代入平面方程得.03=+D C 即 ()03≠-=C C D . 所以,所求平面为 .03=-C Cz 化简得.03=-z14.求过点()3,0,2-且与直线⎩⎨⎧=+-+=-+-.01253,0742:z y x z y x l 垂直的平面方程.【解】直线l 的方向为k j i j in n s 111416532121++-=-=⨯=. 所以,所求平面方程为()()()03.110142.16=++-+--z y x ,即 .065111416=+++-z y x15.求过点()1,3,20-M 和直线⎩⎨⎧=+-=--.062,0165:z y y x l 的平面方程.【解】化直线l 的为参数式方程⎪⎩⎪⎨⎧+==+=.62,,165:y z y y y x l .因此直线l 过点()6,0,161M .可取所求平面的法向量为{}1,3,131531410--=--==⨯=k j i j is M M n . 所以,所求平面方程为()()()01.13.32.1=--+--z y x ,即 .0103=---z y x 【书后答案有误】. 16.求过点()1,1,1M 且与直线42135:-=+=-zy x l 平行的直线方程. 【解】根据题意知,可取所求直线的方向为{}4,2,3-=s .所以,所求直线为412131--=-=-z y x . 17.求过点()4,2,00M 且与两平面12:1=+z x π和23:2=-z y π都平行的直线方程.【解】根据题意知,可取所求直线的方向为{}1,3,232100121-=++-==⨯=k j i j in n s . 所以,所求直线为143220-=-=--z y x . 18.求下列旋转曲面方程.(1)⎩⎨⎧==.0,22x y z 绕y 轴旋转一周; (2)⎪⎩⎪⎨⎧==+.0,1422y z x 绕z 轴旋转一周. 【解】(1)由公式,知⎩⎨⎧==.0,22x y z 绕y 轴旋转一周生成曲面 ()y zx 2222=+±,即 222z xy += ,为椭圆抛物面.(2)由公式,知⎪⎩⎪⎨⎧==+.0,1422y z x 绕z 轴旋转一周生成曲面 ()142222=++±z yx ,即 14222=++z y x ,为椭球面. 19.指出下列各方程所表示的是何种曲面.(1)11694222=++z y x ; (2)94322y x z +=; (3)64416222=-+z y x ; (4)3694222-=+-z y x . 【解】(1)表示椭球面; (2)表示椭圆抛物面;(3)可化为164164222=-+z y x ,故(3)表示单叶双曲面; (4)可化为14369222-=-+z y x ,故(4)表示双叶双曲面. 20.求曲线⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=Γ.,1,1:2t z t t y t t x ① 对应于1=t 处的切线方程.【解】将1=t 代入① ,得切点坐标为⎪⎭⎫⎝⎛1,2,21.又切向量为()|12,1,1=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧'⎪⎭⎫ ⎝⎛+'⎪⎭⎫ ⎝⎛+=t tt t t t s ()⎭⎬⎫⎩⎨⎧-=⎭⎬⎫⎩⎨⎧-+==2,1,412,1,11|122t t t t ∥{}8,4,1-. 所以,曲线Γ对应于1=t 处的切线方程为8142121-=--=-z y x .。

相关文档
最新文档